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Abstract. The indirect effect of winter Arctic Oscillation
(AO) events on the following summer Arctic sea ice extent
suggests an inherent winter-to-summer mechanism for sea
ice predictability. On the other hand, operational regional
summer sea ice forecasts in a large number of coupled cli-
mate models show a considerable drop in predictive skill for
forecasts initialised prior to the date of melt onset in spring,
suggesting that some drivers of sea ice variability on longer
timescales may not be well represented in these models. To
this end, we introduce an unsupervised learning approach
based on cluster analysis and complex networks to estab-
lish how well the latest generation of coupled climate models
participating in phase 6 of the World Climate Research Pro-
gramme Coupled Model Intercomparison Project (CMIP6)
are able to reflect the spatio-temporal patterns of variability
in Northern Hemisphere winter sea-level pressure and Arc-
tic summer sea ice concentration over the period 1979–2020,
relative to ERA5 atmospheric reanalysis and satellite-derived
sea ice observations, respectively. Two specific global met-
rics are introduced as ways to compare patterns of variabil-
ity between models and observations/reanalysis: the adjusted
Rand index – a method for comparing spatial patterns of vari-
ability – and a network distance metric – a method for com-
paring the degree of connectivity between two geographic re-
gions. We find that CMIP6 models generally reflect the spa-
tial pattern of variability in the AO relatively well, although
they overestimate the magnitude of sea-level pressure vari-
ability over the north-western Pacific Ocean and underesti-
mate the variability over northern Africa and southern Eu-
rope. They also underestimate the importance of regions such

as the Beaufort, East Siberian, and Laptev seas in explaining
pan-Arctic summer sea ice area variability, which we hypoth-
esise is due to regional biases in sea ice thickness. Finally,
observations show that historically, winter AO events (nega-
tively) covary strongly with summer sea ice concentration in
the eastern Pacific sector of the Arctic, although now under
a thinning ice regime, both the eastern and western Pacific
sectors exhibit similar behaviour. CMIP6 models however do
not show this transition on average, which may hinder their
ability to make skilful seasonal to inter-annual predictions of
summer sea ice.

1 Introduction

Arctic sea ice is a key component of the polar climate sys-
tem, acting as a barrier which both reflects incoming solar
radiation and regulates the rate of energy exchange between
the atmosphere and ocean. Over the past four decades, how-
ever, it can be seen as a direct barometer for climate change,
having suffered significant losses in areal extent across all
seasons (Stroeve and Notz, 2018), linked to the long-term in-
crease in anthropogenic CO2 emissions (Notz and Stroeve,
2016). Such sea ice decline has profound implications for
regional Northern Hemisphere circulation patterns (Francis
et al., 2009; Cohen et al., 2014, 2020), ecological produc-
tivity (Sakshaug et al., 1994; Stirling, 1997; Stroeve et al.,
2021), and coastal communities (Fritz et al., 2017; Larsen
et al., 2021) in present and future decades, as many model
studies now predict the increasing likelihood of a season-
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ally ice-free Arctic Ocean occurring before the middle of
this century (Stroeve et al., 2007; Jahn, 2018; Notz and
SIMIP-Community, 2020; Årthun et al., 2021). Imprinted
on this observed sea ice decline is a pattern of significant
inter-annual variability, particularly in the summer months
(e.g. Onarheim et al., 2018; Stroeve and Notz, 2018). Subse-
quently, understanding the drivers of such variability has im-
portant consequences for our ability to make reliable sea ice
predictions on seasonal to inter-annual timescales. A num-
ber of studies, for example, have highlighted various clima-
tological teleconnections as key drivers of sea ice variabil-
ity, including land–ice (typically via the atmosphere; Serreze
et al., 1995; Overland et al., 2012; Matsumura et al., 2014;
Crawford et al., 2018), atmosphere–ice (Deser et al., 2000;
Kapsch et al., 2013; Park et al., 2018; Olonscheck et al.,
2019), ocean-ice (Venegas and Mysak, 2000; Vinje, 2001;
Zhang, 2015), and ice–ice interactions (Schröder et al., 2014;
Bushuk and Giannakis, 2017), suggesting inherent sources
of sea ice predictability across the various components of the
climate system. Furthermore, coupled climate models have
demonstrated a horizon of sea ice predictability beyond 12
months lead time based on so-called “perfect-model” exper-
iments (Holland et al., 2011; Tietsche et al., 2014; Day et al.,
2014; Bushuk et al., 2019). Operationally, however, regional
summer sea ice forecasts (in models) appear to be strongly
controlled by a “spring predictability barrier” (Bonan et al.,
2019) which is governed by the date of melt onset in the pre-
ceding spring (Bushuk et al., 2020). This leads to the ques-
tion as to how well climate models reflect the teleconnec-
tions known to drive summer sea ice variability given the
gap between perfect-model and operational regional forecast
skill in those models (Bushuk et al., 2019). Recent work has
gone into investigating physically based mechanisms for sea
ice predictability (Bushuk and Giannakis, 2017; Bonan and
Blanchard-Wrigglesworth, 2020; Giesse et al., 2021) in or-
der to assess whether the shortfalls in operational climate
model forecasts can, in part, be attributed to lack of repre-
sentation of such mechanisms across a wide range of gen-
eral circulation models (GCMs). In this study we pursue a
similar line of investigation, looking specifically at the Arc-
tic Oscillation (AO) teleconnection (Thompson and Wallace,
1998), whose winter pattern has been shown to explain up
to 22 % of the variability in pan-Arctic September sea ice
extent (Park et al., 2018). Historically, the dominant spatio-
temporal modes of winter sea-level pressure variability have
been somewhat misrepresented in the majority of GCMs par-
ticipating in previous phases of the Coupled Model Intercom-
parison Project (CMIP), e.g. CMIP3 (Miller et al., 2006; Cat-
tiaux and Cassou, 2013) and CMIP5 (Zuo et al., 2013; Gong
et al., 2016), which naturally has implications for the repre-
sentation of the AO to sea ice teleconnection in those models.
Here, we assess the spatio-temporal patterns of variability in
both winter sea-level pressure and summer sea ice concentra-
tion and also the presence of the winter AO to summer sea ice
teleconnection over the period 1979–2020 in the latest gener-

