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Abstract. Numerical simulations of ice sheets rely on the
momentum balance to determine how ice velocities change
as the geometry of the system evolves. Ice is generally as-
sumed to follow a Stokes flow with a nonlinear viscosity.
Several approximations have been proposed in order to lower
the computational cost of a full-Stokes stress balance. A pop-
ular option is the Blatter–Pattyn or higher-order model (HO),
which consists of a three-dimensional set of equations that
solves the horizontal velocities only. However, it still re-
mains computationally expensive for long transient simu-
lations. Here we present a depth-integrated formulation of
the HO model, which can be solved on a two-dimensional
mesh in the horizontal plane. We employ a specific polyno-
mial function to describe the vertical variation in the velocity,
which allows us to integrate the vertical dimension using a
semi-analytic integration. We assess the performance of this
MOno-Layer Higher-Order (MOLHO) model to compute ice
velocities and simulate grounding line dynamics on standard
benchmarks (ISMIP-HOM and MISMIP3D). We compare
MOLHO results to the ones obtained with the original three-
dimensional HO model. We also compare the time perfor-
mance of both models in time-dependent runs. Our results
show that the ice velocities and grounding line positions ob-
tained with MOLHO are in very good agreement with the
ones from HO. In terms of computing time, MOLHO re-
quires less than 10 % of the computational time of a typical
HO model, for the same simulations. These results suggest
that the MOno-Layer Higher-Order formulation provides im-
proved computational time performance and a comparable

accuracy compared to the HO formulation, which opens the
door to higher-order paleo simulations.

1 Introduction

Projecting the future evolution of the ice sheets of Green-
land and Antarctica and their potential contribution to sea
level rise often relies on computer simulations carried out by
numerical ice sheet models (e.g., Aschwanden et al., 2019;
Goelzer et al., 2020; Seroussi et al., 2020; Edwards et al.,
2021). These ice sheet models solve a set of flow equations
based on the conservation of momentum to obtain the ice ve-
locity field over the entire ice sheet. There exist several ice
flow models in the field of ice sheet/glacier modeling. One
of these flow models is the full-Stokes equations (FS), a set
of equations that solve the three-dimensional ice velocity as
well as the ice pressure. The FS model is applicable to a wide
range of systems: from small glaciers to continent-sized ice
sheets. However, this model is computationally demanding,
especially in time-dependent numerical simulations, which
restricts its use to short-term projections or regional applica-
tions.

Over the last decades, simplified ice flow models were
developed in order to decrease the computational cost of
the momentum balance (e.g, Hutter, 1983; Morland, 1987;
MacAyeal, 1989; Blatter, 1995; Pattyn, 2003; Goldberg,
2011). All of them are derived from the FS equations and
rely on different approximations in the stress tensor or veloc-
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ity field. A commonly applied approximation is the Blatter–
Pattyn model (Blatter, 1995; Pattyn, 2003), also known as
a higher-order model (HO). The HO model assumes a hy-
drostatic pressure and negligible contribution of horizontal
gradient of vertical velocities to the velocity computation.
The model is three-dimensional and solves the horizontal
velocities over the entire ice sheet. However, for long tran-
sient runs and/or sensitivity analyses that require running
the model for large ensembles, the HO model still demands
relatively high computational resources. Recently, numeri-
cal schemes were applied to improve the computational ef-
ficiency of the HO model without compromising numerical
accuracy (e.g., Langdon and Raymond, 1978; Bassis, 2010;
Brinkerhoff and Johnson, 2015; Cuzzone et al., 2018; Shap-
ero et al., 2021). These schemes rely on the finite element
method (FEM), which allows the employment of polynomial
functions of a degree equal to or greater than 2 to model
the vertical variation in the horizontal velocities. These ap-
proaches decrease the number of vertical elements (layers)
in the mesh, reducing the overall computational cost. A nat-
ural extension of such schemes is to employ a single layer
of three-dimensional elements (e.g., triangular prisms) with
a higher-order polynomial along the vertical axis (Brinker-
hoff and Johnson, 2015; Shapero et al., 2021). This mono-
layer, higher-order flow model presents a reasonable numeri-
cal accuracy in comparison to the original three-dimensional
HO model, at a relatively lower computational cost (Brinker-
hoff and Johnson, 2015). It has been used for simulations
of glaciers and ice sheets (Brinkerhoff and Johnson, 2015;
Brinkerhoff et al., 2017; Shapero et al., 2021). However,
some technical aspects, such as the vertical integration of the
viscosity, have not been fully resolved and the performance
of this mono-layer higher-order model in marine ice sheet
simulations has not been tested.

Here we present a finite element formulation of a new ver-
tically integrated MOno-Layer Higher-Order (MOLHO) ice
flow model inspired by the scheme employed by Brinker-
hoff and Johnson (2015). Previous works have employed nu-
merical integration (e.g., Gauss–Legendre quadrature) over
the vertical dimension in triangles (Brinkerhoff and John-
son, 2015) or triangular prisms (Shapero et al., 2021) to ac-
count for the vertical shear and ice viscosity. Here, we pre-
compute a depth-averaged ice viscosity, which allows us to
perform an analytical vertical integration. Thus, the new for-
mulation is written over the horizontal plane and relies on
a two-dimensional mesh. The vertical variation in the hori-
zontal velocities is described by a specific higher-order poly-
nomial. This specific polynomial adds 2 degrees of freedom
per node and allows us to integrate over the vertical axis.
The vertical integration of the ice viscosity is evaluated by a
semi-analytic scheme of low computational cost. The formu-
lation is implemented in the Ice-sheet and Sea-level System
Model (ISSM) v4.18 (Larour et al., 2012, 2020). We first
run the ISMIP-HOM diagnostic experiments (Pattyn et al.,
2008) to evaluate the velocity field for different wavelengths

of bedrock elevation and compare the results to the solu-
tions obtained using the three-dimensional HO model. We
then run the MISMIP3D benchmark (Pattyn et al., 2013) to
evaluate the behavior of grounding line dynamics in a marine
ice sheet setup. With the MISMIP3D experiments we assess
the grounding line position at steady state for different mesh
resolutions as well as grounding line reversibility after im-
posed friction perturbations. We also run a time performance
analysis to compare the simulation time spent by each flow
model, MOLHO and HO, and conclude on the applicability
of this model in the future.

The paper is organized as follows. We first present the de-
scription of the MOLHO formulation (Sect. 2), highlighting
the main steps necessary to perform the vertical integration
of the weak formulation (e.g, Sect. 2.3), especially the inte-
gration of the ice viscosity (Sect. 2.4). Then, we describe the
numerical experiments performed to evaluate the new formu-
lation (Sect. 3), followed by the results (Sect. 4). We finish
the paper with a discussion (Sect. 5) and a summary of the
conclusions of this work (Sect. 6). Additional information re-
garding the pre-computation of the ice viscosity as well as the
resulting element stiffness matrix and load vector is provided
in the Appendix sections.

2 Description of the MOno-Layer
Higher-Order (MOLHO) model

2.1 Polynomial function for vertical shear

The specific polynomial employed to describe the vertical
variation in the horizontal velocities is based on the shallow
ice approximation (SIA, Hutter, 1983). In the SIA, the hor-
izontal velocities (v = [vx,vy]ᵀ) of an isothermal ice sheet
following Glen’s law are given by

v = vb
− 2(ρg)n‖∇s‖n−1 A

n+ 1
H n+1

(
1−

(
s− z

H

)n+1
)
∇s, (1)

where vb (= [vb
x,v

b
y]

ᵀ) represent the basal horizontal veloc-
ities, H is the ice thickness, s is the ice surface elevation,
A is the ice rate factor, n is the Glen law exponent, ρ is the
ice density, and g is the gravitational acceleration. We write
Eq. (1) as

v(x,y,z)= vb(x,y)+ vsh(x,y)
(

1− ζ n+1
)
, (2)

where vsh
= [vsh

x ,v
sh
y ]

ᵀ is the internal deformation contribu-
tion to the surface velocities, and ζ is an auxiliary variable
defined as

ζ =
s− z

H
= 1−

z− b

H
, (3)

with b being the ice base elevation (note that H = s− b).
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Equation (2) has been widely employed by the glaciologi-
cal community in ice sheet models to set up boundary condi-
tions (e.g., Raymond, 1983) and describe vertical deforma-
tion within the glacier body (e.g., Langdon and Raymond,
1978; Bueler and Brown, 2009; Bassis, 2010; Brinkerhoff
and Johnson, 2015; Shapero et al., 2021).

