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Abstract. Wide-swath C-band synthetic aperture radar
(SAR) has been used for sea ice classification and estimates
of sea ice drift and deformation since it first became widely
available in the 1990s. Here, we examine the potential to dis-
tinguish surface features created by sea ice deformation using
ice type classification of SAR data. Also, we investigate the
cross-platform transferability between training sets derived
from Sentinel-1 Extra Wide (S1 EW) and RADARSAT-2
(RS2) ScanSAR Wide A (SCWA) and fine quad-polarimetric
(FQ) data, as the same radiometrically calibrated backscatter
coefficients are expected from the two C-band sensors. We
use a novel sea ice classification method developed based
on Arctic-wide S1 EW training, which considers per-ice-type
incident angle (IA) dependency of backscatter intensity. This
study focuses on the region near Fram Strait north of Sval-
bard to utilize expert knowledge of ice conditions during the
Norwegian young sea ICE (N-ICE2015) expedition. Manu-
ally drawn polygons of different ice types for S1 EW, RS2
SCWA and RS2 FQ data are used to retrain the classifier.
Different training sets yield similar classification results and
IA slopes, with the exception of leads with calm open water,
nilas or newly formed ice (the “leads” class). This is caused
by different noise floor configurations of S1 and RS2 data,
which interact differently with leads, necessitating dataset-
specific retraining for this class. SAR scenes are then classi-
fied based on the classifier retrained for each dataset, with the
classification scheme altered to separate level from deformed
ice to enable direct comparison with independently derived
sea ice deformation maps. The comparisons show that the
classification of C-band SAR can be used to distinguish ar-
eas of ice divergence occupied by leads, young ice and level
first-year ice (LFYI). However, it has limited capacity in de-

lineating areas of ice deformation due to ambiguities between
ice types with higher backscatter intensities. This study pro-
vides reference to future studies seeking cross-platform ap-
plication of training sets so they are fully utilized, and we
expect further development of the classifier and the inclusion
of other SAR datasets to enable image-classification-based
ice deformation detection using only satellite SAR.

1 Introduction

The general thinning of Arctic sea ice in recent decades
has led to reduced internal strength (Landrum and Holland,
2020), which together with increased wind forcing (as indi-
cated by atmospheric reanalyses) has caused accelerated ice
drift speed (Spreen et al., 2011) and hence increased ice de-
formation (Rampal et al., 2009, 2011; Itkin et al., 2017). As
surface features created by ice deformation, e.g., lead edges,
rafted ice and pressure ridges, are the primary snow-trapping
sea ice surface types (Liston et al., 2018), the shifting regime
of Arctic sea ice deformation will directly impact snow ac-
cumulation and thus affect heat fluxes through ice, thereby
influencing winter sea ice growth (Sturm et al., 2002). Also,
ice deformation influences ice surface and bottom roughness
and thus affects the transfer of momentum between the atmo-
sphere and the ocean (Cole et al., 2017; Martin et al., 2016),
preconditions the ice layer for more lateral melt (Arntsen
et al., 2015; Hwang et al., 2017; Graham et al., 2019), and
increases ice drift speed due to reduced floe sizes following
ice breakups (Toyota et al., 2006; Steer et al., 2008; Asplin
et al., 2012). Additionally, ice deformation has a significant
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impact on ice primary productivity, as it provides a sheltered
growth environment for ice flora and fauna in deformed ice
(Gradinger et al., 2010; Fernández-Méndez et al., 2018; Gra-
ham et al., 2019) and favorable light conditions under lead
ice (Assmy et al., 2017), creating biological hotspots. Reli-
able examination of sea ice deformation is therefore crucial
for the evaluation and modeling of Arctic sea ice changes.

Sea ice deformation is traditionally estimated from spa-
tial derivatives of ice motion using in situ, airborne and
spaceborne data (e.g., Hutchings et al., 2011; Itkin et al.,
2017, 2018; Bouillon and Rampal, 2015). However, consis-
tent Arctic-wide monitoring of sea ice deformation can only
be achieved through satellite remote sensing. Wide-swath
synthetic aperture radar (SAR) data, e.g., RADARSAT-1
(RS1, 1995 to 2013), RADARSAT-2 (RS2, 2008 to present),
the recently launched RADARSAT Constellation Mission
(RCM, 2019 to present) and Sentinel-1A/B (S1, 2014 to
present) data, have been used to generate large-scale ice drift
and deformation fields (e.g., Marsan et al., 2004; Komarov
and Barber, 2014; Korosov and Rampal, 2017; Howell et al.,
2018), benefiting from large spatial coverage and good tem-
poral resolution. For example, the RADARSAT Geophysi-
cal Processor System (RGPS; Kwok, 1998) generates the
most widely used sea ice motion and deformation dataset
using cross-correlation-based ice tracking on RS1 data for
the western Arctic from 1997 to 2008 (Raney et al., 1991).
Data from other types of satellite sensors, e.g., visible, in-
frared, and microwave radiometers and radar scatterometers,
can also be used to generate ice drift fields with coarser reso-
lution through feature tracking algorithms, for example those
used by the National Snow and Ice Data Center (NSIDC;
Tschudi et al., 2020) and the Ocean and Sea Ice Satellite Ap-
plication Facility (OSI SAF; Cavalieri et al., 2011; Lavergne,
2016; Dybkjaer, 2018).

In addition to sea ice deformation retrieval from ice mo-
tion, the potential of separating areas of deformed and level
ice as classes in wide-swath SAR image classification is valu-
able, as the automated or semi-automated nature of such
methods permits fast processing of data with large spatial
and temporal coverage. Various supervised and unsupervised
SAR sea ice classification methods have been developed, as
reviewed by, for example, Zakhvatkina et al. (2019). Under
the same radar parameters, the intensity of SAR backscat-
ter on sea ice is the combined signal from several scattering
mechanisms, of which surface scattering is the dominant fac-
tor (Onstott, 1992; Moen et al., 2013). Surface scattering is
controlled by surface parameters including roughness and di-
electric properties. Therefore, the separation of level and de-
formed ice, which have distinctly different surface roughness
levels, is theoretically achievable through the classification of
SAR backscatter intensities. Studies have isolated deformed
ice using the classification of airborne and fully polarimetric
high-resolution satellite SAR data (e.g., Casey et al., 2014;
Herzfeld et al., 2015) and linked sea ice roughness to wide-
swath SAR backscatter intensities through correlation analy-

ses, thus mapping sea ice deformation (Cafarella et al., 2019;
Segal et al., 2020; Toyota et al., 2020). Gegiuc et al. (2018)
estimated the degree of ice ridging from the classification
of texture features from segmented RS2 ScanSAR Wide A
(SCWA) data. However, no study has specifically targeted
separating level from deformed ice from the classification of
wide-swath SAR backscatter intensities.

