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Abstract. Knowledge concerning possible inhomogeneities
in a data set is of key importance for any subsequent cli-
matological analyses. Well-established relative homogeniza-
tion methods developed for temperature and precipitation ex-
ist but have rarely been applied to snow-cover-related time
series. We undertook a homogeneity assessment of Swiss
monthly snow depth series by running and comparing the re-
sults from three well-established semi-automatic break point
detection methods (ACMANT – Adapted Caussinus-Mestre
Algorithm for Networks of Temperature series, Climatol –
Climate Tools, and HOMER – HOMogenizaton softwarE in
R). The multi-method approach allowed us to compare the
different methods and to establish more robust results using a
consensus of at least two change points in close proximity to
each other. We investigated 184 series of various lengths be-
tween 1930 and 2021 and ranging from 200 to 2500 m a.s.l.
and found 45 valid break points in 41 of the 184 series in-
vestigated, of which 71 % could be attributed to relocations
or observer changes. Metadata are helpful but not sufficient
for break point verification as more than 90 % of recorded
events (relocation or observer change) did not lead to valid
break points. Using a combined approach (two out of three
methods) is highly beneficial as it increases the confidence in

identified break points in contrast to any single method, with
or without metadata.

1 Introduction

The quality of climate data time series analyses relies heavily
on homogeneous input data, and such quality-controlled and
homogenized climate data are needed to improve climate-
related decision-making. Most decade- to century-scale me-
teorological time series are affected by inhomogeneities due
to, for example, changes to instrumentation, changes to sta-
tion location and observer practices, or changes in the local
environment such as urbanization or plant growth (Tuomen-
virta, 2001). Disentangling these break points from the un-
derlying noise and variability in the data is challenging but
crucial for improving confidence in any further analyses (e.g.
Vertačnik et al., 2015). Accompanying metadata, if available,
can be useful in helping to corroborate and verify breaks
identified by statistical methods (Aguilar and Llanso, 2003).
However, not every relocation or change in the station history
necessarily leads to a break point in the data series in the first
place.
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There is no “one-method” solution when it comes to the
detection of break points but rather a collection of statistical
tools. Homogeneity tests can be broadly divided into “ab-
solute” and “relative” methods. The former are applied di-
rectly to individual candidate stations to identify statistically
significant shifts in the section means (referred to as breaks
or change points), while relative methods entail comparison
of correlated neighbouring stations with a candidate station
to test for homogeneity. If reference series exist, a relative
(rather than an absolute) approach where candidate series are
compared to reference series is considered state of the art
(Venema et al., 2012) in contemporary climate sciences as
it allows the practitioner to eliminate any erroneous climato-
logical shifts (Della-Marta and Wanner, 2006). Another ad-
vantage of some relative methods is that they do not require
the reference series to be homogeneous themselves (Szen-
timrey, 1999; Caussinus and Mestre, 2004). Given the fre-
quent occurrence of inhomogeneities in many climate time
series, considerable efforts have been made to address the
issue. These efforts by the community have produced a num-
ber of relative homogenization methods and toolboxes with
varying degrees of user interaction and ease of application to
choose from. PRODIGE (French for miracle) (Caussinus and
Mestre, 2004) proved to be among the best-performing meth-
ods evaluated in the COST (European Cooperation in Sci-
ence and Technology) Action HOME alongside ACMANT
(Adapted Caussinus-Mestre Algorithm for Networks of Tem-
perature series) (Domonkos, 2011), Climatol (Climate Tools)
(Guijarro, 2018), USHCN (US Historical Climatology Net-
work) (Menne and Williams, 2009), and MASH (Multiple
Analysis of Series for Homogenization) (Szentimrey, 1999).

Efforts towards efficient break detection have been made
for many meteorological variables such as temperature (e.g.
Kuglitsch et al., 2012; Begert et al., 2008), precipitation (e.g.
Begert et al., 2005; Coll et al., 2020), and phenological se-
ries (Brugnara et al., 2020) using various methods and tools.
In the case of snow time series, however, only a few stud-
ies exist: Marcolini et al. (2017) investigated the use of the
SNHT (standard normal homogeneity test; Alexandersson,
1986; Alexandersson and Moberg, 1997) for detecting breaks
in mean annual snow depth. Marcolini et al. (2019) compared
the use of the SNHT and PRODIGE for the break detec-
tion and subsequent homogenization of mean seasonal snow
depth. Schöner et al. (2019) focused on trend analysis of sea-
sonal mean snow depth in the Swiss–Austrian domain, using
PRODIGE to identify inhomogeneous series in the records
analysed. In our approach we choose to use multiple refer-
ence series processed using several modern relative methods,
thereby increasing confidence in the results. As information
concerning potential inhomogeneities is crucial in providing
an accurate and reliable snow time series record, an in-depth
homogeneity assessment of Swiss snow depth series is nec-
essary.

For our study we used ACMANT (Domonkos,
2011, 2020), Climatol (Guijarro, 2018), and the semi-

automatic tool HOMER (HOMogenizaton softwarE in R;
Caussinus and Mestre, 2004; Domonkos, 2011; Guijarro,
2018; Picard et al., 2011) as they were all used for break
detection purposes in recent studies: Kuya et al. (2021a)
used Climatol for precipitation and HOMER for temperature
(Kuya et al., 2021b); Noone et al. (2016) used HOMER for
precipitation; and Coll et al. (2020) compared break detec-
tion performance of various methods including ACMANT,
Climatol, and HOMER. Climatol is based on the SNHT
(Alexandersson and Moberg, 1997) and recommended
by Coll et al. (2020) for detecting breaks in precipitation
series. HOMER is the extension development of and direct
successor to PRODIGE and therefore is one of the most used
homogenization methods in climate sciences. In addition
it provides the homogenization practitioner with more
operational freedom (in terms of configuration possibilities)
than Climatol or ACMANT. Applying the different methods
to Swiss snow depth time series and experimenting with
various configurations allow us to investigate the suitability
of the different set-ups and to provide a homogeneity
assessment of the manual Swiss snow observation network.