In the SIA, vsh values are defined using the local sur-
face gradient only (Eq. 1). In the MOno-Layer Higher-
Order (MOLHO) model, we employ Eq. (2) in a higher-
order (HO) weak formulation such that vsh values are eval-
uated only after solving a nonlinear system resulting from
the HO stress-balance equations. Details of the computation
of vsh are shown in Sect. 2.3.

To derive the MOLHO formulation, we use some identi-
ties related to vertical derivatives and vertical integration of
the function 1−ζ n+1. Appendix B presents some useful iden-
tities employed in this work. Note that this polynomial func-
tion is derived for an isothermal ice sheet, which could be a
source of differences in real applications when compared to
a three-dimensional HO model. Nevertheless, one can mod-
ify the function to account for the vertical variation in ice
temperature.

2.2 Weak formulation

The three-dimensional Blatter–Pattyn or higher-order (HO)
ice flow model is defined as (Blatter, 1995; Pattyn, 2003)

∂

∂x

(
4µ
∂vx

∂x
+ 2µ

∂vy

∂y

)
+
∂

∂y

(
µ

(
∂vx

∂y
+
∂vy

∂x

))
+
∂

∂z

(
µ
∂vx

∂z

)
= ρg

∂s

∂x
,

∂

∂x

(
µ

(
∂vx

∂y
+
∂vy

∂x

))
+
∂

∂y

(
4µ
∂vy

∂y
+ 2µ

∂vx

∂x

)
+
∂

∂z

(
µ
∂vy

∂z

)
= ρg

∂s

∂y
. (4)

For the boundary conditions, we assume a negligible stress
at the ice surface (i.e., τ s

= 0) and a viscous friction law at
the ice base defined as

τ b
=−α2vb, (5)

where vb
= [vb

x,v
b
y]

ᵀ is the horizontal velocity at the glacier
base and α = α(x,y) is the friction coefficient that, in gen-
eral, is a (nonlinear) function of the basal velocities vb. Note
that other friction laws could be employed in this formula-
tion. At the ice–ocean interface (i.e., calving front), a Neu-
mann boundary condition based on ocean water pressure is
applied.

Let V be the space of kinematically admissible fields
that satisfy the Dirichlet boundary conditions and whose
first derivatives are square integrable on the glacier domain.
The weak formulation (assuming non-homogeneous Dirich-
let conditions on the model boundary and viscous sliding at
the base) of HO is

∫
�

(
4µ
∂vx

∂x
+ 2µ

∂vy

∂y

)
∂ϑx

∂x
+µ

(
∂vx

∂y
+
∂vy

∂x

)
∂ϑx

∂y

+µ
∂vx

∂z

∂ϑx

∂z
d�+

∫
�

µ

(
∂vx

∂y
+
∂vy

∂x

)
∂ϑy

∂x

+

(
4µ
∂vy

∂y
+ 2µ

∂vx

∂x

)
∂ϑy

∂y
+µ

∂vy

∂z

∂ϑy

∂z
d�

+

∫
0b

α2vb
xϑxd0b

+

∫
0b

α2vb
yϑyd0b

=−

∫
�

ρg
∂s

∂x
ϑxd�−

∫
�

ρg
∂s

∂y
ϑyd�

+

∫
0w

[(
4µ
∂vx

∂x
+ 2µ

∂vy

∂y

)
nx

+µ

(
∂vx

∂y
+
∂vy

∂x

)
ny

]
ϑxd0w

+

∫
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∂vy
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+
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vx = v
D
x ,vy = v

D
y on 0D,

∀
[
ϑx,ϑy

]ᵀ
∈ V, (6)

where� is the three-dimensional domain of the glacier, 0b is
the ice base, 0w is the vertical face of the glacier boundary
(e.g., calving front), nx and ny are the components of the
unit vector pointing outward edge 0w, and 0D is the glacier
boundary where Dirichlet boundary conditions with values
vD
x ,v

D
y are imposed.

2.3 Finite element discretization

Based on the SIA, we decompose the horizontal velocities in
MOLHO following Eq. (2):

vx(x,y,z)= v
b
x(x,y)+ v

sh
x (x,y)

(
1− ζ n+1

)
,

vy(x,y,z)= v
b
y(x,y)+ v

sh
y (x,y)

(
1− ζ n+1

)
. (7)

We note that the decomposition employed here differs
from the approach adopted in previous work (Brinkerhoff
and Johnson, 2015). In the latter, the horizontal velocities
were parameterized as the sum of depth-averaged velocities
and the deviation from it (rather than basal and shear veloci-
ties) such that the first component of the stress balance solu-
tion (i.e., depth-averaged velocities) could be used directly in
the continuity equation that controls the advection of the ice
thickness. Here, once vb and vsh are computed, the vertically
averaged velocities, v, are obtained by

v(x,y)= vb(x,y)+ vsh(x,y)
(n+ 1)
(n+ 2)

. (8)
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To apply the finite element discretization to Eq. (6), we
approximate the horizontal velocities by employing two-
dimensional basis functions φj as follows:

vx(x,y,z)≈

nf∑
j=1

vb
x,jφj (x,y)+

nf∑
j=1

vsh
x,jφj (x,y)

(
1− ζ n+1

)
,

vy(x,y,z)≈

nf∑
j=1

vb
y,jφj (x,y)+

nf∑
j=1

vsh
y,jφj (x,y)

(
1− ζ n+1

)
, (9)

with vb
x,j ,v

b
y,j and vsh

x,j ,v
sh
y,j being the values of the base

velocities and surface shear velocities evaluated at nodal
points j . In Eq. (9), nf is the total number of basis functions
in the entire mesh. By decomposing the velocities into two
independent components, we can define the basis functions
on a horizontal two-dimensional mesh only, i.e., φ = φ(x,y).

We choose a similar decomposition for the test func-
tions ϑx and ϑy :

ϑx = ϑ
b
x +ϑ

sh
x

(
1− ζ n+1

)
,

ϑy = ϑ
b
y +ϑ

sh
y

(
1− ζ n+1

)
, (10)

and they are defined using the same basis functions φi , as
follows:

ϑx(x,y,z)=

nf∑
i=1

ϑb
x,iφi(x,y)+

nf∑
i=1

ϑ sh
x,iφi(x,y)

(
1− ζ n+1

)
,

ϑy(x,y,z)=

nf∑
i=1

ϑb
y,iφi(x,y)+

nf∑
i=1

ϑ sh
y,iφi(x,y)

(
1− ζ n+1

)
, (11)

where ϑb
x,i,ϑ

b
y,i and ϑ sh

x,i,ϑ
sh
y,i are arbitrary coefficients.

We insert Eqs. (9) and (11) into the weak formulation
(Eq. 6), and then we replace the ice viscosity µ by an ad hoc
depth-averaged viscosity µ (discussed in Sect. 2.4). Thus, we
analytically integrate the resulting formulation along the ver-
tical axis. This generates a set of equations defined over the
horizontal xy plane (two-dimensional mesh). The resulting
nonlinear element matrix system is

K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44



vb
x

vsh
x

vb
y

vsh
y

=

F 1
F 2
F 3
F 4

 , (12)

where Kij are matrices of size nf,e× nf,e, with nf,e being
the total number of basis functions defined on each element.
Here, we employ triangular elements and P1 Lagrangian ba-
sis functions and, therefore, nf,e = 3. In the element matrix
system (Eq. 12), vb

x , vsh
x , vb

y , and vsh
y are vectors evaluated

on each element’s node (e.g., vb
x = [v

b
x,1,v

b
x,2, . . ., v

b
x,nf,e
]
ᵀ).