This study investigates the feasibility of such a task with an
ultimate goal of Arctic-wide monitoring of sea ice deforma-
tion. In this context, a classification method consistently ap-
plicable to multiple satellite platforms is desirable to utilize
their respective advantages. This study is a first step towards
this goal, which explores how the cross-platform application
of a SAR classifier between S1 and RS2 data is influenced
by their comparative SAR characteristics. This is achieved
by examining the transferability of classification training sets
between these two sensors. S1 and RS2 are widely used for
sea ice monitoring, and their wide-swath acquisition modes
provide extensive spatial and temporal coverage for Arctic-
wide sea ice analyses (Zakhvatkina et al., 2019). This transfer
learning process is theoretically feasible as the two sensors
are expected to yield the same radiometrically calibrated nor-
malized radar cross section (backscatter coefficient, or σ 0)
values for the same surface, as they operate at the same cen-
ter frequency (5.405 GHz). Studies have confirmed that they
yield consistent ocean feature extraction results (Van Wychen
et al., 2019), and other studies have used the fusion of coin-
cident SAR data in different bands in sea ice classification
(Dabboor et al., 2017; Lehtiranta et al., 2015). However, S1
and RS2 differ in various other SAR parameters (Table 1,
more details discussed in Sect. 2), thus requiring examination
of between-sensor differences in sea ice backscatter, based
on which the transferability of training can be assessed.

The SAR classifier used for transfer learning is a newly de-
veloped sea ice classifier based on Arctic-wide S1 EW train-
ing (Lohse et al., 2020). This classifier provides a novel so-
lution to the effect of surface-type-dependent change of SAR
backscatter intensity with incident angle (IA) and is hereafter
referred to as the Gaussian incident angle (GIA) classifier.
Accordingly, the examination of the effect of sensor differ-
ences on the transfer of training will focus on different IA
dependencies, mainly involving IA slopes, of ice surfaces.
Based on this examination, an optimal way of applying the
classifier to S1 and RS2 data in our study area can be de-
rived. All datasets are then classified, where the classification
scheme is altered to separate level from deformed ice, allow-
ing for direct comparison with areas of ice convergence and
divergence produced by tracking drifting ice parcels.

In summary, this study has two objectives: (1) to examine
IA dependency of different ice types in S1 and RS2 data and
evaluate the cross-platform transferability of training in the
application of the GIA classifier and (2) to test to what extent
sea ice classification based only on HH and HV backscatter
intensities of C-band SAR data can be used to separate level
from deformed ice.
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Table 1. Parameters of satellite data used in this study. SGF: SAR georeferenced fine; SLC: single look complex; GRD: ground range multi-
look detected; Rng: range direction; Az: azimuth direction; NESZ: noise-equivalent sigma zero. Spatial resolution of S2 and L8 data is for
bands 2, 3 and 4.

Parameters RS2 SCWA RS2 FQ S1 EW S2 L8

Polarization Dual (HH+HV) Quad (HH+VV
+HV+VH)

Dual (HH+HV) – –

Acquisition mode SCWA FQ EW – –
Product type SGF SLC GRD Level-2A BOA

reflectance
Level-2 surface
reflectance

Nominal pixel spacing [Rng×Az] (m) 50× 50 4.7× 5.1 40× 40 – –
Nominal resolution [Rng×Az] (m) 163–73× 78–106 5.2× 7.6 93× 87 10× 10 30× 30
Nominal scene size [Rng×Az] (km) 500× 500 25× 25 250× 250 100× 100 185× 180
NESZ range (dB, approximate) −25 to −30 −31 to −39 −23 to −34 – –
IA range 20–49◦ 18–49◦ 20–46◦ – –
Number of looks [Rng×Az] 4× 2 1× 1 6× 2 – –

Date Number of scenes

8 January 2015 1 – 1 – –
10 January 2015 1 – 1 – –
12 January 2015 1 – 1 – –
21 January 2015 1 – 1 – –
26 January 2015 1 1 1 – –
5 March 2015 1 1 1 – –
19 March 2015 1 1 1 – –
17 April 2015 1 – 1 – 1
19 April 2015 – 3 1 – –
21 April 2015 1 – 1 2 1
23 April 2015 – 2 1 – –
28 April 2015 1 1 1 – 1
30 April 2015 1 – 1 – 2
26 April 2019 1 – 1 6 –
30 April 2019 1 – 1 3 1

2 Materials and methods

2.1 Materials

The materials and methods of this study are summarized in
a flowchart in Fig. 1. SAR data used in this study are mainly
wide-swath RS2 and S1 data, i.e., RS2 SCWA and S1 EW
(hereafter referred to as S1) data. The spatial resolution of
these datasets is too coarse to detect individual leads and
ridges less than approximately 100 m wide, but it is sufficient
for isolating leads several hundred meters wide and separat-
ing areas dominated by deformed or level ice (Murashkin
et al., 2018; Johansson et al., 2017). RS2 FQ data are also
included to investigate the use of its higher spatial resolution
to delineate ice deformation features. The analysis of SAR
data focuses on the HH and HV channels, based on which
the GIA classifier is trained.

Several datasets are used as reference to the deriva-
tion of training and validation polygons. Firstly, Sentinel-2
(S2, Level-2A bottom-of-atmosphere (BOA) reflectance) and
Landsat-8 (L8, Level-2 atmospherically corrected surface re-
flectance) data with less than 50 % nominal cloud coverage
are collected to provide optical reference. Secondly, back-
tracking of sea ice source regions from ice drift fields derived

from passive microwave data (Itkin et al., 2017), as well as
in situ observations from the Norwegian young sea ICE 2015
(N-ICE2015) campaign, provides knowledge of the general
distribution of ice types, especially first-year ice (FYI) and
multi-year ice (MYI). Finally, the global sea ice type product
from OSI SAF (10 km resolution), which provides separation
between FYI and MYI using passive and active microwave
scatterometers, is used as an additional reference (OSI SAF,
2015). No in situ data collected during N-ICE2015 are usable
as a reference due to minimal spatial overlap with satellite
data.