ation of GCMs submitted to CMIP6 (Eyring et al., 2016) and
how this teleconnection may be changing over time as the ice
cover thins and is more susceptible to atmospheric forcing
(Maslanik et al., 1996; Mioduszewski et al., 2019). Similar to
previous works (Fountalis et al., 2014, 2015; Gregory et al.,
2020), our method here is based on complex networks, an ap-
proach which provides a relatively simple and visual frame-
work with which to analyse and display large volumes of data
that typically represent complex physical systems. Their use
across multiple disciplines has grown considerably over re-
cent decades, with intuitive applications in computer science
and social networks (Albert and Barabási, 2002; Newman,
2003; Boccaletti et al., 2006; Cohen and Havlin, 2010) –
known as structural networks – to more abstract applications
in, for example, neuroscience (Zhou et al., 2007; Morabito
et al., 2015; delEtoile and Adeli, 2017), seismology (Abe
and Suzuki, 2006), and climate science (Tsonis and Roeb-
ber, 2004; Tsonis et al., 2006; Donges et al., 2009; Foun-
talis et al., 2014; Dijkstra et al., 2019; Gregory et al., 2020)
– known as functional networks. Climate network analysis
was first introduced by Tsonis and Roebber (2004) and has
subsequently proven to be a powerful tool kit for extract-
ing statistical information from the array of climatological
teleconnections that govern climate variability and is a use-
ful addition to more conventional approaches of analysing
spatio-temporal patterns of variability, such as empirical or-
thogonal function (EOF) analysis (Donges et al., 2015). Our
motivation for choosing the networks approach here is two-
fold. For one, complex networks have become increasingly
popular over the past decade as a way to analyse large-scale
teleconnections in climate science (as detailed in the refer-
ences above); however their application in the polar domains
has been somewhat limited. On the other hand, the networks
approach does also provide some specific advantages over
traditional EOF analysis. Specifically, EOF analysis is vari-
ance greedy, whereby each mode represents the direction
along which the variance of the data is largest, and so pat-
terns of lower variance are inherently masked. Furthermore
orthogonality constraints restrict each mode to an orientation
that is orthogonal to all other modes. In contrast, the net-
works approach has neither of these constraints and in ad-
dition provides an initial framework which can be modified
with relative ease to incorporate a variety of principles rang-
ing from non-linear associations (Donges et al., 2009; Malik
et al., 2012; Boers et al., 2014) to causal inference (Runge
et al., 2019). This paper is structured as follows: in Sect. 2
we introduce the sea ice observations, atmospheric reanaly-
sis, and CMIP6 model data that are used to generate complex
networks of the respective sea ice and atmospheric fields. In
Sect. 3 we introduce the complex networks methodology and
two global metrics which are used to describe similarities and
differences between networks. In Sect. 4 we present the re-
sults of the networks generated from CMIP6 model outputs
and discuss their similarities and differences relative to the
observations and reanalysis data, and furthermore we evalu-
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ate the presence of the winter AO to summer sea ice telecon-
nection across all models. We then end with a discussion and
conclusions in Sect. 5.

2 Data

2.1 Observations

For analysing summer sea ice concentration variability in
the observations, we compute the average of monthly mean
June, July, August, and September (JJAS) sea ice con-
centration fields between 1979 and 2020 from three sepa-
rate observational data sets based on the series of multi-
frequency passive microwave satellite observations since Oc-
tober 1978. These include the National Snow and Ice Data
Center (NSIDC) NASA Team (Cavalieri et al., 1996) and
Bootstrap (Comiso, 2017) products, as well as the Ocean and
Sea Ice Satellite Application Facility (OSI-SAF) OSI-450
(1979–2015) and OSI-430-b (2016–2020) products (OSI-
SAF, 2017; Lavergne et al., 2019). We use three different
products as each has subtle variations in their summer vari-
ability, i.e. how each account for new melt-pond formation
(Comiso et al., 2017). Each of the three data sets apply sep-
arate processing algorithms to passive microwave brightness
temperatures derived from multiple satellites across the his-
torical record: Nimbus-7 SMMR (1979–1987), the DMSP
F-8, F-11, and F-13 SSM/Is (1987–2007), and finally the
DMSP F-18 SSM/I (2007–2020). These data are provided on
25 km× 25 km polar stereographic (NASA Team and Boot-
strap) and EASE (OSI-450 and OSI-430-b) grids, which are
re-gridded to a common 50 km× 50 km polar stereographic
grid using a nearest neighbour interpolation here for compu-
tational reasons. Grid cell area information (used to generate
area-weighted time series, see Sect. 3.1) was also extracted
from NSIDC’s pixel area tools library.

2.2 Atmospheric reanalysis

The AO is typically defined as the leading mode of variabil-
ity in mean sea-level pressure data north of 20◦ N (Thomp-
son and Wallace, 1998). As a proxy for an observational
record of the winter AO here, we compute the average
of monthly mean December, January, February, and March
(DJFM) mean sea-level pressure data north of 20◦ N from
ERA5 reanalysis (Hersbach et al., 2019). We only use one
reanalysis product due to the high consistency of sea-level
pressure fields between different reanalyses over the Arctic
region (Graham et al., 2019). As December data are not avail-
able for the year 1978 for ERA5, the winter period in 1979
corresponds to the average of January, February, and March
data. Sea-level pressure fields are output on a 2◦×4◦ latitude–
longitude grid. In Sect. 5 we also make use of the Pan-Arctic
Ice Ocean Modeling and Assimilation System (PIOMAS)
sea ice thickness model (Zhang and Rothrock, 2003) to help
explain some of the features related to the winter AO to sum-

Table 1. CMIP6 models used in this study.

Model No. of ensemble members

ACCESS-CM2 1
ACCESS-ESM1-5 1
BCC-CSM2-MR 1
CAMS-CSM1-0 1
CanESM5-CanOE 1
CanESM5 20
CAS-ESM2-0 1
CESM2 1
CESM2-WACCM 3
CMCC-CM2-SR5 1
CMCC-ESM2 1
CNRM-CM6-1 6
CNRM-ESM2-1 1
EC-Earth3 1
EC-Earth3-Veg 2
FGOALS-g3 1
FIO-ESM-2-0 1
GFDL-CM4 1
GFDL-ESM4 1
HadGEM3-GC31-LL 3
HadGEM3-GC31-MM 4
IPSL-CM6A-LR 6
MIROC6 3
MIROC-ES2L 1
MPI-ESM1-2-HR 1
MPI-ESM1-2-LR 1
MRI-ESM2-0 1
NESM3 1
NorESM2-LM 1
NorESM2-MM 1
UKESM1-0-LL 5

mer sea ice teleconnection. PIOMAS is a coupled ice–ocean
model that assimilates observed sea ice concentration and
sea surface temperatures (open water only) and is forced by
NCEP-NCAR (National Centers for Environmental Predic-
tion and National Center for Atmospheric Research) atmo-
spheric reanalysis. Although it is a model, it has been shown
to be relatively consistent with in situ and submarine obser-
vations (Schweiger et al., 2011) and generally has consistent
biases with CMIP3 and 5 models relative to observational
data in terms of its ice thickness distribution (Stroeve et al.,
2014). Furthermore, it is able to provide consistent coverage
over the observational period.

2.3 CMIP6 model outputs

We assess the seasonal patterns of variability in sea ice
concentration and mean sea-level pressure outputs from 31
different GCMs participating in CMIP6. In order to com-
pare with recent observations, we combine monthly averaged
model outputs from historical runs (1979–2014) with Sce-
narioMIP run SSP5-8.5 (Gidden et al., 2019) to extend the
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analysis period to 2020; hence only model ensemble mem-
bers which contain historical and ScenarioMIP outputs for
both sea ice concentration and mean sea-level pressure are
considered in this work. As detailed above, we compute the
corresponding winter (DJFM) and summer (JJAS) averages
for mean sea-level pressure and sea ice concentration out-
puts, respectively. Sea ice concentration outputs are also re-
gridded to the same 50 km× 50 km polar stereographic grid
as the observational data sets, and mean sea-level pressure
outputs are re-gridded to a 2◦× 4◦ latitude–longitude grid.
The chosen models, along with their respective number of
available ensemble members, are summarised in Table 1.