The loading vectors F i are also evaluated on all nodes of
each element. Appendices D–G present the detailed techni-
cal steps of the vertical integration and the resulting expres-
sions of each term (Kij and F i) of Eq. (12). We note that
we still rely on a numerical integration over the horizontal
plane to evaluate the element matrices and loading vectors of
Eq. (12).

2.4 Vertically integrated ice viscosity

A delicate aspect of the analytical depth integration of the
HO weak formulation (Eq. 6) is how to handle the ice vis-
cosity that is a function of ice velocity. The ice viscosity
µ= µ(x,y,z) is assumed to follow Glen’s flow law (Glen,
1955):

µ=
1
2

B

ε̇
(n−1)/n
e

, (13)

where B = A−1/n is the associated rate factor, and ε̇e is the
effective strain rate tensor, which for HO is defined as

ε̇e =

√
ε̇2
xx + ε̇

2
yy + ε̇

2
xy + ε̇

2
xz+ ε̇

2
yz+ ε̇xx ε̇yy, (14)

with each component defined as

ε̇xx =
∂vx

∂x
,

ε̇yy =
∂vy

∂y
,

ε̇xy =
1
2

(
∂vx

∂y
+
∂vy

∂x

)
,

ε̇xz =
1
2
∂vx

∂z
,

ε̇yz =
1
2
∂vy

∂z
. (15)

Note that in Eq. (15), as assumed in the HO model, ∂vz/∂x
and ∂vz/∂y are neglected.

The vertical integration of the weak formulation, Eq. (6),
requires the integration of the viscosity multiplied by a func-
tion of z only, f (z), since the basis functions φ(x,y) em-
ployed in the approximation of the ice velocities vx and vy
(Eq. 9) are depth-independent. The expression of f (z) is a
function of the polynomial function 1− ζ n+1 and varies ac-
cording to the definitions of matrices Kij in the element ma-
trix system (Eq. 12). The four expressions of f (z) that ap-
pear in the element stiffness matrix are shown in Appendix C.
Thus, we can write a generic expression for the vertical inte-
gration as follows:

µ′(x,y)=

s∫
b

µ(x,y,z)f (z)dz, (16)

where µ′(x,y) is the vertical integration of the ice viscosity
multiplied by the function f (z).

In the following steps we drop the x and y dependency in
the viscosity notation for simplicity. To achieve a vertically
integrated formulation, let us assume that Eq. (16) can be
rewritten by defining an ad hoc “vertical averaged” viscosity
µ= µ(x,y) as follows:

µ′ =

s∫
b

µ(z)f (z)dz= µ

s∫
b

f (z)dz= µF, (17)
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where F is the primitive function of f (z) evaluated be-
tween b and s (i.e., F = [F(z)]sb).

If Eq. (16) was evaluated by employing a Gaussian quadra-
ture (between−1 and 1), the integral would be approximated
by

µ′ =

s∫
b

µ(z)f (z)dz≈
H

2

∑
ωiµ(zi)f (zi) , (18)

with ωi being the appropriate weights and zi the vertical co-
ordinate evaluated at

zi =
H

2
ξi +

s+ b

2
, ξi ∈ [−1,1]. (19)

By combining Eqs. (17) and (18), we identify the ad hoc
averaged viscosity as follows:

µ≈
H

2F

∑
ωiµ(zi)f (zi) . (20)

The accuracy of the assumption employed in Eq. (17) de-
pends on the order of the numerical integration of Eq. (20).
We test a different number of integration points in Ap-
pendix A. Based on these numerical tests, we employ an in-
tegration order equal to 5 to perform the ISMIP-HOM and
MISMIP3D experiments. We note that the ad hoc viscos-
ity µ(x,y) varies within the triangular elements. In ISSM,
we compute the value of µ(x,y) through Eq. (20) at each
quadrature point used during the two-dimensional numer-
ical integration of the triangular-element matrices Kij of
Eq. (12). We also note that all the components of the effective
strain rate tensor ε̇e (Eq. 15) are evaluated using the horizon-
tal velocities defined by Eq. (7).

3 Numerical experiments

In all numerical experiments performed here, a Picard iter-
ation scheme is used to solve the nonlinear stress balance
equations. We employ the bi-conjugate gradient and block–
Jacobi precondition to solve the linear system at each Picard
iteration.

3.1 ISMIP-HOM setup

To assess the performance of MOLHO, we first compare the
velocities from HO and MOLHO based on the ISMIP-HOM
benchmark (Pattyn et al., 2008). This benchmark aims to test
the response of ice flow models in diagnostic runs using dif-
ferent scales of glacier geometries and flow regimes. Here,
we perform experiments A, C, and E, for which only the
ice velocities are computed (i.e., transient simulations are not
considered). Table 1 shows the parameters employed in these
experiments. We describe here the main characteristics of the
experiments, and the details are found in Pattyn et al. (2008).

Table 1. Constants used in the ISMIP-HOM experiment.

Symbol Description Value

ρ Ice density 910 kg m−3

g Gravitational acceleration 9.81 m s−2

A Ice rate factor 10−16 Pa−3 yr−1

n Glen’s law exponent 3

Experiment A consists of a flow over a sinusoidal bumpy
bed with different wavelengths. The wavelengths (domain
size) vary from 5 to 160 km. The amplitude of the bumps
is 500 m. The bed is inclined in the x direction. Basal veloci-
ties are set to zero, and, therefore, this experiment is suitable
to assess the performance of models in simulating internal
deformation only (vertical shear). Periodic boundary condi-
tions are imposed over the lateral boundaries of the model
domain.

Experiment C is similar to experiment A. The bedrock is
parallel to ice surface and has no bump. The ice base is al-
lowed to slide over the bed following a Weertman-type slid-
ing law:

τ b
=−C ‖ vb

‖
m−1vb, (21)

where τ b is the basal stress, C is the friction coefficient, vb is
the ice base velocity, and m is the sliding law exponent. In
experiment C,m= 1 and the friction coefficient C is defined
by a sinusoidal function with different wavelengths that also
vary from 5 to 160 km. This experiment assesses the perfor-
mance of the model in stream-type flows.

The domain of experiment E is based on the 5 km center
line of a real alpine glacier (Haut Glacier d’Arolla, Switzer-
land). The ice flows only in the x direction, and the width of
the glacier (y direction) is set to be constant and equal to 1 m
over the entire glacier extent. The ice flow rate is uniform
over the entire domain (see Table 1). Two basal boundary
conditions are employed in this experiment: frozen bed and
slip bed. In the former, basal velocities are set to zero, and
in the latter, a small region of perfect slip (i.e., C = 0) is im-
posed between x = 2.2 and x = 2.5 km.

We employ the same horizontal mesh resolution in both
HO and MOLHO models in all the experiments. To generate
the three-dimensional mesh for HO, we extrude the horizon-
tal mesh using 20 vertical layers. Due to convergence issues
in the nonlinear solver, we use only eight vertical layers to
perform experiment E with HO.

3.2 MISMIP3D setup

The MISMIP3D benchmark (Pattyn et al., 2013) allows us
to assess the convergence of the grounding line position at
steady state and the reversibility of the grounding line in
the MOLHO flow model. In this experiment, an analyti-
cal solution for the steady-state grounding line only exists
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for the shelfy stream approximation that does not account
for vertical shear (Schoof, 2007a, b). Thus, for compari-
son purposes, we also run this benchmark with the three-
dimensional HO model.