This study focuses on sea ice surrounding the N-ICE2015
expedition north of Svalbard at the western end of the Trans-
polar Drift (Granskog et al., 2017, 2018) to utilize expert
knowledge from co-authors who participated in the cam-
paign. Data collected during N-ICE2015 are used as the pri-
mary dataset, while SAR scenes with optical imagery over-
lap from 2016 to 2019 are also used to expand the dataset
for retraining and validation. In situ observations show that
sea ice investigated during N-ICE2015 primarily consisted
of a mixture of FYI and second-year ice (SYI), while other
thinner ice types including nilas and young ice also existed.
SYI belongs to the MYI category in SAR-based sea ice clas-
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Figure 1. Flowchart of materials and methods used in this study.

sification and was the only type of MYI observed in the N-
ICE2015 campaign. Frost flower coverage of young ice was
observed for the entire N-ICE2015 drift (Itkin et al., 2017;
Johansson et al., 2017; Granskog et al., 2017, 2018; Singha
et al., 2020). This study mainly uses data covering the core
of winter after freeze-up and before melt onset, i.e., Jan-
uary to April, as defined by Barber et al. (2001) based on
time series evolution of C-band backscatter coefficients. This
is to avoid the influence of wet snow on radar backscatter,
which reduces radar penetration depth and result in domi-
nant backscatter from the air–snow or dry–wet snow inter-
face (e.g., Gill et al., 2015).

Specific selection procedures of satellite data are specified
in Sect. 2.2, and the final list is summarized in Table 1 (Gatti
and Bertolini, 2015; Northrop, 2015; MacDonald Dettwiler
Assoc. Ltd. (MDA), 2016, 2018). Image boundaries of RS2
SCWA and S1 scenes are shown in Fig. 2.

The GIA classifier is used for sea ice classification to uti-
lize its class-specific correction of IA dependency of SAR
backscatter. This phenomenon is traditionally treated as an
image property and remedied by a global correction based
on the approximate linear decrease rate in the log domain
(Zakhvatkina et al., 2019; Toyota et al., 2020). However, per-
class IA correction is found to be necessary as the decrease
rates (slopes of backscatter intensities vs. IA, i.e., IA slopes)

are different for different surfaces (Gill et al., 2015; Liu et al.,
2015; Mäkynen and Juha, 2017; Mahmud et al., 2018; Park
et al., 2020). The GIA classifier directly incorporates IA de-
pendency of classes into a Bayesian classifier (Theodoridis
and Koutroumbas, 2008), which is achieved through the re-
placement of the constant mean vector of the Gaussian prob-
ability density function with a linearly variable mean. This
shows significantly improved performance compared to clas-
sification with global IA correction. The terminology of sea
ice classes used in this study is defined in Sect. 2.4.

2.2 Data selection and processing

The following selection and masking processes are con-
ducted on RS2 scenes.

1. The original GIA classifier has limited separating ca-
pacity between open water and sea ice, as IA slopes
and backscatter intensities of open water in different
sea states vary significantly, creating ambiguities with
ice surfaces (Lohse et al., 2020). To mitigate this known
issue and also to serve our purpose of separating level
from deformed ice within pack ice, daily sea ice con-
centration data generated from SSMI/S (Special Sensor
Microwave Imager/Sounder, DMSP F18 satellite) from
NSIDC (National Snow & Ice Data Center, Comiso,
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Figure 2. Extents and overlaps of S1 and RS2 SCWA scenes used in this study.

2017) are used to filter out areas in RS2 SCWA scenes
with ice concentration values lower than 87 %. This is
an empirical threshold derived from visual inspection
for the removal of large, contiguous open-water areas
and the marginal ice zone.

2. The RS2 scenes are further selected based on the avail-
ability of overlapping S1 data and optical imagery. For
2015, RS2 scenes with at least one overlapping S1
scene are retained for analysis. From 2016 to 2019, RS2
scenes with at least one S1 and one optical (S2 or L8)
scene with significant near-coincident overlap (overlap-
ping area ≥ 30 % of the masked RS2 SCWA scene) are
selected to ensure optical reference, resulting in only
two RS2 SCWA scenes investigated in 2019 (Table 1).
The maximum temporal separation between overlap-
ping RS2 data and S1, S2 and L8 data is 1, 5.3 and 8 h,
respectively. These selection parameters are empirically
determined according to data availability. The overlap
analysis is conducted through a script in Google Earth
Engine (Gorelick et al., 2017), from which overlapping
S1 scene IDs are derived and used for downloading us-
ing the Sentinelsat Python API (Marcel et al., 2021),
while RGB composites of S2 and L8 data (bands 4, 3
and 2) are directly generated and downloaded.

Pre-processing of RS2 and S1 data is performed using the
SNAP software package (European Space Agency, 2020).
All scenes are radiometrically corrected and calibrated to σ 0

values, so that RS2 and S1 backscatter is directly compara-
ble. For RS2 FQ scenes which are single look, 2× 2 multi-
looking is performed to reduce speckle and reach a simi-
lar number of effective looks compared to the wide-swath
scenes, while considering the preservation of linear features
of interest, especially leads. Then, speckle filtering (boxcar,

3× 3) is applied on all SAR scenes, and backscatter intensi-
ties are converted to decibels.

Typically several S1 scenes overlap with each RS SCWA
scene, but the one with the largest overlapping area is se-
lected to avoid redundancy. The first sub-swath of each S1
scene is removed for more reliable classification results, as
radiometric variations are especially pronounced between the
first sub-swath and others (e.g., Park et al., 2019). The iden-
tical masking process to remove pixels with low ice concen-
tration is conducted on S1 scenes. No further processing is
conducted on S2 and L8 RGB composites, as they are used
qualitatively as reference data. Subsequent data analyses are
performed using MATLAB (The Mathworks Inc., 2020) and
Python (Van Rossum and Drake, 2009).

