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Abstract. Area-based measurements of snow water equiv-
alent (SWE) are important for understanding earth system
processes such as glacier mass balance, winter hydrologi-
cal storage in drainage basins, and ground thermal regimes.
Remote sensing techniques are ideally suited for wide-scale
area-based mapping with the most commonly used technique
to measure SWE being passive microwave, which is lim-
ited to coarse spatial resolutions of 25 km or greater and to
areas without significant topographic variation. Passive mi-
crowave also has a negative bias for large SWE. Another
method is repeat-pass synthetic aperture radar interferometry
(InSAR) that allows measurement of SWE change at much
higher spatial resolution. However, it has not been widely
adopted because (1) the phase unwrapping problem has not
been robustly addressed, especially for interferograms with
poor coherence, and (2) SWE change maps scaled directly
from repeat-pass interferograms are not an absolute measure-
ment but contain unknown offsets for each contiguous co-
herent area. We develop and test a novel method for repeat-
pass InSAR-based dry-snow SWE estimation that exploits
the sensitivity of the dry-snow refraction-induced InSAR
phase to topographic variations. The method robustly esti-
mates absolute SWE change at spatial resolutions of < 1 km
without the need for phase unwrapping. We derive a quanti-
tative signal model for this new SWE change estimator and
identify the relevant sources of bias. The method is demon-
strated using both simulated SWE distributions and a 9-year
RADARSAT-2 (C-band, 5.405 GHz) spotlight-mode dataset
near Inuvik, Northwest Territories (NWT), Canada. SWE re-
sults are compared to in situ snow survey measurements and
estimates from ERA5 reanalysis. Our method performs well
in high-relief areas, thus providing complementary coverage

to passive-microwave-based SWE estimation. Further, our
method has the advantage of requiring only a single wave-
length band and thus can utilize existing spaceborne syn-
thetic aperture radar systems.
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1 Introduction

Snowmelt is one of the greatest sources of water in snow-
affected areas (Barnett et al., 2005), snow accumulation on
glaciers is critical to their mass balance and longevity (Zemp
et al., 2009), and snow cover variation is a dominant con-
trol on ground thermal regimes in cold regions (Mackay and
MacKay, 1974); thus quantification of snowpack conditions
is essential to understanding the role of snow on earth sys-
tem processes. Snow water equivalent (SWE) is the amount
of liquid water in a vertical column of snow and is a key pa-
rameter of snowpack conditions. The SWE of a snow layer
is equal to the product of its depth and mean density. Tradi-
tionally, SWE variation over space and time is interpolated
from sparse point-based measurements (Grünewald et al.,
2010), which generally show significant spatial variation due
to factors such as topography and vegetation (Anderton et al.,
2004; Jost et al., 2007), as well as temporal bias if the ac-

Published by Copernicus Publications on behalf of the European Geosciences Union.



1498 J. Eppler et al.: Snow water equivalent change mapping

quisition of each set of points is distributed over a range of
dates (Smyth et al., 2020). Ideally the SWE measurement is
carried out over a short time span to limit within-set varia-
tion due to changing meteorological conditions. Further bias
may be introduced if different point-based methods are inte-
grated together to estimate SWE over large areas. To avoid
biases arising from the interpolation of point-based measure-
ments of typical snow packs, several remote sensing tech-
niques have been developed for wide-scale, area-based deter-
mination of SWE. With precipitation regimes changing glob-
ally under persistent climate change (Pachauri et al., 2015),
remote sensing techniques offer the potential to monitor hy-
drological conditions over vast areas of cold regions where
point-based measurements are typically sparse and collected
intermittently with a range of techniques.

Snow depth has been determined using surface elevation
models developed using lidar, as well as structure-from-
motion (optical photogrammetry) systems, either by differ-
ential repeat-pass measurement or comparison with a pre-
existing snow-free reference elevation model (Deems et al.,
2013; Nolan et al., 2015). However, as these systems are
presently only feasible on airborne platforms they have not
yet been used for repeated, wide-scale SWE mapping, which
is required to substantively improve hydrological monitor-
ing. Alternatively, spaceborne systems are designed for re-
peated wide-scale monitoring, and both passive- and active-
microwave methods to determine SWE have been demon-
strated (Saberi et al., 2020; Lemmetyinen et al., 2018). How-
ever, despite the potential for spaceborne microwave deter-
mination of SWE, there are key limitations inherent within
each of the current approaches that affect the sensitivity and
uncertainty of the measurements and prevent adoption of the
methods for wide-scale SWE monitoring.