Benchmark analyses of various methods exist for temper-
ature and precipitation at both monthly and daily resolutions
(e.g. Venema et al., 2012; Killick et al., 2021); however, no
clear favourite has emerged. In addition, the use of Clima-
tol (based on the SNHT) and HOMER (based on PRODIGE)
allows for a more direct comparison with work already un-
dertaken to assess homogeneity and break detection for snow
time series in the Alps (Marcolini et al., 2017, 2019; Schöner
et al., 2019). Furthermore, this in-depth analysis of Swiss
snow series allows for the identification of suspicious or er-
roneous data in the series analysed which would otherwise
have escaped detection. The process of homogenization can
be described in three steps: break detection, attribution (ver-
ification of break points), and correction. In this study, we
focus on the first step and touch upon the second. To focus
our study, our research questions are as follows:

1. Which method or set-up works for break point detection
in (Swiss) snow depth time series?

2. Is there any elevation dependence affecting the capabil-
ity of the methods for break point detection?

3. Are the detected break points consistent with changes
inferred from available metadata?

4. How homogeneous (in terms of detected break points)
are the Swiss snow depth series investigated in our ap-
proach?

5. Are break point results similar for different snow cover
variables (average snow depth and days with snow
cover)?

The paper is organized as follows: Sect. 2 introduces the
data set, and Sect. 3 details the methods used for the analyses.
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Results are presented in Sect. 4 and discussed in Sect. 5, and
conclusions are drawn in Sect. 6.

2 Data

Our data consist of a newly compiled set of manually mea-
sured Swiss snow depth (HS) series obtained by the Fed-
eral Office of Meteorology and Climatology (MeteoSwiss)
and the WSL Institute for Snow and Avalanche Research
SLF. Manual snow measurements are conducted every morn-
ing between November and April at designated measure-
ment fields with an observer reading off the snow depth
from a graduated fixed stake; see Buchmann et al. (2021b)
for more information. A favourable unique feature of us-
ing these manual snow depth measurements in Switzerland
is that the instrument (graduated snow stake) and the gen-
eral measurement procedure have not changed (Haberkorn,
2019), thereby eliminating one potential source of inhomo-
geneity in the records. We evaluated all the available series
in the archives with data recorded between 1931 and 2021.
Selection criteria were that time series have to be longer
than 30 years and have at least 80 % complete data between
November and April, and entirely missing single years were
also allowed. Applying these criteria resulted in a data set
of 184 station time series, distributed widely over Switzer-
land, from 200 to 2500 m a.s.l. Figure 1 shows the location
and distribution of the stations used in this study (a list of all
stations can be found in Table S1 in the Supplement). We use
monthly (November–April) mean snow depth and monthly
sums of days with snow on the ground for every hydrological
year (November of the last year to April of the current year)
as input data for the application of the break detection meth-
ods and set the remaining 6 months to zero. Days with snow
on the ground are defined as days with snow depth equal to
or greater than 1 cm. The final outputs used in the break point
analysis were annual time series of winter mean snow depth
(HSavg) and snow cover duration (dHS1).

Metadata

Since the instruments for manually measuring snow depth
have not changed over our period of analysis, this allowed a
clearer focus on other metadata components, such as coordi-
nate changes as a proxy for station relocation and observer
changes. Such information is generally available and was
compiled from various sources (station records, archives, and
operational databases). Unfortunately, for the MeteoSwiss
network the exact locations of the snow measurements can
differ from the coordinates of the associated meteorological
station, and especially in the early days, MeteoSwiss did not
record snow-specific coordinates. Moreover, the quality dif-
fers from station to station and is generally more vague for
older periods (greater than 30 years) in the station records
(Aschauer and Marty, 2020). Our metadata are not perfect

(i.e. there is missing or incomplete information for some
records); however, they are unlikely to be completely wrong
and may offer some corroborative information for any breaks
detected. Metadata are therefore used as additional verifica-
tion for the identified break points where applicable/available
with a tolerance of ±2 years.

3 Methods

3.1 Break detection algorithms

3.1.1 HOMER

HOMER is a collection of functions for break point detection
and homogenization. The pairwise comparison (PRODIGE)
is based on a penalized likelihood criterion (Caussinus and
Lyazrhi, 1997) and is composed of optimal segmentation in
conjunction with dynamic programming (Hawkins, 2001).
Further methods are joint segmentation based on Picard et al.
(2011) and ACMANT detection (Domonkos, 2011). We used
pairwise comparison for our analyses because ACMANT de-
tection depends on a seasonal cycle and Gubler et al. (2017)
reported issues with HOMER’s joint segmentation module.
Coll et al. (2020) highlight that HOMER has its disadvan-
tages when dealing with incomplete data, particularly when
the missing data comprise contiguous blocks earlier or later
in a series. For this reason the WMO Task Team on Homoge-
nization recommends a missing data tolerance of 15 years for
HOMER (WMO, 2017). However, as we are using mainly
complete series and solely focus on pairwise detection, our
analyses should not be affected. Network neighbourhoods
in HOMER are constructed using station selection criteria,
based on either distance or first-difference correlations. Here
we used a minimum correlation threshold of 0.8 (empirical
values) and a minimum number of five reference series (sim-
ilarly to PRODIGE). In practice this means that if no refer-
ence series with correlations ≥ 0.8 are found for a particular
candidate series, the five next best correlated stations are re-
turned instead and, if more than five series exist with corre-
lations ≥ 0.8, all are displayed.

