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Abstract. The sea-ice floe size distribution (FSD) character-
izes the sea-ice response to atmospheric and oceanic forcing
and is important for understanding and modeling the evolv-
ing ice pack in a warming Arctic. FSDs are evaluated from
78 floe-segmented high-resolution (1 m) optical satellite im-
ages capturing a range of settings and sea-ice states during
spring through fall from 1999 to 2014 in the Canada Basin.
For any given image, the structure of the FSD is found to be
sensitive to a classification threshold value (i.e., to specify an
image pixel as being either water or ice) used in image seg-
mentation, and an approach to account for this sensitivity is
presented. The FSDs are found to exhibit a single power-law
regime between floe areas 50 m2 and 5 km2, characterized
by exponents (slopes in log-log space) in the range −2.03
to −1.65. A distinct linear relationship between slopes and
sea-ice concentrations is found, with steeper slopes (i.e., a
larger proportion of smaller to larger floes) corresponding to
lower sea-ice concentrations. Further, a seasonal variation in
slopes is found for fixed sites in the Canada Basin that un-
dergo a seasonal cycle in sea-ice concentration, while sites
with extensive sea-ice cover year-round do not exhibit any
seasonal change in FSD properties. Our results suggest that
sea-ice concentration should be considered in any character-
ization of a time-varying FSD (for use in sea-ice models, for
example).

1 Introduction

The Arctic Ocean is covered perennially to varying extents
by sea ice floating in discrete fragments called floes, which
range in size from O(1) m to O(100) km (Untersteiner, 1986).
This assortment of sizes, which may be described by a sea-

ice floe size distribution (FSD, see Rothrock and Thorndike,
1984), influences and is influenced by the ice pack response
to thermal and dynamic atmospheric and oceanic forcing; for
example, a distribution with a larger fraction of smaller, thin-
ner floes will melt more rapidly (e.g., via lateral melting)
(Steele, 1992) and deform and drift with less resistance than
a field comprised of more larger floes. In turn, the FSD in-
fluences energetics and mixing in the upper ocean through
a variety of processes, such as spatially variable momen-
tum transfer and buoyancy fluxes that generate small-scale
ocean flows (e.g., Mensa and Timmermans, 2017; Smith et
al., 2002). Bateson et al. (2020) account for varying floe sizes
in a sea-ice model (developed for use in a climate model) via
an FSD that is iteratively modified by melt/growth and dy-
namical processes; they demonstrate that melt patterns (e.g.,
basal vs. lateral melt) differ significantly when a size distri-
bution is accounted for (see also Roach et al., 2018). Accu-
rate observational characterization of the FSD yields insight
into the physics of the ice cover and its surroundings and pro-
vides validation of Arctic modeling studies that incorporate
the FSD to more accurately represent these processes and
their seasonality (e.g., Horvat and Tziperman, 2015; Roach
et al., 2019; Zhang et al., 2015, 2016).

The sea-ice FSD has been characterized extensively in
observations since the seminal paper of Rothrock and
Thorndike (1984); the FSD may be quantified in a number of
ways, for example as the number of floes per unit area of the
region in question which have sizes that are not smaller than
a given size. In general, the FSD resembles a single power
law (e.g., Gherardi and Lagomarsino, 2015; Hwang et al.,
2017; Stern et al., 2018b) or two distinct power laws depend-
ing on floe scales (Geise et al., 2017; Steer et al., 2008; Toy-
ota et al., 2011, 2006), although alternate distributions have
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been explored (see, e.g., Herman, 2010, and the discussion
by Stern et al., 2018a). There are limited FSD characteriza-
tions that span a comprehensive range of floe scales, from
O(1) m to more than O(10) km (see Stern et al., 2018a). This
is in part due to a reliance on high-resolution aerial photog-
raphy with limited area coverage and sampling. While Stern
et al. (2018b) find that a single-power law may describe the
FSD across floe scales ranging from 10 m to 30 km, it re-
mains an open question as to whether a single power law
holds across all floe scales and in all settings, or whether
there may be two distinct power-law regimes. The seasonal
evolution of observed FSDs has been the subject of several
recent observational studies (Hwang et al., 2017; Perovich
and Jones, 2014; Stern et al., 2018b), each of which finds a
steepening of the FSD slope into summer. This slope increase
in the melt season is thought to be related to the breakup of
floes beginning in the spring in tandem with melt through
the summer reducing the proportion of larger to smaller floes
(e.g., Stern et al., 2018b).

A collection of high-resolution optical satellite images,
spanning nearly two decades, from different locations within
the Canada Basin, allows us to test and refine previous find-
ings for a variety of settings, and for floe sizes in the range
of 5 m2 to 100 km2. In the next section, we introduce the
collection of images and describe our image segmentation
methodology and FSD construction. In Sect. 3, we show how
FSDs exhibit a single power-law behavior spanning the full
range of floe sizes and provide evidence for a shoaling of
the slope of the distribution (i.e., increased ratio of larger to
smaller floes) as sea-ice concentration increases. This find-
ing is consistent with a seasonal evolution of the FSD found
here, which we describe in context with previous studies in
Sect. 3.4. Results are summarized and discussed in Sect. 4.