Passive-microwave SWE estimation is based on the mea-
surement of the attenuation of Earth-emitted thermal mi-
crowave radiation by an overlaying snowpack (Kunzi et al.,
1982). It has been implemented on several spaceborne sys-
tems, generating global SWE maps with a revisit frequency
of up to daily (e.g., Takala et al., 2011). However, the passive-
microwave method has severe limitations (Takala et al.,
2011). These are as follows: (1) increased uncertainty for
larger SWE (> 150 mm) due to attenuation saturation, (2) de-
pendence on properties of snow microstructure, (3) signal
contamination from topographic variation, which restricts
the method to low-relief regions, and (4) coarse spatial res-
olution, e.g., > 25 km in the case of Advanced Microwave
Scanning Radiometer (AMSR)–E daily products.

In contrast to passive systems, active-microwave SWE
estimation methods are based on interpreting variation in
backscattered radiation following interaction with the snow-
pack. One method that promises high spatial resolution is
dual-frequency active microwave estimation, which mea-
sures total SWE in a single pass of a synthetic aperture radar
(SAR) based on the difference between the volume backscat-
ter power returned by the snowpack by two radio frequency

bands (e.g., X-band vs. Ku-band). The dual-band require-
ment of this method currently limits it to ground-based and
airborne implementations, although method-capable space-
borne missions have been proposed (e.g., Rott et al., 2012;
Derksen et al., 2019). Limitations of this method include a
dependence on snow microstructure and an applicability re-
striction to predominately dry-snow and vegetation-free ar-
eas (Oveisgharan et al., 2020).

Active-microwave-based estimation of dry-snow SWE
change can also be achieved through repeat-pass SAR inter-
ferometry (InSAR) by exploiting the phase contribution that
results from refraction in dry snow (Guneriussen et al., 2001;
Deeb et al., 2011; Leinss et al., 2015). This method measures
temporal SWE changes between repeat acquisitions rather
than total SWE; the latter must be inferred later through
integrating the SWE change maps over time. Performance
depends on sensing frequency: higher frequencies (e.g., X-
band compared to C- or L-band) have better phase sensitiv-
ity to SWE change but are more prone to temporal decorrela-
tion and to interference from volume scattering. This method
promises high spatial resolution, but it is constrained by the
following requirements: (1) observability is limited to condi-
tions in space and time with low decorrelation, (2) a spatial
reference with known SWE change since the InSAR phase
carries an unknown offset, and (3) phase unwrapping to re-
solve 2π ambiguities, which occur in significant number for
typical snowpacks (Rott et al., 2003; Leinss et al., 2015).
Decorrelation increases with liquid water content, changes
in snow distribution, and volume scattering. Particularly, due
to the need and difficulty of phase unwrapping, the method
has not yet been operationally adopted for wide-scale, re-
peat monitoring of SWE despite being proposed and demon-
strated over 20 years ago (Guneriussen et al., 2001).

Furthermore, polarimetric refraction-based methods have
been proposed to exploit the structural anisotropy of snow to
provide additional information about SWE change within a
snowpack (Leinss et al., 2016, 2020), although in this article
we focus on single-polarimetric methods.

The Delta-K method for SWE estimation (Engen et al.,
2004) is a variant of the InSAR method that differences the
InSAR dry-snow phase between two radar carrier frequency
sub-bands. This approach has the benefits of not requiring a
spatial phase reference and eliminates the need for phase un-
wrapping. However, these are at the cost of a much-reduced
sensitivity that requires substantial spatial smoothing to sup-
press the noise, which results in only coarse spatial resolu-
tion SWE estimates. For example, Engen et al. (2004) re-
port 100 mm accuracy at 10 km resolution when applying the
method to European Remote-Sensing Satellite (ERS-1) (C-
band) data.

We hypothesize that it is possible to overcome some
of the key limitations of repeat-pass InSAR for dry-snow
SWE change estimation, at the cost of only moderately
reduced spatial resolution, by exploiting the sensitivity of
the dry-snow refractive InSAR phase signal to topographic
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Table 1. Parameters for the RADARSAT-2 dataset used for this
study.

