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Abstract. We present a method to combine CryoSat-2 (CS2)
radar altimeter and Sentinel-1 synthetic aperture radar (SAR)
data to obtain sea ice thickness (SIT) estimates for the Bar-
ents and Kara seas. From the viewpoint of tactical navigation,
along-track altimeter SIT estimates are sparse, and the goal
of our study is to develop a method to interpolate altimeter
SIT measurements between CS2 ground tracks. The SIT es-
timation method developed here is based on the interpolation
of CS2 SIT utilizing SAR segmentation and segmentwise
SAR texture features. The SIT results are compared to SIT
data derived from the AARI ice charts; to ORAS5, PIOMAS
and TOPAZ4 ocean–sea ice data assimilation system reanal-
yses; to combined CS2 and Soil Moisture and Ocean Salinity
(SMOS) radiometer weekly SIT (CS2SMOS SIT) charts; and
to the daily MODIS (Moderate Resolution Imaging Spectro-
radiometer) SIT chart. We studied two approaches: CS2 di-
rectly interpolated to SAR segments and CS2 SIT interpo-
lated to SAR segments with mapping of the CS2 SIT dis-
tributions to correspond to SIT distribution of the PIOMAS
ice model. Our approaches yield larger spatial coverage and
better accuracy compared to SIT estimates based on either
CS2 or SAR data alone. The agreement with modelled SIT
is better than with the CS2SMOS SIT. The average differ-
ences when compared to ice models and the AARI ice chart
SIT were typically tens of centimetres, and there was a sig-
nificant positive bias when compared to the AARI SIT (on
average 27 cm) and a similar bias (24 cm) when compared to
the CS2SMOS SIT. Our results are directly applicable to the
future CRISTAL mission and Copernicus programme SAR
missions.

1 Introduction

The goal of this study is to use Sentinel-1 (S-1) C-band SAR
data to interpolate CryoSat-2 (CS2) sea ice thickness (SIT)
estimates to spatially cover the whole Barents Sea and Kara
Sea (BKS) area (see Fig. 1). We have chosen this study area
because we have collected S-1 data over BKS since 2015 and
also generated daily S-1 mosaics covering the area. Using a
combination of the CS2 and S-1 data, it is possible to esti-
mate SIT with much finer resolution and much larger spatial
coverage than using only the CS2, or another altimeter data.
The interpolated CS2 SIT is assigned for classified SAR seg-
ments, i.e. locally uniform sea ice areas in the SAR imagery.
In this way we are able to provide accurate boundaries of
different ice areas and provide a typical SIT for each of these
areas based on the CS2 SIT data conducted within the areas
themselves or nearby similar areas.

SIT is one of the essential climate variables. It is a key
parameter, together with sea ice concentration (SIC), for
estimating total ice volume over any given area of inter-
est. Accurate estimates of SIT are important for ice nav-
igation, off-shore engineering and construction (IMarEST,
2015), climate studies, and sea ice and weather forecasting
(Jung et al., 2014). The ocean–atmosphere heat, mass, mo-
mentum and gas exchanges are controlled by the SIT dis-
tribution in the polar oceans. Thin ice with a thickness of
less than half a metre produces strong heat and salt fluxes
and affects the weather and deep water circulation in the po-
lar oceans (McPhee, 2008). Thick ice insulates the relatively
warm ocean from the cold atmosphere maintaining the po-
lar conditions and is mainly responsible for the proportion
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Figure 1. CryoSat-2 sea ice thickness measurements during 1 d (a) and 1 week (b) before 21 February 2017.

of ice that persists through the summer melt period, which is
particularly important for the summer radiation budget.

Estimation of SIT with SAR data has been studied be-
fore. In the Baltic Sea, SIT estimation of deformed ice un-
der dry snow conditions is possible through a statistical rela-
tionship between the ice freeboard and the radar backscatter
(Simila et al., 2010). The standard deviation of the average
large-scale surface roughness increases with increasing av-
erage surface roughness, and, as the average surface rough-
ness increases, the backscatter also increases. In Simila et
al. (2010) an exponential empirical model was derived for
estimating average surface roughness from the backscatter-
ing coefficient (σ 0) and dominant thickness of level ice. A
good correlation between the L- and C-band co-polarization
ratio and SIT of undeformed ice in the Sea of Okhotsk has
been found (Nakamura et al., 2006). The co-polarization ra-
tio has little sensitivity to ice surface roughness and is re-
lated to variations in salinity, i.e. ice surface dielectric con-
stant, that can be caused by changes in SIT (Wakabayashi et
al., 2004). Toyota et al. (2011) found good correlation be-
tween ALOS/PALSAR L-band HH-polarization σ 0 and SIT
(R= 0.86) and surface roughness (R= 0.70) in the seasonal
ice zone (SIZ) and derived linear relation between σ 0 and
SIT (SIT from 0.2 to 0.6 m). They suggested that satellite L-
band σ 0 data allow the estimation of SIT distribution in the
SIZ, where surface roughness is closely related with the SIT
distribution through deformation processes. Airborne C-band
polarimetric SAR (POLSAR) data together with a theoretical
backscattering model have been used to estimate SIT in the
0–10 cm range (Kwok et al., 1995). Zhang et al. (2016) de-
rived a SIT estimation method for undeformed first-year ice
under dry snow conditions based on a sea ice thermodynamic

model and forward scattering model for C-band compact po-
larimetric (CP) SAR images. Using simulated CP imagery
from RADARSAT-2 POLSAR, SIT estimation was possible
up to 80 cm thickness. SAR data have also been used to esti-
mate SIT of pancake ice from the way in which the pancake
ice changes the dispersion relation of the waves, dampens the
wave amplitude and causes dissipation of the energy of the
waves; i.e. it changes the wavelength of ocean waves as they
enter the ice (Wadhams et al., 2018). SIT retrieval methods
based only on the SAR data are still experimental, and no
operational solutions are yet available.

As indicated by these earlier studies, SAR, especially C-
band SAR (S-1), alone is not capable of accurately estimating
Arctic SIT. Thus, complementary data are required for rea-
sonable Arctic SIT estimation. In this paper we try to over-
come this deficiency by proposing a method to utilize CS2
SIT as complementary data to SAR data to estimate Arctic
SIT.

Detection of thin ice and its thickness estimation can be
done using satellite thermal infrared (TIR) imagery, e.g. from
Moderate Resolution Imaging Spectroradiometer (MODIS).
Satellite-based ice surface temperature (Ts) is combined with
atmospheric forcing data through the ice surface heat balance
equation for the SIT estimation (Yu and Rothrock, 2016).
Unfortunately, this method is restricted by cloud cover and
quality of cloud masking in polar conditions (Frey at al.,
2008). A daily MODIS SIT chart combined from swath SIT
charts, which mitigates the cloud problem, has been devel-
oped in Makynen and Karvonen (2017a). In addition, daily
cloud-cover-corrected MODIS SIT composites for polynya
monitoring in the Arctic and Antarctic have been produced
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utilizing several days of swath data (Paul et al., 2015; Preußer
et al., 2016).

Thin-ice detection and its SIT estimation in winter con-
ditions are also possible with microwave radiometer data.
Thin-ice thickness retrieval algorithms have been devel-
oped for low-frequency L-band brightness temperature (TB)
data from SMOS and Soil Moisture Active Passive (SMAP)
missions (Kaleschke et al., 2012; Tian-Kunze et al., 2014;
Huntemann et al., 2014; Kaleschke et al., 2016; Schmitt and
Kaleschke, 2018). With the SMOS data SIT can be estimated
for up to 0.5–1.5 m thick ice (Kaleschke et al., 2016). The
drawback of the SMOS data is their poor spatial resolution,
35–50 km, which does not allow the detection of leads and
smaller polynyas. For high-frequency radiometer data (36
and 90 GHz), thin-ice SIT retrieval algorithms have also been
developed (e.g. Martin et al., 2004; Iwamoto et al., 2014;
Nakata et al., 2019). The thin-ice SIT can be typically es-
timated up to 20 cm, and the SIT data are used for polynya
monitoring (e.g. Onshima et al., 2016).

Estimation of ice thickness from radar and laser altimeter
data has been studied extensively in recent years. Altimeters
on board several satellites have provided estimates of sea ice
thickness and volume time series and trends for the Arctic
and Antarctic oceans for recent decades. Such methods have
been applied and evaluated in Laxon et al. (2003), Giles et al.
(2008), Kwok and Cunningham (2008), Kwok et al. (2009),
Armitage et al. (2015), Zygmuntowska et al. (2014), Tilling
et al. (2015, 2018), Xia and Xie (2018), Yi et al. (2018), Xu et
al. (2020), and Petty et al. (2020), for example. Traditionally
satellite altimeters, including CS2, cannot estimate thickness
of thin ice (< 0.5 m) with reasonable certainty (Wingham
et al., 2006). However, the recently launched ICESat-2 im-
proves thin-ice estimation, giving reasonable uncertainties
down to SIT of approximately 0.2 m (Petty et al., 2020).

In this study we use the CS2 radar altimeter SIT data
(Wingham et al., 2006). Due to the nature of altimeter mea-
surements and the orbit pattern of the platform, CS2 gives
spatially and temporally sparse SIT information on temporal
scales from 1 d to a few weeks. Examples of all available CS2
ice thickness estimates during the period of 1 d and 1 week
over our Barents Sea and Kara Sea study area are shown in
Fig. 1. Especially for tactical navigation, these estimates are
sparse. Thus, our goal is to develop a method to interpolate
altimeter SIT estimates between CS2 ground tracks.