HOMER is semi-automatic insofar as it provides the user
with a set of graphical difference series whereby the can-
didate series are compared to the reference series in each
of the sub-networks based on the selection criteria applied.
For each candidate and reference series in the derived sub-
networks, any breaks detected are displayed to help inform
subsequent adjustment decisions by the user. Difference se-
ries in HOMER can be defined in two ways: either the can-
didate minus reference (Diff-mode) or the candidate divided
by reference (Ratio-mode). As our data are skewed due to
the seasonal nature of snow cover data and limited at zero
(no negative snow depth), we used Ratio-mode instead of
differences (details in Table 1). Break points are interpreted
as valid if they occur in more than half of the first five valid
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Figure 1. Map of Switzerland showing the distribution of the 184 stations used in this study.

Table 1. Settings for HOMER, ACMANT, and Climatol.

Method Variable Value Comment

HOMER Mode Ratio, pairwise
Min correlation 0.8
Min reference series 5
Break detection Annual
Break 3/5 Three out of five
Tolerance for breaks ±2 years

ACMANT Mode RR Precipitation
Min correlation 0.4 Fixed value
Output Default

Climatol std 2 Normalization: divide by the mean; preferred if data are skewed
wz 0.1 Scale parameter for the vertical coordinate
wd 0, 0, 100 Distance weight
dz.max 22 Value from expl-results
snht1 35 Determined by expl-results (left to default 25 for dHS1)
snht2 45 Determined by expl-results (left to default 25 for dHS1)

(with standard deviation of the noise (sigma) smaller than 0.3
and similar length and geographical origin to candidate se-
ries) reference series (i.e. three out of five), within an uncer-
tainty of ±2 years, meaning that breaks are accepted as valid
if they occur within ±2 years of each other in at least three
reference series. The ±2 years is adopted from Kuglitsch
et al. (2012). Venema et al. (2020) pointed out that paral-
lel analyses of statistically or geographically relevant station
data are the best solution for identifying breaks in time se-
ries. Some of the investigated snow time series are paral-
lel series (Buchmann et al., 2021b), and if a break point is

suggested in such a parallel candidate–reference series, it is
double counted. In cases where some of the first 5 reference
series selected do not cover the whole time period of the can-
didate series, the next longest series with sigma smaller than
0.3 might be included in the analysis. Furthermore, break de-
tection was set to “annual”. Once the potential break points
are adjusted based on operator interpretation and re-entered,
HOMER is run again to calculate the break magnitude cor-
rection factors for each station.
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3.1.2 ACMANT

ACMANT (Domonkos, 2011; Domonkos and Coll, 2017)
is the most automatic of the homogenization methods used
in this study, which means hardly any parameters can be
changed by the user. Reference series are constructed via
correlations between candidate and reference series with a
fixed minimal correlation of 0.4. For this study we used AC-
MANTv4.3 (Domonkos, 2020) run in standard precipitation
mode (see Table 1). Break points and the associated break
magnitude corrections applied by ACMANT are retrieved
from an automatically produced file. Automatic networking
(AN) has been developed (Domonkos and Coll, 2019) as a
preparatory operation for homogenizing data sets of more
than 40 series (as is the case with the network here) with
the ACMANT method. In AN, a specific network is con-
structed for each candidate series which provides optimal
spatial comparison with the candidate series always in the
centre of the network (Domonkos and Coll, 2017).

3.1.3 Climatol

In contrast to HOMER and ACMANT, Climatol uses com-
posite reference series and detects breaks one by one with the
standard normal homogenization test (SNHT; Alexandersson
and Moberg, 1997) applied to anomaly series between can-
didate and reference series to detect break points. Anomalies
are normalized through either the subtraction of or division
by series averages, with the latter approach being recom-
mended for skewed data series such as precipitation. Miss-
ing values are automatically infilled using values from neigh-
bouring stations, thus allowing the method to compare series
that do not share an intact data period prior to this adjustment.
There are no pre-defined neighbourhoods as in HOMER, but
a distance criterion is available to geographically confine the
potential reference series (see Guijarro, 2018, and Coll et al.,
2020, for more detail). Reference series are defined based on
geographical proximity (Luna et al., 2012) using Euclidean
distances. By default, the vertical coordinates in metres carry
the same weight as the horizontal coordinates in kilometres.
To account for the influence of elevation as a key control on
snow, the scale parameter (wz) was adjusted so that eleva-
tion counts 100 times more, in practice meaning an elevation
difference of 500 m is equivalent to a horizontal distance of
50 km in the approach used here. Climatol also provides an
exploratory analysis of the data, which is necessary to prop-
erly set the parameters listed in Table 1. Once the parame-
ters are set, Climatol can be run to produce an output file
with suggested break points for each station. Break magni-
tude corrections are calculated as the change in mean before
and after homogenization as Climatol does not automatically
provide these values.

3.2 Evaluation of break detection algorithms

We define valid break points as break points detected at con-
cordant times for any given series by at least two out of three
independent methods within a tolerance of ±2 years regard-
less of metadata. As an additional measure, we only accepted
as valid those break points identified within 5 years of ei-
ther the beginning or the end of a series to agree with proce-
dures used in Kuya et al. (2021a). The break points detected
were then compared to available metadata where applicable;
this metadata information was the decisive factor used to at-
tribute the exact year of break points. In the case of those
series where no metadata information was available, either
the common year detected by a majority of the methods or
the first occurrence of a concordant break point within the
defined tolerance threshold was used.