Parameter Value

Mode Spotlight-A
Pass direction Descending
Scene center (lat., long.) 68.35◦ N, 133.65◦W
Date range 22 February 2012

to 29 January 2021
Number of images 120
Repeat interval 24 d
Radar frequency 5.405 GHz
Range bandwidth 100.0 MHz
Incidence angle 49.1◦

Pixel spacing (slant range× azimuth) 1.33 m× 0.41 m
Image samples (range× azimuth) 12 230× 27 064
Image size (ground range× azimuth) 22 km× 11 km

slope. Our objective is to develop a spatial analysis method
for repeat-pass InSAR that allows for unambiguous SWE
change estimation directly from the wrapped InSAR phase
without the need for a spatial phase reference and phase un-
wrapping and that is insensitive to other InSAR phase com-
ponents not correlated with topographic slope at the scale
of the output resolution (size of SWE estimation window).
Our method exploits the dependency of the refractive phase
delay within the snowpack with respect to the local terrain
slope. This novel method is conceptually similar to estab-
lished methods for estimating temporal changes in the lay-
ered tropospheric delay in repeat-pass InSAR (e.g., Lin et al.,
2010) and offers the same benefits as the Delta-K method but
with substantially better sensitivity and spatial resolution for
most terrains.

The proposed method was tested with a multi-year
RADARSAT-2 dataset situated in the western arctic region
of Canada. The study site was chosen for three primary rea-
sons: (1) relatively long dry-snow season, (2) moderate topo-
graphic variation, e.g., more than flat prairie-like conditions
but less than in an alpine region, and (3) dataset availability
since an archived stack of 120 Spotlight images over 9 years
is somewhat unusual and allows for detailed temporal analy-
sis of results.

Our paper is organized as follows: first we describe the
study site, SAR dataset, and ancillary data that we use to
demonstrate and test the novel method. We then develop a
quantitative model for the repeat-pass InSAR phase result-
ing from dry-snow refraction that explicitly considers topo-
graphic slope variation. Subsequently, we introduce a spatial-
correlation-based method for estimating SWE change from
a repeat-pass interferogram, first from a locally unwrapped
spatial phase signal and then directly from the wrapped
phase. We compare the expected performance and precision
of our method to that of the Delta-K method. Next, we show
results from applying our novel SWE retrieval method to the

full RADARSAT-2 InSAR dataset. We compare these results
to several in situ SWE transect surveys located within the
imaged footprint, as well as the SWE temporal history esti-
mated by the ERA5 climate reanalysis model. We then dis-
cuss sources of estimation error in our new approach and
establish their relative significance. Sources considered in-
clude the effects of (1) violated model assumptions, (2) other
InSAR phase components, and (3) digital elevation model
(DEM) errors. Finally, we present our conclusions with a fo-
cus on the feasibility of our method for SWE change map-
ping in the context of existing methods.

2 Data

2.1 SAR dataset and study site

The InSAR dataset used for this study is a time series
of 120 RADARSAT-2 Spotlight-A (RS2-SLA) descending-
pass single-look complex (SLC) images spanning the period
22 February 2012 to 29 January 2021 at 24 d intervals, and it
is nearly continuous with only a few time gaps (Table 1). The
study area is situated in the Northwest Territories, Canada,
at the eastern margin of the Mackenzie Delta, about 120 km
south of the Beaufort Sea coast. It covers 238 km2 defined
by the SAR imaging footprint and includes the town of Inu-
vik. The mean backscatter amplitude image for the dataset is
shown in Fig. 1a.

Our proposed SWE change estimation method requires
knowledge of the variation in topographic slope. To de-
rive the slope, we used a 12 m spatial resolution TanDEM-
X digital elevation model (DEM) provided by the Ger-
man Aerospace Centre (DLR). This DEM was derived
from source images acquired between 13 January 2011 and
8 August 2014 including snow-season acquisitions, so some
snow-related bias may affect the estimated elevations. Re-
garding DEM accuracy, our method described in Sect. 3.3
depends on local slope variations and is therefore sensitive
only to local relative rather than absolute DEM errors. Wes-
sel et al. (2018) report a root-mean-square error (RMSE)
of 1.8 m for TanDEM-X elevations over forested terrain.
We also used this DEM for InSAR topographic phase cor-
rection and as an input for snow transport modelling, dis-
cussed in Sect. 5.2. The DEM shows that the Mackenzie
Delta (near sea level) in the eastern portion of the study area
has little topographic variation, but to the east of the delta’s
margin, elevation increases to a maximum of approximately
200 ma.m.s.l. (Fig. 1b). Several riparian zones drain this up-
land area towards the delta and create substantial local-scale
topographic variation.