SIT estimation algorithms combining CS2 and other
sources of information, e.g. the SMOS (Soil Moisture and
Ocean Salinity) mission with the MIRAS (Microwave Imag-
ing Radiometer using Aperture Synthesis) instrument, exist
(Ricker et al., 2017). However, these algorithms still have rel-
atively poor spatial and temporal resolution (25 km, weekly
estimates updated daily). Therefore, algorithms fusing CS2
data with data from instruments with higher spatial and tem-
poral resolution are needed for timely high-resolution SIT
estimates. Such SIT estimates can then be used in navigation

and data assimilation to high-resolution ocean–sea ice fore-
cast models.

The structure of this paper is as follows: the study area,
time period and weather conditions are described in Sect. 2.
Then the data sets used in the study are described in Sect. 3,
followed by the description of the data preprocessing and
the proposed SIT estimation method combining CS2 SIT and
SAR data in Sect. 4. The proposed SIT interpolation is based
on pairwise similarity of segments and their pairwise dis-
tance and time difference. The texture similarity is measured
by similarity of several segmentwise SAR texture features.
The texture features and the similarity criteria are described
in detail in Sect. 4. The estimation results and their evalua-
tion are presented in Sect. 5. For evaluation we have used sea
ice model data and ice chart data and also included compar-
isons to the SIT charts based on CS2 and the ESA SMOS
radiometer data (Ricker et al., 2017) and to the MODS SIT
charts (Makynen and Karvonen, 2017a). Finally, discussion
and conclusions are provided in Sect. 6.

2 Study area, sea ice and weather conditions, and time
period

Our study covers the Kara and Barents seas; see Fig. 2. Sea-
sonal sea ice is found over most of our study area. In the far
north, however, multi-year ice (MYI) is present year-round
(Johannessen et al., 2007). The average dates for the ice for-
mation over the area vary from 10 September in the north
to mid-November in the southern Kara Sea and southeastern
Barents Sea (Pechora Sea) and March–April in the central
Barents Sea (west of Novaya Zemlya) (Johannessen et al.,
2007). Melting season begins in late April in the marginal
ice zone of the Barents Sea. By the end of June the central
Barents Sea and the Pechora Sea are usually ice-free. In Au-
gust the ice edge reaches Svalbard and Franz Josef Land. In
the Kara Sea, melting gradually begins in May and contin-
ues through July and August. Most of the Kara Sea is ice-
free between mid-July and mid-August. In the Kara Sea, the
ice season lasts for 6–9 months depending on the location
and seasonal conditions. We have only used wintertime data
(January–April, October–December) for two calendar years,
2016 and 2017. Currently, radar altimeter SIT retrieval is
only possible in dry snow winter conditions (Kern et al.,
2020). During the melt season the radar wave penetration in
snow pack is ambiguous and surface type classification often
fails due to melt ponds which give similar radar waveforms
as the leads.

Throughout our study we use the coordinate system (CS)
based on polar stereographic projection with a centre lon-
gitude of 55◦ E, reference latitude (latitude of the correct
scale) of 70◦ N and the WGS84 datum. The upper left (UL)
and lower right (LR) coordinates, i.e. the polar stereographic
CS northing and easting in metres, are UL= (−700 000,
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Figure 2. The Barents Sea and Kara Sea study area in the used po-
lar stereographic projection. Air temperature data from four coastal
weather stations shown with black dots are used in this study.
© FMI.

−1 100 000) and LR= (−2 550 000, 1 100 000). The size of
the study area is 2200 km (easting) by 1850 km (northing).

Average daily air temperature data (Ta) from four coastal
weather stations (Kongsøya, Vize, Im. M.V. Popova and
Varandey) shown in Fig. 2 are used to evaluate the weather
conditions and periods of cold and warm weather, during our
study period: January–April and October–December in 2016
and 2017. The (Ta) data from the four stations are shown
in Fig. 3. Here we set Ta <−5 ◦C to represent dry snow
cold conditions, and Ta > 0 ◦C for moist/wet snow condi-
tions when the snowpack, if it exists, prevents or significantly
attenuates radar returns from sea ice. Between these Ta lim-
its, the state of the snowpack is ambiguous as it depends on
Ta history and time of the CS2 and S-1 data acquisition, e.g.
early morning vs. late afternoon. The Ta data will not be used
to classify the CS2 and S-1 into different weather condition
classes, but to support analysis on the accuracy of SIT from
the combined CS2 and S-1 data. It is noted that the Ta limits
above are only approximations.

During first part of our 2-year study period, from January
to April 2016, our analysis of the (Ta) data from the four
weather stations suggests that this time period represents typ-
ically cold dry snow conditions in our study area. The second
part of the study period, from October 2016 to April 2017,
covers one winter sea ice season. Our analysis shows the CS2
and S-1 data from the beginning of October to roughly mid-
November are typically affected by wet or moist snow condi-
tions, depending on the diurnal acquisition time and location
in our study area (more probable in the Barents and Pechora
seas). Data acquired from mid-November 2016 to April 2017
mostly represent cold winter conditions. The third, and the

Figure 3. Average daily air temperature during the period 2016–
2017 from four coastal weather stations shown in Fig. 1.

last, part of the study period is from October to December
2017 and represents sea ice freeze-up and early winter con-
ditions. It seems that in the Kara Sea the time period after the
first week of November 2017 can be assumed to represent
mostly cold winter conditions. In the Barents and Pechora
seas in November and December there are also periods of
cold winter conditions, but sometimes Ta is between −5 and
0 ◦C, when there could have been moist snow effects on the
radar signatures.

3 Data

In this section we present the data sets used in our study.

3.1 CryoSat-2 data

CS2’s primary payload is the Synthetic Aperture Interfero-
metric Radar Altimeter operating in the Ku-band (13.6 GHz),
which allows a much smaller sampling footprint (about
300 m in the satellite along-track direction; Scagliola, 2013)
than traditional pulse-limited altimeters. Over sea ice, CS2
echoes are assumed to scatter from the interface between
the ice surface and the layer of overlying snow (Laxon et
al., 2013), thus enabling freeboard, denoted by F here, es-
timation, and further SIT calculation assuming known snow
depth and density and sea ice density (e.g. climatologically
derived).

The quantity altimeters measure is surface elevation, from
which freeboard can be derived. Assuming hydrostatic equi-
librium and known sea ice density (ρi), snow density (ρs) and
thickness (hs), and water density (ρw) the following equation
can be formed for the SIT (hi) estimation:

hi =
ρw

ρw− ρi
F −

ρw− ρs

ρw− ρi
hs. (1)
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In dry snow conditions, the radar scattering and backscat-
tering penetrate the snow cover, and the backscattering
comes from the ice surface; i.e. the ice freeboard is measured
by a radar altimeter. In dry snow conditions hi can be esti-
mated from the ice freeboard Fi:

hi =
ρw

ρw− ρi
Fi+

ρs

ρw− ρi
hs. (2)

As can be seen from equations above, the hs estimate has
a large effect on retrieved SIT. In the case of radar altimeters,
such as CS2 used here, hs is also required for wave propaga-
tion speed correction in deriving F . A more detailed analysis
on the effect of snow can be found in Kern et al. (2015).
In this study, like in many other CS2-based sea ice thickness
products, climatological snow depth and density based on the
Warren climatology (Warren et al., 1999) are used.

In this study we have computed SIT with FMI implemen-
tation of the Python sea ice radar altimetry toolbox (pysiral
available in https://github.com/shendric/pysiral, last access:
10 May 2022). The primary input has been the European
Space Agency’s CS2 Baseline-D Level-1B product. The pro-
cessing follows the algorithm of Ricker et al. (2014) and
Hendricks et al. (2021a). For auxiliary data we have used the
DTU15 mean sea surface height product, EUMETSAT OS-
ISAF sea ice concentration and sea ice type, and Warren et al.
(1999) snow depth and density data with the 50 % reduction
over first-year ice first proposed by Kurtz and Farrell (2011).

3.2 Sentinel-1 SAR

All the available Copernicus S-1 C-band dual-polarized ex-
tra wide (EW) swath mode level 1 ground-range-detected
medium-resolution (GRDM) SAR data with the HH–HV
polarization channels over the BKS study area and period
(January–April and October–December 2016 and January–
April and October–December 2017) were used in this study.
The S-1 SAR data are publicly available through the Euro-
pean Space Agency (ESA) Copernicus Science Hub (https:
//scihub.copernicus.eu/, last access: 10 May 2022). The S-1
EW SAR images cover a region of 410 km by 400 km in size,
with a pixel size of 40 m and a spatial resolution of 95–91 m
by 90 m (range by azimuth), and they have θ0 variation from
19 to 47◦.

3.3 Reference data

In our study we use the Russian Arctic–Antarctic Research
Institute (AARI) ice charts, Ocean Reanalysis System 5
(ORAS5), Pan-Arctic Ice-Ocean Modeling and Assimila-
tion System (PIOMAS), and TOPAZ4 ice model ocean–sea
ice reanalyses SIT data, CS2SMOS SIT data (Ricker et al.,
2017), and MODIS daily SIT charts (Makynen and Karvo-
nen, 2017a) as reference data. They are used to evaluate the
performance of our CS2-SAR SIT estimation method. The
TOPAZ4 SIT model data are also used to remap the CryoSat-
2 training data set based on cumulative SIT distributions.