To evaluate the performance and set-up of each method,
their suggested break magnitude corrections and their con-
tributions to concordant break points (number of valid break
points compared to total number of detected break points)
were measured and compared. To test whether break point
detection depends on elevation or the “amount of snow”, de-
tected breaks are compared to both station elevation and cli-
matological (calculated for the entire period) snow values
(i.e. mean HSavg). To assess how many valid break points
can be explained by metadata and to see whether either sta-
tion relocations or observer changes are more prone to cause
detectable breaks, we compared the concordant break points
to records in the station history.

Using this combined approach of integrating the break
point information from the various methods alongside the in-
formation from metadata allows us to more confidently esti-
mate the homogeneity of the Swiss snow network. The main
focus is on breaks in HSavg; however, the opportunity to
use dHS1 alongside HSavg as a complementary break point
detection approach is discussed in Sect. 4.3. Series without
any detected break points or break points detected by only
one method are considered homogeneous; series with break
points detected by at least two out of three methods (with or
without metadata support based on our criteria) are consid-
ered inhomogeneous.

We are using HOMER 2.6, ACMANTv4.3, and Clima-
tol 3.1.1; all analyses were run on a Windows system with
R 4.1.1 (R Core Team, 2021).

4 Results

4.1 Comparison of method performances

4.1.1 Number of detected break points

To assess and be able to compare the three methods, we
added up all the detected break points separately for each
method and grouped them into time periods to investigate
the temporal distribution of the break occurrences between
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Figure 2. (a) Number of break points identified with ACMANT,
Climatol, and HOMER for a total of 184 stations. (b) Number of
break points and year of detection retrieved from ACMANT, Clima-
tol, and HOMER for a total of 184 stations. The number of available
series per decade is indicated with black dots and a corresponding
right y axis. All results are for HSavg.

the methods. Here we found ACMANT returning the largest
number of detected break points with 170 breaks in 98 of
the 184 series. The total numbers of break detections for Cli-
matol (61 in 54) and HOMER (32 in 30) are significantly
smaller than the ACMANT break detections. Table 2 and
Fig. 2a summarize the overall break detection frequencies
between the three methods. Figure 2b shows the temporal
distribution of the detected break points between the meth-
ods. Based on this summary ACMANT detects the maximum
number of break points between 1970 and 1980, whereas for
Climatol and HOMER the 1980s is the decade associated
with most detections. This suggests that ACMANT seems
to be more sensitive in detecting changes than Climatol and
HOMER, and the time period associated with the maximum
number of break detections is coincident with the period
where the maximum number of station records is available.

4.1.2 Break magnitudes and detection capabilities

To investigate the sensitivity of the break detection capac-
ity, the break magnitude corrections for all identified breaks
are analysed across the methods. Figure 3a shows the num-
ber of detected breaks and their corresponding break magni-
tude correction categories. The majority of break magnitude
corrections are distributed between 10 %–19 % (ACMANT
and Climatol) and 20 %–29 % (HOMER). In contrast to AC-
MANT and Climatol, HOMER detects very few breaks with
magnitude corrections below 10 %. This again indicates that
ACMANT detects the most break points, including those
of lower magnitude, whereas HOMER identifies fewer but
higher-magnitude breaks. Climatol tends to mirror the pat-
tern of ACMANT break point detection but with fewer detec-

tions overall. Figure 4 provides density distribution plots of
the break magnitude corrections for the three methods sep-
arately. Here we found almost normal distributions for the
Climatol and ACMANT break magnitude density distribu-
tions with a peak around 0 (suggesting no or very small cor-
rections). The break magnitude distribution for ACMANT
is bimodal with a local minimum at 0, reflecting more low-
magnitude negative corrections than positive ones. The dis-
tribution of the break magnitude corrections for HOMER on
the other hand is more uniform with no obvious peak. This
reinforces that HOMER not only detects fewer break points
than Climatol or ACMANT overall but also generally detects
larger-magnitude breaks, a situation reflected in the broader
distribution of break magnitude corrections.

4.1.3 Elevation and amount-of-snow dependencies

The availability (as well as quality) of suitable reference
series for each candidate station is key for a proper break
point detection. Snow distribution in Switzerland is highly
elevation-dependent, and our stations range from 200 to
2500 m a.s.l. To test the hypothesis that lower stations might
not have enough suitable reference series for proper break
point detections, a possible elevation dependence is investi-
gated. To explore a possible altitudinal or amount-of-snow
influence on the break detection capability of the methods,
the break magnitude corrections of the identified break points
were compared to station elevation and climatological HSavg
(mean over the entire period of the available records). This
comparison of break detections with elevation found fewer
break points below 500 and above 1800 m a.s.l. than between
1300 and 1700 m a.s.l., whereas in comparison to the clima-
tological HSavg, no clear pattern is visible. For these com-
parisons all three methods exhibited similar break detection
patterns. Figure 3b and c plot these relationships separately,
while Fig. 5 summarizes the relationship between station el-
evation and climatological HSavg for every station where
break points were detected.

4.2 Concordant break points in HSavg

As the location and magnitude of break points obtained from
the individual methods differed, for the remainder of the
analysis only concordant break points (identified across all
three methods) are considered. In this approach only breaks
identified by at least two of the methods and obtained within
±2 years are considered to be valid. The set of valid break
points based on these criteria are shown in Table 3. This
approach identified 31 break points in 30 series for HSavg,
with only one series showing multiple break points detected
across all three methods. The majority of valid break points
were found with a combination of ACMANT and HOMER,
whereas no break points in HSavg were found with only Cli-
matol and HOMER. Figure 6 summarizes the method com-
binations which led to break points being assessed as valid
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Table 2. Comparison of detected break points for each individual method. A valid break point means it was detected by at least two out of
three methods. The complementary category uses break points from both dHS1 and HSavg (six break points are identical).