The study area is south of the treeline and ecologically
is broadly categorized as subarctic boreal forest. However,
according to the North American Land Change Monitoring
System (NALCMS) 2015 dataset, which is a 30 m resolu-
tion land classification based on Landsat and RapidEye im-
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Figure 1. (a) Mean amplitude of all co-registered RS2-SLA images; (b) hill-shaded TanDEM-X DEM (DLR 2016) over the SAR footprint
showing approximate margin between lowland delta area and the uplands east of the delta; (c) North America Land Change Monitoring
System (2015) classification map (provided jointly by Natural Resources Canada, Comisión Nacional para el Conocimiento y Uso de la
Biodiversidad, Comisión Nacional Forestal, Instituto Nacional de Estadística y Geografía, and the U.S. Geological Survey, 2015) aggregated
into major land cover classes; (d) surficial geology map of the area from Rampton (1987). © Her Majesty the Queen in Right of Canada, as
represented by the Minister of Energy, Mines and Resources Canada, 1987. Positions labelled A–E in panel (a) refer to the snow surveys
described in Sect. 2.2.

agery using the methodology described by Latifovic et al.
(2017), there is significant variation in vegetation classifica-
tion within the study area (Fig. 1c). The upland area east of
the delta features forest, shrubland, and grassland, whereas
the delta proper is predominantly forested but is interspersed
with areas of shrubs and sedge wetlands (Burn and Kokelj,
2009). There are 6.5 km2 of developed lands in the study area
that include the centrally located town of Inuvik, segments
of the Inuvik–Tuktoyaktuk highway (ITH) and the Dempster
highway that extend, respectively, northward and westward
from the town site, and the Inuvik airport in the southeastern
corner of the study footprint.

The study area lies within the (spatially) continuous per-
mafrost region (Heginbottom, 1995; Nguyen et al., 2009).
Permafrost is ground that remains at or below 0 ◦C for 2
or more years that is overlain by an active layer that thaws
seasonally. The permafrost in the study area is commonly
ice-rich (Burn et al., 2009) and occurs within surficial de-
posits of several origins that are predominantly unconsoli-
dated (Fig. 1d). As a result of climate warming in the re-
gion, permafrost temperatures and active layer thickness are
increasing and producing ground surface settlement where
there is net thaw of near-surface, ice-rich permafrost (Kokelj
et al., 2017; O’Neill et al., 2019).
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Figure 2. Normal monthly mean snowfall and daily maximum tem-
perature for Inuvik for period of 1985–2010.

As shown in Fig. 2, Inuvik normally receives some level
of snowfall for all months of the year except July (ECCC,
2021a). The mean annual snowfall is 1586 mm. For dry-
snow conditions, temperatures must remain below freezing;
the daily maximum temperatures in Inuvik normally remain
below zero for the months of October to April. At upland
locations, dry snow in the area is redistributed by wind, and
large drifts develop in relation to topographic relief and shrub
growth, while in the delta proper, forest and shrub vegeta-
tion combine with the lack of relief to minimize wind effects
on the snow pack (Burn et al., 2009; Mackay and MacKay,
1974; Palmer, 2007; Morse et al., 2012).

2.2 In situ measurements

A number of mid-to-late winter snow transect surveys were
compiled (Eppler, 2022) to facilitate method validation
which is described in Sect. 4. These are plotted in Fig. 3
and summarized in Table 2, and their positions A–E are la-
belled in Fig. 1a. These surveys consist of (1) three transects
at sites A, B and C that are immediately north of Inuvik, all
surveyed by the authors on the same day, (2) one transect,
located at site D, provided by Tim Ensom (Wilfred Laurier
University) in a fully tree-covered area adjacent to a small
creek, and (3) a series of four transect measurements made
at the same location, site E, by the Government of North-
west Territories – Department of Environment and Natural
Resources (GNWT-ENR) at 2-week intervals at a site with
mixed trees and shrubs that is adjacent to the Inuvik Satellite
Station Facility. The Tim Ensom transect was surveyed with
a 6 cm ESC-30 snow sampler, and all other transects were
surveyed with a 6 cm Metric Prairie snow sampler.