The setup consists of a marine ice sheet flowing along
the x axis over a uniformly sloping bedrock whose eleva-
tion, r(x,y) (in meters, negative if below sea level), is de-
scribed by

r(x,y)= 100− x, (22)

with x in kilometers. The ice sheet covers an area of 800×
50 km2. A no-flow condition (vx = 0) is imposed at the ice
divide (x = 0). A Neumann boundary condition based on
ocean water pressure is applied at the calving front (x =
800 km). We impose a free-slip condition (vy = 0) at the lat-
eral boundaries of the domain (y = 0 and y = 50 km).

The basal sliding is described by a Weertman friction law
as given by Eq. (21). The values of C and m as well as other
parameters used in the experiments are shown in Table 3.

The MISMIP3D experiment is divided into three phases:
(i) steady state (Stnd), (ii) basal friction perturbation (P75S),
and (iii) basal friction restoration (P75R).

In phase Stnd, the model starts from a 100 m thick ice shelf
and runs forward in time until a steady state is reached. Here,
the steady state is reached after 30 000 years of simulation.

The phase P75S starts from the end of phase Stnd. The
friction coefficient C is replaced by C∗ at the beginning of
phase P75S. The new coefficient C∗ is defined as

C∗ = C

[
1− 0.75× exp

(
−

(
x− xg

)2
2x2

c
−

(
y− yg

)2
2y2

c

)]
, (23)

where xg is the steady-state grounding line position at y = 0,
and yg = 0. The spatial extent of the friction change along
the x and y directions is given by xc = 150 and yc = 10 km,
respectively. The model runs for 100 years with C∗. This
friction perturbation forces the grounding line to migrate
asymmetrically: it advances along y = 0 and retreats along
y = 50 km.

At the end of phase P75S, the friction coefficient is re-
stored to its initial value, C. Then, the model runs for
30 000 years to reach steady state again. This is the phase
P75R. The grounding line reversibility is achieved if the po-
sitions of the grounding line at the end of phases Stnd and
P75R are sufficiently close to each other.

Previous intercomparison model results showed a strong
mesh-resolution dependency to achieve grounding line re-
versibility (Pattyn et al., 2013; Feldmann et al., 2014). This
dependency decreases if a sub-element friction parameteri-
zation is employed (Cornford et al., 2013; Feldmann et al.,
2014; Seroussi et al., 2014). Here, we use sub-element pa-
rameterization type I (SEP1) as presented in Seroussi et al.
(2014). To assess the robustness of the implementation of
the MOLHO flow model, we run the three phases with dif-
ferent mesh resolutions (Table 2). The meshes are gener-

Table 2. Mesh resolutions and the associated number of elements
used in the MISMIP3D experiment.

Resolution Number of elements

MOLHO HO

5 km 3278 32 780
2 km 20 718 207 180
1 km 84 300 843 000
500 m 335 500 615 050
250 m∗ 656 621 2 079 660

∗ Used in the phase Stnd only.

Table 3. Constants used in the MISMIP3D experiment.

Symbol Description Value

ρ Ice density 900 kg m−3

ρw Water density 1000 kg m−3

g Gravitational acceleration 9.8 m s−2

ṁs Surface mass balance 0.5 m yr−1

C Friction coefficient 107 Pa m−1/3 s1/3

A Ice rate factor 10−25 Pa−3 s−1

m Friction exponent 1/3
n Glen’s law exponent 3

ated using the Delaunay triangulation (Hecht, 2006), and a
spatially uniform resolution is applied to most of them. To
save computational resources, we generate the 250 m reso-
lution mesh by refining the 500 m resolution mesh between
x = 400 and x = 650 km. The HO model mesh is gener-
ated by extruding the two-dimensional mesh employed in
the MOLHO model, except for the two finest resolutions
(500 and 250 m) for which we coarsen all triangular ele-
ments located at x < 500 km and at x > 620 km before the
mesh extrusion. We employ 10 equally spaced vertical layers
in all HO model meshes. The number of elements for each
model and mesh resolutions is shown in Table 2. We note
that the finest mesh (250 m) is used to analyze the conver-
gence of the steady-state grounding line (phase Stnd) only,
since grounding line reversibility is already achieved with the
coarser meshes (see Sect. 4.2).

4 Results

4.1 ISMIP-HOM

Figure 1 shows the Euclidean norm of the horizontal veloc-
ities (vx,vy) at the ice surface and at y = 0.25L for sev-
eral wavelengths (L) of bedrock bumps for experiment A.
MOLHO and HO produce virtually the same surface speeds
for wavelengths equal to or higher than 40 km. The difference
between the speeds is about 4 % for L= 40 km and about
2 % for L= 160 km. For shorter bump lengths (≤ 20 km),

The Cryosphere, 16, 179–195, 2022 https://doi.org/10.5194/tc-16-179-2022



T. Dias dos Santos et al.: MOno-Layer Higher-Order ice flow model 185

Figure 1. ISMIP-HOM experiment A: surface velocity at y = 0.25L for different wavelengths, L, obtained with the three-dimensional
higher-order model (HO) and with the two-dimensional MOno-Layer Higher-Order (MOLHO) model. The surface velocity is computed by

taking the Euclidean norm of the horizontal velocities at the ice surface (i.e.,
√
v2
x + v

2
y ). We employ 20 vertical layers for the HO model.

Figure 2. ISMIP-HOM experiment C: surface velocity at y = 0.25L for different wavelengths, L, obtained with the three-dimensional
higher-order model (HO) and with the two-dimensional MOno-Layer Higher-Order (MOLHO) model. Results obtained with L1L2 and
shelfy stream approximation (SSA) models are also shown. The surface velocity is computed by taking the Euclidean norm of the horizontal

velocities at the ice surface (i.e.,
√
v2
x + v

2
y ). We employ 20 vertical layers for the HO model.

MOLHO overestimates the ice speeds in comparison to HO.
The differences are up to 60 % for a wavelength equal to
5 km. The differences are ≤ 11 % for L= 20 km.

In the case where the ice base slides over the bed (ex-
periment C), MOLHO and HO yield similar surface veloc-
ities for all wavelengths (Fig. 2). The differences between
both models vary from 0.05 % for L= 5 km to 1.2 % for a
L= 160 km. For comparison purposes, we also run experi-
ment C with two other vertically integrated models that are

also commonly employed for ice streams: a version of the
L1L2 model (Schoof and Hindmarsh, 2010; Perego et al.,
2012) and the shelfy stream approximation (SSA; Morland,
1987; MacAyeal, 1989). The L1L2 considers vertical shear in
the ice viscosity computation, while the SSA model does not
account for vertical shear stresses. For larger wavelengths of
friction coefficient (≥ 40 km), all four models yield similar
velocities, as expected (Pattyn et al., 2008). The differences
in speed between L1L2 and SSA in comparison to HO are up
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Figure 3. ISMIP-HOM experiment E: surface velocity in the ice
flow direction obtained with the three-dimensional higher-order
model (HO) and with the two-dimensional Mono-Layer Higher-
Order (MOLHO) model. Two basal conditions are presented: frozen
bed (a) and slip bed (b). We employ eight vertical layers for the
HO model.

to 6 % for L= 40 km and< 5 % for L= 160 km. For shorter
wavelengths (< 40 km), vertical shear starts playing a role
on the ice flow, which may compromise the results obtained
with L1L2 and SSA models in comparison to HO. The max-
imum speed differences vary from 3 % to 5 % for L= 5 and
L= 20 km, respectively, for both L1L2 and SSA models. On
the other hand, MOLHO “approximates” the HO results even
for the shortest L.