3.3.1 AARI ice charts

The Arctic and Antarctic Research Institute (AARI) pro-
duces weekly ice charts for many Arctic regions, including
the Barents and Kara seas (AARI, 2018; Afanasyeva et al.,
2019). These charts are currently widely used for a variety
of scientific and practical tasks. The main input data for the
ice chart generation is remote sensing data from various opti-
cal, thermal infrared and microwave satellite sensors, includ-
ing MODIS, AVHRR (Advanced Very-High-Resolution Ra-
diometer), S-1 SAR and Sentinel-3 OLCI (Ocean and Land
Colour Instrument). The regional ice charts are based on
satellite imagery collected over a period of 2–3 d. The more
recent information has priority. In the case of absence of up-
to-date information, the data for the previous day are used.
The ice charts are generated by skilled ice experts using an
ArcGIS workstation. The ice analyst defines homogeneous
sea ice zones, polygons on georeferenced satellite imagery,
and assigns various sea ice attributes, e.g. sea ice concentra-
tion, to the polygons. In this process auxiliary data, e.g. op-
erational monitoring of sea ice drift using satellite data and
observations from hydrometeorological stations of Roshy-
dromet, are also utilized. The main purpose of a regional
weekly ice chart is to show the spatial distribution and char-
acteristics of sea ice. The AARI weekly ice charts are in the
digital SIGRID-3 vector file format (JCOMM Expert Team
on Sea Ice, 2014b). The AARI ice charts are available at http:
//wdc.aari.ru/datasets/d0004/ (last access: 10 May 2022).

The ice charts convey their information in codes that are
explained in JCOMM Expert Team on Sea Ice (2014a). The
charts show total concentration (code CT) and partial con-
centrations of the first, second and third thickest ice (codes
CA, CB and CC) along with their respective stages of de-
velopment (SA, SB and SC) and form of ice (FA, FB,
FC) for polygonal areas of variable sizes. The concentra-
tions are shown with intervals of either 1/10 or 2/10 wide.
The stage of development is defined as ice thickness inter-
vals. Following thickness ranges are used: nilas (< 10 cm),
young ice (10–30 cm), grey ice (10–15 cm), grey-white ice
(15–30 cm), thin first-year ice (FYI) (30–70 cm), medium
FYI (70–120 cm), thick FYI (= 120 cm), FYI in general
(= 30 cm) and old ice (= 120 cm). The form of ice carries
information on ice floe size or occurrence of landfast ice, for
example. Some polygons only have one or two stage of de-
velopment classes assigned to them (i.e. polygons are more
homogeneous).

In the stage of development, i.e. SIT range, estimation of
fast ice thickness measured at a hydrometeorological station
serves as a reference (Afanasyeva et al., 2019). Looking at a
satellite image, the ice expert matches brightness of drifting
ice outside the shore to brightness of landfast ice with known
thickness. Further, monitoring SIT at a seashore station al-
lows the estimation of the rate of ice growth in remote areas.
Here we interpret the AARI SIT as the thickness of level ice
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in the area – analogous to the thermodynamically grown fast
ice.

For validation, polygons from the AARI ice charts were
interpolated to a 1 km by 1 km grid covering our study area.
Then for each AARI ice chart polygon a mid-range SIC and
mid-range SIT or upper or lower SIT values of the first, sec-
ond, and third thickest ice types were assigned. However, for
FYI general type (SIT= 30 cm), a SIT value of 95 cm is used
(same as for thick FYI). An average SIT for each chart poly-
gon was calculated as a sum of the SIT values for the three ice
types weighted with their concentrations. Finally, the gridded
charts for the Barents and Kara seas were combined; see an
example in Fig. 8c. This processing of the AARI charts has
been used previously by Makynen and Karvonen (2017a).
The total number of the AARI weekly charts used in the val-
idation was 37 (time span from 4 January until 26 December,
excluding the summer period) for both the Barents and Kara
seas.

3.3.2 CS2SMOS weekly SIT chart

The SMOS L-band brightness temperature data are currently
used estimate SIT for thin-ice areas (< 1 m) (Kaleschke et
al., 2012), while CS2 data allow the estimation of SIT for
thicker ice (> 1 m) (Ricker et al., 2017). The CS2SMOS SIT
product merges the SMOS and CS2 SIT data, which are com-
plementary to each other. The CS2 SIT used in the merging is
a weekly averaged product, and the daily SMOS SIT product
is likewise averaged to a weekly temporal scale. Optimal in-
terpolation similar to Böhme and Send (2005) and McIntosh
(1990) is used to merge the data sets into the regular product
grid.

3.3.3 Model reanalysis data

TOPAZ4

TOPAZ4 is a coupled ocean–sea ice model with an advanced
data assimilation system for the North Atlantic Ocean and
Arctic (Sakov et al., 2012). The data assimilation is based
on the use of an ensemble Kalman filter (Evensen, 1994).
The resolution of the TOPAZ4 model grid is 12–16 km.
TOPAZ4 is operationally available in CMEMS (Copernicus
Marine Environment Monitoring Service) funded by the Eu-
ropean Commission. In this study we have used the TOPAZ4
daily reanalysis ice thickness values (CMEMS product ARC-
TIC_REANALYSIS_PHY_002_003) (Hackett et al., 2020).
The CS2SMOS thickness (Ricker et al., 2017), based on fu-
sion of CS2 and SMOS SIT, is assimilated to the TOPAZ4 re-
analysis SIT product during wintertime, from end of October
to early April. The modelled sea ice thickness provided by
the TOPAZ4 CMEMS product is a diagnostic variable based
on prognostically calculated sea ice volume divided by sea
ice concentration for each model grid cell. Accordingly, it

provides the mean sea ice thickness for the portion of grid
cell that is covered by sea ice.

ORAS5

As TOPAZ4 seems to underestimate the Arctic ice thickness
(Xie et al., 2018), we also used the ORAS5 (Ocean Reanal-
ysis System 5) reanalysis SIT data (Zuo et al., 2017, 2019).
Tietsche et al. (2017) calculated the root-mean-square dif-
ference between ORAS5, the prototype of ORAS5 and ICE-
Sat sea ice thicknesses to be 1.0 m, comparable to the PI-
OMAS product (Schweiger et al., 2011); see also Sect. 3.3.
The ORAS5 data are produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) in 0.25◦ nom-
inal resolution in a stretched global tri-polar grid with the
poles in northern Canada, Eurasia and the South Pole. This
grid has a resolution of about 5–15 km in the Arctic. A fea-
ture of ORAS5 is that in the open-water part of a grid cell
sea ice forms at a certain initial thickness of the order of
H0 = 0.5 m (Tietsche et al., 2017). Such a treatment of initial
sea ice is common in geophysical sea ice models (Lemieux
et al., 2018). The initial thicknessH0 is, coincidentally, close
to the thinnest ice CS2 is able to reliably measure. Like
TOPAZ4, the ORAS5 product provides the diagnostic sea
ice thickness for each grid cell that has been calculated by
dividing the modelled sea ice volume by concentration.

PIOMAS

Additionally we utilized the PIOMAS model (Pan-Arctic
Ice Ocean Modeling and Assimilation System) (Zhang and
Rothrock, 2003) SIT data, which have a coarser resolution
than TOPAZ4 and ORAS5. Despite the coarse resolution,
PIOMAS sea ice volume agrees well with the ICESat es-
timates (Schweiger et al., 2011). The PIOMAS model grid
is a stretched generalized orthogonal curvilinear coordinate
(GOCC) system. A GOCC system allows a coordinate trans-
formation that displaces the pole of the model grid. The PI-
OMAS model data are in the GOCC grid with the north-
ern grid pole displaced into Greenland. The PIOMAS res-
olution in our study area is around 40 km. Unlike TOPAZ4
and ORAS5, PIOMAS provides sea ice volume per unit area,
which was divided by the PIOMAS sea ice concentration to
obtain sea ice thickness per grid cell. Because of the coarse
resolution of the PIOMAS data, we did not use it in direct
comparisons, but we utilize it in defining the mapping of CS2
thicknesses to model-compliant thicknesses in Sect. 3.

3.3.4 MODIS daily SIT chart

Daily MODIS ice thickness (hiM) charts for our study area
have been processed for two winters, from November 2015
to April 2017. All the details on the daily chart processing
can be found in Makynen and Karvonen (2017a). The daily
charts are based on all available Aqua and Terra MODIS hiM
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swath charts. Charts for very cloudy days were manually ex-
cluded. The total number of the daily charts is 317.

The MODIS-based SIT charts have a pixel size of 1 km,
but the cloud mask has a 10 km pixel size. The daily hiM chart
shows daily median hiM (hd

iM) for pixels which had at least
two hiM samples from the swath charts. The requirement for
having at least two valid hiM samples decreases the errors due
to the misdetected clouds in the swath charts. hd

iM has follow-
ing thickness categories (1) 0–0.3 m; (2) 0.31–0.5 m, which
corresponds to thin FYI of the first stage in the WMO sea
ice nomenclature (JCOMM Expert Team on Sea Ice, 2014a);
and (3) hd

iM> 0.5 m. The first category is given as centime-
tres in the MODIS SIT chart. For the second category the
value 40 cm is given in the SIT maps, and for the third cate-
gory the value 50 cm is given in the SIT chart.

The MODIS hiM swath charts are based on ice surface
temperature from the MODIS/Terra or Aqua Sea Ice Extent
5-Min L2 Swath 1km product (MOD29/MYD29) and ERA-
Interim atmospheric forcing data. The processing method of
the hiM swath chart is described in detail in Makynen et al.
(2013). Cloud masking for the swath hiM charts was con-
ducted using fully automatic methods (Makynen and Karvo-
nen, 2017a). As the uncertainty of the retrieved hiM increases
with increasing air temperature Ta, the hiM retrieval with the
MODIS swath data was not conducted when Ta>−5 ◦C.
The typical maximum reliable hiM (max 50 % uncertainty)
is 0.35–0.50 m (Makynen et al., 2013).