3 Method

3.1 Complex networks

Generating complex networks here follows the methodology
from previous studies (Fountalis et al., 2014; Gregory et al.,
2020). In this section we summarise the key steps and present
an example DJFM sea-level pressure network from ERA5, as
well as JJAS sea ice concentration networks from the obser-
vations.

In general, we can consider a network as a group of ver-
tices, or nodes, whereby each node k may be connected to
any other node in the network l via a weighted edge, or
link. Subsequently, in our implementation a climate network
of N nodes corresponds to time series data, G= {gk}Nk=1,
representing n regularly sampled observations in time, gk =

(g1k,g2k, . . .,gnk), atN fixed geographical locations, and the
links represent statistical interdependencies between any pair
of node time series gk and gl . In more detail, let us define
X= {xp}Pp=1 as a zero-mean (the linear trend is removed
from each grid cell) time series data set (e.g. DJFM mean
sea-level pressure anomalies or JJAS sea ice concentration
anomalies), which represents n regularly sampled observa-
tions in time xp = (x1p,x2p, . . .,xnp) at P fixed geographi-
cal locations such that X ∈ RP×n. The N network nodes are
then derived by implementing a grid-based clustering algo-
rithm to the input data set so that the dimensionality of X
is reduced from P to N (see Gregory et al., 2020 for fur-
ther details of this clustering step). Each cluster (node) then
corresponds to a particular pattern of climate variability and
represents a spatial region of, for example, summer sea ice
concentration or winter sea-level pressure that has behaved in
a homogeneous way over the length of the time series record.
We can then generate links between the nodes by first com-
puting the cumulative anomaly time series of each network
node, which for a given node Ck is taken as the sum of the
grid-cell-weighted de-trended time series of all cells within
that node:

gk =
∑
p∈Ck

Xp
√
wp, (1)

Figure 1. Complex network of DJFM mean sea-level pressure from
ERA5, computed between 1979 and 2020. The covariance-based
link weights are computed from Eq. (2), in which the thickness of
each link is proportional to the covariance. Only links which have
a corresponding p value< 0.10 are shown here to aid visualisation.
The strength of each node is then computed from Eq. (3).

Figure 2. The standardised (Std.) temporal component of DJFM
mean sea-level pressure (SLP) variability from ERA5 (dashed
curve). Temporal components are computed via Eq. (1), in which
this time series is extracted from the ERA5 network node with
the highest strength. The number in parentheses corresponds to
the correlation coefficient with the DJFM AO index from the Na-
tional Oceanic and Atmospheric Administration (NOAA; avail-
able from https://www.cpc.ncep.noaa.gov/products/precip/CWlink/
daily_ao_index/ao.shtml, last access: 1 June 2021).
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where wp = cos(θp) for a regular latitude–longitude grid
(sea-level pressure data), where θp is the latitude of grid cell
p, or simply wp = dp for a polar stereographic area grid (sea
ice concentration data), where dp is the area in square kilo-
metres of grid cell p. Subsequently, the link weight between
two nodes k and l is calculated as the temporal covariance
between two network node anomaly time series:

wkl =
1

n− 1

n∑
i=1
(gik −E[gk])(gil −E[gl]), (2)

where E[·] is the expected (mean) value. Finally, we define
the weighted degree, or strength, of a given network node
Sk as the sum of the absolute value of all its associated link
weights:

Sk =
N∑
l=1
|wkl |. (3)

The nodes with the highest strength are commonly referred
to as the hubs of the network (Tsonis and Roebber, 2004),
and they represent the dominant patterns of variability in the
input data set X. By this definition, the node with the highest
strength belonging to the network of mean sea-level pressure
data can be considered a good proxy for the AO. Note also
that this network framework allows for weighted links be-
tween nodes of a single network (as detailed above) and also
between nodes of multiple networks (i.e. between nodes of
sea-level pressure and sea ice concentration), which is used
to assess the winter AO to summer sea ice teleconnection in
Sect. 4.3.

Figure 1 shows the network structure of DJFM mean sea-
level pressure data from ERA5. In this case we can see how
the network nodes correspond to a set of spatially contigu-
ous areas, where for a given node, each grid cell is weighted
by the strength of the node in which that cell belongs. The
node with the highest strength in Fig. 1 can be considered
as a proxy for the spatial pattern of variability in the AO,
and from this map we can see that this corresponds to the
large node situated over the majority of the Arctic Ocean,
Greenland, the Canadian Archipelago, and parts of northern
Russia. The weighted links then illustrate how each of the
nodes have covaried relative to each other over the period
1979–2020, and indeed we notice the out-of-phase relation-
ship (negative covariance) between the AO node and the mid-
latitude Atlantic sector, highlighting the dipole nature of the
North Atlantic Oscillation (Hurrell et al., 2003). We can also
extract the temporal component of variability from the “AO
node” (Fig. 2), which produces a very consistent signal with
the standard AO index as defined by the National Oceanic
and Atmospheric Administration (NOAA), highlighting the
robustness of the complex networks method. It is worth not-
ing however that in Fig. 2, and indeed for the rest of this pa-
per, we reverse the sign of the temporal component of each
node of the winter sea-level pressure networks (from ERA5

and CMIP6 data) in order to be consistent with the standard
AO index, for which positive AO index values correspond to
low atmospheric pressure, and similarly negative AO index
values correspond to high atmospheric pressure.

In Fig. 3 we show similar networks for JJAS sea ice con-
centration from each of the observational products. Here we
can see how the dominant patterns of summer sea ice vari-
ability (i.e. highest node strengths) are typically in the East
Siberian and Laptev seas, as well as the Canada Basin. Each
observational product generally shows the same structure of
largely positive covariance between network nodes and the
out-of-phase connection between the Fram Strait and the Pa-
cific sector. The magnitude of the node strengths between the
observational data sets somewhat varies in the dominant re-
gions of variability, with the Bootstrap product showing the
largest strengths in the East Siberian and Laptev seas. In the
next section we introduce two global metrics for deriving
quantitative measures of similarity between networks.

3.2 Metrics for comparing networks

Before we introduce the two metrics which are used to com-
pare similarities between complex networks, it is worth say-
ing a few words about what information we can expect to
obtain when comparing models and observations/reanalysis.
Due to the fact that any CMIP6 model ensemble member is
in its own phase of internal variability (e.g. Hawkins and Sut-
ton, 2009; Notz, 2015), we cannot expect to find consistency
in the sign and magnitude of anomalies between, for exam-
ple, the ERA5 AO time series and that of any one model en-
semble member (and similarly for sea ice); therefore it would
not be prudent to perform any analysis which makes direct
comparisons of any time series between observational and
CMIP6 network nodes. We can however expect a model with
accurate physics to reproduce similar dominant regions of
variability as the observations and the same sign and mag-
nitude of the inter-connected links between nodes, e.g. the
strong negative coupling between the AO and sea-level pres-
sure anomalies in the North Atlantic and the weak negative
coupling with the North Pacific (see Fig. 1), and similarly we
can expect the same regional responses of Arctic sea ice to
different phases of the AO between observations and models.
The two metrics we introduce in the coming sections provide
a way to quantify similarities in the locations which the ob-
servations and models define as the dominant regions of vari-
ability, as well as the connectivity of these regions, without
explicitly comparing network node time series.