2 Data and methods

2.1 Satellite imagery and environmental parameters

We perform a floe-size distribution analysis on 78 high-
resolution, cloud-free, electro-optical satellite images of sea
ice in the Canada Basin acquired from a United States mil-
itary passive satellite sensor from 1999 through 2014 (ex-
cepting years 2003–2005 and 2009), declassified as a part of
the military and scientific coalition MEDEA program (Baker
and Zall, 2020), and distributed to the public through the
United States Geological Survey (USGS) Global Fiducials
Library (GFL) Program. The images were obtained during
April through September of those years over various geo-
graphic locations (Fig. 1a and Table 1), including three sta-
tionary “fiducial” sites in the Beaufort and Chukchi Seas,
and the northern Canada Basin, designated as consistent lo-
cations within the Basin for inter-annual comparison of envi-
ronmental observations. The 2013 and 2014 image sets con-
tain additional images acquired at nonfiducial sites over des-

Table 1. Number of images acquired at the Beaufort, Chukchi, and
northern Canada Basin fixed USGS fiducial sites (designated in
Fig. 1a by asterisks); at GFL locations corresponding to other pro-
grams (including NASA’s Operation IceBridge, and ONR’s SIZRS
and MIZ DRI, designated in Fig. 1a by light gray circles at locations
with no asterisks); and in total. Images acquired on the same day at
the same site are not independent samples; their presence is denoted
by ∗.

Beaufort Chukchi N. Canada Basin Other Total

April 5∗ 2 1 17 25
May 7∗ 2 7∗ 4 20
June 2∗ 5∗ 1 7 15
July 1 1 3∗ 3 8
August 1 0 3∗ 2 6
September 1 0 1 2 4

Total 17 10 16 35 78

ignated drifting floes and released through the GFL in sup-
port of the National Aeronautics and Space Administration
(NASA) Operation IceBridge, and the Office of Naval Re-
search (ONR) Seasonal Ice Zone Reconnaissance Surveys
(SIZRS) and Marginal Ice Zone (MIZ) Departmental Re-
search Initiative (DRI) field campaign (see Lee et al., 2012).
The images are panchromatic (with uncalibrated grayscale
pixel values ranging from 0 to 255) and projected onto the
Universal Transverse Mercator (UTM) grid with a resolu-
tion of 1 m; the SIZRS images have a resolution of 1.3 m.
The images cover areas O(1–1000) km2 and allow for char-
acterization of the sea-ice FSD on scales from O(1) m2 to
O(100) km2. We note that partially or fully cloud-covered
images on the GFL were generally unambiguous and rejected
outright from our analysis. Cloudy pixels either fully obscure
information about the ice cover below or interfere with the
proper identification of floe outlines. For further descriptions
of the MEDEA imagery, see Kwok (2014) and Baker and
Zall (2020).

We examine the FSD for all 78 images in the context of
the following environmental parameters: sea ice concentra-
tion (SIC, fractional area of sea ice in the image), distance
to the ice edge (km), and surface air temperature (SAT, ◦C),
Table A1. SIC is calculated for each image by dividing the
total identified ice area (including that of border-intersecting
floes) in the segmented image by the total area of the image.
This is compared with SIC from passive microwave satellite
data for the dates and locations of the images. Distance to the
ice edge is computed as the distance (rounded to the nearest
100 km) between the image location and the nearest point on
the median ice edge contour (defined where the concentration
is 15 %) for the month and year of the image. SIC from pas-
sive microwave data is from the National Oceanic and Atmo-
spheric Administration/National Snow and Ice Data Center
(NOAA/NSIDC) Climate Data Record of Passive Microwave
Sea Ice Concentration, Version 4 (Peng et al., 2013; Meier et
al., 2021). Median ice edge contours are from the NSIDC Sea
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Figure 1. Map of study region with image locations, and example subsets of images and corresponding segmentations. (a) Study region
within the Canada Basin with locations of 78 images from 1999 to 2014 (gray circles). (b) through (f) 100 km2 image subregions (top) and
corresponding image segmentations (bottom) from (b) 30 April 2014, (c) 12 June 2008, (d) 23 July 2007, (e) 11 August 2014, and (f) 20
September 2014. Locations of images (b) (green)–(f) (yellow) are labeled on the map. USGS fiducial sites (black asterisks), for which there
are images from multiple years, are noted to the southeast of (e) (Beaufort Sea), at (c) (Chukchi Sea), and at (d) (northern Canada Basin).
Median ice extents (bounding the area with more than 15 % concentration) are shown for (b)–(f) in corresponding colored lines for those
months (the April 2014 extent is south of the map domain). The median monthly ice extents are from the NSIDC Sea Ice Index, Version 3
(Fetterer et al., 2017).