3 Method

3.1 Background

Guneriussen et al. (2001) first described the method of SAR
interferometric repeat-pass SWE change estimation, which
we summarize as follows. In the case of a dry homogenous

Figure 3. In situ measurements of snow depth and density for the
eight transects that are summarized in Table 2.

layer of snow over ground, a microwave radar signal will
penetrate the snow layer, be scattered at the ground surface,
and then return through the snow layer. Surface and vol-
ume scattering occur at the air–snow interface and within
the snowpack, respectively, but for sufficiently dry snow, it
can be expected that these contributions will be much less
that the primary ground-scattered return (Leinss et al., 2015).
The dry-snow layer has a higher real permittivity than air and
therefore causes refraction at the air–snow interface, which
corresponds to a reduction in the propagation speed of the
signal within the snowpack and a corresponding geometric
path-length increase. This is shown in Fig. 4, which defines
the local 3D geometry and depicts both snow-free and snow-
covered cases which diverge at the point where the wavefront
reaches the snow surface. The unwrapped phase of the SAR
signal due to the dry-snow layer (8s) is given by

8s(θ)=
4π
λ
Ds

(√
ε(ρ)− sin2θ − cosθ

)
, (1)

and it increases with both snow density ρ (defined dimen-
sionless as the ratio of the gravimetric densities of snow
and water) and snow layer thickness Ds (projected along the
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Table 2. List of transect snow surveys used for in situ comparison with SlopeVar results.

Source Site Date Length Sample Mean Mean 〈ξ〉1/2 a Roughness
(m) size snow relative (radmm−1) SDb

(n) depth snow (m)
(mm) density

Authors of this paper A 15 Mar 2018 200 21 583 0.17 2.5 0.8
B 15 Mar 2018 140 15 571 0.19 2.3 0.8
C 15 Mar 2018 100 11 515 0.20 1.0 0.5

Tim Ensom D 22 Apr 2018 124 20 489 0.22 12.8 5.9

GNWT-ENR E 1 Feb 2017 Not reported 10 510 0.11 5.9 3.7
15 Feb 2017 10 696 0.14
1 Mar 2017 10 691 0.13
16 Mar 2017 10 690 0.17

a Standard deviation of ξ computed over local 500 m× 500 m estimation window. b Standard deviation of elevation residuals after removing best-fit planar
surface, computed over local 500 m× 500 m estimation window.

Figure 4. Geometry of refracted ray through a dry-snow layer over
an inclined ground surface compared to the unrefracted (straight)
ray trajectory. The inset figure shows the general 3D geometry: x, y,
and z refer to the local east, north, and vertical directions, and n and
l refer to the local slope normal and SAR line-of-sight directions
which, together, define the plane depicted in the 2D diagram.

slope normal direction, represented by direction vector n).
Functional dependency on ρ is via the real part of the rela-
tive dielectric permittivity ε, with other parameters in Eq. (1)
being the local incidence angle θ and the radar wavelength λ.
Note that θ is defined as the angle between n and −l (re-
versed SAR line-of-sight direction vector) and therefore de-
pends on both the magnitude and aspect of the local slope.
As such, this geometry can be defined everywhere within a
SAR scene given maps of spatially varying l, expressed in
the local (east, north, vertical) coordinate system and DEM-
derived slope magnitude and aspect maps.

In the case of a stratified snowpack, Leinss et al. (2015)
have shown that 8s is well approximated by a single layer

with mean vertical ρ,

ρ ≈
1
Zs

Zs∫
0

ρ(z)dz=
S

Zs
, (2)

where S is the SWE of the snowpack with depth Zs (mea-
sured vertically). Note that Zs =Ds/cosα, where α is the
local topographic slope angle, defined as the angle between n

and z. Equations (1) and (2) can be combined to provide the
explicit linear relation between dry-snow phase and SWE:

8s(θ)= S
4π
λρ

cosα
(√

ε(ρ)− sin2θ − cosθ
)
. (3)

The relation holds for the general case of repeat-pass inter-
ferometric dry-snow phase between any two dry-snow states
by replacing total SWE, S, with SWE change, 1S, and in-
terpreting ρ as the magnitude of the mean ρ of the removed
or added snow layer. As such, 1S can be either positively or
negatively valued and ρ ≥ 0.