2.3 Cross-platform application of the GIA classifier

The original GIA classifier (Lohse et al., 2019) aims for
Arctic-wide applicability and thus has been trained on S1
scenes spread across the Arctic region from 2015 to 2019, in
“winter and early spring” months when ice is under freezing
conditions (Lohse et al., 2020). Therefore, the class-specific
IA dependencies in the classifier are produced from a gen-
eralized training set, and in theory encompass all IA depen-
dencies of these classes within the spatial and temporal do-
main of that study. This study focuses on the transferability
of training between S1 and RS2 data, for which we do not
target Arctic-wide generalization. Instead, we focus on the
N-ICE2015 region during boreal winter 2015 to provide con-
fidence to the validity of training and validation with input of
expert knowledge. Thus, we investigate the applicability of
local training sets separately derived from S1 and RS2 scenes
to both platforms, through which between-sensor differences
in sea ice backscatter can be assessed.
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For this purpose, reference polygons are derived for the
SAR datasets based on visual examination of the scenes for
retraining and validation. Polygons in the overlapping areas
of corresponding RS2 SCWA and S1 scenes are used for both
sensors, with manual adjustments accounting for their time
difference (change of ice types in the polygons across dif-
ferent scenes due to sea ice drift). This study uses the ice
classes in the original GIA classifier excluding open water,
for reasons mentioned above. These classes are leads, young
ice, level FYI (LFYI), deformed FYI (DFYI) and MYI (ex-
plained in more detail in Sect. 2.4). The criteria for selecting
the polygons are as follows.

1. Size. Polygons of the same size within each dataset are
used to standardize the number of pixels in each class:
300 m by 300 m for RS2 SCWA and S1 scenes and 30 m
by 30 m for RS2 FQ scenes, which are approximately 3
times their effective pixel sizes given their number of
looks. The choice of this size takes into account typical
widths of linear features, mainly leads and young ice.

2. Distribution. A minimum distance of 30 pixels is kept
between polygons to minimize spatial dependence be-
tween polygons of the same class. For each class, the
polygons are distributed evenly across the entire range
of IAs (where possible).

3. Numbers. In total 100 polygons are delineated for each
scene, and the same number (20) of polygons are se-
lected for each class (where possible). As the five
classes are usually uneven in spatial coverage, prob-
ability sampling, e.g., spatially random or systematic
sampling, is not used to avoid underrepresentation of
scarcely occurring classes.

For classes usually with small spatial coverage (leads and
young ice) where criteria 2 and 3 cannot both be satisfied
(i.e., small spatial coverage leading to inevitable selection of
polygons in small areas), criterion 3 is given priority to yield
more polygons. Examples of reference polygons are shown
in Fig. 3. Polygons shown in the SAR scenes are used in
the analysis, while those in the optical scenes are manually
shifted polygons which account for time differences from the
SAR scenes and are therefore only for illustration purposes.
Polygons in each scene are randomly split in half, with the
number in each class also split in half, for retraining and val-
idation. Training polygons for all S1 scenes are merged into
an S1 training set, and those for RS2 SCWA scenes and FQ
scenes are separately merged into RS2 SCWA and RS2 FQ
training sets. Thus, for each dataset (S1, RS2 SCWA or RS2
FQ), retraining incorporates IA dependencies in all scenes.
This is especially essential for RS2 FQ scenes where their
small extent (spatial coverage: 25 km by 25 km; IA range:
1.24 to 1.94◦) necessitates the combined investigation of IA
dependencies across multiple scenes.

To evaluate cross-dataset transferability of training, the
original GIA classifier is firstly applied to all datasets, pro-

viding a baseline for further analyses. Secondly, the regional
training sets for S1, RS2 SCWA and RS2 FQ scenes are used
to retrain the classifier and classify each dataset. Based on the
evaluation of the results using validation polygons, the trans-
ferability of training is assessed, and the classification maps
derived using the optimal classifier are selected to separate
level from deformed ice.

2.4 Adaptation to separate level from deformed ice

To allow for direct comparison with ice deformation maps
(see Sect. 2.5), the five-class classification scheme of the GIA
classifier is altered to a three-class one: deformed ice, level
ice and others, i.e., the classification of “deformation states.”
The correspondence between the two schemes is as follows.

1. DFYI and MYI: deformed ice. An ideal classification
of level and deformed ice requires separation between
deformation states in every ice age category (mainly
young ice, FYI and MYI). However, the GIA classi-
fier does this only for FYI, such is common practice
of SAR-based sea ice classification (e.g., see review by
Zakhvatkina et al., 2019). Specifically, the DFYI class
refers to rough FYI with stronger backscatter due to ei-
ther ridging or the presence of other rough surface fea-
tures, e.g., pancake ice.

MYI surface is usually rougher than younger ice types
due to more accumulated deformation. The separation
of MYI deformation states using SAR-based classifi-
cation is challenging due to stronger presence of vol-
ume scattering from the desalinated and porous up-
per ice layer (increasing backscatter from level ice) as
well as weathering of deformation features (decreas-
ing backscatter from deformed ice; Dierking and Dall,
2007, 2008; Casey et al., 2014). As this study uses C-
band HH and HV intensities only, this volume scatter-
ing component in MYI is significant, while the capac-
ity of fully polarimetric data to distinguish between sur-
face and volume scattering is not available (Moen et al.,
2013; Casey et al., 2014). For the same reason, the con-
tribution from volume scattering and ice deformation
to strong SAR backscatter (characteristic of both DFYI
and MYI) cannot be perfectly separated, creating am-
biguities between DFYI and MYI. Thus, although MYI
is not necessarily physically associated with ice defor-
mation, this study groups MYI together with DFYI as
“deformed ice.”

2. Young ice and LFYI: others. Among the many forms
and stages of growth, the young ice class defined in
the GIA classifier corresponds to rough young ice cov-
ered by frost flowers (mostly in re-frozen leads), i.e.,
fragile ice crystals typically 10–30 mm in height. The
presence of frost flowers creates small-scale (millime-
ters to centimeters) surface roughness on the young
ice surface, which has been shown to cause a C-band

The Cryosphere, 16, 237–257, 2022 https://doi.org/10.5194/tc-16-237-2022



W. Guo et al.: Cross-platform sea ice classification considering per-class IA effect 243

Figure 3. (a) Examples of reference polygons in different ice types in overlapping parts of SAR (false-color RGB composites: R:HV, G:HH,
B:HH) and optical scenes and (b) examples of zoomed-in subsets for each class.

backscatter increase of 6–15 dB (Martin et al., 1995;
Isleifson et al., 2010, 2018). The examination of SAR
scenes used in this study shows that these young ice
areas can reach similar backscatter intensities to MYI.
It has been demonstrated that typical deformation in
young ice, i.e., ice rafting, is difficult to distinguish us-
ing C-band SAR (Dierking, 2010) and therefore is not
included in the analysis. Observations taken during N-
ICE2015 show that rafting seldom occurred for young
ice in the study area. Young ice was predominantly level
with frost flower coverage, while ridging primarily oc-
curred where young ice was close to thick ice. Example
photographs of young ice from the campaign are shown
in Fig. 4. Level young ice is not part of the five-class
scheme, as the LFYI class does not exclude level ice
less than 30 cm thick due to similar backscatter (Dierk-

ing and Dall, 2008; Dierking, 2010). As we are inter-
ested in ice deformation occurring on thicker ice, i.e.,
FYI and MYI, young ice is labeled “others” along with
LFYI.