Ice Index, Version 3, and are derived from passive microwave
SIC data (Fetterer et al., 2017). SAT (at 2 m) is retrieved from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5 Reanalysis (Hersbach et al., 2020) hourly
data on single levels from 1979 to present (Hersbach et al.,
2018) and taken as the mean daily value for each image re-
gion on the corresponding image day.

2.2 Image segmentation

An algorithm for segmentation of individual sea-ice floes in
the images is developed (Denton, 2022) using a combination
of “restricted growing” steps (Soh et al., 1998), with the ad-
dition of an alternative approach (described in Sect. 2.2.3) to
the first step of the algorithm, which requires the image to
be preprocessed into a binary image. Generally, each image
is first manually classified into ice (floes) and water (back-
ground) separated by some grayscale threshold based upon
the image pixel value histogram in which low grayscale val-
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ues indicate dark open water, and high values indicate bright
ice. The classified image is then segmented via an iterative
erosion-expansion scheme in which floe-edge pixels are con-
verted to water pixels via a binary filter (see Soh et al., 1998)
until a distinct separation of individual floes is apparent (via
visual check). The eroded and separated floes are then in-
dividually labeled and subsequently expanded to their orig-
inal size (see Paget et al., 2001). Only the largest floes are
segmented and their ice pixels removed from the binary im-
age after the first erosion-expansion iteration, and the binary
image is subsequently eroded iteratively to lesser degrees to
separate the remaining smaller, unsegmented floes (see Stern
et al., 2018b). Finally, any floes cut off by the image borders
are removed. Floe areas are retrieved from the segmented im-
age to construct an FSD, described in Sect. 2.3. We limit our
FSD analysis to floes having an area of at least 5 pixels, or
5 m2 (smaller scales are indistinguishable from noise) and
consider floe areas over the range of 5 m2 to 100 km2.

There are two main steps in erosion-expansion segmenta-
tion which require a choice of parameter at the discretion of
the user: classification and erosion.

2.2.1 Classification: choice of grayscale threshold

Classification separates ice pixels from ocean pixels via the
choice of a threshold grayscale value. A grayscale optical
satellite image of sea ice ideally contains two peaks in its his-
togram: a bright-ice peak nearer to values of 255 and a dark-
ocean peak nearer to values of 0 (see Fig. 2g; note that pixel
values have been scaled to fall between 0 and 1). The thresh-
old must fall between the histogram ice and water peaks to
separate ice floes from the ocean. This choice of the precise
threshold (see Sect. 2.2.3) can be made difficult by the dis-
tance between the histogram peaks being large (as in Fig. 2g),
the peaks being flattened or nonexistent, or the presence of a
third peak or cluster of peaks between the ocean and bright-
ice peaks, resulting from classes that are not easily catego-
rized as ice or ocean (e.g., thin, dark ice, or melt ponds, or
ridge shadows).

2.2.2 Erosion and expansion

Erosion converts any ice pixels adjacent to ocean pixels in
the classified image into ocean pixels. This has the visual
effect of eroding the ice floes away from each other but also
of expanding any clusters of ocean pixels in floe interiors
(e.g., melt ponds classified as ocean), possibly leading to the
division of a single floe into multiple floes. Erosion is done
iteratively enough times to provide a full separation of floes,
with clear boundaries of ocean between them. The eroded
binary image is then filtered in a process called filling, in
which any ocean pixels in the interior of individual floes are
converted to ice pixels (see Stern et al., 2018b); this has the
visual effect of filling ocean holes in floes, and practically
of suppressing artifact floes from emerging in floe interiors

during the subsequent expansion step. The eroded, filled floes
are then labeled with a unique positive integer value.

The binary image is then filtered one last time in a process
called expansion, in which eroded pixel bands around floe
edges (ocean pixels that were originally ice pixels) are con-
verted back to ice pixels, band by band, the same number of
times as the number of erosions. At every step, these pixels
are assigned a value equivalent to the positive integer mode
of the surrounding 8 pixels (or a new unique positive inte-
ger value if all neighboring pixels represent ocean and have a
value of 0), until all floes are expanded to their original size
with unique numerical labels (see Paget et al., 2001). This
process is repeated hierarchically in which the largest floes
are segmented and removed from the binary image first, and
the smallest floes are segmented last; this is because the num-
ber of erosions required to separate the largest floes will also
completely erode the smallest floes, leaving them unlabeled
in the segmented image (see Stern et al., 2018b). The num-
ber of erosions at each hierarchical step is chosen such that
floe separation is maximized while expansion of ocean holes
within floes is minimized.