3.2.1 Adjusted Rand index

The adjusted Rand index (ARI; Hubert and Arabie, 1985) is
a metric which is often used to evaluate similarities between
sets of clusters (Steinley, 2004), and as such we use it here to
compare how two networks have clustered grid cells together
to form their spatially contiguous set of network nodes and
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Figure 3. Complex networks of JJAS sea ice concentration for (a) NASA Team, (b) Bootstrap, and (c) OSI-SAF data sets, computed between
1979 and 2020. Only links which have a p value< 0.10 are shown here to aid visualisation.

Table 2. Synthetic example of cell clusters to illustrate the concept of the Rand index (see Sect. 3.2.1), based on Rand (1971).

Cell pairs ab ac ad ae af bc bd be bf cd ce cf de df ef Total

Together in both X 1
Separate in both X X X X X X X X X 9
Mixed X X X X X 5

subsequently their spatial patterns of either sea-level pressure
or sea ice concentration variability. To understand the ARI, it
is worth briefly introducing the (un-adjusted) Rand index by
following the example outlined by Rand (1971). First, con-
sider two different synthetic networks which have clustered
grid cells together in two distinct ways.

Network1 = [(a,b,c), (d,e), (f)]
Network2 = [(a,b), (c,d), (e, f)]

In these two simple network constructions, there are three
nodes in each network, in which each node contains a clus-
tering of cells labelled a–f. The Rand index then measures
similarities and differences in the clustering of these cells by
analysing all the possible cell pairings between the two net-
works (see Table 2). In this example there are a total of 10
similarities (grid cells which are clustered together in both
networks and grid cells which are separate in both networks)
out of a possible 15 pairings, which gives a Rand index score
of 10/15= 0.67. The ARI is then an update of the Rand in-
dex which takes into account the fact that grid cells could be
clustered together by chance (see Hubert and Arabie, 1985,
for further details). In the synthetic example above, the ARI
corresponds to 0.07 – note that the ARI varies between 0 (to-
tally dissimilar clustering) and 1 (identical clustering). Com-
puting the ARI between, for example, the NASA Team and
OSI-SAF summer sea ice concentration networks produces a

value of 0.69, showing relatively consistent clustering (as we
saw qualitatively in Fig. 3).

3.2.2 Network distance metric

The network distance metric (D; Fountalis et al., 2015) pro-
vides a way to compare networks in terms of both the spatial
extent of their network nodes and also their node strengths.
Recall that node strength incorporates information about the
connectivity of a particular node (i.e. the magnitude of all
its connected links); hence when comparing the strength of
a particular region between models and observations, we can
infer which one has a larger degree of covariability across the
network. This allows us to deduce whether the models over-
or underestimate the magnitude of variability in a particular
region without comparing node time series. Consider, for ex-
ample, the underlying map of node strengths in Fig. 3. We
can compute D by first taking the sum of the absolute dif-
ference between two of these “strength maps”, M1 and M2
(e.g. NASA Team and OSI-SAF), and then normalising by
the sum of the absolute difference between random permuta-
tions of both network strength maps, M̂1 and M̂2:

D = 1−

∑P
p=1|M1p −M2p|∑P
p=1|M̂1p − M̂2p|

. (4)

A value of D = 1 means that both networks are identical in
their node strengths and spatial extent of nodes, whereas a
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Figure 4. ARI and D metrics for winter sea-level pressure (SLP) networks computed between 1979 and 2020 for every ensemble member
for 31 different CMIP6 models (74 realisations), relative to ERA5 atmospheric reanalysis. The semi-transparent colours represent individual
ensemble members (for which the number of ensemble members is greater than 1), and the opaque colours are the mean of all ensemble
members. The mean and standard deviation across all points are given by µ and σ , respectively. The grey and red boxes represent the range of
ARI and D values for 10 CanESM5 ensemble members each, in which members in each box have the same physics and forcing but slightly
perturbed initial conditions, while the two boxes separate groups based on model physics (i1p1f1 and i1p2f1). See Sect. 4.1.

Figure 5. Winter sea-level pressure networks from (a) CNRM-CM6-1 (ensemble member: r6i1p1f2) and (b) MIROC-ES2L (ensemble
member: r1i1p1f2), computed between 1979 and 2020. The CNRM-CM6-1 model produces ARI and D values of 0.76 and 0.80, respectively,
while the MIROC-ES2L model produces values of 0.50 and 0.04, respectively. Only links which have a corresponding p value< 0.10 are
shown here to aid visualisation.

value close to D = 0 implies that the two networks are as
similar as a random assignment of node strengths to grid
cells. Computing D between the NASA Team and OSI-SAF
summer sea ice concentration networks produces a value of
0.86. The combination of ARI and D allows us to infer var-
ious properties between two networks. For example, when
ARI= 1 and D = 0, this suggests that two networks agree in
terms of which grid cells have behaved homogeneously over
the length of the time series record in order to cluster together
to form network nodes; however they disagree in terms of the
magnitude of variability in the nodes. On the other hand, if
ARI is close to 0 and D is close to 1, then this implies that

the magnitude of variability across the networks is relatively
consistent; however the geographic areas which are clustered
together to form network nodes are considerably different.
Two networks can then be considered identical if ARI and
D = 1.
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4 Results

4.1 Sea-level pressure networks in CMIP6

For every available ensemble member from each of the
CMIP6 models outlined in Table 1, we compute individual
complex networks of DJFM sea-level pressure over the pe-
riod 1979–2020 and then compute ARI and D metrics rel-
ative to the ERA5 sea-level pressure network. In Fig. 4 we
can see how the spread in D values across all model en-
semble members is over twice as large as for the ARI val-
ues, which suggests large disagreement between ensemble
members on the degree of connectivity of network nodes
and hence the magnitude of regional sea-level pressure vari-
ability. Note that the apparent linear relationship between
ARI and D is to be expected given that both metrics en-
capsulate information related to the spatial agreement of net-
work nodes between models and ERA5. Across all models,
CNRM-CM6-1 (ensemble member r6i1p1f2) produces the
most similar network structure to ERA5, with ARI= 0.76
and D = 0.80. Figure 5 shows the corresponding network for
CNRM-CM6-1 r6i1p1f2 and also MIROC-ES2L r1i1p1f2.
The MIROC-ES2L r1i1p1f2 ensemble member produces the
most dissimilar network structure relative to ERA5, with ARI
and D of 0.50 and 0.04, respectively. The networks show
how CNRM-CM6-1 produces the relatively consistent node
of high strength over the Arctic Ocean (similar to ERA5 in
Fig. 1) and also shows the same strong negative linkage with
the mid-latitude Atlantic sector and weak linkage with the
Pacific sector. On the other hand, MIROC-ES2L shows sig-
nificantly different regions of variability than ERA5, and also
weaker connectivity, with overall weaker link weights and
very low strength over the Arctic Ocean. At this point it is
worth noting that for models with several ensemble members
which all contain the same physics and forcing but slightly
perturbed initial conditions, we can inspect the spread in ARI
and D values across these particular ensemble members to
gain an insight into the contributions of internal variability
to the resultant network structures (relative to ERA5). The
CanESM5 model is the only model here with enough en-
semble members to approximate a “large ensemble” (e.g.
Kay et al., 2015) with 20 members; however these in turn
comprise two groups of 10 members with different physics
(shown by the grey and red boxes in Fig. 4). While each
box is likely to be under-representative of the true spread
due to internal variability with only 10 members, it does pro-
vide some initial insight. Interestingly the spread in D values
between the two boxes is relatively consistent, although the
spread in ARI differs by a larger amount depending on model
physics. In this example, the difference in model physics also
appears to shift the mean value of D, which may illustrate
how model physics ultimately plays a role in how the spatio-
temporal patterns of variability are represented. To see the
influence of internal variability on the network structure first
hand, Supplement Fig. S1 shows winter sea-level pressure