Method Variable Stations Valid No. of breaks Detected valid Efficiency
breaks breaks (%)

ACMANT HSavg 184 31 170 31 18
Climatol HSavg 184 31 61 17 28
HOMER HSavg 184 31 32 23 72
Valid HSavg 184 31 31 31 100

ACMANT dHS1 184 20 177 17 10
Climatol dHS1 184 20 43 16 37
HOMER dHS1 184 20 30 11 37
Valid dHS1 184 20 20 20 100

Complementary both 184 45 45 45 100

Figure 3. (a) Absolute break magnitude corrections and their distribution for ACMANT, HOMER, and Climatol. (b) Break magnitude
corrections versus station altitude. (c) Break magnitude corrections against mean HSavg. Valid break points are bold.

based on the criteria, while Fig. 7 summarizes the stations
with identified inhomogeneities based on these same crite-
ria. Multiple detections for series based on these criteria be-
ing applied across all three methods indicate that 83 % of the
184 Swiss snow series analysed can be considered homoge-
neous. However, the individual contributions to valid break
points based on these selection criteria is different for each
method, and these are summarized in Table 2. ACMANT and
Climatol contribute to the detection of 18 % and 28 % respec-
tively of valid break points based on our selection criteria,
whereas HOMER accounts for 72 % of the detections. To fur-
ther support the break points with reference to the available
metadata (either station relocation or observer changes), the

break points obtained across the methods were compared to
any recorded changes in the station history. This comparison
with the available metadata found that 22 of the 31 detected
break points were supported by metadata and that of these 19
were due to station relocation while 3 could be attributed to
a change of observer. The remaining 11 break points had no
metadata support in the station histories. Figure 7 (as well as
Fig. S1 in the Supplement) summarizes the metadata infor-
mation supporting the valid break points. This strongly sug-
gests that station relocation is a likely explanation for the ma-
jority of the supported inhomogeneities detected in the snow
series records analysed here.
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Table 3. List of valid break points concordantly identified in 184 investigated Swiss snow time series. Stations are ordered according to break
year, and series with break points identified in both HSavg and dHS1 are marked bold. Combination code refers to ACMANT (A), Climatol
(C), and HOMER (H).

Code ACMANT Climatol HOMER Metadata Metadata type Combination Variable Break Altitude
year (m a.s.l.)

6RP.a 1955 1953 No information AC HSavg 1953 1800
x.MVE 1957 1957 1957 Relocation AC dHS1 1957 1590
1GH 1958 1960 No information AC HSavg 1958 1970
1GS 1966 1966 1965 1964 Relocation ACH HSavg 1964 1195
7ST 1967 1968 1968 Observer change AH HSavg 1968 1415
SNS 1968 1967 1968 Relocation AC dHS1 1968 439
1GB 1970 1970 No information AC HSavg 1970 1565
DIS 1971 1970 No information AC HSavg 1970 1190
GLA 1970 1970 No information AC HSavg 1970 515
STG 1970 1971 No information AH HSavg 1970 779
GRA 1970 1969 1971 Relocation AC dHS1 1971 634
LUZ 1971 1971 1971 Relocation AH dHS1 1971 456
5DF 1972 1972 1975 No information AC HSavg 1972 1560
GLA 1975 1975 1975 Relocation AH HSavg 1975 515
EBK 1974 1974 1976 Relocation AC dHS1 1976 629
6SB 1979 1981 Relocation AH HSavg 1979 1640
4SM 1979 1979 1980 Relocation AH HSavg 1980 1470
x.SAM 1980 1982 1979 1980 Relocation AH HSavg 1980 1726
GUE 1980 1980 1981 Relocation AC dHS1 1981 2287
URB 1980 1979 1981 Relocation AC dHS1 1981 1395
URB 1980 1980 1980 1981 Relocation ACH HSavg 1981 1395
BEH 1982 1982 1983 Observer change AH HSavg 1983 2256
ELM 1983 1984 No information AC HSavg 1983 965
ABO 1985 1985 1984 Relocation CH dHS1 1984 1325
ABO 1984 1981 1984 1984 Relocation AH HSavg 1984 1325
SED 1985 1982 1983 1985 Relocation ACH HSavg 1985 1432
1LC 1988 1987 1987 Relocation AH HSavg 1987 1360
1SM 1989 1990 1989 1988 Relocation ACH dHS1 1988 1390
1SM 1987 1988 1988 Relocation AH HSavg 1988 1390
2GO 1990 1991 1989 Relocation AC dHS1 1989 1110
2GO 1988 1988 1988 1989 Relocation ACH HSavg 1989 1110
2RI 1990 1990 1989 No information ACH dHS1 1989 1640
5ZV 1990 1989 1989 Observer change AH HSavg 1989 1735
ABO 1990 1990 No information AH dHS1 1990 1325
FIL 1990 1990 1990 Observer change AH dHS1 1990 1030
MUE 1989 1988 1990 Relocation AH HSavg 1990 1641
1MR 1991 1991 No information AC HSavg 1991 1650
MER 1989 1989 1992 Relocation CH dHS1 1992 595
5SP 1994 1993 1994 Relocation AH HSavg 1994 1457
3UI 1995 1995 1996 Relocation AH HSavg 1996 1340
2ME 1997 1996 1997 Relocation CH dHS1 1997 1320
2ME 1997 1997 1995 1997 Relocation ACH HSavg 1997 1320
5KK 1998 2000 1997 Relocation AH dHS1 1997 1190
5KK 2000 2000 1997 Relocation AH HSavg 1997 1190
7MZ 1997 1996 1998 Relocation AC HSavg 1998 1850
7AG 2000 1999 No information AC dHS1 1999 2090
ZNZ 2000 2001 2001 Relocation AH HSavg 2001 1470
SIA 2001 2004 2001 2001 Relocation AH HSavg 2001 1802
5SP 2003 2001 2004 Relocation AH dHS1 2004 1457
GSS 2008 2008 2009 Relocation AH dHS1 2009 897
LUZ 2012 2012 No information AC dHS1 2012 456
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Figure 4. Density plots for break magnitude corrections for AC-
MANT, Climatol, and HOMER.