3. Leads. The leads class in the GIA classifier corresponds
to ice openings occupied by calm open water, nilas or
newly formed ice, thus having the lowest backscatter
intensities. The separation between open water in differ-
ent wind states is not within the scope of this study. As
mentioned above, an ice concentration product is used
to filter out large contiguous water bodies. The remain-
ing water bodies all reside in leads that are away from
the marginal ice zone and thus more sheltered from
winds. Within the SAR scenes used in this study, visual
examination shows that open water in all major leads is
calm. This class is of direct interest in the second goal
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of this study and is labeled “leads” in the three-class
scheme.

2.5 Deformation parcel tracking

Six pairs of S1 scenes from 21 to 26 January 2015 (one
image pair per day) surrounding the N-ICE2015 region are
used to construct ice deformation history for drifting ice
parcels based on the sea ice drift algorithm developed by Ko-
rosov and Rampal (2017). Sea ice deformation is calculated
from line integrals as described in, for example, Bouillon and
Rampal (2015) and Itkin et al. (2017) and further filtered for
noise. Sea ice drift is calculated on a 400 m regularly spaced
grid and deformation on the corresponding triangular grid.
The deformation states are classified as no deformation, di-
vergence and convergence. The rectangular parcels are ini-
tiated on the first day of the image sequence on a regular
grid with centroids spaced by 300 m at a size of 120 km by
120 km. Initially, all parcels are undeformed. For each sub-
sequent day the parcels move with the average velocity of
the drift calculated within a 300 m radius of each parcel cen-
troid. At every step, each ice parcel accumulates counts of
each deformation class based on the average value inside the
150 m radius from the centroid. Finally, based on the total
number of counts, every parcel is classified into undeformed,
predominantly convergence, predominantly divergence or a
mix of both. These Lagrangian parcel products are then grid-
ded onto a 100 m grid based on the nearest-neighbor value.
In the 6 d of parcel tracking, the ice pack undergoes episodic
deformation limited to several active linear kinematic fea-
tures (LKFs). The effects of this recent deformation can then
be visually compared with the classification results, thus ex-
amining the ability of the classification to recognize the most
recently formed ice deformation features.

3 Results and discussion

3.1 Cross-platform application of the GIA classifier

3.1.1 Classification accuracy and qualitative
comparisons

The classification accuracies (CAs; Fig. 5) show that for all
datasets regional retraining leads to similar and significant
improvements in classification performance over the origi-
nal GIA classifier. Firstly, regional training sets (Fig. 5a–c,
columns S1, RS2 SCWA and RS2 FQ) yield average CAs
significantly higher than the original GIA classifier (Fig. 5a–
c, columns O), which is expected as regional validation is
used. Secondly, within each dataset, regional training sets
yield similar overall CAs, despite the “corresponding” train-
ing sets (Fig. 5a column S1, b column RS2 SCWA and c
column RS2 FQ), yielding higher average CAs (87.63 %,
89.31 % and 91.70 %) than the rest (p values shown in

Fig. 5). This corresponds well with our expectation of simi-
lar sea ice backscatter (σ 0) for the two C-band sensors, while
suggesting dataset-specific retraining can be used to achieve
optimal overall accuracies.

Examples of qualitative comparison between results using
the GIA classifier with different training are shown in Fig. 6.
The original GIA classifier yields classification maps domi-
nated by DFYI (green) and MYI (blue), while visual inspec-
tion of the SAR RGB composites (Fig. 6a1–c1) indicates sig-
nificantly more prominent existence of LFYI, rough young
ice and leads. This is caused by frequent misclassification of
young ice as MYI and leads as LFYI. The three underrepre-
sented ice types (LFYI, rough young ice and leads) are bet-
ter recognized by the regionally retrained GIA classifier for
all datasets (Fig. 6a3–c3, a4–c4, a5–c5). This shows the ex-
pected improvement of classification performance from re-
gional retraining as evaluated by regional validation. The
GIA classifier with different regional training (Fig. 6a3–c3
vs. a4–c4 vs. a5–c5) yields results with similar spatial distri-
bution of ice types.

3.1.2 IA dependencies

Theoretically, the performance of cross-dataset application
of training is driven by the different IA dependencies of the
ice types they record. To investigate this, scatter plots of HH
intensities and IAs for different ice types are derived using
the validation polygons (Fig. 7). NESZ values across the IAs
are plotted for comparison. Corresponding least-squares lin-
ear regression lines are also plotted. HH–IA slopes derived
from validation polygons as well as the original and retrained
(using corresponding training sets) GIA classifier are sum-
marized in Table 2, with slope values from previous studies
using winter C-band satellite SAR data listed for reference.
For all datasets, the HV signals show less IA dependency
and are much more affected by noise, but their inclusion in
the classifier has been demonstrated to improve class separa-
tions (Lohse et al., 2020). For our study area, the difference
in HV–IA dependencies provides additional separating ca-
pability between MYI and young ice, while those for leads,
LFYI and DFYI are severely influenced by noise floor con-
figurations. Otherwise, the analysis of HV–IA dependencies
provides little additional information relating to our objec-
tives and is not shown here.

The original GIA classifier (Fig. 7a2–c2) yields simi-
lar separation between ice types across datasets, showing
the characteristics of its generalized S1 training. Compara-
tively, the validation polygons yield different class separa-
tions (Fig. 7a1–c1) representing the local condition in the
study area. The class separations and IA slopes of ice types
from regional training are reflected in the retrained classifi-
cation results (Fig. 7a3–c3, a4–c4, a5–c5). The training set
corresponding to each dataset (Fig. 7a3, b4 and c5) produces
class separation most similar to the validation polygons.
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Figure 4. Example photographs of young ice witnessed in the N-ICE2015 campaign within the study area (photos: P. Itkin).

Figure 5. CAs for S1, RS2 SCWA and RS2 FQ scenes using the original and retrained GIA classifier. O: training for the original GIA
classifier; S1, RS2 SCWA, RS2 FQ: regional S1, RS2 SCWA and RS2 FQ training, respectively. Mean CAs are displayed in red below the
box plots. P values of the difference in mean CAs are also shown.