3.4 S-1 preprocessing

We georectified and sampled the S-1 SAR data into a 100 m
pixel size. The calibration to provide the backscattering coef-
ficients (σ 0

HH and σ 0
HV for HH and HV channels) at the image

location (pixel i) was performed according to the following
equation (Bourbigot et al., 2016):

σ 0
i =

(
DN2

i − ni
)

A2
i

. (3)

DNi is the original image pixel value at location i, ni is the
provided noise data at location i, and Ai is the provided cal-
ibration coefficient at location i.

The S1 data were preprocessed by applying a linear inci-
dence angle correction (Makynen and Karvonen, 2017b) to
the HH channel and a combined incidence angle and noise
floor correction to the HV channel; for details, see Karvonen
(2017). The HH channel incidence angle correction has been
tuned for sea ice. This leads to reduced performance on open
water because of the varying backscatter by ocean waves.
After incidence angle and noise floor corrections the image
data were georectified into the polar stereographic projection
specified in Sect. 2. After georectification the images were
down-sampled to 500 m resolution, and finally the daily mo-
saics were constructed by overlaying the newer images over
the older ones such that at each mosaic grid cell (pixel) the

newest SAR data prior to the mosaic time label, which was
defined to be 12:00 UTC, were available.

The mosaic was initialized only in the beginning of the
mosaicking (in this case in the beginning January 2016). In
practice the data at a given grid cell location were never
older than 3 d from the mosaic time label. Separate mosaics
for the HH and HV channels were constructed. Finally, a
land mask based on the Global Self-consistent, Hierarchi-
cal, High-resolution Geography Database (GSHHG) coast-
line (Wessel and Smith, 1996) was applied to the mosaics.
The SAR mosaics of 21 February 2017 for the HH and HV
channels are shown in Fig. 4 and small parts of the mosaics
(more details visible) in Fig. 5.

SAR images were processed to 8 bits-per-pixel images
by scaling the σ 0 between 1 and 255 (0 representing back-
ground). The scaling for the HH channel is such that−30 dB
corresponds to the pixel value of 1 and 0 dB corresponds to
the pixel value of 255. For the HV channel the decibel values
are −40 and 0, respectively. For segmentation the meanshift
(MS) algorithm (Fukunaga and Hostetler, 1975) was first ap-
plied to locate the modes of the two-dimensional (HH and
HV) SAR data. The meanshift algorithm has been empiri-
cally adjusted so that about 10–15 modes will be produced
after convergence. The initial 10–15 categories based on MS
were then used as a starting point for iterated conditional
mode (ICM) segmentation (Besag, 1986).

We also identify the low-SIC areas (SAR segments with
SIC< 50 %) and exclude them from the SIT estimation pro-
cedure. The algorithm utilizing both SAR and AMSR2 mi-
crowave radiometer data of Karvonen (2017) is used to locate
the low-SIC areas.

4 Methodology

In the first sub-section we describe the SAR processing in-
cluding calibration, resampling to the desired projection and
cropping to the study area, and building daily SAR mosaics.
Interpolation of the CS2 SIT is then described in the follow-
ing subsection. This interpolation consists of several steps,
including SAR segmentation and computing segmentwise
SAR texture features used in the matching of the SAR seg-
ments used to define the SIT value to be assigned to each
SAR segment. In the third subsection we describe the remap-
ping of the SIT applied here to better correspondence be-
tween the estimated SIT and modelled SIT.

A block diagram of the SIT estimation algorithm is pre-
sented in Fig. 6. In the first phase the CS2 SIT values are as-
signed to segments of the segmented SAR mosaic. Only the
segments with a large enough number of CS2 SIT measure-
ments (≥N ) within them get a SIT directly assigned. The
SIT value assigned to the segments is the median of the CS2
SIT values within the segment. In the next phase a difference
function to other segments with CS2 SIT measurements and
with a predefined distance and time range is computed for
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Figure 4. Sentinel-1 HH (a) and HV (b) mosaic σ 0 segment median on 21 February 2017.

Figure 5. Cropped area of the HH (a) and HV (b) segment median images of Fig. 4.

all the segments without an assigned SIT value yet. The dif-
ference function describes the pairwise segment similarity,
which is small for similar segments and larger for different
segments. In the following phase a SIT is interpolated to the
segments without a SIT value based on the CS2 SIT values
within the similar segments. For one segment the SIT values
of the segments ordered by ascending similarity (difference
function) with respect to the segment are used to interpolate
the SIT for the segment. The CS2 SIT values of the most
similar segments are included until the number of SIT values
exceeds the threshold valueN . The average of these included
CS2 SIT values weighted by the inverse of the segment dif-

ference is then assigned to the segment. For the remapped es-
timates a mapping based on histograms of the estimated SIT
and PIOMAS ice model SIT for training data is performed
to get reduced bias with respect to the reference data. These
steps are described in more detail in the following subsec-
tions.

4.1 Interpolation of CS2 SIT using S-1 SAR

In this subsection we describe the mapping and interpolation
of the CS2 SIT to SAR segments. SAR segments represent
uniform areas in the SAR image, and each SAR segment is
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Figure 6. Algorithm block diagram for the sea ice thickness estimation using combination of the CryoSat-2 sea ice thickness data and
Sentinel-1 SAR imagery. We have used N = 7 in this study.

here assumed to have a uniform SIT value derived from the
CS2 SIT values within the segment or interpolated from the
CS2 SIT values of other SAR segments with CS2 SIT values
in case there are not enough CS2 SIT values within a SAR
segment.

As we want to provide SIT estimates for uniform areas
of the SAR mosaics, i.e. SAR segments, the mosaics first
need to segmented. After segmentation the CS2 SIT values
are mapped to SAR segments where enough single CS2 SIT
measurements are available. The SIT value assigned to these
segments is the median value of the CS2 SIT values within
the segment. Then the SIT is estimated (interpolated) for
the rest of the segments by utilizing a difference function
describing the similarity of the segments and pairwise dis-
tance of each pair of segments in time and space. The differ-
ence function includes difference of several SAR texture fea-
tures in addition to the temporal and spatial pairwise distance
of the segments. The data of January–April and October–
December 2016 were used for training the algorithm and
January–April and October–December 2017 data were used
for evaluating the algorithm performance.

The SAR features were computed within a round-shaped
window with a radius R. In this study we have used R = 5
pixels. The median of the feature values within each segment
was then assigned to the segments as segmentwise texture
features. The features used in this study are as follows.

– HH backscattering coefficient (σ 0
HH in decibels)

– HV backscattering coefficient (σ 0
HV in decibels)

– HH entropies (EHH)

– HV entropies (EHV)

– HH local autocorrelations (CHH
A )

– HV local autocorrelations (CHV
A )

– HH/HV channel cross-correlation (Cc)

– HH local variogram slopes (V HH
1 )

– HV local variogram slopes (V HV
1 )

– HH coefficient of variations (CHH
v )

– HV coefficient of variations (CHV
v )

– HH edge point densities (DHH
E )

– HV edge point densities (DHV
E )

– HH corner point densities (DHH
C )

– HV corner point densities (DHV
C )

The feature computation windows were overlapping by
half of the window size (i.e. window radius) in both coor-
dinate directions.

Entropy E (Shannon, 1948) was computed as

E =−

255∑
k=0

pklog2pk, (4)

where pk values are the proportions of each grey tone k
within each computation window. Auto-correlation CA (Box
and Jenkins, 1976) was computed as

CA(k, l)=∑
ij∈W (I (i− k,j − l)−µW )(I (i,j)−µW )

|B|σ 2
W

, (5)

where I (k, l) is the pixel value at image location (k, l).
Mean over the horizontal, vertical and diagonal directions
i.e. (k, l)= (0,1), (k, l)= (1,0), (k, l)= (1,1) and (k, l)=
(1,−1), was used to accomplish directional independence.
The computation window is here denoted byW . σW and µW
are the mean and standard deviation within the window, re-
spectively.

The cross-correlation Cc (Knapp and Carter, 1976) be-
tween the SAR polarization channels (HH and HV), here de-
noted by X (HH) and Y (HV), is

Cc(k, l)=
1

Npσxσy

×

∑
i,j∈W

(
X(k+ i, l+ j)−µy

)(
Y (k+ i, l+ j)−µy

)
, (6)
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where k and l refer to the row and column coordinates of
the window centre image pixel, respectively; σx and µx are
the mean and standard deviation, respectively, of the window
in X; and σy and µy are the mean and standard deviation,
respectively, of the window in Y . Np is the number of pixels
within the window denoted by W .

We also computed texture features based on local vari-
ograms. The variograms were locally estimated in a window
with a radius of 5 pixels. Assuming a stationary and isotropic
process, the variogram γ is (locally) dependent on the inter-
distance, here denoted by d, only (Cressie, 1993) and can be
estimated as

γ (h)=
1

2|Nd |

∑
i,j∈Nd

|zi − zj |
2, (7)

where zi and zj are the pixel values at locations i and j ,
whose distance is d; Nd is the set of pixels with the mutual
distance d; and |Nd | is the number of these pixels within the
window. We have computed the length of an approximately
linear part of the variogram as a function of h and the slope
of a linear fit of this linear part. These are referred to here
as features V ch

1 and V ch
2 , where ch (channel) is either HH or

HV.
The coefficient of variation is computed as

Cv = σw/µw, (8)

where σ and µ are the standard deviation and mean within
the window w. Cv is computed separately for the HH and
HV channels, respectively; i.e. we have CHH

v and CHV
v .