In the real glacier setup (experiment E) and considering
a frozen bed, MOLHO overestimates the surface velocities
up to 40 %1 over about the first 60 % of the glacier flow line
(Fig. 3). This region presents steeper bedrock than the re-
gion close to the glacier snout (see the glacier profile in Pat-
tyn et al., 2008). Considering the whole domain, the RMSE
(root-mean-square error) is 5.5 m yr−1. Imposing a small re-
gion of perfect sliding in the model domain causes the glacier
to speed up. The difference in speeds achieved with MOLHO
and HO is < 40 %2. The differences are higher over the first
3 km of the glacier, as already noted in the frozen bed setup.
The RMSE is 7.6 m yr−1.

4.2 MISMIP3D

The steady-state positions of the grounding line (GL) at
y = 0 for different mesh resolutions are shown in Fig. 4. We
also present the grounding line positions obtained with the
HO model. To estimate the convergence error in GL positions
as we increase the mesh resolution, we compute the relative
error of the steady-state GL position xhg obtained with a mesh
resolution h, defined as follows:

εhxg
=

∣∣∣∣∣x2h
g − x

h
g

x2h
g

∣∣∣∣∣ , (24)

where x2h
g is the position of the grounding line obtained

with the closest coarser mesh resolution. The estimated con-
1Excluding the first 15 % of the glacier domain since the veloc-

ities are relatively small there.
2See footnote 1.

Figure 4. MISMIP3D experiment: steady-state positions (a) and es-
timated error convergence (b) of the grounding line (GL) at y = 0
obtained with different mesh resolutions using HO and MOLHO.
The error convergence is estimated using Eq. (24). For comparison,
the steady-state grounding line position predicted by the boundary
layer (BL) theory that is based on the SSA model is also shown.

vergence errors for both MOLHO and HO models are also
shown in Fig. 4.

Using a coarser mesh resolution (5 km), the grounding
lines obtained with both HO and MOLHO extend a few kilo-
meters beyond 600 km, reaching the steady-state GL location
predicted by the boundary layer analysis and achieved by nu-
merical simulations using SSA flow models (Schoof, 2007b;
Cornford et al., 2013; Feldmann et al., 2014; Seroussi et al.,
2014). However, as obtained by other ice sheet models em-
ploying full-Stokes, hybrid, or higher-order flow equations,
the grounding line at steady state tends to be located between
520 and 580 km (e.g., Pattyn et al., 2013; Cornford et al.,
2013; Gagliardini et al., 2016). As seen in Fig. 4, the ground-
ing lines obtained with MOLHO and HO approach 560 km as
the mesh gets finer. With the finest mesh used here (250 m),
the steady-state GL positions computed with MOLHO and
HO models are 562.100 and 559.916 km, respectively, a dif-
ference of less than 0.5 % between them.

As also shown in Fig. 4, both HO and MOLHO flow mod-
els show similar convergence of the relative error in GL po-
sition. The relative errors decrease with mesh resolution,
reaching about 1 % with a mesh resolution of 250 m.

At the end of the restoration phase (P75R), the GL po-
sition is similar to the position obtained in the steady-state
phase (Stnd, Fig. 5), which indicates that grounding line re-
versibility is fully achieved with MOLHO. Overall, the sim-
ulated displacement of the grounding line in the perturba-
tion phase (P75S) using MOLHO is comparable to the ones
simulated with the HO model, as seen in Fig. 5. At y = 0,
the GL advances about 11–13 km, while at y = 50 km the
GL retreats 4–6 km (Table 4). As shown in Table 4, the dis-
placements of the grounding line in the P75S experiment us-
ing MOLHO are in good agreement with the ones obtained
with HO.

The transient response of the grounding line at y = 0
and y = 50 km during the P75S experiment and the first
100 years of the restoration phase (P75R) is shown in Fig. 6.
As shown in the figure, the perturbation and restoration re-
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Figure 5. Grounding line positions of the MISMIP3D experiments obtained with different mesh resolutions. Black lines are the steady-state
grounding line positions (Stnd). Red lines are the positions obtained after 100 years of basal friction perturbation (P75S). Dashed blue lines
are the new steady-state grounding line positions obtained after resetting the friction coefficient to its original value (P75R).

Figure 6. Time-dependent grounding line positions of the MISMIP3D experiments obtained with different mesh resolutions. Solid lines are
the grounding line positions at y = 0. Dashed lines are the grounding line positions at y = 50 km. Red lines are the positions obtained during
the basal friction perturbation experiment (P75S). Blue lines are the positions obtained during the first 100 years after restoring the friction
coefficient to its original value (P75R). Note that the x axes are reversed for the P75R experiment results.

sponses of the grounding obtained with MOLHO and HO
are similar.

To analyze the differences in ice velocity in MOLHO
and HO, we perform diagnostic runs employing the same
MISMIP3D-type ice sheet profile. For this run, we use the ice
geometry (surface, base, thickness, and grounding line) ob-
tained with HO in the phase Stnd and with a mesh resolution
of 1 km. In Fig. 7 we show the surface and basal velocities
around the grounding line, where there are more pronounced
differences between the model results. We also show the

depth-averaged velocity (Eq. 8 for MOLHO model), which
controls the advection of ice downstream. Interestingly, for
this ice sheet profile, we find that MOLHO produces slightly
lower velocities compared to HO (Fig. 7), which may explain
why the steady-state grounding lines are slightly advanced in
comparison to the HO model simulations (Fig. 5). The dif-
ferences over the region shown in Fig. 7 are up to 4.5 m yr−1,
which is less than 1.5 %.
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Figure 7. Comparison of ice velocities in the x direction obtained with MOLHO and HO using the same glacier geometry (thickness and
grounding line). The figure shows the velocities at the surface and base of the glacier as well as the depth-averaged velocities. The velocities
are computed using the steady-state geometry obtained with the phase Stnd with the HO model and horizontal mesh resolution of 1 km.
Dashed lines are the grounding line positions.

Table 4. Displacements of the grounding line (1GL) at the end of
the perturbation phase (P75S) obtained with MOLHO and HO mod-
els.

Resolution MOLHO HO

1GL (y = 0 km)

5 km 12.7 km 10.4 km
2 km 11.4 km 11.8 km
1 km 12.3 km 12.4 km
500 m 13.2 km 13.4 km

1GL (y = 50 km)

5 km −4.5 km −6.5 km
2 km −5.7 km −5.4 km
1 km −5.3 km −5.3 km
500 m −4.9 km −4.8 km

4.3 Time performance

To assess and illustrate the computational cost of MOLHO
in time-dependent ice sheet simulations, we run the
first 500 years of the spin-up phase of the MISMIP3D
setup (Stnd). This phase is long enough to simulate a large
grounding line migration (advance, in this case), therefore
requiring several iterations of the stress balance solver.

We use four different mesh resolutions (5, 2, 1, and 0.5 km)
and three different ice flow approximations: MOLHO, HO,
and SSA. For this time performance comparison, we use the
same MOLHO mesh for both HO and SSA. For HO, we ex-

trude the horizontal mesh using 10 vertical layers. The num-
ber of elements of each MOLHO mesh is shown in Table 2,
while Table 5 shows the total number of degrees of freedom
for each mesh and flow model. The experiments are per-
formed in parallel using 28 computational cores (CPUs) in
a 2× Intel Xeon E5-2680v4 2.8 GHz with 128 GB of mem-
ory. The time step is 0.125 year, which fulfills the Courant–
Friedrichs–Lewy (CFL) condition for all meshes.

As shown in Table 5, the computation time using MOLHO
is, overall, 1 order of magnitude lower in comparison to
the time spent in HO. The ratio between the simulation
times obtained with MOLHO and HO varies with mesh
resolution. For coarser meshes, MOLHO is 10× faster
than HO. For the finer mesh resolutions, MOLHO is almost
20× faster than HO. The number of degrees of freedom for
the HO model is 5.5× higher than MOLHO, for all mesh
resolutions employed here.