networks for the CanESM5 ensemble members within the
red box in Fig. 4, where it can be seen that despite some dif-
ferences in relative node strengths, each ensemble member
produces a network with the strongest node centred over the
Arctic Ocean, as well as high node strengths over the Pacific.
These two large node areas across the ensemble members are
likely what drives the low spread in ARI values, while the
large spread in D values is due to the relative discrepancies
in node strengths of these regions. This suggests that internal
variability plays a larger role in governing the magnitude of
regional sea-level pressure variability than in governing the
actual spatial patterns themselves.

In Fig. 6a–b we now average each of the network strength
maps across all of the CMIP6 model ensemble members
and compare this with the ERA5 strength map. While this
removes the ability to identify individual network nodes
and their links, it does allow us to qualitatively assess how
CMIP6 models, on average, represent the spatial patterns of
winter sea-level pressure variability and their degree of con-
nectivity. We notice, for example, that on average CMIP6
models represent the spatial pattern of the AO relatively well,
although they slightly underestimate its node strength. Fur-
thermore, node strengths in the north-western Pacific Ocean
appear to be overestimated on average, while they are un-
derestimated over northern Africa and southern Europe. In
Fig. 6c–d we also show the percentage of variance in mean
Northern Hemisphere sea-level pressure anomalies that is ex-
plained by each ERA5 network node, as well as the aver-
age of CMIP6 nodes (the mean sea-level pressure anomalies
in CMIP6 models are computed for each individual model
ensemble member, and then the percentage of variance is
computed between this signal and its own respective sea-
level pressure network nodes). We can see that the nodes
centred over the Arctic Ocean explain the highest percent-
age of variance in Northern Hemisphere sea-level pressure
in both ERA5 and CMIP6 networks; however the models un-
derestimate the relative importance of the North Atlantic and
northern Africa–southern Europe region in explaining win-
ter sea-level pressure variability. It is also worth mentioning
that although the CMIP6 models identify the North Pacific
as a region of strong covariability (Fig. 6b), the percentage
of variance explained by this region is relatively low. This
can occur due to the fact that network nodes which are larger
in spatial extent will naturally show higher covariance with
other regions (and hence node strengths) because the tem-
poral component of variability of a given node corresponds
to the sum of all grid cell time series within that node (see
Eq. 1). If however a node’s correlation (i.e. standardised co-
variance) with the mean sea-level pressure signal is relatively
small, then this results in a squared reduction in percentage of
variance explained (recall that fraction of variance explained
equals correlation squared). This therefore suggests that sea-
level pressure over the North Pacific Ocean in CMIP6 models
is more spatially homogeneous than ERA5 (recall that an in-
dividual network node represents a geographic region which
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Figure 6. (a–b) The spatial patterns of winter sea-level pressure variability (node strengths) from (a) ERA5 and (b) the average of all 74
CMIP6 model ensemble members. (c–d) The percentage of variance in mean Northern Hemisphere winter sea-level pressure explained (e.g.
Donges et al., 2015) by network nodes in (c) ERA5 and (d) the average of all 74 CMIP6 model ensemble members.

has behaved in a similar way over the length of the time se-
ries record).

4.2 Sea ice concentration networks in CMIP6

In this section we compute individual complex networks of
JJAS sea ice concentration over the period 1979–2020 for
every available ensemble member from each of the CMIP6
models and then compute ARI and D metrics relative to the
NASA Team, Bootstrap, and OSI-SAF sea ice concentration
networks. In Fig. 7 we see a lower spread in ARI values
compared to the D values, which, similar to the sea-level
pressure networks, suggests that CMIP6 ensemble members
show large disagreement on the degree of connectivity of net-
work nodes and hence the magnitude of regional sea ice con-
centration variability. What is perhaps noticeable is that the
models which appear to perform better in terms of their sum-
mer sea ice ARI and D scores are not necessarily the same
as those that score well for their winter sea-level pressure
networks – discussed further in Sect. 5. In Fig. 8 we show
sea ice concentration networks from the MIROC6 (r1i1p1f1)
and the CAMS-CSM1-0 (r1i1p1f1) models. The MIROC6
model produces closer patterns of variability to the obser-
vations than other CMIP6 models, with ARI values of 0.48

(NASA Team), 0.48 (Bootstrap), and 0.47 (OSI-SAF) and D
values of 0.66 (relative to each observational network). Hav-
ing said that, we can see that the spatial extent and strength
of the node in the Beaufort Sea–Canada Basin are somewhat
underestimated (relative to the observational networks shown
in Fig. 3) and that the node strength in the Laptev Sea is
overestimated, and interestingly its link between the Beau-
fort Sea and the East Siberian Sea is negative. It does how-
ever produce consistent out-of-phase network links between
the Fram Strait and the Eurasian–Pacific sectors of the Arctic.
The CAMS-CSM1-0 model produces a more dissimilar score
with ARI values of 0.33 (NASA Team), 0.30 (Bootstrap),
and 0.33 (OSI-SAF) and D values of 0.28 (NASA Team),
0.30 (Bootstrap), and 0.29 (OSI-SAF). The low D values
are being caused by the significant overestimation in the link
weights, and hence node strengths, in the Greenland, Iceland,
and Norwegian seas, Barents Sea, East Siberian Sea, and
Laptev Sea (notice how the link weights and node strengths
in this model are in some cases an order of magnitude higher
than the observational networks). Once again, we can high-
light the spread in ARI and D for ensemble members within
the two unique model physics groups of the CanESM5 model
to gain an insight into the contributions of internal variability
to the resultant network structures (relative to the satellite-
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Figure 7. ARI and D metrics for summer sea ice concentration
(SIC) networks computed between 1979 and 2020 for every ensem-
ble member for 31 different CMIP6 models (74 realisations). ARI
and D are computed relative to NASA Team (a), Bootstrap (b), and
OSI-SAF (c) observational networks. The symbols and colours of
each point, as well as the red and grey boxes, are consistent with
Fig. 4.

derived observations). Similar to the sea-level pressure ex-
ample, here the spread in D for the CanESM5 model is larger
than the spread in ARI, and a difference in model physics acts
to shift the mean value of D. Supplement Fig. S2 then shows
the summer sea ice concentration networks for the CanESM5
ensemble members within the red boxes in Fig. 7. While the
majority of members show the strongest nodes within the
eastern sector of the Arctic, the relative differences in node
strengths are somewhat large. Analogous to the discussion
in Sect. 4.1, this may highlight how internal variability plays
a larger role in governing the magnitude of regional sea ice
concentration variability than in governing the spatial pat-
terns themselves.