Edge and corner points represent the locations with large
sudden change in σ 0, i.e. where high local gradients ap-
pear. Corner points are the points where the edge direction
abruptly changes. The edge and corner point counts (Ne and
Nc) were extracted for each segment using local binary pat-
terns (Ojala et al., 1996) in a similar way as presented in
Karvonen (2016). The proportion of the number of edge and
corner points with respect to each segment area (in pixels)
was computed for both polarization channels, and they were
used as texture features. These features are denoted here by
NHH

e , NHV
e , NHH

c and NHV
c .

Based on the segmentation result and the SAR texture fea-
tures complemented by σ 0

HH and σ 0
HV, the segmentwise me-

dian values of each texture feature and channelwise SAR
backscattering coefficients were calculated, resulting in a to-
tal of 15 SAR features (13 texture features and two backscat-
tering coefficients) for each segment. As an example, seg-
mented SAR mosaics with σ 0

HH and σ 0
HV medians assigned

to SAR segments on 21 February 2017 are shown in Fig. 4,
and details of these HH and HV mosaics are shown in Fig. 5.
We use the SIT estimation and reference SIT data of this day
as an example in the following sections.

The segment difference function T was defined as the lin-
ear combination of the SAR feature differences and temporal

and spatial distance between a segment pair:

T = ct1t + cd1D+

Nf∑
k=1

ck|1fk|. (9)

1t is the (absolute) time difference in days, 1D is the dis-
tance difference between the centres of the segments and
1fk is the difference between a SAR feature fk (k = 1, . . . ,
15) in the two segments. The 2016 CS2 thickness and SAR
mosaics (training data) were used in defining the coefficients
ct , cd and ck , using a non-negative least-squares (LS) fit.
Non-negative LS was used because all the absolute differ-
ences should have an increasing effect on T .

According to our analysis the SIT difference between two
segments was mainly explained by the absolute difference,
i.e. L1 difference, of a few features. σ 0

HV, HV entropy and HH
edge density and the spatial distance between segment means
were the most significant features based on a least-squares fit
of the training data. However, other features also had a minor
effect (small but non-zero coefficients based on the LS). For
this reason we have used all the above-mentioned features in
our difference function because the number of features did
not produce any computational problems with respect to ex-
ecution time or hardware resources on a common desktop
personal computer. Because the training data set consisted
of data of a whole year with CS2 SIT data (January–April,
October–December), we consider this to be a representative
training data set and assume there is no significant overfit-
ting.

As training data we used the CS2 SIT values assigned to
the segments. Each 2016 training data SAR segment with an
assigned SIT was included, and the neighbouring assigned
SIT values and the corresponding segment pairwise feature
differences were used in the LS fit; i.e. each segment pair
with an assigned CS2 SIT was utilized.

SIT for a segment (S) without a SIT value was obtained
as follows: T between S and all the other segments within
a predefined time and distance range was computed, and the
segments were ordered by ascending T . Then the CS2 SIT
values of the other segments, in addition to possible CS2 SIT
values with segment S (less than N values), were included in
a set of SIT values, until the number of the values in the list
exceeds the threshold value N (strictly equal to N or more
than N ). The SIT assigned to S was the weighted average of
the SIT values of the collected SIT value set. The weights
used in the averaging are relative to the inverse values of
T corresponding to the segment from which the SIT values
come. The possible (less than N ) CS2 SIT values of the seg-
ment itself are included with the same weight as the CS2 SIT
values within the segment with the smallest non-zero value
of T . We have used parameter values of N = 7 in this study.

In Fig. 7 the dependence of the SIT difference on the SAR
feature linear combination, pairwise segment distance and
pairwise segment time difference is shown for the 2016 data.
Here the time difference is restricted to be less than 1 d (i.e.
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Figure 7. (a) Dependence of the SIT difference on the pairwise SAR segment texture difference, (b) dependence of the SIT difference on
the pairwise SAR segment distance and (c) dependence of the SIT difference on the pairwise SAR segment time difference. The cyan lines
in the figures represent the linear least-squares regression.

using only the same day data) and distance less than 500 pix-
els (250 km) for Fig. 7a, describing the dependence on the
pairwise segment texture difference. For Fig. 7b, describing
the dependence of the SIT difference on the pairwise seg-
ment distance, and Fig. 7c, describing the dependence of the
SIT difference on the segment time difference, the normal-
ized pairwise texture difference is restricted to be under 0.1.
For Fig. 7b the time difference less than 1 d, and for Fig. 7c
the distance difference is restricted to be less than 250 km.
It can be seen that there is a clear correlation between the
linear combination of the texture feature differences and the
SIT difference. There is quite a large deviation; however,
the correlation is around 0.5. For the pairwise segment dis-
tance and the pairwise segment time difference, correlations
are smaller (0.28 and 0.22, respectively), but there is still a
visible trend. Based on the slopes of the linear fits, the av-
erage increase in SIT difference is 2.9 cm (100 km)−1 and
2.1 cm d−1.

4.2 Ice chart and model-compliant CS2 product

After defining the coefficients ct , cd and ck in Eq. (9) us-
ing the training data, we tested the SIT estimation for the
2016 training data. It was observed that SIT is significantly
overestimated in the 2016 training data when compared to
the modelled and AARI SIT. Therefore, we introduce a
mapping based on the PIOMAS model reanalysis SIT data
to reduce this SIT overestimation. The CS2 SIT measure-
ments are now further mapped based on the training data
and the corresponding PIOMAS reanalysis SIT. The coarser-
resolution PIOMAS data were selected for this purpose be-
cause ORAS5 does not give reasonable SIT values for SIT
less than 50 cm (Tietsche et al., 2017). The adapted SIT his-
togram mapping is based on the normalized histograms and
minimizing the Kolmogorov–Smirnov distance (i.e. map-
ping the cumulative histograms) of the CS2/S-1 SIT and
the TOPAZ4 reanalysis SIT. The Kolmogorov–Smirnov dis-
tance, Dm, for a variable x is defined as

Dm = supx |Ft(x)−Fc(x)|, (10)

Figure 8. The correspondence of the CryoSat-2 SIT to AARI ice
chart SIT and modelled SIT from the three models studied based on
histogram matching.

where supx is the supremum within the range of x (SIT in
our case), and Ft(x) and Fc(x) are the cumulative probability
density functions (CDFs) of the PIOMAS SIT and CS2 SIT
computed for the 2016 training data set. In our case we have
quantized the SIT into integer centimetres with 16 bits, and
the SIT histograms are used as approximations of probability
density functions (PDFs).

This mapping based on the 2016 training data CS2 SIT and
PIOMAS model SIT is shown in Fig. 8 as a green curve, For
reference the AARI ice chart SIT, ORAS5 model SIT and
TOPAZ4 model SIT (blue curve) matching results are also
shown in Fig. 8. It can be seen that TOPAZ4 reanalysis SIT
mapping is at a significantly lower level than the mapping for
the other two models.
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5 Results

5.1 Measures used in evaluation of the results

We have compared the SIT values produced by the CS2/S-1
algorithm to the SIT based on the AARI ice charts, ORAS5,
PIOMAS and TOPAZ4 reanalysis to evaluate the algorithm
performance. In the comparisons we have used the following
measures of difference between the CS2/S-1 SIT estimates
and the reference SIT:

C =
1

Nsσσref

Ns∑
i=1

(
(Xi −µ)

(
Xref
i −µref

))
, (11)

DL1 =
1
Ns

Ns∑
i=1

∣∣∣Xi −Xref
i

∣∣∣ , (12)

Dsgn =
1
Ns

Ns∑
i=1

(
Xi −X

ref
i

)
, (13)

DRMS =

√√√√ 1
Ns

Ns∑
i=1

(
Xest
i −X

ref
i

)2
. (14)

Ns refers to the number of samples (number of grid points
involved) used in the comparison, and Xi (i = 1, . . . , Ns)
represents the estimated values of SIT and Xref

i represents
the values of the reference SIT data at the same location as
Xi . C is the correlation, DL1 is the L1 difference and Dsgn
is the signed L1 difference giving the estimation bias, with
positive bias indicating overestimation and negative bias in-
dicating underestimation.DRMS is the root-mean-square dif-
ference. µ and µref are the means of the estimated SIT and
reference SIT, and σ and σref are the standard deviations of
the estimated SIT and reference SIT, respectively. All the dif-
ference measures were computed in the resolution of each
reference data set; i.e. the CS2 SIT assigned to SAR seg-
ments and interpolated, given in a high-resolution grid, were
down-sampled to each reference data set resolution. This ap-
proach was not applicable to the single CS2 SIT measure-
ments, and for them the difference measures were computed
directly, using the nearest reference data set grid point SIT
for each measurement as the reference SIT.

As the CS2 SIT data cover only the time period from Oc-
tober to April, the weather conditions were mostly with dry
snow conditions; i.e. Ta was mainly below 0◦ for the time
range studied. Only in the early winter (October–November)
there were some periods with Ta above zero and the potential
to have wet snow on sea ice. In this study we do evaluate the
effect of wet snow on the SIT estimation. For reliable estima-
tion of the effect of wet snow conditions on estimation, more
data acquired during the melting period would be required.

5.2 Difference statistics between the estimates and
reference data

The statistics from the comparisons between the CS2/S-1
SIT, without and with the proposed histogram mapping, and
the different reference SIT data sets are shown in Tables 1–
4. The correlations between different SIT data sets for each
2017 winter month and their averages and standard devia-
tions are shown in Table 1, the corresponding biases in Ta-
ble 2, the L1 differences in Table 3 and the RMSDs in Ta-
ble 4. For reference, the average difference measures and
correlations between the different reference SIT data sets are
shown in Table 5.