2.2.3 Selection of classification threshold

Past segmentation studies have chosen a classification thresh-
old that reduces features on the surface of a floe (e.g., melt
ponds or ridge shadows classified as ocean; see Paget et al.,
2001, their Fig. 1a; and Stern et al., 2018b, their Fig. 3b). The
motivation for this choice, which is a lower threshold value,
is to avoid the growth of ocean holes in a floe and to re-
duce artifact floes (see, e.g., Paget et al., 2001). On the other
hand, small floes (having horizontal scales less than around
40 m) do not separate well after classification with a lower-
threshold approach because the grayscale pixel values of the
boundaries of small floes tend to be similar to that of surface
features (see Fig. 2); small-floe boundaries will be ill-defined
in the classified image, and they may be assigned as belong-
ing to larger floes. Further, artifact floes emerge where small
floes are ill defined or where a few surface features have sur-
vived low-threshold classification. These artifact floes are ap-
parent by their rectangular edges, which result from the row-
by-row sweep across the image of the erosion-expansion fil-
ters; if usually rounded floe edges or surface features are not
well defined, the effect of the filters will be to impose linear
edges and features.

To alleviate the issues described above, we take an alterna-
tive approach and choose a threshold value that is sufficiently
large that small-floe (horizontal scales less than around 40 m)
boundaries are well defined in the binary image (Fig. 2e).
Large floes remain well defined, even if the larger threshold
results in ocean pixels within their interiors. The number of
erosions required to properly separate floes at each hierar-
chical step is much lower [O(1) compared to O(10); see e.g.,
Paget et al., 2001; Stern et al., 2018b] if a larger threshold
is chosen. Performing fewer erosions limits the expansion of
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Figure 2. Comparison at the small-floe scale of segmentation of an MIZ MEDEA image from 11 August 2014 using different parameters.
(a) A 750 m× 750 m subregion of the image showing heavily ponded, broken ice and open water; (b) through (f) segmentations of the same
subregion obtained by applying grayscale thresholds (on a scale of 0 to 1) of 0.15, 0.3, 0.4, 0.5, and 0.7, respectively; (g) histogram of pixel
grayscale values (scaled from 0–255 to 0–1) for the overall image showing the location of grayscale thresholds for (b) (black) through (f)
(magenta); and (h) floe size distributions of (b) (black) through (f) (magenta). Vertical lines are shown at scales shown in (b) through (d),
which correspond to the size of artifact floes in each.

floe-interior ocean holes and the emergence of artificial floes.
The filling step also acts to alleviate emergence of artifact
floes. Examination of the histogram of pixel grayscale values
for any given image suggests a natural choice of threshold as
the local minimum between two local maxima (dark ice or
melt ponds and bright ice). In practice, the choice must usu-
ally be made using iterative adjustments to this location after
visual checks of the classified image; here, we iteratively in-
crease the threshold above the minimum until the edges of
small floes are appropriately delineated (see Fig. 2).

This choice of higher threshold yields adequate identifica-
tion of smaller floes in the image, with smaller and fewer arti-
fact floes (those with rectangular edges, see Fig. 2f compared
with Fig. 2b). A secondary benefit of the high-threshold ap-
proach presented here is speed. The expansion step occu-
pies the most time (mode filtering is a computationally inten-
sive process); because the number of expansions will match
the number of erosions, reducing the number of erosions by
an order of magnitude will significantly speed up the seg-
mentation. In practice, we find that using the low-threshold
approach of Paget et al. (2001) on our dataset results in a
segmentation time of O(10) min to O(1) d, while using our
high-threshold approach results in a segmentation time of
O(1) min to O(1) h.

2.3 Floe size distribution

We construct the FSD using a number density n(a), com-
puted as the fractional number of floes in the scene having
area between a and a+ da, divided by the width of the bin,
da. We use 15 bins spaced logarithmically (such that bin
sizes increase with larger areas) from 5 m2 to 100 km2, with
a minimum floe number requirement of 2 per bin. If the FSD
satisfies a power law, the number density will fall along a
straight line in a log-log plot; we can write n(a)= cam for
0 < a <∞, where c is a normalization constant, and the dis-
tribution has slope m. We test the sensitivity of the FSD to
the choice of bin number by varying the number of bins from
15 to 5 and find that the shape of the FSD is stable between
10 and 15 bins. Due to the sparsity of floes in the largest
bins, a result of the finite size limit of whole large floes being
captured in satellite images, we limit the linear fit in log-log
plots (to estimate m) to floe areas smaller than 5 km2.