In Fig. 9a–b we average each of the network strength
maps across both the observational data and all of the CMIP6
model ensemble members. Here we notice that, on average,
the models show the dominant regions of variability are in the
East Siberian and Laptev seas, although the node strengths

are somewhat overestimated relative to the observations. Fur-
thermore, while the observations outline the Beaufort Sea–
Canada Basin as the region of highest connectivity (more so
than the East Siberian–Laptev seas), the models show rel-
atively little connectivity here on average. In Fig. 9c–d we
also show the percentage of variance in pan-Arctic summer
sea ice area that is explained by each observational network
(averaged) and the average of CMIP6 model ensemble mem-
bers. In this case the models generally underestimate the im-
portance of regions such as the Beaufort, East Siberian, and
Laptev seas in explaining the variance in pan-Arctic summer
sea ice area and overestimate the percentage of variance ex-
plained in regions such as the Barents Sea and parts of the
Eurasian Basin. Once again, we also see how the regions
of highest strength are not necessarily the ones which ex-
plain the highest percentage of variance in pan-Arctic sea ice
area in the models, which suggests that the models may be
overestimating the spatial extent of the network nodes in the
Eurasian seas, causing them to covary more strongly with
other nodes despite having perhaps lower absolute correla-
tion with the pan-Arctic sea ice area signal.

4.3 AO to sea ice teleconnection

We now turn to an investigation of the winter AO to sum-
mer sea ice teleconnection. We begin by illustrating how we
can use the network framework to exploit this relationship in
the observational and reanalysis data by effectively consider-
ing both winter sea-level pressure and summer sea ice con-
centration networks as individual layers within a multi-layer
network (Boccaletti et al., 2014). We also briefly investigate
whether this teleconnection may be changing over time, be-
fore ultimately performing the same analysis for each of the
CMIP6 models. A discussion of the results in this section is
then presented in Sect. 5.

4.3.1 Observations/reanalysis

In this section we use the temporal component of variability
associated with the “AO node” of the ERA5 sea-level pres-
sure network to define the time series corresponding to the
winter AO (i.e. the dashed time series in Fig. 2). We then gen-
erate links between the winter AO and summer sea ice as the
temporal covariance (Eq. 2) between this AO time series and
each of the nodes of the summer sea ice concentration net-
works from each of the observational data sets. In Fig. 10 we
use the same concept as the strength maps shown previously
but instead weight each grid cell by the link weight (temporal
covariance) between the AO and sea ice concentration node
time series. In the first row of Fig. 10 we compute the link
weights using the entire observational period (1979–2020),
in which we notice a very strong anti-correlation between the
winter AO and summer sea ice in the East Siberian Sea across
all observational products (standardising the link weight for
this node produces correlation coefficients of −0.65, −0.57,
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Figure 8. Summer sea ice concentration networks from (a) MIROC6 (ensemble member: r1i1p1f1) and (b) CAMS-CSM1-0 (ensemble
member: r1i1p1f1), computed between 1979 and 2020. The MIROC6 model produces average ARI and D values of 0.48 and 0.66, respec-
tively (average of metrics computed relative to NASA Team, Bootstrap, and OSI-SAF networks), while the CAMS-CSM1-0 model produces
average values of 0.32 and 0.29, respectively. Only links which have a corresponding p value< 0.10 are shown here to aid visualisation.

Figure 9. (a–b) The average spatial patterns of summer sea ice concentration variability (node strengths) from (a) the three observational
data sets and (b) all 74 CMIP6 model ensemble members. (c–d) The percentage of variance in pan-Arctic summer sea ice area explained by
network nodes in (c) the three observational data sets and (d) the average of all 74 CMIP6 model ensemble members.
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Figure 10. Network link weight between the DJFM ERA5 “AO node” (dashed time series from Fig. 2) and each of the JJAS sea ice
concentration network nodes, computed between (a–c) 1979 and 2020, (d–f) 1979 and 1999, and (g–i) 2000 and 2020. The columns from
(a) to (i) show the corresponding maps for NASA Team, Bootstrap, and OSI-SAF data sets. Stippling denotes links with p values< 0.05.

and −0.66 for the NASA Team, Bootstrap, and OSI-SAF
data sets, respectively). Furthermore, all of the summer sea
ice nodes in the Eurasian–Pacific sector of the Arctic exhibit
varying degrees of anti-correlation with the winter AO, while
the Atlantic sector shows largely positive covariance and is
particularly strong in the Fram Strait region. If we then anal-
yse the covariance between the first half (1979–1999) and
second half (2000–2020) of the observational record (second
row and third row of Fig. 10, respectively), we notice some
interesting patterns. In particular, the correlation across the
whole Eurasian–Pacific sector of the Arctic has been more
strongly negative since 2000, especially within the Canada
Basin. The reverse of sign in the Canada Basin may not be
significant given the moderate degree of positive correlation
between 1979 and 1999; however the strong negative corre-
lation between 2000 and 2020 implies that positive AO win-
ters (anomalously low sea-level pressure) now typically lead
to anomalously low summer sea ice concentration anomalies
across both the eastern and western Arctic, whereas previ-
ously this typically only occurred in the eastern Arctic (see
also Mallett et al., 2021, for a recent investigation of this

changing relationship). It is also worth noting that summer
sea ice in the Atlantic sector has generally remained posi-
tively correlated with the winter AO over both halves of the
observational period – see Sect. 5 for further discussion.

4.3.2 CMIP6 models

For each CMIP6 model ensemble member we extract the
temporal component from the node with the highest strength
of each winter sea-level pressure network and compute the
covariance-based link weight with each node of its respective
summer sea ice concentration network. In Fig. 11, we show
an adaptation of the network comparison metrics shown in
Fig. 7. In this case, rather than computing the distance metric
D as the normalised sum of the difference between observa-
tional and CMIP6 model strength maps, we instead create the
corresponding “link maps” for each model ensemble mem-
ber (i.e. the equivalent of the maps shown in Fig. 10) and
compute D relative to the observational link maps. The ARI
metric is computed as before; hence ARI values presented in
Figs. 7 and 11 are identical. The values reported in Fig. 11
are for link weights computed over the entire period (1979–
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2020), and with average distance values of 0.26, 0.27, and
0.26 relative to NASA Team, Bootstrap, and OSI-SAF, re-
spectively, we can see that the models perform quite poorly
at replicating the observed network links between the winter
AO and summer sea ice – recall that for D = 0, the two maps
are as dissimilar as a random assignment of link weights to
grid cells. The equivalent plots for the periods 1979–1999
and 2000–2020 are shown in Supplement Figs. S4 and S5,
respectively. Figure 12 shows two examples of CMIP6 en-
semble member link maps for the winter AO to summer sea
ice teleconnection between 1979 and 2020. The MIROC6
model (r1i1p1f1) was shown in Fig. 8 to be a network which
produced relatively similar patterns of summer sea ice vari-
ability compared to the observations, and here it is one of the
models with the highest similarity score in terms of its AO to
sea ice teleconnection, with D values of 0.43 (NASA Team),
0.43 (Bootstrap), and 0.41 (OSI-SAF). We can see that it also
captures the strong negative covariance linkage with the East
Siberian Sea; however it overestimates the connection within
the Laptev Sea and does not capture the negative link with
the Beaufort Sea or strong positive link with the Fram Strait.
The EC-Earth3-Veg model (r4i1p1f1) produces the lowest
D scores at 0.06 (NASA Team), 0.07 (Bootstrap), and 0.06
(OSI-SAF). This is both due to the difference in sign of many
of the AO to sea ice node link weights compared to the ob-
servations (e.g. Kara and Beaufort seas) and also due to its
inability to represent the similar regions of sea ice variabil-
ity as the observations. Returning to the subject of internal
variability, Supplement Fig. S3 shows the corresponding AO
to sea ice teleconnections for each ensemble member of the
CanESM5 model within the red boxes of Fig. 11, computed
between 1979 and 2020. This figure highlights that, across all
the ensemble members, the general patterns show negative
covariance in the eastern Pacific sector of the Arctic and pos-
itive covariance in the western Pacific and Atlantic sectors,
somewhat in agreement with the observations. Comparing
ensemble members highlights how the magnitude of these
connections can vary considerably, as discussed in Sect. 4.1
and 4.2.