On average the correlation between the non-interpolated
CS2 SIT estimates and the AARI ice chart SIT was very
small, only 0.15. There was a significant bias, CS2 SIT being
on average 83 cm larger than the AARI chart SIT. This also
reflects the high L1 differences and RMSDs between the CS2
and AARI SITs. The statistics of the CS2 SIT with respect to
the AARI SIT are given in the first columns of Tables 1–4.
The numbers were similar with respect to the three ice mod-
els, showing small correlations and large positive bias (over-
estimation by CS2). Because of their similarity these values
were not included to the tables.

The correlations for the interpolated CS2 SIT assigned
to the SAR segments was significantly higher, around 0.64.
The monthly correlations between the interpolated CS2/S-1
SIT and the remapped interpolated CS2/S-1 SIT with respect
to the AARI SIT were similar and in the range 0.52–0.76.
The highest values were reached in April and October. There
CS2/S-1 SIT correlations were quite similar with respect to
the model data for all the studied models.

The monthly signed L1 difference in Table 2 also increases
for the estimated SIT with respect to both the AARI SIT and
model reanalysis SIT as the ice gets thicker, indicating signif-
icant overestimation. For the remapped interpolated SIT, bias
remains at a lower level for all the studied months. With re-
spect to ORAS5 there was even small underestimation on av-
erage, but with respect to TOPAZ4 reanalysis SIT there was
some overestimation. The averages and maximum biases for
the interpolated SIT with respect to the AARI SIT were 27
and 46 cm (maximum reached in March). The correspond-
ing values with respect to the AARI SIT for the remapped
interpolated SIT were 6 and 14 cm (maximum underestima-
tion in April). The corresponding values with respect to the
TOPAZ4 reanalysis SIT were 29 and 49 cm and 8 and 16 cm,
respectively. The corresponding values with respect to the
ORAS5 SIT were 6 and 20 cm and −15 and −20 cm, i.e.
slight underestimation. For the PIOMAS model data the cor-
responding figures were 14 and 31 cm and −7 and −13 cm.

The monthly L1 differences in Table 3 were smaller for
the freeze-up period and higher for the winter months, start-
ing to decrease in April. The L1 differences with respect to
the AARI SIT and TOPAZ4, ORAS5 and PIOMAS reanaly-
sis SIT were smaller for the remapped estimated SIT, which
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Table 1. Monthly average cross-correlations between the SIT estimates studied with respect to the reference data set SIT. SIT refers to the
proposed algorithm SIT, RSIT refers to the proposed algorithm SIT with remapping based on the histogram mapping with model data, CS2
refers to the CS2 values assigned to the SAR segments (without inter- or extrapolation), A refers to the SIT derived from the AARI ice charts,
T refers to the TOPAZ4 model reanalysis SIT, and O refers to the ORAS5 model SIT.

Month CS2/A SIT/A RSIT/A SIT/T RSIT/T SIT/O RSIT/O SIT/PM RSIT/PM
(mm/yy)

01/17 0.20 0.52 0.58 0.43 0.49 0.57 0.63 0.43 0.50
02/17 0.13 0.61 0.65 0.51 0.57 0.64 0.68 0.56 0.62
03/17 0.24 0.69 0.72 0.64 0.68 0.67 0.70 0.66 0.70
04/17 0.13 0.71 0.76 0.61 0.65 0.68 0.72 0.67 0.71
10/17 0.12 0.75 0.76 0.76 0.77 0.70 0.70 0.76 0.77
11/17 0.08 0.65 0.68 0.60 0.63 0.63 0.66 0.62 0.65
12/17 0.14 0.54 0.59 0.51 0.56 0.60 0.65 0.51 0.56

Ave. 0.15 0.64 0.68 0.58 0.62 0.64 0.68 0.60 0.64
SD 0.05 0.09 0.07 0.11 0.09 0.04 0.03 0.11 0.09

Table 2. Monthly average bias in centimetres between the different SIT estimates with respect to the SIT reference data sets. The symbols
are the same as in Table 1.

Month CS2/A SIT/A RSIT/A SIT/T RSIT/T SIT/O RSIT/O SIT/PM RSIT/PM

01/17 118 29 9 31 11 3 −18 18 −2
02/17 105 46 14 48 16 18 −13 31 −0
03/17 104 45 10 48 12 20 −15 27 −8
04/17 82 42 5 49 12 18 −20 25 −12
10/17 43 4. 0 4 1 −5 −9 −0 −4
11/17 48 9 1 10 2 −7 −15 −1 −9
12/17 45 14 1 14 1 −8 −20 −0 −13

Ave. 83 27 6 29 8 6 −16 14 −7
SD 28.7 17.95 5.27 19.71 6.50 12.71 4.00 14.31 4.93

Table 3. Monthly average L1 difference in centimetres between the different SIT estimates with respect to the reference SIT data sets. The
symbols are the same as in Table 1.

Month CS2/A SIT/A RSIT/A SIT/T RSIT/T SIT/O RSIT/O SIT/PM RSIT/PM

01/17 129 34 17 35 18 32 26 33 21
02/17 118 49 21 50 23 38 26 42 23
03/17 118 51 20 50 22 41 28 40 25
04/17 105 48 18 52 26 40 31 39 30
10/17 76 8 6 7 6 11 12 8 8
11/17 68 14 8 13 9 17 18 15 15
12/17 63 19 11 19 12 22 24 22 22

Ave. 96 32 14 32 17 29 24 29 21
SD 27.3 18.32 6.08 19.24 7.91 11.90 6.47 13.64 6.92

was expected as the target of the remapping was to reduce
the relatively large positive bias. The average and maximum
L1 differences with respect to AARI SIT were 32 and 51 cm
for the interpolated SIT and 14 and 21 cm for the remapped
interpolated SIT. The maximum values were reached in Jan-
uary and March. The corresponding values with respect to
TOPAZ reanalysis were 32 and 52 cm and 17 and 26 cm, with

respect to ORAS5 SIT 29 and 41 cm and 24 and 31 cm, and
with respect to PIOMAS SIT 29 and 42 cm and 21 and 30 cm.
The difference maxima were reached in February–April for
all the cases.

The RMSDs in Table 4 have a similar behaviour as the L1
differences. RMSD also increases as the average ice thick-
ness increases in the course of the winter, and the small-
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Table 4. Monthly average RMSD in centimetres between the different SIT estimates with respect to the reference SIT data sets. The symbols
are the same as in Table 3.

Month CS2/A SIT/A RSIT/A SIT/T RSIT/T SIT/O RSIT/O SIT/PM RSIT/PM

01/17 190 67 29 70 33 57 41 65 35
02/17 164 81 34 84 38 65 43 73 38
03/17 157 77 32 80 37 65 47 68 41
04/17 142 72 30 80 41 62 50 65 46
10/17 104 21 13 21 14 25 23 21 18
11/17 99 31 15 32 18 32 29 32 28
12/17 101 41 20 42 22 39 36 43 36

Ave. 137 56 25 58 29 49 38 52 35
SD 36.2 24.03 8.33 26.16 10.78 17.10 9.54 20.51 9.10

Table 5. Average difference measures between the AARI ice chart SIT (A), CS2SMOS SIT (CS2SM) and SIT of the three ice models. O
refers to ORAS5, T refers to TOPAZ4 and PM refers to PIOMAS.

Measure A/CS2SM A/O A/T A/PM CS2SM/O CS2SM/T CS2SM/PM

CC 0.78 0.79 0.74 0.70 0.74 0.82 0.78
Bias (cm) −4 −22 2 −13 −18 6 −9
L1D (cm) 13 24 11 21 24 11 16
RMSD (cm) 22 38 22 34 39 22 29

est RMSD values were reached during the freeze-up months
(October–December). The average and monthly maximum
RMSD values for the estimated SIT with respect to the AARI
SIT were 56 and 81 cm, and the corresponding values for
the remapped estimated SIT were 25 and 34 cm. The corre-
sponding values with respect to the TOPAZ4 reanalysis SIT
were 58 and 84 cm for the interpolated SIT and 29 and 41 cm
for the remapped interpolated SIT. The corresponding val-
ues with respect to the ORAS5 SIT were 49 and 65 cm for
the estimated SIT and 38 and 50 cm for the remapped in-
terpolated SIT. The corresponding values with respect to PI-
OMAS SIT were the 52 and 73 cm for the estimated SIT and
35 and 46 cm for the remapped interpolated SIT. The aver-
age maxima were again reached during the winter months
(January–April).

For the CS2 SIT the difference measures shown in Ta-
bles 2–4 indicate large positive biases (overestimation) and
large L1D and RMSD with respect to the AARI SIT,
TOPAZ4, ORAS5 and PIOMAS reanalysis SIT. These val-
ues are highest for the winter months with the thickest ice and
smaller for the freeze-up/early winter (October–December).
The cross-correlations with respect to all reference data sets
were low, significantly lower than for the interpolated CS2/S-
1 SIT.

It should be noted that the reference SIT data sets also
differ from each other; see Table 5. The average cross-
correlations between the reference data sets were in the range
0.54–0.60. The TOPAZ4 and AARI SIT values were on av-
erage quite close to each other, having only low bias, but the
ORAS5 SIT was then on average 35–40 cm above them. Fur-

thermore, it is noted that in our evaluation the compared ran-
domly sampled points were located in highly dissimilar re-
gions, characteristic for the different data sets, with different
sizes and shapes (such as ice model grid points, SAR seg-
ments, ice chart polygons).