3.2 Dry-snow phase dependence on local topographic
slope

SAR images are formed by focusing complex-valued pulse
returns obtained sequentially along a 1D flight track (e.g.,
satellite orbit segment in the case of spaceborne systems).
Each image resolution cell is formed by coherently combin-
ing signals received over a finite aperture.8s depends on the
local incidence angle, which varies along the aperture. The
net effect on the focused image 8s, however, is well approx-
imated by considering only the Doppler centroid (i.e., beam
center) incident angle at the target (Eppler and Rabus, 2021).

For a focused image, in a local spatial region with constant
topographic slope where incidence angle is uniform (grad-
ual across-swath variations can be neglected), a spatially uni-
form snow layer results in a uniform 8s. In contrast, a local
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Figure 5. Time evolution of dry-snow refraction geometry for dif-
ferent topographic slopes. Panel (a) depicts a snow-free hill divided
into foreslope, horizontal (i.e., hilltop), and backslope with a fixed
incident radar direction, and it shows that the local incidence angle
increases from foreslope to backslope. Panel (b) depicts the same
hill with the addition of a dry-snow layer and shows the correspond-
ing refracted ray geometry. Refraction and corresponding ξ increase
from foreslope to backslope. Also illustrated is a reduction in the
slope-normal-projected snow depth, Ds, with increasing slope an-
gle, α, while vertical snow depth Zs is constant. A uniform snow
layer is shown which is one of the assumptions of the estimation
method described in Sect. 3.3. Note that foreslope and backslope
angles (α1 and α3) are not assumed to be equal. Also, note that for
illustration only, this figure depicts the special case when the SAR
line-of-sight and slope normal are coplanar with the vertical direc-
tion, but this is generally not the case and is not assumed.

spatial region with topographic slope variations will generate
8s variations corresponding to variations in the local inci-
dence angle and projection of the snow depth onto the slope
normal. The validity of assuming a uniform snow layer under
a local window and selecting an appropriate spatial scale are
discussed in Sect. 5.2 and 5.5.

Figure 5 depicts the topographic modulation of dry-snow
phase explicitly at foreslope, horizontal, and backslope lo-
cations. The local incidence angle is less on the foreslope
and becomes greater along the transition towards the back-
slope. The dry-snow phase increases with incidence angle,
and therefore this effect causes the phase contribution to in-
crease along the transition from foreslope to backslope.

The projection of the snow depth onto the slope normal
scales with the cosine of the slope angle and is therefore
greatest in horizontal areas and less on both the foreslope and
backslope. Considering Eq. (3), if the topographic variation
within a SAR scene is known, then the spatially variable 8s
sensitivity to a uniform SWE layer (ξ ) can be computed as

ξ
.
=

d8s

dS
=

4π
λρ

cosα
(√

ε(ρ)− sin2θ − cosθ
)
, (4)

Figure 6. (a) Dry-snow phase sensitivity for the RS2-SLA geom-
etry and assuming ρ= 0.3. (b) Topo-corrected 24 d wrapped inter-
ferogram 20120317_20120410 showing spatial correlation with ξ
in the upland areas (eastern part of image footprint). The rectangu-
lar inset area corresponds to the example shown in Fig. 7.

where we assume that ρ is known. A spatially varying change
in dry SWE during a time interval spanned by two SAR ac-
quisitions will cause a corresponding spatially variable 8s,
modulated by the topographic sensitivity:

8s = ξ1S. (5)

This effect is depicted in Fig. 6, which shows ξ computed
over the RS2-SLA spatial footprint and a late snow-season
interferogram which shows spatial phase variations that are
correlated with ξ .

3.3 Estimating absolute 1SWE by exploiting
topographic variation

According to Eq. (5), if 8s can be recovered, then the spa-
tially varying SWE change can be directly estimated at the
same spatial resolution as the interferogram. However, this
requires phase unwrapping which can be difficult for snow-
covered interferograms due to both aliasing and local inco-
herence of the InSAR phase. Furthermore, even if the total
unwrapped phase (8) can be determined, the phase offset
is unknown. One or more reference targets with known SWE
change (1SWE) are required to estimate the offset. For these
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reasons, direct estimation of 1SWE from interferograms is
not straightforward. However, we suggest that the effect of
topographic modulation of 8s, described in Sect. 3.2, allows
an absolute estimate without requiring phase unwrapping or
knowing the phase offset.