In Fig. 13 we now show the average teleconnection link
weights between the winter AO and summer sea ice concen-
tration node time series for both the observations and the av-
erage of all CMIP6 ensemble members. Generally, the mod-
els agree on the sign of the network links between the win-
ter AO and summer sea ice in the East Siberian and Laptev
seas; however the magnitude of this connection is underesti-
mated on average. The models also do not capture the posi-
tive connection with the Kara and Barents seas and also do
not show the same transition to an overall negative connec-
tion in the Eurasian–Pacific sectors between 2000 and 2020.
Instead, the Canada Basin region remains moderately posi-
tively correlated over the entire record.

Figure 11. ARI and D metrics for comparing observation and
CMIP6 model summer sea ice concentration networks and the win-
ter AO to summer sea ice teleconnection for every ensemble mem-
ber for 31 different CMIP6 models (74 realisations). ARI and D are
computed relative to NASA Team (a), Bootstrap (b), and OSI-SAF
(c) observational networks. Network distance values (D) are com-
puted from observation and model “link maps” as shown in Fig. 10.
The symbols and colours of each point, as well as the red and grey
boxes, are consistent with Fig. 4.

5 Discussion and conclusions

In this study we used a combination of cluster analysis and
complex networks to derive spatio-temporal patterns of vari-
ability in Northern Hemisphere winter sea-level pressure and
Arctic summer sea ice concentration over the period 1979–
2020 and to subsequently understand the spatio-temporal
network connectivity between the winter Arctic Oscillation
(AO) and summer sea ice cover over the same period. We
analysed these patterns in both satellite observational data
sets and ERA5 atmospheric reanalysis and also from 31 of
the latest generation general circulation models (GCMs) par-
ticipating in the most recent phase of the Coupled Model
Intercomparison Project (CMIP6). We also introduced two
global metrics for comparing patterns of variability between
two networks: the adjusted Rand index (Hubert and Arabie,
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Figure 12. Covariance-based link weights between the winter AO node time series and each node of the summer sea ice concentration
network between 1979 and 2020 for (a) MIROC6 (ensemble member: r1i1p1f1) and (b) EC-Earth3-Veg (ensemble member: r4i1p1f1). The
MIROC6 model produces average ARI and D values of 0.48 and 0.42, respectively, while the EC-Earth3-Veg model produces values of 0.26
and 0.06, respectively. Stippling denotes links with p values< 0.05.

1985) and a network distance metric (Fountalis et al., 2015).
Together these allowed us to assess how CMIP6 models per-
form at replicating the patterns of both winter sea-level pres-
sure and summer sea ice concentration variability relative
to ERA5 and the observations, respectively. Previous studies
(Rigor et al., 2002; Williams et al., 2016) have suggested a
mechanism for the winter AO to summer sea ice teleconnec-
tion as follows: a positive winter AO (anomalously low mean
sea-level pressure) is coincident with (a) a weakening of the
Beaufort Gyre, which reduces the amount of west-to-east ice
advection, (b) a strengthening of the Transpolar Drift Stream
(TDS), which increases ice export out of the Fram Strait, and
(c) an increase in cyclonic ice motion in the Eurasian–Pacific
sectors of the Arctic, which causes increased ice divergence
and facilitates new winter ice formation. Once the melt sea-
son begins, these expanses of relatively thin ice are then more
susceptible to melting, thus generally leading to anomalously
low sea ice area by the end of summer. We have seen in
Fig. 10 that the observations support various aspects of this
hypothesis by the fact that the strong negative covariance in
the East Siberian Sea means that following a positive winter
AO, this region typically sees anomalously low sea ice area
in the summer as the ice has undergone thinning and subse-
quent melting in the spring–summer. The positive covariance
in the Fram Strait region suggests that following positive AO
winters we see an increase in sea ice in this area which is
due to positive AO events strengthening the TDS, resulting
in large quantities of ice being advected towards the Atlantic
sector (Rigor et al., 2002; Ricker et al., 2018). The fact that
we see an overall shift towards more strongly negative co-
variance between 1979 and 1999 and 2000 and 2020 across

the whole Eurasian–Pacific sector is likely due to the signif-
icant reductions in the thicker multi-year ice cover that have
occurred in this region over recent decades (Maslanik et al.,
2007; Kwok, 2018). Between 1979 and 1999 the substan-
tially thicker ice cover in the western Arctic was able to with-
stand the thinning caused by increased ice divergence from a
weakened Beaufort Gyre during positive AO events, thus al-
lowing it to survive through the melt season. More recently,
however, a thinner ice cover means areas of open water are
more likely to form during the periods of increased ice di-
vergence in the western Arctic, leading to the growth of new
ice which is more susceptible to dramatic ice melt through-
out the spring–summer. The inability of certain CMIP6 mod-
els to accurately reflect the dominant regions of winter sea-
level pressure or summer sea ice concentration variability,
and their connectivity structure, could be due to a number of
factors. While we have seen that internal variability is likely
to play a role in governing the magnitude of regional vari-
ability in either field for any one model ensemble member, in
Fig. 6 we saw that (on average) CMIP6 models replicate the
spatial patterns of winter sea-level pressure relatively well
(compared to ERA5); however they generally overestimate
the magnitude of connectivity over the North Pacific and un-
derestimate the magnitude over the Arctic Ocean and the
North Atlantic, consistent with previous analyses of CMIP5
models (Zuo et al., 2013; Gong et al., 2016). A recent study
by Gong et al. (2019) suggested that the strong North Pacific
pattern of variability in GCMs is likely due to the overes-
timation of the strength of the stratospheric polar vortex (a
persistent feature of models with lower vertical resolutions in
their atmospheric components) which causes enhanced cou-
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Figure 13. The average covariance-based link weights between the winter AO node time series and each node of the summer sea ice
concentration networks across both the observations (a, c, e) and all CMIP6 model ensemble members (b, d, f). Each row shows the link
weights computed over different parts of the time series record: 1979–2020 (a, b), 1979–1999 (c, d), and 2000–2020 (e, f).