The comparative class separations and IA slopes from dif-
ferent training sets explain the above qualitative compar-
isons (Sect. 3.1.1): (1) the generalized training shows flat-
ter HH–IA slopes and lower-extending HH values for LFYI,
which results in its strong overlap with leads (Fig. 7a2–c2),
while the regional training sets yield steeper slopes for LFYI
(Fig. 7a1–c1), resulting in better separation between the two
classes; (2) young ice and MYI are shown in all training sets
to have similar HH intensities (Fig. 7a1–c1), but they show
better separation in the HV channel for the regional training
sets than the generalized one (not shown).

HH–IA slopes of different ice types are within the range of
values reported by previous findings (Table 2), having con-
sidered that they are derived from different areas across the
Arctic region. Comparative IA slopes for different ice types
also conform to the literature: (1) IA slopes of DFYI are less

than those of LFYI, as deformation features are strong scat-
terers which lead to higher standard deviation in backscatter
intensities in small (local) IA intervals, and this added ran-
domness in backscatter is not sensitive to IA; (2) compared
to FYI, MYI has lower IA slopes due to the sensitivity of C-
band radar signal to air bubbles in MYI, leading to substantial
presence of volume scattering (when compared to SAR sen-
sors at longer wavelengths, e.g., L-band), which is less sen-
sitive to IA (Mäkynen et al., 2002; Dierking and Dall, 2007;
Mahmud et al., 2018; Zakhvatkina et al., 2013; Mäkynen and
Juha, 2017; Lohse et al., 2020). For each dataset, when com-
pared to the original GIA classifier, the classifier retrained us-
ing the corresponding training set yields slope values closer
to the validation polygons.
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Figure 6. Example comparisons between classification results using the GIA classifier with different training.

3.1.3 Leads and noise floors

Between the two wide-swath datasets (S1 EW and RS2
SCWA), the IA slopes for young ice, FYI and MYI follow
similar trends (Fig. 7, columns a and b). However, the IA

slope for leads in the RS2 SCWA training is visibly flat-
ter than that in the S1 training, which is confirmed by their
respective slope values in Table 2 (−0.12 dB/◦ for S1 and
−0.065 dB/◦ for RS2 SCWA). The plotted NESZs show that
leads for S1 scenes are above the noise floor throughout the
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Figure 7. HH–IA scatter plots, least-squares regression lines for different ice types and NESZ values for different datasets.
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IA range (Fig. 7b1), while for RS2 SCWA scenes (with a
flatter noise floor), it is very close to and reaches the noise
floor at an approximate IA of 30◦ (Fig. 7b2). This explains
the flatter IA slope for leads in RS2 SCWA scenes.

For the RS2 FQ scenes, IA slopes for the young ice, FYI
and MYI (Fig. 7c1) are similar to the wide-swath datasets.
The RS2 FQ scenes are well within pack ice, and the leads
that these scenes additionally recognize due to higher spatial
resolution (compared to wide-swath scenes) are very narrow
and scarce. Therefore, the multi-looking and speckle filter-
ing processes have mixed the pixel values in narrower leads
to surrounding pixels with higher backscatter intensities, re-
sulting in small numbers of reference polygons. This has pre-
vented full evaluation of its IA dependency due to uneven
representation across IAs. However, the existing reference
polygons show that HH intensities of RS2 FQ lead pixels
do not reach the noise floor across the IA range and therefore
do not present the above issue in the RS2 SCWA training.

To further investigate the interaction between leads and re-
spective noise floors of the sensors, IA slopes for leads from
the near range to increasing IA maximums are plotted in
Fig. 8. F1 scores (Chinchor, 1992) of the leads class, which
combines producer’s and user’s accuracies, and are shown
to evaluate the overall accuracies of this class. S1 validation
polygons show relatively constant HH–IA slopes across the
range of IA maximums (Fig. 8a, black lines). For RS2 SCWA
scenes (Fig. 8a, red lines), the slopes are steeper (higher ab-
solute values) for IA maximums in the near range and sta-
bilize after reaching a similar slope level to S1 scenes (ap-
proximately−0.16 to−0.12 dB/◦, at IA maximums from 38
to 44◦, as shown between the dashed lines). The slopes then
quickly flatten (lower absolute values) as the IA maximum
approaches the far range, eventually reaching a much flatter
overall slope of −0.065 dB/◦ compared to −0.120 dB/◦ for
S1 scenes. This confirms the findings from Fig. 7a2 where
the lead pixels reach the noise floor at approximately 30◦,
and remain at a similar decibels level due to the noise floor.
Thus, using the S1 training on RS2 SCWA scenes will in-
evitably introduce incorrect IA dependency for leads, leading
to misclassification and vice versa. It then follows that for a
specific lead in a SAR scene, its spatial coverage in the range
direction, influenced by its positioning, length and orienta-
tion, will impact the degree of this misclassification of pixels
inside.

For the classification results (Fig. 8b–d), the training used
by the original GIA classifier yields different overall IA
slopes than the regional validation for leads in both datasets,
resulting in relatively low classification accuracies, as shown
by the F1 scores (Fig. 8b, F1leads). When applied to their cor-
responding datasets, the regional S1 and RS2 SCWA training
sets (Fig. 8c, black; Fig. 8d, red) yield HH–IA slopes across
IA maximums similar to their respective validation polygons
(Fig. 8a). Comparatively, cross-platform application of train-
ing sets (Fig. 8c, red; Fig. 8d, black) produces lower accura-
cies, confirming the findings above.

To inspect this effect in classification maps, an example
classification of an RS2 SCWA scene is given in Fig. 9,
which shows the difference between different training in rec-
ognizing leads in different IA ranges. For the near range,
the GIA classifier with S1 and RS2 SCWA regional retrain-
ing (Fig. 9c1 and d1) yields very similar spatial coverage of
leads. In IAs between 34 and 39◦, classification using the
RS2 SCWA training (Fig. 9d2) produces a more complete
representation of the leads than the S1 training (Fig. 9c2)
where parts of the leads are identified as LFYI. In IAs be-
tween 40 and 45◦, the RS2 SCWA training preserves all vis-
ible leads (Fig. 9d3) while the S1 training keeps only part
of the main ice opening (Fig. 9c3, circled in black) but al-
most entirely misses the other leads. This gradual increase in
misclassification of leads as LFYI with IA corresponds well
with Fig. 7 (column b): the stronger HH–IA dependency for
leads in S1 training (steeper IA slopes than RS2 SCWA train-
ing) yields the same lead–LFYI separation in the near range
but shows gradually more misclassification of leads to LFYI
(Fig. 7b3 compared to b4) in IAs greater than approximately
37◦. The same is true for RS2 SCWA training when used to
classify S1 scenes (Fig. 7a4 compared to a3), where its flatter
HH–IA slope leads to misclassification of LFYI to leads in
the far range.