In order to assess how far from the assigned CS2 mea-
surement the SIT can be interpolated and still give usable
estimates, we studied the effect of distance and time on the
SIT difference (or in other words, estimation error) using our
training data set. We used the assigned CS2 SIT values as ref-
erence and searched for sets of segments with either constant
time difference or constant distance and defined the increase
in SIT difference as a function of the difference in the other.
The average increase in estimation error for the training data
set as a function of time was 2.1 cm d−1 and of distance
was 2.9 cm (100 km)−1. This indicates that the contribution
of distance difference to the total difference is at a maximum
(corresponding to the search range boundaries) around 14 cm
for the 1000 pixel (500 km) spatial search range and 21 cm
for the 10 d temporal search range.

An example of the SIT estimation on 21 February 2017
without and with the histogram remapping can be seen in
Fig. 9. For reference the AARI SIT and TOPAZ4, ORAS5
reanalysis SIT, and CS2SMOS SIT have also been included
in Fig. 9. This figure represents a typical case of the thinner
and thicker ice fields generally in agreement with the refer-
ence data but still indicating differences due to the details of
the local SIT distribution, given at a higher level of detail in
the estimated CS2/S-1 SIT.
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Figure 9. (a) CS2/S-1 SIT, (b) remapped CS2/S-1 SIT, (c) AARI ice chart SIT, (d) TOPAZ4 ice model reanalysis SIT, (e) ORAS5 model ice
model SIT and (f) CS2/SMOS SIT for 21 February 2017.

We also included a comparison of the proposed SIT
estimates (interpolated and remapped versions) to the
CS2SMOS SIT data (Ricker et al., 2017) for our 2017 test
data set. These comparison results are shown in Tables 6 and
7. The results are discussed more in the following subsection.

5.3 Difference maps and estimation uncertainty

We also provide difference maps of the unmapped and
remapped SIT with respect to the AARI ice chart SIT in
Fig. 10 for the 21 February 2021 case and for the 2017 test
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Table 6. Comparison between the CS2 SIT assigned to SAR mosaic segments and CS2SMOS SIT.

Month 01/17 02/17 03/17 04/17 10/17 11/17 12/17 Average SD

Corr. 0.55 0.62 0.72 0.67 0.75 0.67 0.56 0.65 0.08
Bias (cm) 31 38 34 34 4 9 13 24 14
L1D (cm) 33 42 41 43 8 12 17 28 15
RMSD (cm) 67 73 67 68 22 31 40 53 21

Table 7. Comparison between the CS2 assigned to SAR mosaic segments with the mapping and CS2SMOS SIT.

Month 01/17 02/17 03/17 04/17 10/17 11/17 12/17 Average SD

Corr. 0.62 0.67 0.74 0.70 0.77 0.70 0.62 0.69 0.06
Bias (cm) 10 8 −2 −3 0 1 0 2 5
L1D (cm) 15 21 23 25 6 8 11 16 7
RMSD (cm) 29 34 37 40 14 16 21 27 11

data set on average. It can be seen that the unmapped inter-
polated SIT overestimates SIT with respect to the AARI ice
chart SIT, for both the 21 February 2017 case and the average
in many areas. For the remapped interpolated SIT estimates
the overestimation is significantly smaller with respect to the
AARI ice chart SIT for both the case of 21 February 2017
and on average.

SIT difference charts with respect to the CS2SMOS SIT
on 21 February 2017 and the average difference charts for
2017 are shown in Fig. 11. It can be seen that the SIT differ-
ences are quite similar to the differences with respect to the
AARI ice charts. There is some more underestimation in the
northeastern part of the study area compared to the difference
maps with the AARI SIT. This comparison also indicates that
the interpolated SIT estimates deem to overestimate SIT, and
the remapped interpolated SIT values are less biased.

As we are using a (segment) difference function for each
segment, this value corresponds to the mapping and the larger
it is the larger the uncertainty of the SIT estimation can be
considered. We have scaled the difference T values to the
range 0–100 (based on the training data difference function
values), and in Fig. 12 the scaled difference function for
21 February 2017 is shown. The highest uncertainty is found
at the ice edge and in the Ob River delta area. The uncertainly
could probably also be used for iteratively re-estimating the
SIT of segments with the highest uncertainties.

5.4 Comparison to MODIS SIT

We also performed comparisons of the interpolated CS2/S-
1 SIT estimates against the daily MODIS SIT charts. The
MODIS product only gives thin-ice thicknesses, and the
thicker ice thicknesses are only roughly categorized: SIT in
the 1–30 cm range and then one category for SIT of 31–50 cm
and another for SIT over 50 cm. The monthly correlations
between the thin MODIS SIT (1–30 cm) and the SIT esti-
mated by the proposed method varied between 0.15 and 0.25.

We also computed the averages of the estimated SIT for the
three MODIS SIT categories for each month and for the esti-
mated SIT and estimated remapped SIT. These are presented
in Table 8. It can be seen that the averages increase towards
a thicker MODIS thickness category for both the estimates,
but the increases are quite small and the averages are high
for both the methods, some less for the remapped estimate.
It can also be seen that the averages increase as a function
of time, i.e. as ice gets thicker in the course of time. Based
on this experiment we can conclude that the SIT estimates,
even with the proposed remapping, tend to overestimate SIT,
specifically for thin ice.

For visual evaluation and comparison to the SIT estimates
of Fig. 9, we also show the MODIS SIT collage for 21 Febru-
ary 2017 in Fig. 13. For better visual appearance the colour
scale is different from that of Fig. 9. Because in a daily
MODIS SIT chart SIT can typically be computed only for
small areas due to cloud cover, the collage is composed of 2
weeks of MODIS SIT charts with the most recent available
MODIS SIT value at each grid point. The areas with no data
during the 2-week period are indicated by the black colour
in the figure.When comparing the MODIS SIT collage of
Fig. 10 with the daily CS2/S-1 SIT estimate in Fig. 8b, we
notice that most of the ice-covered regions of the study area
belong to the thickest MODIS SIT category (SIT> 50 cm).
The thin-ice areas according to the MODIS SIT are located
near the Kara Gate (southern Kara Sea) and near the ice edge
in the northwestern part of the study area. These are in gen-
eral in agreement with the CS2/S-1 SIT. Also, some thicker
ice patches within or in the vicinity of the MODIS SIT thin-
ice areas can be identified in the CS2/S-1 SIT. The general
pattern detecting thinner ice in the south and near the ice
edge is present in both CS2/S-1 and MODIS SIT. This gen-
eral large-scale pattern can be seen throughout the winter.
However, the SIT estimates include many anomalous local
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Figure 10. (a) Difference of the proposed (unmapped) SIT for 21 February 2017 and AARI ice chart SIT, (b) difference of the proposed
remapped SIT and AARI ice chart SIT for 21 February 2017, (c) average difference of the proposed (unmapped) SIT and the AARI ice chart
SIT for the 2017 data, and (d) average difference of the proposed remapped SIT and the AARI ice chart SIT for the 2017 data.

Table 8. Monthly averages of estimated SIT (SIT) and remapped SIT (Rem. SIT) for the MODIS daily SIT chart categories. All values are
in centimetres. The MODIS SIT categories are 1–30 cm (Cat1), 31–50 cm (Cat2) and over 50 cm (Cat3).

Month SIT ave. SIT ave. SIT ave. Rem. SIT ave. Rem. SIT ave. Rem. SIT
Cat1 Cat2 Cat3 Cat1 Cat2 Cat3

01/2017 92 98 103 50 53 56
02/2017 99 108 119 54 66 68
03/2017 122 129 139 67 73 77
04/2017 120 131 139 67 73 78

details due to the dynamic nature of the ice field and the fact
that the data are not exactly simultaneous.

6 Discussion and conclusions

In this study an algorithm for interpolating the CS2 SIT data
over the daily Kara Sea and Barents Sea S-1 SAR mosaic
was developed and evaluated by comparisons to SIT derived
from the AARI ice charts and three ice model reanalysis data
sets. Baseline-D CS2 data (Meloni et al., 2020) were used in
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Figure 11. (a) Difference of the proposed (unmapped) SIT and CS2SMOS SIT for the 21 February 2017 case, (b) difference of the proposed
remapped SIT and CS2SMOS SIT for the 21 February 2017 case, (c) average difference of the proposed (unmapped) SIT and the CS2SMOS
SIT for the 2017 data, and (d) average difference of the proposed remapped SIT and the CS2SMOS SIT for the 2017 data.

this study. Baseline-D data were was the most recent version
when our data analysis was made. We wanted to demonstrate
the potential of our method, as well as to evaluate its per-
formance. Our method is capable of interpolating CS2 SIT
values to areas between orbit ground tracks where SIT mea-
surements are not available. We found significant differences
(low correlation, large bias) between non-interpolated CS2
SIT and the reference data. Given the different nature of our
reference data, this was not surprising. The match between
CS2 and reference data improved with the introduction of
segmentwise medians. However, there were still significant
differences, especially a high positive bias due to different
nature of CS2 SIT estimates and the reference SIT data sets.
To reduce this bias, we performed a mapping based on the
PDFs (histograms) of the CS2 SIT and PIOMAS ice model
reanalysis SIT for our training data set. This mapping re-
duced the positive bias, which also reflected the reduced L1D

and RMSD. However, the remapped CS2 data should not be
understood as more correct but as more akin to the model
SIT.