The FSD defined above is a noncumulative form, while
some studies present the cumulative form of the FSD (i.e.,
the integral of the probability density function). When the
noncumulative FSD is a straight line on a log-log plot, its cu-
mulative form will not be a straight line when the maximum
floe size has some finite upper bound. Rather, the cumulative
FSD in log-log space will be concave down (see the discus-
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Figure 3. FSDs and FSD slopes m versus month, SIC (fractional area) versus month, and slopes m versus SIC, for 78 satellite images acquired
from 1999 to 2014 in April through September of those years. (a) FSDs (gray lines) are plotted on a log-log scale using 15 logarithmically
spaced bins for the range of floe areas spanning 5 m2 to 100 km2 and the requirement of a bin count of at least 2 floes. A representative FSD
is shown for the 19 June 2014 image (black line with solid circles) with a linear best-fit (green dashed line) and slope m (green). Fits are
taken from 50 m2 to 5 km2 for reasons discussed in Sects. 2.2.3 and 2.3. (b) FSD slopes m versus month. In (b)–(d), black dots are shown
for images segmented with high confidence and gray dots for those segmented with low confidence. Slopes m for the three GFL site (see
Fig. 1a) images only are shown in cyan (Beaufort Sea), red (Chukchi Sea), and magenta (northern Canada Basin), with mean monthly slopes
(triangles). (c) SIC versus month. SICs for the GFL site images only are shown again in cyan (Beaufort Sea), red (Chukchi Sea), and magenta
(northern Canada Basin), with mean monthly SICs (triangles). In (b) and (c), individual slopes and SICs from low-confidence segmentations
at the GFL sites are shown in a lighter shade of each site’s designated fill-color. (d) FSD slopes m versus SIC and linear fit (black dashed
line) with slope (and 95 % confidence intervals).

sion by Stern et al., 2018a). The cumulative FSD may present
both a flattened slope over small-floe scales and a steep slope
in the large-floe tail (e.g., Hwang et al., 2017, Fig. 1d), nei-
ther of which can be discerned as purely physical. Inter-
pretation of the cumulative FSD is ambiguous because this
concave-down behavior may alternatively be a manifestation
of the distribution of ice floe sizes having multiple power-law
regimes.

The floe size may be taken to be floe area a, perimeter,
or a diameter proxy such as mean caliper diameter (MCD),
used commonly after Rothrock and Thorndike (1984). In the
present work, we use floe area because we obtain this directly
in the segmentation (and it is directly relatable to floe mod-
els), although this is easily related to the MCD (see Rothrock
and Thorndike, 1984; Stern et al., 2018a). We note, however,
that relating FSDs derived from a and MCD requires caution
(see Sect. 3.4).

2.3.1 FSD sensitivity to the choice of classification
threshold

The size of the “artifact” floes discussed in Sect. 2.2.3 (where
the size is shown in scale bars in Fig. 2b–d), corresponds to
the scale of an apparent change in slope of the corresponding
FSD (Fig. 2h, black, red, and blue dashed lines), in which
the slope (exponent) is steeper for floe areas larger than this
scale and flatter for floe areas smaller. This appears to result
from an overidentification of floes at the artifact scale, and
an underidentification of the floes smaller than it. Testing a
range of classification thresholds shows how the scale of ar-
tifact floes is affected by this choice, as is the resulting scale
at which there is a change in FSD slope (Fig. 2b through d);
a higher threshold choice eliminates the spurious change in
FSD slope caused by such floe misidentifications around this
artifact scale.

A potentially undesirable effect of a high threshold is that
larger floes may be incorrectly divided into multiple floes
(see Fig. 2c through f). However, such oversegmentation of
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larger floes seems to have a minimal effect on the slope of
the FSD for floe areas larger than the artifact scale (as in
Fig. 2h). At the small-floe scale, the lower limit to the reduc-
tion of the size of artifact floes through adequate segmenta-
tion is around 50 m2 for our image dataset. For this and the
reasons described above, the slope of the FSD is valid only
for floe areas larger than 50 m2, and we limit fitting in log-
log plots (to estimate m) to floe areas between 50 m2 and
5 km2 (see also Sect. 2.3). The number of floes that fall in
this fitting range (see Table A1) is between 10 % to 55 % of
the total number of whole floes segmented across the entire
floe range between 5 m2 and 100 km2 (with the minimum floe
count requirement of 2 per bin). Any segmentation resulting
from this approach that identifies floes inadequately or can-
not be validated due to visual ambiguity of the ice field is
not included for analysis. Certain segmentations that, upon
visual validation, are neither wholly adequate nor inadequate
are retained for analysis but are tagged in plots in the results
and are indicated in Table A1 as low confidence.

2.3.2 FSD power-law fit evaluation

The maximum likelihood estimator (MLE, see Clauset et al.,
2009) can be preferable for the determination of FSD slopes
as it does not rely on specifying bins or fitting ranges (Hwang
et al., 2017; Stern et al., 2018a, b). In addition to least-
squares fitted slopes m and following Clauset et al. (2009),
we compute FSD MLE slopes mMLE, and conduct goodness-
of-fit tests on these power-law fits, reporting corresponding
p-values (where the p-value is the probability that the differ-
ence between the model fit and the observed FSD could be
due to statistical fluctuations; see Clauset et al., 2009 for a
detailed discussion). The power-law fit is a plausible model
for the FSD if the computed p-value is sufficiently large
(p ≥ 0.1); otherwise, the power-law model must be rejected.

Clauset et al. (2009) argue that a strict statistical lower
bound on power-law behavior must be computed for the ob-
served distribution; we compute these values amin, follow-
ing their methodology. Because mMLE and amin are deter-
mined directly from the unbinned floe areas for each image,
we compute both over all floe areas (≥ 5 m2), and do not ex-
clude floes at or below the artifact scale.