From the above analyses of CAs, HH–IA dependencies
and qualitative comparisons, it can be concluded that in our
study area, S1 and RS2 SCWA training sets are transferable
with the exception of the leads class. This is caused by the
different interactions between backscatter from leads and the
noise floors in the two datasets, i.e., the flattened IA slope of
leads in RS2 SCWA data due to contact with the higher noise
floor. This means that between wide-swath S1 and RS2 data,
transfer learning can only be conducted on classes other than
leads for whole scenes or on all classes in the near range.
Otherwise, retraining is needed for reliable separation be-
tween leads and LFYI. The RS2 FQ scenes yield similar
IA slopes for classes other than leads compared to the wide-
swath datasets, while full assessment of leads is impeded by
the lack of reference polygons. Retraining to the study area
also increases performance of the GIA classifier when ap-
plied to S1 scenes. Based on these assessments, the S1, RS2
SCWA and FQ scenes are classified using the GIA classifier
regionally retrained using their corresponding training sets
and are used for the following comparison to ice deforma-
tion.

3.2 Comparison between classification results and
deformation parcels

The five classes in the classification results are summarized
into three deformation states and compared with the defor-
mation parcels (Fig. 10). During the period of ice parcel
tracking (21–26 January 2015), a storm with a peak wind
speed of 10.8 ms−1 passed through Fram Strait (storm M1,
21 to 22 January; Cohen et al., 2017) and hit the area sur-
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Figure 8. HH–IA slopes for different IA maximums and F1 scores of the leads class, with the overall slopes (maximum IA= 50) shown in
corresponding colors (black: S1 scenes; red: RS2 SCWA scenes).

Figure 9. Comparison of classification results in different IA ranges for the RS2 SCWA scene on 5 March 2015, where IA contours with
values are shown in white, and main areas containing the leads class are circled in white in (a1–a3).

rounding the N-ICE2015 research camp (Cohen et al., 2017;
Graham et al., 2019). The storm first pushed ice northward,
compacting the ice pack and causing ice deformation along
re-frozen leads and cracking thicker ice floes. It then trans-
ported ice southward towards the ice edge in the second

phase, generating strong divergence and opening along the
same leads and cracks. Following the storm passage, newly
opened leads rapidly re-froze following the returning of dry
and cold conditions, creating new ice (Itkin et al., 2017; Gra-
ham et al., 2019). Accordingly, the parcels (Fig. 10, row e) in-
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dicate major presence of new and deformed ice concentrated
along several LKFs. Divergence zones with new lead ice pre-
vail but are mixed with convergence zones where deformed
ice is expected to be produced, mainly in the middle of the
maps (Fig. 10e1 and e3). The northeastern and southern parts
of the maps experienced mainly ice divergence, marked by
solid ellipses.

It is difficult to interpret direct correspondence between
the deformation parcels and the classification maps, as ar-
eas of ice divergence and convergence do not directly corre-
spond to specific ice types, and the deformation parcel maps
only represent ice motion accumulated in the 6 d period.
Still, observations can be made for (1) whether the classified
ice types correctly correspond to ice divergence or conver-
gence indicated by the deformation parcels and (2) whether
the classification maps and deformation parcels each identify
visible deformation features not shown by the other.

1. Classification results. An overall examination of classi-
fication maps (Fig. 10b1–b3) shows that deformed ice
is pervasive. The same can be concluded from visual
examination of the SAR RGB composites (Fig. 10a)
and is reported by N-ICE2015 records and observations
(Itkin et al., 2017; Granskog et al., 2018; Graham et al.,
2019). However, the true percentage of deformation in
the scene cannot be retrieved or confirmed using avail-
able data. This is due to the inclusion of ice surface with
other rough surface features in the DFYI class, as well
as ambiguity between DFYI and MYI, as mentioned
above. The deformed ice class (three-class scheme) is
comprised of mainly DFYI (five-class scheme).

On the other hand, many LKFs in the others and leads
class (three-class scheme) are visible in the classifica-
tion maps (white in Fig. 10b1–b3). These are comprised
of mostly LFYI in re-frozen leads (five-class scheme),
which can physically correspond to smooth young ice
or FYI, as mentioned above. To more clearly examine
the correspondence of the leads and others classes to
the deformation parcels, pixels in these classes are ex-
tracted, from which small, disconnected pixel groups
(< 100 pixels for wide-swath scenes and < 500 pixels
for the RS2 FQ scene) are removed. These filtered pix-
els (Fig. 10c1–c3, in red) clearly show the abovemen-
tioned LFKs, with the primary ones marked by dashed
lines and numbered in Fig. 10d1–d3. Most of these level
ice areas also appear in the deformation parcel maps
(Fig. 10e1–e3), where they are numbered accordingly.
Lines 5, 8 and 9 in Fig. 10d3 do not appear in the de-
formation parcel maps (Fig. 10e3) as they are out of
the maps’ areal coverage. Open-water areas in line 1
in Fig. 10b1 and b3 are correctly classified as leads
(in red). The RS2 FQ scene shows similar distribution
of ice types, but its higher spatial resolution picks up
some more visible ice openings with more spatial de-
tails (lines 1, 3, 4 and 5 in Fig. 10d2) compared to d3).

2. Deformation parcels. For the deformation parcels, the
most prominent (widest) features have more recogniz-
able correspondence to features delineated by the classi-
fications. These are either mostly ice divergence mixed
with convergence or exclusively divergence. For exam-
ple, the end states of lines 2 and 3 in Fig. 10e1 and e3 are
dominated by LFYI and young ice, surrounded by DFYI
(not shown), corresponding well to the co-authors’ field
experience of deformation occurrence at the interface
between young ice and older ice. The pixels showing
“mostly convergence” are derived from values accu-
mulated in the 6 d period and therefore cannot repre-
sent deformation accumulated over longer periods. The
abovementioned areas indicating mainly ice divergence
(Fig. 10e1 and e3, solid ellipses, excluding the major
lead, i.e., line 1) are less recognizable in the classifica-
tion maps. Five-class classifications indicate these are
narrower and smaller leads occupied mostly by LFYI
and young ice. Areas in which deformation parcels indi-
cate prominent presence of ice convergence are mainly
classified as the deformed ice class, interrupted by small
areas of others.