Consider a local estimation window, e.g., 1 km× 1 km.
The phase within this window consists of the superposition
of8s and other phase components (e.g., due to decorrelation,
surface displacement, imperfect topographic correction, soil
moisture, or tropospheric delay). For the purposes of estimat-
ing 1SWE, we treat the other phase components as a single
error term,8e. Due to the difficulty of phase unwrapping and
offset estimation we assume that only the locally de-meaned
superposition phase (8̃) is available:

8̃=8−〈8〉 =8s−〈8s〉+8e−〈8e〉, (6)

where 〈·〉 denotes the mean over the window. Initially,
for simplicity we assume also that phase variation within
the window is limited to a 2π ambiguity interval so that
(unwrapped) 8̃ is easily obtained from the corresponding
wrapped-phase, φ, within the window:

8̃= 6
(〈
ejφ
〉∗
ejφ
)
, (7)

where ∗ denotes complex conjugation.
The unknown spatially variable SWE change within the

window can then be described by

1S = 〈1S〉+ 1̃S, (8)

where 1̃S corresponds to the horizontal SWE change varia-
tion. ξ can be similarly decomposed as

ξ = 〈ξ〉+ ξ̃ , (9)

where ξ̃ is the variation in ξ . Substituting Eqs. (8) and (9)
into Eq. (5) and expanding yields

8s = 〈ξ〉〈1S〉+ 〈ξ〉1̃S+〈1S〉ξ̃ + ξ̃ 1̃S. (10)

Substituting Eq. (10) into Eq. (6) and noting that 〈1̃S〉 =
〈ξ̃〉 = 0 gives

8̃= 〈1S〉ξ̃ +〈ξ〉1̃S+ ξ̃ 1̃S−
〈
ξ̃ 1̃S

〉
+8e−〈8e〉 . (11)

Assuming 8̃ correlates with ξ̃ with the proportionality
〈1S〉, we introduce the following correlation-based estima-
tor for 〈1S〉:

1̂S :=

〈
ξ̃ 8̃
〉

〈
ξ̃2
〉 = 〈1S〉+ 1〈

ξ̃2
〉 [〈ξ〉 〈ξ̃ 1̃S〉+ 〈ξ̃21̃S

〉
+

〈
ξ̃8e

〉]
. (12)

This estimator correlates 8̃ with ξ̃ and relies on the as-
sumption that the horizontal SWE change distribution is uni-
form within the window and that 8e components are uncor-
related with ξ̃ . The bias of 1̂S with respect to 〈1S〉 is given

by

E
(
1̂S

)
−〈1S〉

=
1〈
ξ̃2
〉 [〈ξ〉E(〈ξ̃ 1̃S〉)+E(〈ξ̃21̃S

〉)
+E

(〈
ξ̃8e

〉)]
, (13)

where E(·) denotes the expectation. Therefore, 1̂S is biased
by the components of 1̃S that are systematically correlated
with either ξ̃ or ξ̃2, as well as by 8e components systemati-
cally correlated with ξ̃ . The significance of the different bias
terms is examined in Sects. 5.2 and 5.3.

3.4 Wrapped-phase (“SlopeVar”) estimator

The estimator defined in Eq. (12) requires 8̃ within the spa-
tial window of consideration, and we have assumed so far
that this can be obtained from φ through Eq. (7) implicitly as-
suming phase variations in the window are limited to a max-
imum of 2π . As shown by Just and Bamler (1994), decorre-
lation to any degree results in a per-target phase distribution
that is not bound by the ±π interval, and so this condition is
never strictly met. Except for high-coherence areas with lim-
ited short-scale phase variation, either the phase within the
window must be unwrapped or an alternative wrapped-phase
version of the estimator is required.