In comparison to SSA, MOLHO is between 1.5 and
3.5× slower, depending on the mesh resolution. This is prob-
ably due to different rates of convergence of the (iterative)
linear solver (during the Picard iterations) that vary with the
number of degrees of freedom of each mesh employed here
(Table 5). MOLHO has, by construction, 2× more degrees
of freedom than SSA for any given mesh, which demands
theoretically 2× more3 computational time.

3Considering an optimal iterative linear solver with time com-
plexity of O(n), where n is the number of degrees of freedom.

The Cryosphere, 16, 179–195, 2022 https://doi.org/10.5194/tc-16-179-2022



T. Dias dos Santos et al.: MOno-Layer Higher-Order ice flow model 189

Table 5. Computational time to run the first 500 years of the MIS-
MIP3D spin-up phase (Stnd). For comparison purposes, we show
the simulation times obtained by three different ice flow models:
MOLHO, HO, and SSA. SSA and HO employ the same mesh as
MOLHO. For HO, we use 10 vertical layers. The number of ele-
ments for each mesh resolution employed in MOLHO and SSA is
shown in Table 2.

Resolution SSA MOLHO HO

Simulation time (s)

5 km 394 570 6047
2 km 1324 2498 47 580
1 km 4752 16 223 232 904
500 m 58 341 102 948 2 000 000∗

Degrees of freedom

5 km 3620 7240 39 820
2 km 21 570 43 140 237 270
1 km 86 002 172 004 946 022
500 m 338 902 677 804 3 727 922

∗ Estimated.

5 Discussion

Higher-order models were developed to approximate the
Stokes solution at a lower computational cost. The ISMIP-
HOM initiative (Pattyn et al., 2008) was the first intercom-
parison effort to compare higher-order and full-Stokes mod-
els in experiments where the SIA model is not valid. In that
intercomparison exercise, results from models based on the
Blatter–Pattyn approximation (the “LMLa models” in the
ISMIP-HOM nomenclature; HO in this paper) differed from
Stokes results in cases where all stress components play an
equally important role in ice dynamics (i.e., experiment A for
≤ 20 km). In these cases, the higher-order assumptions may
not be appropriate. The results from LMLa and full-Stokes
models showed a better agreement for lower aspect ratios in
which longitudinal stresses become dominant (experiment A
for ≥ 40 km and experiment C). Also, the LMLa and full-
Stokes results showed relatively good agreement for the Haut
Glacier d’Arolla geometry (experiment E) with the no basal
slip condition; abrupt changes in basal condition (slip–no-
slip jumps) led to a poor agreement between all models, how-
ever.

Overall, MOLHO’s results (ice velocities and ground-
ing line positions) are in close agreement with the results
obtained with a full three-dimensional HO model. This is
especially true for the marine ice sheet with fast sliding
(e.g., MISMIP3D). Similar results are also observed in the
ISMIP-HOM (Pattyn et al., 2008) experiment C, where basal
sliding is present (see Fig. 2). In experiment A, MOLHO
overestimates ice speeds compared to HO for deformation-
dominated cases (shorter wavelengths of bedrock elevation).
Our computation of the vertically averaged ice viscosity µ

might be the reason behind some of the velocity overesti-
mation, since the longitudinal stresses present in the upper
layers of the ice are being “watered down” by the averaging
with the softer ice at the bed. This suggests that the choice
of the vertical quadrature scheme (e.g., order and/or verti-
cal distribution of Gaussian points) plays an important role
in the results of the MOLHO formulation (Brinkerhoff and
Johnson, 2015). Also, the determinant of the Jacobian in the
HO model is not constant within the prismatic elements (due
to the mapping between the “real” and reference elements),
which might be another source to explain these differences.

By running the three phases of the MISMIP3D setup, we
obtain grounding line reversibility for all mesh resolutions
employed here. The evolution of the grounding line dur-
ing the friction perturbation and restoration phases (P75S
and P75R, respectively) is consistent with previous inter-
comparison results (Pattyn et al., 2013). These results con-
firm the robustness of our implementation and the ability
of MOLHO to simulate grounding line dynamics in marine
ice sheets at a comparable accuracy as HO. Also, using the
MOLHO flow model, the convergence of the steady-state
grounding line positions with increasing mesh resolutions
follows the ones achieved with the three-dimensional higher-
order model. This suggests that the ice velocity computation
and the friction parameterizations employed in MOLHO are
consistent with the HO model implemented in ISSM.

In terms of time performance, the computational cost of
MOLHO is relatively higher than the SSA model. This is ex-
pected since MOLHO has 2× more degrees of freedom than
SSA and also includes a vertical integration of the ice vis-
cosity at every Gauss point when we compute the element
stiffness matrix. In comparison to HO with 10 vertical lay-
ers employed in the time performance analysis, the compu-
tational cost is at least 10× lower. While it is possible to de-
crease the simulation time of HO by decreasing the number
of vertical layers (at the risk of reducing numerical accuracy)
and by improving the scalability (i.e., increasing the number
of CPUs and/or computational nodes), there will always be
bottlenecks related to three-dimensional meshes that will in-
crease computational cost in comparison to two-dimensional
meshes.

In MOLHO, the vertical variation in the horizontal veloc-
ities is prescribed by a SIA-derived polynomial function of
the order equal to n+ 1. In the experiments performed here,
we assumed isothermal ice flow. However, the vertical inte-
gration of the ice viscosity can accommodate vertical varia-
tion in ice temperature by changing the polynomial function
accordingly, e.g., solving for the analytical SIA solution and
using a scaled version of that as the vertical basis function.
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6 Conclusions

In this work, we present the formulation of a vertically in-
tegrated MOno-Layer Higher-Order (MOLHO) model and
compare its performance with the three-dimensional Blatter–
Pattyn model (HO) using two benchmarks: ISMIP-HOM and
MISMIP3D. In the experiments with no basal sliding of the
ISMIP-HOM setup (experiment A), MOLHO produces sur-
face velocities close to the ones obtained by the HO model
for wavelengths of bedrock elevation equal to or higher than
40 km. For shorter wavelengths (< 40 km) where the approx-
imation in vertical shear may break down, MOLHO tends
to overestimate surface velocities. When the ice base is al-
lowed to slide (experiment C), MOLHO and HO produce
similar surface velocities for all wavelengths of friction co-
efficient. These results suggest that MOLHO is more suit-
able to simulate larger ice masses such as marine ice sheets
than small ice caps. Yet, for the Haut Glacier d’Arolla ex-
periment (experiment E), MOLHO overestimates upstream
velocities up to 40 % but produces similar speed over the
downstream part of the glacier profile. In the MISMIP3D
experiments, the steady-state grounding line positions ob-
tained with MOLHO are very close to the positions obtained
with the HO model. The grounding line migrations have a
similar temporal behavior. This suggests that the grounding
line dynamics achieved with MOLHO are consistent with
the original HO model. By carrying out a time performance
analysis in time-dependent runs, we found that the computa-
tion cost of MOLHO is at least 10× lower in comparison to
the HO model. MOLHO is therefore an excellent alternative
to HO for long simulations, such as paleo ice sheet modeling.

Appendix A: Integration order of the ice viscosity

The accuracy of the semi-analytic integration of the vertical
axis in MOLHO formulation depends on the integration or-
der employed in the ice viscosity computation (Eq. 20). Fig-
ure A1 shows the surface speeds for the ISMIP-HOM exper-
iments obtained with four orders tested here: 3, 5, 10, and 15.
We only present the cases for the shortest wavelength (5 km)
for experiments A and C and the frozen bed case for experi-
ment E.

For experiments A and C, the differences between the ve-
locities obtained with an integration order equal to 3 and
equal to 15 are smaller than 1 %. The difference reduces
to 0.1 % when we compare orders 5 and 15. Integration or-
ders 10 and 15 yield similar surface velocities: the differ-
ences are smaller than 0.0005 %.