Figure 5. Break points in relation to station altitude and mean
HSavg. Valid break points, identified by at least two methods, are
marked with black triangles.

4.3 dHS1 as complementary information

The same procedures as outlined in Sect. 4.1 and 4.2 above
were applied to another important and commonly used snow
indicator: days with snow on the ground (dHS1). Here we
found that for all methods except ACMANT, fewer break
points are identified compared to the other measures (see
Table 2). Here we found the majority of valid break points
with the combination of ACMANT and Climatol (compared
to AH for HSavg). From a total of 20 valid break points, AC-
MANT finds 17, followed by Climatol with 16 and HOMER
with 11. This suggests that the dHS1 series appear to be
more robust in terms of there being fewer breaks than for
the HSavg series. Comparing the mean absolute break mag-
nitude corrections for HSavg (14 %) with the ones for dHS1
(5 %) also reveals that the breaks identified in dHS1 are on
average smaller than the ones found in HSavg. Table 2 (bot-

Figure 6. Method combinations for valid break points: ACMANT–
Climatol–HOMER (ACH), ACMANT–Climatol (AC), ACMANT–
HOMER (AH), and Climatol–HOMER (CH).

tom) summarizes the number of identified breaks for the two
indicators. Figure 8 compares the valid break points found
for HSavg and dHS1. Six (out of 45) of the break points
(13 %) agree, indicating that a complementary approach may
be beneficial for detecting valid break points. Figure 7 pro-
vides an overview of the valid breaks and metadata informa-
tion available for both HSavg and dHS1.

5 Discussions

5.1 Break detection

The main differences between the three methods arise from
both the way reference series are constructed and how breaks
are classified as valid. Reference series in ACMANT and
HOMER are constructed based on correlation but with dif-
ferent correlation coefficient thresholds applied for the selec-
tion of reference series in the networks, whereas in Climatol,
proximity (defined by Euclidean distances) is used. As these
different configuration parameters allow for a large number
of reference series combinations, as well as of ways breaks
are classified, it is no surprise that the results differ between
the methods. As the construction of reference series is an in-
trinsic part of the methods, a comparison with the same input
network is not possible.

The detection capability of Climatol depends on the choice
of wz (vertical scale parameter) and the SNHT thresholds
as outlined by Guijarro (2018). However, the determina-
tion of appropriate SNHT thresholds is less straightforward,
an issue which has been reported by Kuya et al. (2021a).
Lowering the thresholds increased the number of identified
break points. However, if the thresholds are too low, multiple
breaks within the same years are detected, which implies that
the method is too sensitive. Conversely, if the thresholds are
too high, no breaks are detected at all. As suggested by Kuya

https://doi.org/10.5194/tc-16-2147-2022 The Cryosphere, 16, 2147–2161, 2022



2156 M. Buchmann et al.: Homogeneity assessment of Swiss snow depth series

Figure 7. Map highlighting the location of series with identified valid break points and information from metadata where applicable. Series
where no break points are detected are marked with black circles.

Figure 8. Comparison of valid break points found for HSavg and
dHS1. Valid break points, detected by at least two methods, are
coloured grey (dHS1), yellow (HSavg), or blue (both). The shape
indicates which method detected the break, and the size is the cor-
responding break magnitude correction.

et al. (2021a), the optimal threshold choice is one which pre-
vents multiple break detections within the same year. The

weight of the vertical coordinate (wz) is especially important
for snow, as elevation in conjunction with small-scale topo-
graphic variation is an important control on snow depth.

ACMANT on account of its automation (and hence no user
interaction) is the most objective method, but consequently
there are no settings to optimize based on the judgement/ex-
perience of a practitioner (Pérez-Zanón et al., 2015). How-
ever, there seems to be a sensitivity issue with ACMANT: if
using 188 instead of 184 series, the break points for some
stations shifted slightly (±2 years) due to different station
combinations being used as reference series. This indicates
that the break detection algorithm is less robust or more
dependent on available stations, especially as the correla-
tion threshold used (0.4) is low. For comparison reasons, we
did not perform any pre-treatment outside the actual meth-
ods (such as pre-defined neighbourhood networks); however,
this might be beneficial for ACMANT (Domonkos and Coll,
2019).

Break detection in HOMER relies on multiple reference
series in conjunction with support decisions from an experi-
enced user. While this makes it the most robust application,
it is also the most subjective of the three methods used here.