3 Results

3.1 FSD slope characteristics

Results indicate that FSDs are characterized by a single
power law with (linear least-squares fit) slope m for the en-
tire regime of floe areas between 50 m2 and 5 km2 (Fig. 3a).
Slope values m range from−2.03 to−1.65 (Table A1) with a
mean across all images of −1.79± 0.08. This single power-
law structure is consistent across all images (Fig. 3a), which
span 6 months from initial spring breakup in April to the

September ice minimum for a 15-year period, and a range
of sea-ice settings from the MIZ to the interior pack.

We find no significant difference between slopes m and
mMLE (Table A1). The mean mMLE over all images is -1.77
± 0.11. Considering each image, mMLE differs from m by
about 3 % on average. We find that 76 % of the fits pass the
goodness-of-fit test with p ≥ 0.1 (Table A1), meaning that
the FSDs can plausibly be power-law distributed. Finally, we
find that the strict lower-bound to power-law behavior amin
varies considerably over the images (Table A1), spanning
around 10 to 10 000 m2 with a median value of 361 m2. Con-
sidering that the largest floe areas in the images are around
10 to 100 km2, the range of floe sizes over which the power-
law fits apply is large. Values amin can vary significantly even
across images acquired on the same day at the same location
(see, e.g., Table A1, images 14–15).

Examining m from 1999 to 2014 reveals that there is
no apparent overall interannual trend of FSD slopes in the
Canada Basin. It might have been expected that a steepening
of the slope (i.e., a higher portion of small to large floes, and
more negative FSD slopes) over multiple years would occur
as the sea-ice thins and summer concentrations decline. How-
ever, we find no evidence for an overall change in m. It may
be that the latitudinal span of images obscures any temporal
variability over the 15 years analyzed.

Partitioning the image FSD slopes by month, we find that
there is no apparent variation in m with season (Fig. 3b). In
the next section, we consider FSD slopes retrieved at the
three fixed GFL fiducial sites (see Fig. 1a) to investigate
whether there may be a seasonal signal obscured by spa-
tial variability of the sample locations. There is an increasing
spread in the values of m in any single month as the season
progresses from April through September. We will show that
in these later months, the broad latitudinal distribution in im-
ages is accompanied by a significant latitudinal distribution
of SICs and SATs. We further note that we have low confi-
dence in some segmentations in late summer months (those
shown by gray dots in Fig. 3b–d); appropriate segmentation
of images in which the effects of melt are prominent (e.g., ex-
tensive ponding and slush ice) can be problematic, especially
when validation by eye is not possible.

3.2 Seasonal variability at stationary locations in the
Canada Basin

Considering only the 17 images at the Beaufort Sea site
(73◦ N, 150◦W), which span the whole range of years and
months, we find that a clear seasonal signal in slope emerges
(Fig. 3b, cyan line). The mean slope m at the Beaufort site is
shallowest in April and May, and then steepens through Au-
gust, increasing only slightly through September (only a sin-
gle image is available for each month from July to September
at the Beaufort site).

At the Chukchi site (70◦ N, 170◦W), 10 images span
years 2006–2014 and only for months April through July.
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While we cannot examine the entire spring–fall seasonality
of Chukchi FSD slopes, there is evidence of a similar start
to the seasonal signal as that of the Beaufort, with greater
variability in April and June. In April and May, mean m at
the Chukchi site is shallowest, steepening for June and July
(Fig. 3b, red line).

Examining m from 16 images spanning years 2000–2014
and the entire range of months at the northern Canada Basin
site (85◦ N, 120◦W), we find no discernable seasonal vari-
ability of FSD slopes (Fig. 3b, magenta line). We posit that
a lack of seasonal signal in the northern Canada Basin is due
to the lack of a seasonal signal in SIC at that location, which
we discuss in the next section.

Note that for each of the GFL sites, we compute mean
monthly slopes after first taking the mean of any slopes from
images acquired on the same day at a particular site, to ac-
count for the fact that these are not independent estimates
(see Table 1). We do the same for mean monthly SIC at the
GFL sites, discussed in the next section.

3.3 Relationship between FSD slope, sea-ice
concentration, and surface air temperatures

It is notable that seasonal variations in SIC are only apparent
for the images at the Beaufort and Chukchi sites, and not at
the northern Canada Basin site (Fig. 3c). At both the Beau-
fort and Chukchi sites, the evolution of monthly mean SIC
(highest in April and May and decreasing through the sum-
mer) closely resembles the seasonal evolution of m for the
sites. Mean SIC at the northern Canada Basin site exhibits
virtually no seasonality and always remains above 0.80, in
the same way that m does not vary much from spring to fall
at that site.

There is a statistically significant linear relationship be-
tween m and SIC (Fig. 3d), with m shoaling as SIC increases.
The best-fit linear slope is the same (within 95 % uncertainty)
if values of m for segmentations with poor confidence (gray
dots) are excluded from the fit. Note that there are more sam-
ple points in the high SIC range than in the low range, and the
linear fit can only explain 33 % of the variation (r-squared is
0.33) in m with SIC. However, the linear relationship is sta-
tistically significant with a p-value of O(10−8) (i.e., < 0.01).