For experiment E, the speed differences are up to 3 % com-
paring integration orders 3 and 15; between 5 and 15, the dif-
ferences reduce to 0.5 %. Comparing orders 10 and 15, the
speed differences are smaller than 0.005 %.

Appendix B: Useful identities

Using the definition of ζ given by Eq. (3), we use the follow-
ing identities:

∂

∂z
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Appendix C: Vertically integrated ice viscosity

The function f (z) can have the following expressions:

f (z)=


f1(z) = 1,
f2(z) =

(
1− ζ n+1) ,

f3(z) =
(
1− ζ n+1)2,

f4(z) =
(
∂
∂z

(
1− ζ n+1))2

,

(C1)

where we keep ζ (Eq. 3) to simplify the notation. The vertical
integration of the primitive of f , F , reads
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Figure A1. ISMIP-HOM experiments: surface velocities for experiments A, C, and E obtained with the MOLHO model using different inte-
gration orders for the ice viscosity computation. Only the short-wavelength (5 km) case is shown for experiments A and C. For experiment E,
only the frozen bed case is shown.

F =



F1 =H,

F2 =H
(n+1)
(n+2) ,

F3 = 2H (n+1)2
(2n+3)(n+2) ,

F4 =
(n+1)2
H(2n+1)

. (C2)

Therefore, we have four expressions for the vertically in-
tegrated ad hoc ice viscosity µ that are used in different parts
of the element stiffness matrix (see Appendix D):

µ=


µ1 =

H
2F1

∑
ωiµ(zi)f1 (zi) ,

µ2 =
H

2F2

∑
ωiµ(zi)f2 (zi) ,

µ3 =
H

2F3

∑
ωiµ(zi)f3 (zi) ,

µ4 =
H

2F4

∑
ωiµ(zi)f4 (zi)

. (C3)

Appendix D: Stiffness matrix

By inserting Eqs. (9) and (11) into the weak formulation
Eq. (6), and by employing the useful identities shown in Ap-
pendix B and the four expressions of the ad hoc ice viscosity
defined in Appendix C, we integrate the terms of the ele-
ment stiffness matrix along the vertical axis. In the follow-
ing integrals, �e is the two-dimensional element domain de-
fined over the horizontal xy plane (e.g., triangle, for Delau-
nay triangulation-based meshes).
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�e

(
4Hµ2

∂φj

∂x

∂φi

∂x
+Hµ2

∂φj

∂y

∂φi

∂y

)
(n+ 1)
(n+ 2)

d�e


K22 =

∫
�e

(
4Hµ3

∂φj

∂x

∂φi

∂x
+Hµ3

∂φj

∂y

∂φi

∂y

)
2(n+ 1)2

(2n+ 3)(n+ 2)
+µ4φjφi

(n+ 1)2

H(2n+ 1)
d�e

]

K23 =

∫
�e

(
2Hµ2

∂φj

∂y

∂φi

∂x
+Hµ2

∂φj

∂x

∂φi

∂y

)
(n+ 1)
(n+ 2)

d�e


K24 =

∫
�e

(
2Hµ3

∂φj

∂y

∂φi

∂x
+Hµ3

∂φj

∂x

∂φi

∂y

)
2(n+ 1)2

(2n+ 3)(n+ 2)
d�e

]

K31 =

∫
�e

2Hµ1
∂φj

∂x

∂φi

∂y
+Hµ1

∂φj

∂y

∂φi

∂x
d�e


K32 =

∫
�e

(
2Hµ2

∂φj

∂x

∂φi

∂y
+Hµ2

∂φj

∂y

∂φi

∂x

)
(n+ 1)
(n+ 2)

d�e


K33 =

∫
�e

4Hµ1
∂φj

∂y

∂φi

∂y
+Hµ1

∂φj

∂x

∂φi

∂x
d�e


K34 =

∫
�e

(
4Hµ2

∂φj

∂y

∂φi

∂y
+Hµ2

∂φj

∂x

∂φi

∂x

)
(n+ 1)
(n+ 2)

d�e
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K41 =

∫
�e

(
2Hµ2

∂φj

∂x

∂φi

∂y
+Hµ2

∂φj

∂y

∂φi

∂x

)
(n+ 1)
(n+ 2)

d�e


K42 =

∫
�e

(
2Hµ3

∂φj

∂x

∂φi

∂y
+Hµ3

∂φj

∂y

∂φi

∂x

)
2(n+ 1)2

(2n+ 3)(n+ 2)
d�e

]

K43 =

∫
�e

(
4Hµ2

∂φj

∂y

∂φi

∂y
+Hµ2

∂φj

∂x

∂φi

∂x

)
(n+ 1)
(n+ 2)

d�e


K44 =

∫
�e

(
4Hµ3

∂φj

∂y

∂φi

∂y
+Hµ3

∂φj

∂x

∂φi

∂x

)
2(n+ 1)2

(2n+ 3)(n+ 2)
+µ4φjφi

(n+ 1)2

H(2n+ 1)
d�e

]

Appendix E: Stiffness matrix – basal friction

In ISSM, basal friction is written as a function of the basal
velocities (vb

x, v
b
y). Therefore, the matrices Kb

ii(i = 1,3) be-
low should be added to the respective stiffness matrices. The
parameter α2

= α2(x,y,vb
x,v

b
y) depends on the friction law

employed.

Kb
11 =

∫
�e

α2φjφid�e


Kb

33 =

∫
�e

α2φjφid�e


Appendix F: Loading vector – driving stress

The driving stress is integrated over the two-dimensional el-
ement domain, �e. The resulting loading vectors are

F 1 =

−∫
�e

ρgH
∂s

∂x
φid�e

 ,
F 2 =

−∫
�e

ρgH
∂s

∂x
φi
(n+ 1)
(n+ 2)

d�e

 ,

F 3 =

−∫
�e

ρgH
∂s

∂y
φid�e

 ,
F 4 =

−∫
�e

ρgH
∂s

∂y
φi
(n+ 1)
(n+ 2)

d�e

 .
Appendix G: Loading vector – calving front

If an element edge 0w
e is at the calving front, the vec-

tors Fw
i (i = 1, . . ., 4) below should be added to the element

loading vector. In the following integrals, nx and ny are the
components of the unit vector pointing outward edge 0w

e .

Fw
1 =

∫
0w

e

(
1
2
ρgH 2

−
1
2
ρwgb

2
)
nxφid0w

e


Fw

2 =

∫
0w

e

ρwg

{
−
b2

2
−

sH

n+ 2

[
1−

( s
H

)n+2
]

+
H 2

(n+ 3)

[
1−

( s
H

)n+3
]}
nxφi

+ρgH

[
H

2
(n+ 1)
(n+ 3)

]
nxφid0w

e

]

Fw
3 =

∫
0w

e

(
1
2
ρgH 2

−
1
2
ρwgb

2
)
nyφid0w

e


Fw

4 =

∫
0w

e

ρwg

{
−
b2

2
−

sH

n+ 2

[
1−

( s
H

)n+2
]

+
H 2

(n+ 3)

[
1−

( s
H

)n+3
]}
nyφi

+ρgH

[
H

2
(n+ 1)
(n+ 3)

]
nyφid0w

e

]

Appendix H: Compact weak formulation of MOLHO

Here we present a compact form of the weak formulation
of MOLHO, which could be useful for implementation in
software frameworks like FEniCS (Alnæs et al., 2015) and
Firedrake (Rathgeber et al., 2016). It is based on the notation
presented in Brinkerhoff and Johnson (2015).