While there are many benchmark data sets for other cli-
mate variables (e.g. Willett et al., 2014; Venema et al., 2012),
to date there are no such benchmarks for snow, which is un-
fortunate as these could have helped to thoroughly bench-
mark the methods. As the method with the highest number of
detected breaks, ACMANT seems to be the most sensitive of
the methods investigated here (Pérez-Zanón et al., 2015; Fio-
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ravanti et al., 2019), followed by Climatol and HOMER with
smaller numbers of identified break points. Coll et al. (2020)
found similar increments when analysing the break detection
capabilities of ACMANT, Climatol, and HOMER for a large
network of precipitation series in Ireland. Figure 5 shows no
clear relationship between altitude, meanHSavg, and valid
break points. Most valid break points are, however, detected
at stations between 1000 and 1800 m a.s.l. A possible expla-
nation for this is the large number of available stations in that
particular elevation band, thereby ensuring that enough ref-
erence series are available. However, the network density for
stations above 1800 m a.s.l. and below 1000 m a.s.l. is sparse
by comparison, shown by Fig. 5. According to Gubler et al.
(2017) the number of detected break points can be reduced
by up to 50 % in sparse networks combined with a low signal-
to-noise ratio (SNR).

Analysing the standard deviation of the ratio series (sigma,
used as a proxy for noise) as well as the median correla-
tions with HOMER reveals that for stations with altitudes
below 800 and above 1800 m a.s.l., the range of the median
sigma of the five reference series with the lowest sigma per
candidate series is larger than for stations between 800 and
1800 m a.s.l. Figure S2 in the Supplement shows that rela-
tionship. A similar situation is clear when the median corre-
lations of these subsets per candidate series are considered
(Fig. S3). The higher noise (due to not enough suitable refer-
ence series being available) associated with these lower (and
upper) stations may explain the different results between the
networks at different densities and hence is a possible ex-
planation for none of the methods detecting as many break
points for stations in those elevation bands.

Break magnitude corrections

Break magnitude corrections and their corresponding den-
sity plots (Fig. 4) are similar to the ones found by Coll et al.
(2020) working on Irish precipitation series. Differences in
break magnitude corrections are also affected by different
station neighbourhoods and arising from this the different
subsets of stations used for the homogenization process. With
a default internal correlation threshold of 0.4, ACMANT’s
neighbour selections cannot be the same as those of HOMER
based on the 0.8 correlation threshold used.

5.2 Choice of method

According to our analyses, HOMER performs better than
ACMANT or Climatol when the number of detected valid
break points is compared to the number of break points de-
tected overall. However, this comes at a cost based on the
time input of the user and also requires extensive expert
knowledge. In terms of ease of use based on automation,
ACMANT would be the method of choice. However, sifting
through the large number of break points detected involves a
lot of post hoc processing and also requires in-depth knowl-

edge about the network. Climatol provides the second-best
efficiency (in terms of the ratio of valid breaks to total iden-
tified break points). However with 17 valid break points de-
tected, 14 would have gone undetected without a combined
approach; see Table 2. As outlined in Sect. 5.1 and reported
by Kuya et al. (2021a), the results from Climatol heavily de-
pend on the initial set-up. Coll et al. (2020) recommended
Climatol as the method to use for precipitation because the
identified break points appeared likely to be more realistic
than the ones found with either ACMANT or HOMER in
the analysis of their network. However, our analysis shows
that this might not be the same when applied to snow series
in a more topographically complex region. We found rather
that a combination of the three methods works best and that
HOMER performs significantly better than Climatol or AC-
MANT in the context of our network setting. This applica-
tion of multiple methods was also used and recommended
by Kuglitsch et al. (2012) and Toreti et al. (2012) for Swiss
temperature series, as well as by Marcolini et al. (2019) for
Austrian snow depth series. A recent study by Brugnara et al.
(2020) applying homogenization methods to the phenologi-
cal network in Switzerland also recommended this applica-
tion of multiple methods.

Choice of variable – HSavg versus dHS1

Results from Buchmann et al. (2021b, a) concerning the sta-
bility, robustness, and variability in the snow variables HSavg
and dHS1 investigated here suggest that HSavg is on average
less stable and shows more variation than dHS1. The larger
variability associated with HSavg when compared to dHS1
would be expected to lead to larger breaks and thus result
in an increased likelihood of break point detection in HSavg.
However, associated with these larger variations, there is also
increased noise across the series, which has the effect of gen-
erally reducing the detection capability for lower-magnitude
break points altogether. The variable dHS1, on the other
hand, is more stable and shows less variability across the
series, suggesting less noise for this variable and therefore
break points with lower amplitudes overall. However, only
looking at an average variability (or standard deviation) does
not necessarily improve our understanding as the temporal
evolution of variation of any single station is more important
but is also a property affected by inhomogeneities. Analysing
the mean absolute break magnitude corrections for the six
break points identified in both HSavg and dHS1 reveals that
the amplitudes of those detected for dHS1 are significantly
smaller than the ones for HSavg. Break magnitude correc-
tions retrieved from HOMER using breaks detected in dHS1
and inserted into HSavg do not differ from the ones ob-
tained through breaks detected purely in HSavg. Based on
this finding, break points detected in dHS1 may be used to
calculate corrections for HSavg. These results tend to cor-
roborate the hypothesis that the three methods detect smaller
break points with dHS1 than with HSavg. For stations below
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1000 m a.s.l. the majority of valid break points are detected
in dHS1; hence these results tend to support the benefits of
a complementary (dHS1 and HSavg) approach. As only six
break points are identified with both variables, a complemen-
tary approach seems beneficial. Combining the results from
both HSavg and dHS1 returns 45 (Table 2) valid break points
in 184 Swiss snow time series.