We used the 2016 data (January–April, October–
December) as the training data set and 2017 data (January–
April, October–December) as a test data set in this study.
There would have been different ways of dividing the data
into the training and test data sets, e.g. randomly selected
days or one whole season for training instead of using calen-
dar year data from two seasons. However, with some prelim-
inary tests this did not have any significant effect on the re-
sults, and we selected this chronological order (training data
earlier than test data) for this study. The training and evalua-
tion of this study were also performed for January–April and
November–December. This was because both the CS2 SIT
and AARI ice chart ice stage of development were not avail-
able outside of this period, i.e. under wet surface conditions.
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Figure 12. Segment difference (T ) as a measure of uncertainty of
the SIT estimates. This is the segment difference for the 21 February
2017 case. The values of T have been scaled to the range 0–100,
based on the variation in T in the training data. The black area is
open water.

Figure 13. MODIS SIT collage based on 2 weeks of MODIS daily
SIT charts before 21 February 2017. The areas without data are in-
dicated by the grey colour, and all the ice thicker than 50 cm is in-
dicated by the green colour, corresponding to 60 cm in the colour
map.

For such conditions reliable estimation of SIT is difficult or
even impossible with the current data and algorithms. This
is due to the deviating behaviour of radar signal at the wet
air–snow/ice boundary, compared to a frozen surface.

An alternative to directly using CS2 SIT would have been
to utilize CS2 ice freeboard. Then ice freeboard could have
been computed from modelled ice and snow data using
Eq. (1). Freeboard could be a more suitable quantity for com-
parisons because radar backscatter and ice freeboard are sta-
tistically related as reported in Simila et al. (2010). The radar
penetrates the snow layer, and radar backscattering is from

the ice surface layer in dry snow conditions. Using ice free-
board can also reduce the effect of incorrect snow depth.

An interesting result was that the interpolation does not de-
crease the correlation with respect to the reference data com-
pared to (incomplete) SIT resulting from CS2 data assigned
to SAR segments, or CS2 data as individual measurements.
For example, the correlation for the CS2 SIT assigned to seg-
ments with respect to the AARI ice chart SIT was on average
around 0.64. This is a similar value as for the interpolated
segmentwise CS2 SIT. For the individual pointwise CS2 SIT
values the correlations were significantly lower.

In parts of the study area there may be areas with wet snow
on sea ice (Rösel et al., 2018). Wet snow will have an effect
on the SIT estimate accuracy in late winter. Because the CS2
SIT is produced for the winter months only, i.e. stopped at the
end of April, indicating that most of the melt-down period,
most likely to have wet snow on ice, is excluded. In this study
the uncertainty due to wet snow was not studied, but this will
be an interesting topic for further studies.

In general, evaluation of ice thickness over the Arctic is
difficult because of a lack of reliable reference data. An-
other problem is the different scales of the SIT measure-
ments, estimates and models. SIT measurements, if avail-
able, are typically point measurements or measurements with
a footprint of a few metres to a few tens of metres (e.g.
SIT measurements by drilling or electromagnetic-induction-
based EM measurements), and the model grid cells, satellite
measurements or segmentwise SAR estimates represent av-
erages over several square kilometres (km2). Also, ice charts
give averages of typically quite large polygons of several tens
or even hundreds of square kilometres.

According to the results the monthly biases without any
remapping of the interpolated CS2 SIT are positive with re-
spect to the AARI SIT and smaller but still positive with
respect to the ice model data sets. For the remapped inter-
polated SIT all the biases are smaller. Comparison to the
CS2SMOS SIT product with the 2017 test data indicates
large overestimation for the interpolated CS2 SIT estimates.
This large positive bias was decreased significantly for the
remapped estimates and was on average only a few centime-
tres.

We selected parameters, such asN , empirically. The sensi-
tivity of SIT to parameters chosen was not studied thoroughly
yet. It will be a topic for future research. For example the
value of N was selected such that we had enough segments
with CS2 SIT assigned to them to get interpolated SIT for
all the segments of a daily SAR mosaic. Currently the value
of N is relatively small for a typical SAR segment. A higher
value of N would be preferable. However, a higher value of
N in turn would reduce the number of segments included in
the estimation and also increase the possibility of too few as-
signed SIT values for the interpolation step. For this reason
we used a moderately small value of N .

The relatively large differences with respect to the refer-
ence SIT data sets can at least partly be explained by the dif-
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ferent resolutions and level of detail of the SIT estimates. The
CS2/S-1 SIT has a resolution of 500 m (the SAR mosaic res-
olution), which is significantly higher than the resolution of
the ORAS5, PIOMAS and TOPAZ4 reanalyses (over 10 km)
and also of the AARI ice chart level of detail. Furthermore
the original CS2 measurements stem from individual foot-
prints that are approximately 300 m× 1600 m. Even though
the ice charts have a nominal resolution up to about 1 km, in
practice it is impossible for the ice analysts to include all the
ice field details in this scale within the limited time available
for making the ice charts. Instead, the ice analysts tend to
draw larger polygons, representing rather homogeneous sea
ice, neglecting the details and assigning areal average val-
ues to the polygons. However, the polygon boundaries typi-
cally have the precision of the nominal ice chart resolution.
For this reason of varying scales, we have used the reference
data resolution in the comparisons and downsampled the in-
terpolated CS2 SIT accordingly. For the individual CS2 SIT
measurements, we used the nearest reference grid point data.

We also studied use of regularized linear regression
(LASSO) (Tibshiran, 1996) for reducing the number of tex-
ture features needed in the SIT estimation. According to our
first tests the performance was nearly similar with less tex-
ture parameters involved, but on the other hand the need for
computational resources with the number of LS fit parame-
ters used now was not significantly larger than with a reduced
number of parameters, and thus we here used all the studied
parameters in the LS fit in this study. In the future, reduction
of LS fit parameters could be studied more, if seen necessary,
e.g. for more efficient computing to cover larger sea areas in a
reasonable time. This may be required to meet near-real-time
processing conditions for operational SIT estimation, e.g. for
a pan-Arctic high-resolution SIT product.

Snow depth in winter conditions can be estimated based on
microwave radiometer data, e.g. see Rostosky et al. (2018).
More precise snow density estimation can then be utilized to
yield more precise SIT estimates. Microwave radiometer data
can be utilized to locate the thin-ice regions; e.g. AMSR2-
based thin-ice (SIT> 20 cm) detection has been recently de-
veloped for the Barents and Kara seas. One future goal will
be integration of microwave radiometer data in the algorithm
to get better estimates of snow cover on sea ice and thin-ice
presence.

In some areas near the ice edge there still seems to exist
local SIT overestimation with respect to the reference data.
One possible way to reduce this overestimation would be to
adjust the algorithm parameters such that the spatial search
radius would be more restricted near the ice edge, i.e. depen-
dent on the geographical location. This could also be adjusted
by varying the weight assigned to pairwise segment distance
in the difference function T . However, this alternative will
require a significant amount of additional research.

As the proposed method uses several CS2 SIT values to
assign a SIT value to a SAR segment, it is also possible to
give estimates of the SIT range or SIT distribution of the seg-

ments. This does not even require development of new algo-
rithm, only selecting a suitable value of parameter N (num-
ber of CS2 SIT values required for a segment) and extract-
ing the SIT range or distribution from the CS2 SIT measure-
ments.

In the future we also plan to study segment clustering and
then assigning CS2 SIT value median or mode of each seg-
ment cluster to all segments of a segment cluster instead of
single segment medians. An easy solution would be to merge
small segments into their neighbouring larger segments to re-
move all the segments smaller than a given area. This would
give more CS2 measurements within the segments but on the
other hand also then give SIT estimates representing aver-
ages of larger areas. Despite this it should be noted that the
segment boundaries, representing different ice fields, are still
represented in the resolution of the segmentation. With these
approaches we aim to overcome the problem of either having
too few CS2 SIT values assigned to segments or too few seg-
ments with an assigned SIT. Also, more detailed utilization
of SIT distributions of segment clusters with a large enough
number of SIT samples for forming statistically reliable SIT
distributions should be studied. In some cases large SAR seg-
ments could also be split into smaller ones to get more de-
tailed and more accurate local SIT estimates.

It may be possible to use the dependence of the biases on
the phase of the winter (related to average SIT), such as early
freeze-up, freeze-up, mid-winter and early spring phase, to
reduce the bias by applying a bias-reducing mapping de-
pendent on the phase of the winter instead of on a com-
mon mapping for the whole winter. The phase of the winter
could roughly be estimated based on the estimated average
ice thickness. Also, different algorithm parameters (weights
used in the difference function T ) could be tested for differ-
ent phases of winter. This would require a larger multi-year
training data set and a significant amount of additional work
but could be one way to improve the SIT estimation accuracy.

Our algorithm can be easily adapted to any satellite altime-
ter SIT product. This study is especially relevant for the fu-
ture CRISTAL mission (Kern et al., 2020). After its expected
launch in late 2027, CRISTAL shall provide a time-critical
SIT product, which can be merged with SAR data to inter-
polate SIT between the CRISTAL ground tracks. Thus our
study is one of the necessary steps in introducing satellite al-
timeter data into the realm of operational ice charting. Before
CRISTAL, our algorithm can be applied to ICESat-2 as well
as to Sentinel-3 SRAL-based SIT estimates.

Code and data availability. The CS2 data processing
was performed using the pysiral SW package (https:
//github.com/shendric/pysiral/, last access: 11 May 2022;
https://doi.org/10.5281/zenodo.5566347, Hendricks et al., 2021b).
For access to the SW, contact juha.karvonen@fmi.fi. The original
S-1 and CS2 data are available through the ESA Copernicus
data hub (https://scihub.copernicus.eu/, last access: 11 May 2022;
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