The FSD may logically be expected to differ with distance
to the ice edge if, for example, wave propagation into the
ice pack plays some role in governing floe breakup (see the
discussion in Toyota et al., 2011, 2016). In the set of im-
ages analyzed here, the variation in m with distance to the
ice edge (not shown) is not straightforward. For those im-
ages with SIC less than 0.80, which range from 0 to 1600 km
from the ice edge, m appears to generally shoal with increas-
ing distance from the ice edge. However, for images with
SIC greater than or equal to 0.80, which range from 200 to
3600 km to the ice edge, m exhibits no clear variation with
distance to the ice edge. SIC is not linear with distance to the
ice edge at the location of images analyzed here; any tie be-

tween distance to the ice edge and m is likely dominated by
SIC.

With respect to SAT, we find that m is relatively constant
(between around −1.9 to −1.7) for a large range of tempera-
tures (mean SAT over the day of a given image), in the range
−25 to−2 ◦C, with no statistically significant linear relation-
ship between m and SAT. In a “melt” regime (which we de-
fine to correspond to SATs between −2 and 4 ◦C), m values
span their entire range (between around−2.0 and−1.6). This
shows, again, the increased range of FSD slopes during the
warmer months. Considering only the Beaufort and Chukchi
Sea GFL sites reveals a similar structure to the two overall
temperature regimes for FSD slopes: a cold regime in which
values of m remain relatively constant, and a melt regime
in which values of m span nearly their entire range. At the
northern Canada Basin site, on the other hand, SATs remain
predominately below 0 ◦C, and m remains shallow in the melt
regime between temperatures −2 and 0 ◦C (i.e., there are no
m values <−1.82). Finally, we note that for this image set,
there is no clear relationship between SIC and SAT, again
because for the melt range of SATs, SICs span their entire
range. That is, the SIC relates directly to the FSD slope m,
while there is no relationship between SAT and m.

3.4 Context with previous studies

It is useful to compare our slopes to relevant previous stud-
ies in the same region (Stern et al., 2018b, a; Hwang et
al., 2017). Stern et al. (2018b) examined the noncumulative
FSD using MCD, x, and plotting a floe number density n(x),
where a ∼ x2. From an application of basic probability the-
ory, slopes reported in studies that examine the noncumula-
tive FSD using normalized floe number densities constructed
from x are equivalent to 2m+1 (where m refers to slopes
found in this study). Note that this is not the same for the
comparison to slopes of the cumulative FSD (see Stern et al.,
2018a, their Table 1 footnotes).

Stern et al. (2018b) analyzed moderate-resolution (250 m)
satellite images and characterized the FSD in the Beaufort
and Chukchi seas during the summers of 2013 and 2014,
finding that a single power law describes the FSD across floe
diameters 2 to 30 km. Applying the transformation above to
the reported range of slopes in Stern et al. (2018b) (−2.81
to −1.90, their Table 4) yields −1.91 to −1.45, which over-
laps closely with the range of m found here. We do not ex-
pect complete overlap of our slope range with theirs as they
report mean monthly slope values, whereas our range is re-
ported for the entirety of segmented images. We note that
for our analysis of the same subset of an image analyzed by
Stern et al. (2018b) (8 July 2014, their Fig. 10; image not
included in our analysis due to partial cloud cover), our seg-
mentation characterized by FSD slope m agrees exactly with
theirs (upon applying the transformation).

Stern et al. (2018b) additionally analyzed the FSD in 12
subregions of 3 high-resolution MEDEA images in 2014 in
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the Beaufort Sea and concluded that a single power-law char-
acterization may extend to floe scales as small as 10 m, al-
though the authors note that this conclusion is only supported
by visual comparison of the FSD slopes on the smaller scale
and those on the larger scale (from the moderate-resolution
images), and not from statistical, quantitative comparison.
Here, we extend the study of the small-scale behavior of the
FSD from 3 high-resolution images over 1 summer to 78 over
12 summers in the same Arctic region and surrounding it, and
find that a single power law is, indeed, applicable to the FSD
across floe areas of 50 m2 to 5 km2, equivalent to a floe diam-
eter range of ∼ 9 m to 3 km (using the area to MCD relation
in Rothrock and Thorndike, 1984, a = 0.66x2).