5.3 Homogeneity of Swiss snow series

Our analysis shows the need for a combined use of some
of the available methods in order to retrieve a set of break
points for Switzerland where we can have higher confidence
in their validity. In the majority of cases the methods agree
well, with HOMER and Climatol returning the highest pro-
portion of break points deemed valid based on the criteria
we applied. Kuglitsch et al. (2012) could explain most of
their break points for Swiss temperature series based on a
combination of reasons, whereas our results tend to indicate
that station relocation is the most likely source of inhomo-
geneities for the snow series analysed (Coll et al., 2020; Kuya
et al., 2021a). However, due to the incomplete nature of the
metadata available to support our study, we are unable to
investigate this in more detail. For example, the entry “ob-
server change” can mean change of observer only but may
unfortunately also imply a combination of relocation and ob-
server change. In spite of having identified relocation as the
main explanation for the majority of break points, this is not
consistently the case, since from a total of 519 recorded lo-
cation changes in the station histories across the network,
only 45 relocated stations (9 %) produced a valid break point
across all three methods. The majority of our identified valid
break points are located between 1000 and 1800 m a.s.l. at
stations which normally experience continuous snow cover
from November to April of the following year. From Fig. 7,
the main geographical locations of series with breaks are the
northern Prealps, Bernese Alps, and Engadine. The lack of
inhomogeneity detections for series south of the Alps (Ti-
cino) can largely be explained by a lack of suitable reference
series available. The southern parts of Switzerland are dom-
inated by low valleys surrounded by high mountains. This
steep gradient in conjunction with small-scale varying cli-
matic conditions seems to be a reason for not having enough
reference series and subsequently inhibits any suitable break
detection due to a lack of appropriate reference series.

Comparison with Italy, Austria, and the Alps

Similar break detection investigations have been performed
for Italy, Austria, and the Austrian–Swiss domain: Marcolini
et al. (2017) applied the SNHT to 106 closely adjacent snow
time series for the same region of Italy, and in that work they
reported 20 % of the series to be inhomogeneous. In terms of
altitudinal and temporal extent, the data set used in that work

is similar to ours; however, the 184 stations comprising our
network are not from such a climatically coherent region.

Marcolini et al. (2019) investigated only 25 series between
200 and 1600 m a.s.l., whereas we analysed 184 series be-
tween 200 and 2500 m a.s.l. but only found valid break points
in series between 500 (400 dHS1) and 2300 m a.s.l. (and the
majority of these between 1000 and 1800 m a.s.l.). More-
over, Marcolini et al. (2019) found 11 (5 with the SNHT and
PRODIGE) breaks in 25 series. They also reported an agree-
ment of 45 % between the SNHT and PRODIGE in iden-
tifying the same break points. We only found 20 % (25 %
for HSavg and 16 % for dHS1) agreement between Clima-
tol and HOMER. In other work, Schöner et al. (2019) per-
formed a break detection analysis on 96 Swiss snow series
between 1961 and 2012 using PRODIGE and reported 25
series (26 %) as inhomogeneous. We found similar numbers:
17 % as inhomogeneous time series when only HSavg breaks
are considered and 25 % with the complementary approach
(HSavg and dHS1).

Using the complementary approach (HSavg and dHS1),
we found similar numbers of potential break points to those
that have been reported in previous studies (Marcolini et al.,
2017, 2019; Schöner et al., 2019); this is in spite of the time
periods and data sets used in our study not being identi-
cal. However, if we only compare the break points found in
HSavg, our results show fewer break points than have been
identified by the previous studies. Possible explanations for
the differences are the combined use of three break detection
methods in our work (rather than reliance on one method), as
well as our fairly strict criteria for defining valid break points.

5.4 Further issues

The attribution of each valid break point to a single hydrolog-
ical year is not straightforward, even when combined with the
information from the available metadata, as not all series we
defined as having valid break points had metadata available
or, when metadata were available, they were not necessarily
complete or entirely correct.

Furthermore, as the number and location of true break
points in our data set remain unknown, statements about the
probability of detection and false alarm rates (Brugnara et al.,
2019) are not possible.

Stations below 500 m a.s.l. regularly experience winter
months with little snow and only a few snow days; thus for a
number of years in these records the recorded monthly means
can be near zero. This lack of consistent snow records and the
large variability (noise) associated with lower stations make
it virtually impossible to have sufficient suitable reference
series.

The next step to obtain homogenized snow series is to find
the best method to use and further validate and subsequently
correct the identified break points.
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6 Conclusions

We present the first in-depth break point detection compar-
ison of three homogenization methods for snow depth time
series. In addition, we present the first detailed homogeneity
assessment of Swiss snow depth series using state-of-the-art
homogenization methods. Our analyses suggest that using ra-
tios, working with monthly input data and annual detection,
and combining the results from three methods (ACMANT,
Climatol, HOMER) and two variables (HSavg and dHS1)
offer a promising configuration to more accurately identify
inhomogeneities in (Swiss) snow depth series.

Treating break points as valid when identified by at least
two out of three methods and the application of strict crite-
ria increase the robustness of, as well as the confidence in,
the results compared to the use of a single method. For all
the methods applied, expert knowledge about the network in
question is indispensable. If, however, the practitioner is lim-
ited to only one method, based on the data and analysis here
the method of choice would be HOMER. However, the ap-
proach combining multiple methods introduced here for ap-
plication to snow depth series is more rigorous as it provides
more confidence in the results. Concerning the total set of
valid break points, ACMANT and Climatol appear to over-
estimate, whereas HOMER underestimates, the number of
valid break points, for both HSavg and dHS1 based on the
criteria used.

We identified 45 valid break points in 41 of 184 (22 %) se-
ries investigated using a complementary approach of HSavg
and dHS1, of these 71 % could be explained by metadata, and
based on the metadata, 88 % of the identified breaks could be
attributed to station relocation. At low elevations, we identi-
fied a lack of suitable reference series due to many stations
having inconsistent snow lie and being associated with large
year-to-year variations, possibly masking the signal within
the noise. However, further work is required, especially in
view of the growing research effort in relation to attribution
(break point verification) and homogenization (correction)
efforts.
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