First, we define the higher-order strain rate tensor, ε̇(v), as

ε̇(v)=

 2 ∂vx
∂x
+
∂vy
∂y

1
2

(
∂vx
∂y
+
∂vy
∂x

)
1
2
∂vx
∂z

1
2

(
∂vx
∂y
+
∂vy
∂x

)
2 ∂vy
∂y
+
∂vx
∂x

1
2
∂vy
∂z

 .
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Second, we define the space of trial and test func-
tions, Vh ⊂ V , using a tensor product as follows:

Vh =
(

span

{
nf∑
i=1

φi(x,y) [ψ1+ψ2(z)]

}
,

span

{
nf∑
i=1

φi(x,y) [ψ1+ψ2(z)]

})
,

where ψ1 and ψ2 are the vertical basis functions defined for
the MOLHO model as

ψ1 = 1,

ψ2 = 1− ζ n+1.

Note that ψ1 and ψ2 are related to the basal velocities and
vertical shear deformation, respectively. Thus, the horizontal
ice velocities, v, are approximated by vh ∈ Vh:

vh(x,y,z)=

nf∑
i=1

φi(x,y)
[
v1,iψ1+ v2,iψ2(z)

]
,

where v1,i = v
b
i and v2,i = v

sh
i are the basal and shear veloci-

ties computed over the horizontal mesh nodes i, respectively.
Likewise, the test function ϑh ∈ Vh is defined as

ϑh(x,y,z)=

nf∑
i=1

φi(x,y)
[
ϑ1,iψ1+ϑ2,iψ2(z)

]
,

with ϑ1,i and ϑ2,i being arbitrary.
In the following,� is the horizontal xy plane of the model

domain, n is the unit vector pointing outward edge 0w,
and the gradient operator (∇) applies to the entire three-
dimensional domain (i.e., the x, y, and z directions). There-
fore, the weak formulation is written as follows.

Find vh ∈ Vh such that

∫
�

s∫
b

∇ϑh ·
(

2µε̇
(
vh
))

dzd�+
∫
0b

ϑh ·
(
α2vh

)
d0b

=−

∫
�

s∫
b

ϑh · (ρg∇s)dzd�

+

∫
0w

ϑh ·
(

2µε̇
(
vh
)
n
)

d0w,

vh = vD on 0D,

∀ϑh ∈ Vh.

Code availability. The MOno-Layer Higher-Order (MOLHO)
model evaluated here is currently implemented in ISSM. The code
can be downloaded, compiled, and executed following the in-
structions available on the ISSM website: https://issm.jpl.nasa.gov/

download (NASA, 2021). The public SVN repository for the ISSM
code can also be found directly at https://issm.ess.uci.edu/svn/issm/
issm/trunk (Larour et al., 2020). The version of the code for this
study, corresponding to ISSM release 4.18, is SVN version tag num-
ber 26413. The documentation of the code version used here is
available at https://issm.jpl.nasa.gov/documentation/ (Morlighem et
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A., Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A.,
Shafer, C., Schlegel, N.-J., Shannon, S., Smith, R. S., Straneo,
F., Sun, S., Tarasov, L., Trusel, L. D., Van Breedam, J., van de
Wal, R., van den Broeke, M., Winkelmann, R., Zekollari, H.,
Zhao, C., Zhang, T., and Zwinger, T.: Projected land ice contri-
butions to twenty-first-century sea level rise, Nature, 593, 74–82,
https://doi.org/10.1038/s41586-021-03302-y, 2021.

Feldmann, J., Albrecht, T., Khroulev, C., Pattyn, F., and Levermann,
A.: Resolution-dependent performance of grounding line motion
in a shallow model compared with a full-Stokes model accord-
ing to the MISMIP3d intercomparison, J. Glaciol., 60, 353–360,
https://doi.org/10.3189/2014JoG13J093, 2014.

Gagliardini, O., Brondex, J., Gillet-Chaulet, F., Tavard, L., Peyaud,
V., and Durand, G.: Brief communication: Impact of mesh reso-
lution for MISMIP and MISMIP3d experiments using Elmer/Ice,
The Cryosphere, 10, 307–312, https://doi.org/10.5194/tc-10-
307-2016, 2016.

Glen, J. W.: The creep of polycrystalline ice, P. Roy. Soc. Lond. A,
228, 519–538, https://doi.org/10.1098/rspa.1955.0066, 1955.

Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lip-
scomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Si-

mon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A.,
Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Ed-
wards, T., Felikson, D., Fettweis, X., Golledge, N. ., Greve, R.,
Humbert, A., Huybrechts, P., Le clec’h, S., Lee, V., Leguy, G.,
Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A.,
Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Stra-
neo, F., Tarasov, L., van de Wal, R., and van den Broeke, M.: The
future sea-level contribution of the Greenland ice sheet: a multi-
model ensemble study of ISMIP6, The Cryosphere, 14, 3071–
3096, https://doi.org/10.5194/tc-14-3071-2020, 2020.

Goldberg, D. N.: A variationally derived, depth-integrated approxi-
mation to a higher-order glaciological flow model, J. Glaciol., 57,
157–170, https://doi.org/10.3189/002214311795306763, 2011.

Hecht, F.: BAMG: Bidimensional Anisotropic Mesh Generator,
Tech. rep., FreeFem++, available at: https://freefem.org/ (last
access: 11 January 2022), 2006.

Hutter, K.: Theoretical Glaciology, Mathematical Ap-
proaches to Geophysics, D. Reidel Publishing Company,
Dordrecht, the Netherlands, ISBN 978-94-015-1167-4,
https://doi.org/10.1007/978-94-015-1167-4, 1983.

Langdon, J. and Raymond, C. F.: Numerical calculation of adjust-
ment of a glacier surface to perturbations of ice thickness, Mater.
Glyatsiol. Issled. Khron. Obsuzhdeniya, 32, 233–239, 1978.

Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Conti-
nental scale, high order, high spatial resolution, ice sheet mod-
eling using the Ice Sheet System Model (ISSM), J. Geophys.
Res.-Earth, 117, F01022, https://doi.org/10.1029/2011JF002140,
2012.

Larour, E., Morlighem, M., and Seroussi, H.: Ice-Sheet and Sea-
Level System Model, svn repository [code], https://issm.ess.uci.
edu/svn/issm/issm/trunk, last access: 20 November 2020.

MacAyeal, D.: Large-scale ice flow over a viscous basal
sediment: Theory and application to ice stream B,
Antarctica, J. Geophys. Res.-Solid, 94, 4071–4087,
https://doi.org/10.1029/JB094iB04p04071, 1989.

Morland, L. W.: Unconfined ice shelf flow, in: Dynamics of the
West Antarctic Ice Sheet, vol. 4 of Glaciology and Quaternary
Geology, edited by: van der Veen, C. and Oerlemans, J., Springer,
Dordrecht, the Netherlands, 99–116, ISBN 978-94-009-3745-1,
https://doi.org/10.1007/978-94-009-3745-1_6, 1987.

Morlighem, M., Seroussi, H., Larour, E., Schlegel, N., Borstad,
C., de Fleurian, B., Adhikari, S., Bondzio, J., Sommers, A.,
McCormack, F., and dos Santos, T. D.: Ice Sheet System
Model 2020 (4.18), User Guide, available at: https://issm.jpl.
nasa.gov/documentation/ (last access: 26 August 2021), 2020.

NASA: Ice-sheet and Sea-level System Model, available at: https:
//issm.jpl.nasa.gov/download, last access: 26 August 2021.

Pattyn, F.: A new three-dimensional higher-order thermomechani-
cal ice sheet model: Basic sensitivity, ice stream development,
and ice flow across subglacial lakes, J. Geophys. Res.-Solid, 108,
2382, https://doi.org/10.1029/2002JB002329, 2003.

Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., de Smedt,
B., Gagliardini, O., Gudmundsson, G. H., Hindmarsh, R. C. A.,
Hubbard, A., Johnson, J. V., Kleiner, T., Konovalov, Y., Martin,
C., Payne, A. J., Pollard, D., Price, S., Rückamp, M., Saito, F.,
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