With respect to seasonal variability, Stern et al. (2018b)
found similar seasonal variations for floe sizes in the 2 to
30 km range in Beaufort and Chukchi FSD slopes (steepen-
ing from April through August and shoaling again in Septem-
ber). They point out that this is consistent with spring through
summer breakup of larger floes, the shrinking of floes due to
summer melt, followed by removal of the smallest floes at the
end of melt, and fall freeze-up of the ice field into large floes
again. Hwang et al. (2017) examined the cumulative FSD for
floe MCDs larger than about 100 m using TerraSAR-X Syn-
thetic Aperture Radar images from 2014 in the Beaufort Sea
region. They relate floe fracturing and corresponding steep-
ening in FSD slopes (over a similar range of scales described
by m) to a sequence of wind-driven deformation events over
one summer season in the Beaufort Sea. They demonstrate a
distinct steepening of the FSD slope in August, which they
relate to the timing of melt becoming dominant.

4 Summary and Discussion

We have segmented and retrieved the areas of Arctic sea-
ice floes from 78 high-resolution optical satellite images ac-
quired in the Canada Basin between 1999 and 2014. Our
analysis of the resulting FSDs shows that the distributions
exhibit a single power-law behavior across floes ranging in
area from 50 m2 to 5 km2. We find that the slope m of the
power law in log-log space ranges from −2.03 to −1.65 and
shoals with increasing SIC. We find that, correspondingly, at
locations within the Canada Basin that experience a distinct
reduction in SIC from April through August and an increase
in September, a similar seasonal signal in m appears. On the
other hand, at locations that undergo no distinct change in
SIC through the summer, m remains constant.

While we might have anticipated that any seasonality in
m might be related to seasonal changes in SAT, consistent
with melt onset (see, e.g., Hwang et al., 2017; Stern et al.,
2018b), we find that seasonal variation in m is more directly
related to changes in SIC. These findings provide support for
an approach that uses SIC in any characterization of the FSD.
Future studies are needed to investigate the relevant dynam-
ics (i.e., wind-forced sea-ice deformation and breakup) and

thermodynamics (e.g., ocean-to-ice heat fluxes) of the sea-ice
pack to explore the precise mechanisms by which the sea-ice
concentration relates to the structure of the FSD, and how this
relationship might differ in different settings. For example,
a scenario might be envisioned where the FSD slope could
steepen (e.g., as a result of fewer large floes and more smaller
floes), while the SIC remains the same, and this might indi-
cate a fracturing. Conversely, a shoaling of the FSD slope as-
sociated with the loss of small floes (e.g., via relatively rapid
lateral melt of smaller floes compared to larger floes) may be
associated with a different SIC-FSD relationship.

Finally, we point out that several other previous studies
report two distinct floe-size regimes, in which a small-floe
regime is characterized by shallower FSD slopes and a large-
floe regime by steeper slopes (Geise et al., 2017; Steer et
al., 2008; Toyota et al., 2011, 2006). Using images from the
Weddell Sea, Steer et al. (2008) examine the non-cumulative
FSD for floe diameters between O(1) and O(100) m, finding
a change in FSD slope at 20 m. In addition, Perovich and
Jones (2014) show a possible plateauing of the FSD slope
at the small-floe scale (although they do not explicitly refer
to two regimes). For a range of sea-ice settings, and con-
sidering floe diameters in the range O(1–1000) m, Toyota
et al. (2011, 2006) find two floe-size regimes for floe sizes
larger and smaller than about 20 to 40 m diameter. We note
that these studies classify images into ice and water as an
initial step, choosing a classification threshold. Our test of
FSD sensitivity to this choice reveals that the FSD can ap-
pear divided into two power-law regimes if this choice does
not adequately identify small floes.

Our finding of a single power law suggests that the pro-
cesses that govern the distribution of floe sizes are similar
across the full range of floe sizes, while studies that find
two distinct power-law regimes would indicate that different
processes act on different scales. For example, Horvat and
Tziperman (2017) use a coupled ice-ocean model to show
that increased lateral melt on specific floe sizes and transient
oceanic forcing on the ice pack can perturb the FSD behavior
from a single power-law at the relevant scale. Future work
is needed to determine how different FSD structures might
emerge in certain settings.
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Code and data availability. The MATLAB algorithm (Denton,
2022) written and used here to segment sea-ice floes in satel-
lite images is available at https://doi.org/10.5281/zenodo.6146144.
The sea-ice floe segmentation products (Denton and Timmermans,
2022) derived from MEDEA imagery and presented here are
available for download at https://doi.org/10.5281/zenodo.6341621.
MEDEA images are available from the USGS GFL (https://www.
usgs.gov/global-fiducials-library-data-access-portal, United States
Geological Survey, 2022). SIC passive microwave data are from the
NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice
Concentration, Version 4 (Peng et al., 2013; Meier et al., 2021). Me-
dian ice edge contours are from the NSIDC Sea Ice Index, Version
3 (Fetterer et al., 2017). SAT data are from the ECMWF ERA5 Re-
analysis (Hersbach et al., 2020), ERA5 hourly data on single levels
from 1979 to present (Hersbach et al., 2018), and were downloaded
from the Copernicus Climate Change Service (C3S) Climate Data
Store. The results contain modified Copernicus Climate Change
Service information 2021. Neither the European Commission nor
ECMWF is responsible for any use that may be made of the Coper-
nicus information or data it contains.
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