pling of atmospheric circulation between the North Pacific
and North Atlantic. In terms of summer sea ice, we have seen
in Fig. 9 that, on average, CMIP6 models show discrepancies
in the regions which govern summer sea ice variability and
that they generally underestimate the contributions from re-
gions such as the Beaufort, East Siberian, and Laptev seas
(Pacific sector) in explaining pan-Arctic summer sea ice area
variability and similarly overestimate contributions from the
Barents Sea and Eurasian Basin (Atlantic sector). The biases
in the Atlantic sector are likely related to the models’ over-
estimation of the sea ice extent in these regions as in real-
ity these regions are now largely ice-free in summer (hence
the observations show little variability). Meanwhile, biases
in the Pacific sector are more likely due to the poor represen-
tation of the spatial sea ice thickness distribution in models,

which was previously shown to be an issue in CMIP5 mod-
els (Stroeve et al., 2014), and also recently for a subset of
CMIP6 models (Watts et al., 2021). The sea ice thickness
distribution strongly determines how susceptible regions are
to melting in the summer (Massonnet et al., 2018) as thicker
ice effectively dampens the amount of energy transfer be-
tween the atmosphere and ocean. In Fig. 14 we show the
average regional summer sea ice thickness in the Beaufort,
East Siberian, and Laptev seas from both PIOMAS and 25
of the CMIP6 models used in this study (thickness outputs
were not available for BCC-CSM2-MR, CAMS-CSM1-0,
CAS-ESM2-0, FGOALS-g3, FIO-ESM-2-0, and CanESM5-
CanOE at the time of this study). On average, CMIP6 mod-
els report higher average thickness than PIOMAS in each re-
gion, which could explain their relatively low contributions
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Figure 14. The average summer sea ice thickness from 25 CMIP6 models (49 realisations) and PIOMAS in the Laptev Sea (a), East Siberian
Sea (b), and Beaufort Sea (c). The numbers in parentheses in the legend are the mean thickness in metres of each respective model (Laptev,
East Siberian, Beaufort). For models with multiple ensemble members, the mean thickness time series is computed across all ensemble
members, and then the average across 1979–2020 is given.

to pan-Arctic summer sea ice area variability. The regional
biases in sea ice thickness estimates from CMIP6 models
could be related to several factors which determine sea ice
transport and hence the ice thickness distribution, includ-
ing biases in surface winds, ice rheology, and ocean heat
fluxes (Stroeve et al., 2014; Watts et al., 2021). Given then
that positive winter AO events typically act to pre-condition
the ice for increased melting (Williams et al., 2016), mod-
els which may perhaps reflect the spatio-temporal patterns
of winter sea-level pressure variability well may still mis-
represent the effects of the winter AO on summer sea ice
because the ice is too thick, and subsequently, they there-
fore underestimate the amount of variability that these sea
ice regions explain in terms of pan-Arctic summer sea ice
area. To briefly test this hypothesis, Fig. 15 shows the aver-

age CMIP6 winter AO to summer sea ice teleconnection (as
in Fig. 13), although this time computed only for a subset
of 15 model ensemble members (see Table S1) which show
the lowest total root mean square error (RMSE) in terms of
their mean summer sea ice thickness relative to PIOMAS in
the East Siberian, Laptev, and Beaufort seas. Comparing this
with Fig. 13, we notice that when only considering the mod-
els with thinner regional sea ice, the magnitude of covari-
ance between the winter AO and summer sea ice in the East
Siberian and Laptev seas is increased and that between 1979
and 1999 and 2000 and 2020 there is evidence of the Beaufort
Sea becoming more negatively correlated although still with
a lower magnitude than shown in the observations. Framing
these results in the perspective of dynamical sea ice forecasts,
the accuracy of seasonal to inter-annual sea ice predictions in
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Figure 15. Average winter AO to summer sea ice teleconnection for 15 CMIP6 model ensemble members with the lowest average root mean
square error (RMSE) in mean sea ice thickness relative to PIOMAS in the East Siberian, Laptev, and Beaufort seas. (a) Links computed
between 1979 and 2020, (b) 1979 and 1999, (c) 2000 and 2020.

GCMs ultimately hinges upon their ability to reproduce the
physical processes that drive sea ice variability and subse-
quently their ability to reflect the geographic regions which
are responsible for explaining the overall variability in sum-
mer sea ice area. In recent years we have seen the improve-
ment in seasonal predictions brought by initialising dynami-
cal models with observations of sea ice thickness (Chevallier
and Salas-Mélia, 2012; Doblas-Reyes et al., 2013; Day et al.,
2014; Collow et al., 2015; Bushuk et al., 2017; Allard et al.,
2018; Blockley and Peterson, 2018; Schröder et al., 2019;
Ono et al., 2020; Balan-Sarojini et al., 2021); therefore re-
ducing sea ice thickness biases in GCMs could be a way to
potentially improve the representation of the winter AO to
summer sea ice teleconnection in those models. To more ac-
curately determine the specific role of regional sea ice thick-
ness variability in this teleconnection and subsequently iso-
late the point at which this teleconnection breaks down across
CMIP6 models, the methodology here could be advanced to
include causal inference principles (e.g. Runge et al., 2019)
while also including additional winter–spring and spring–
summer climate variables which act as mediators between
winter AO events and the eventual response of summer sea
ice, ultimately as a way to begin to bridge the gap between
perfect-model and operational dynamical sea ice forecasts.

Code availability. The following repository contains Python code
written by William Gregory, which can be used to access and
download CMIP6 data volumes, as well as to perform the
complex networks analysis of all data types: https://github.com/
William-gregory/CMIP6 (last access: 16 February 2022) (DOI:
https://doi.org/10.5281/zenodo.6514306, Gregory, 2022). In the
same repository are Python codes to produce ARI and distance met-
rics for the generated networks.

Data availability. The satellite-derived sea ice concentration data
are available from NSIDC and OSI-SAF at the following locations:
NASA Team (https://doi.org/10.5067/8GQ8LZQVL0VL, Cavalieri
et al., 1996), Bootstrap (https://doi.org/10.5067/7Q8HCCWS4I0R
, Comiso, 2017), OSI-450 (https://doi.org/10.15770/EUM_SAF_
OSI_0008, OSI-SAF, 2017), and OSI-430b (https://osi-saf.
eumetsat.int/products/osi-430-b-complementing-osi-450, last ac-
cess: 1 June 2021, EUMETSAT Ocean and Sea Ice Satellite Ap-
plication Facility, 2000).

The ERA5 atmospheric reanalysis data are available from https:
//doi.org/10.24381/cds.f17050d7 (Hersbach et al., 2019).

PIOMAS sea ice thickness data are available from http:
//psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/
data/model_grid (last access: 2 March 2021) (Polar Science Center,
2021).

CMIP6 model ensemble members used in this study were
hosted on the JASMIN UK supercomputer; however these same
files can be downloaded directly from https://doi.org/10.5281/
zenodo.6514306 (Gregory, 2022). See also https://github.com/
William-gregory/CMIP6 (last access: 16 February 2022) for more
information on bulk downloads of CMIP6 data.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-16-1653-2022-supplement.
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