The areal fraction of deformation parcels occupied by
each class is shown in Fig. 11. Due to the coarse reso-
lution of the deformation parcels compared to the SAR
scenes, the contrast between parcels of mainly conver-
gence and “mainly divergence” in terms of the com-
parative proportions of deformed ice and others is not
prominent. Nevertheless, the fractions of the leads and
others classes in areas of ice divergence are higher than
in those of ice convergence, corresponding well with the
above findings. For the same reason regarding spatial
resolution, a large fraction of the parcels are classified
as deformed ice, which is the dominant class in areal
coverage in the SAR scenes. The others class takes up
22.13 % to 34.38 % of all types of deformation parcels,
indicating that on average, approximately a quarter of
a deformation parcel pixel (a 300 m × 300 m area) is
comprised of others. This matches typical widths of de-
formation features in the study area and period.

To summarize, the classifications capture ice openings in
the leads and others classes that correspond well with areas
of ice divergence. This good correspondence is also partly
due to the surface features created by ice divergence being
more spatially confined. On the other hand, the deformed
ice class includes a mix of DFYI and MYI that is spatially
widespread, where the true proportions of deformed ice can-
not be reliably verified and hence has limited correspondence
with areas of ice convergence. This is due to both the accu-
mulation of ice deformation in a period longer than the par-
cel tracking and also the limitation of the classifier working
only with HH and HV channels of C-band sensors. Classifi-
cation on the RS2 FQ scenes performs similarly to the wide-
swath scenes but can serve to preserve more spatial details
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Figure 10. Comparison of classification results and deformation parcels. Classification results (b1–b3) are derived using the GIA classifier
retrained using corresponding training sets. The position of the RS2 FQ scene is shown as white rectangles in the wide-swath scenes (a1, a3).
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Figure 11. Areal fractions of different classes (three-class scheme) within deformation parcel pixels.

of surface features. The capacity of the classification results
to identify these surface features (mainly ice divergence) in
the deformation parcels serves as another validation of the
regionally retrained GIA classifier.

3.3 Limitations and future steps

This study is a first step towards the goal of Arctic-wide
ice deformation detection based on a consistent classification
method applicable to multiple SAR platforms and thus inves-
tigates the cross-platform application of the GIA classifier in
a regional setting. We work within the limitations of both the
classifier and the characteristics of HH and HV channels of
S1 and RS2, which affects the separation of level from de-
formed ice, as summarized above. Very limited ground truth
of ice types from in situ data are available for retraining
and validation, hence the heavy preference given to the N-
ICE2015 dataset to utilize the co-authors’ expert knowledge
on ice conditions.

This study expands the application of the GIA classifier
from S1 to RS2 data. Additional studies will be conducted,
seeking further expansion of its application to more SAR
platforms, e.g., X- and L-band SAR, which provides po-
tential for better separation between ambiguous class pairs.
IA dependency in SAR data with these different frequencies
needs to be rigorously examined and validated. It is expected
that frequency- and region-specific retraining will still be es-
sential for deformation detection using the altered classifier,
as SAR intensity contrast between level and deformed ice
is sensitive to SAR properties as well as ice properties that
vary across regions, e.g., small-scale roughness and ice vol-
ume structure (Dierking and Dall, 2007). The inclusion of
more features into the classification is also desirable, e.g.,
polarimetric features sensitive to sea ice deformation (e.g.,
Ressel et al., 2016; Park et al., 2019), and also texture fea-
tures (e.g., Park et al., 2020; Lohse et al., 2021). For example,
the recent study by Lohse et al. (2021) investigated the IA
dependencies of common texture features and demonstrated

that incorporating these features into ice type classification
can improve the separation of young ice and MYI, as well as
the classification of open-water areas. However, the improve-
ment comes at the cost of reduced spatial resolution due to
the applied texture windows. Further integration of IA de-
pendency into classifiers other than the Bayesian classifier
is also desirable to seek better classification performances.
Finally, successful cross-platform application of an optimal
classification method can be used to create a reliable time se-
ries of classification maps, which can be better used to derive
or compare with ice deformation products.

4 Conclusions

This study demonstrates that in our study area, S1 and RS2
data produce similar IA dependencies of different ice types,
except the leads class due its interactions with different noise
floors of the two sensors. Accordingly, based on the GIA
classifier, our results have demonstrated that the direct trans-
fer of training between the two platforms is applicable with
the exception of leads. Dataset- and region-specific retrain-
ing is found to provide optimal classification performances,
and the GIA classifier retrained specific to S1, RS2 SCWA
and RS2 FQ datasets produces similar and improved classifi-
cation results compared to the original classifier. The cross-
platform application of the GIA classifier extends usable C-
band SAR data over the study area from 2015 to present (S1)
to 2010 to present (RS2). This study further provides refer-
ence to future cross-platform application of training between
S1 and RS2, so valuable training sets can be better utilized,
e.g., with proper retraining, or direct application in the near
range or when leads are not of interest.

The comparison between deformation parcels and classifi-
cation results with dataset-specific regional retraining shows
the best correspondence in leads with open water and nilas,
young ice, or LFYI, as prominent ice openings created by di-
vergence following the storm passage are in linear forms and

https://doi.org/10.5194/tc-16-237-2022 The Cryosphere, 16, 237–257, 2022



254 W. Guo et al.: Cross-platform sea ice classification considering per-class IA effect

well captured by both analyses. The DFYI and MYI classes
in the classification results do not clearly correspond to linear
ice convergence zones indicated by deformation parcels, due
to both the limitation of the classification method and the dif-
ference in the period of deformation accumulation. RS2 FQ
scenes can be used to provide more spatial details in delineat-
ing deformation features. The comparison with deformation
parcels further serves to partially validate the classification
results.

In summary, through the cross-platform application of the
GIA classifier, this study demonstrates the potential and ob-
stacles in the transfer of training between S1 and RS2 data, as
well as in the use of the classification to separate level from
deformed ice. We expect future development of the classifier
and the inclusion of additional datasets will enable the pos-
sibility of large-scale monitoring of ice deformation merely
from the classification of widely available satellite SAR data.
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