Here we propose such an alternative estimator (which
we denote the “SlopeVar” estimator) that uses periodogram
optimization to iteratively estimate 〈1S〉 using the set of
wrapped phase φ under the window

1̂Sw = argmax
1Sw

∣∣∣∣〈ej(φ−1Sw ξ̃
)〉∣∣∣∣ . (14)

Considering Eq. (11) and the fact that ejφ
= ej8, Eq. (14)

can be expanded to show the components of φ,

1̂Sw = argmax
1Sw∣∣∣∣〈ej(〈1S〉ξ̃+〈ξ〉1̃S+ξ̃ 1̃S−〈ξ̃ 1̃S〉+8e−1Sw ξ̃

)〉∣∣∣∣ . (15)

In the case where8e = 0 and 1̃S = 0, this yields an unbi-
ased estimate, i.e., 1̂Sw = 〈1S〉, otherwise the 〈ξ〉1̃S, ξ̃ 1̃S,
and

〈
ξ̃ 1̃S

〉
terms in Eq. (15) will bias 1̂Sw.

Figure 7 shows an example of the SlopeVar estimator be-
ing applied to a 1km× 1km (ground range× azimuth) win-
dow for the inset area labelled in Fig. 6. 8̃ is moderately cor-
related with ξ̃ over the window as seen by comparing Fig. 7a
and b and by examining the 2D histogram in Fig. 7d. Fig-
ure 7e shows the periodogram with a distinct peak at 1SWE
of 28 mm. Figure 7c shows the effect of removing the 8s
component assuming constant 1SWE of 28 mm under the
window, which results in a much more uniform phase, al-
though residual variations can still be seen.
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Figure 7. Example of SlopeVar 1SWE estimation over a 1 km× 1 km window corresponding to the inset area shown in Fig. 6 for the
20120317_20120410 interferogram. (a) Variation in dry-snow phase sensitivity, (b) demeaned phase, (c) 1SWE-corrected demeaned phase
(using SlopeVar estimate, 1̂Sw), (d) 2D histogram of demeaned phase vs. variation in dry-snow phase sensitivity with line corresponding to
1̂Sw, and (e) periodogram with peak corresponding to 1̂Sw.

3.5 Estimator implementation

The estimator was implemented as a Python software module
(Eppler, 2022). Input interferograms were generated by co-
registering the set of RS2-SLA SLCs to a common master
SLC and computing sequential topographic phase-corrected
3× 12 (range pixels× azimuth pixels) multi-looked inter-
ferograms using the GAMMA software package (GAMMA
Remote Sensing AG, Switzerland). Multi-looking was per-
formed to better match the sample spacing of the interfer-
ograms to that of the DEM-derived ξ map. This improved
estimator computation runtime and was seen to have a neg-
ligible effect on the resulting 1SWE estimates. All interfer-
ograms were visually inspected, and those with sparse co-
herence, typically those spanning the spring melt and early
winter periods, were discarded from further analysis.

For simplicity, we only processed sequential interfero-
grams since these provide the best coherence during the dry-
snow season. However, for distributed scatterers which pre-
dominate in natural terrain, additional interferograms (e.g.,
48, 72 d, . . . ) are known to allow for a reduction in the vari-
ance in estimated sequential phases using a phase-linking es-
timator (e.g., Guarnieri and Tebaldini, 2008). This is because
such scatterers exhibit complex Gaussian scattering statistics
which are not fully characterized by the set of sequential in-
terferograms alone.

We found the estimator to be sensitive to errors in ξ ,
especially those resulting from DEM errors and interpola-
tion errors. High-spatial-frequency errors in the ξ map tend
to bias the estimated 1SWE magnitude towards zero (dis-
cussed in Sect. 5.4). We initially used the raw TanDEM-X
DEM, which we cubic-resampled to the multi-looked SAR
geometry, to compute the slope and aspect angle maps re-
quired to compute ξ . The resulting ξ map contained high-
frequency artifacts from the cubic interpolation, as well as
substantial errors due to stitching artifacts in the raw DEM.
We did not thoroughly investigate the issue of the most ap-
propriate interpolator, and so it may be possible to reduce
these errors by using a different interpolator. Estimator per-
formance improved significantly after we (1) manually iden-
tified and masked local DEM stitching artifacts and interpo-
lated over them, (2) smoothed the DEM using a 2D Gaus-
sian filter with a standard deviation of three DEM pixels (re-
sulting in approximately 90 m spatial resolution) to reduce
high-frequency DEM errors, and (3) computed the slope an-
gle maps prior to resampling to the SAR geometry. Note that
to compute ξ according to Eq. (4), we computed ε of dry
snow as ε(ρ)= 1+1.5995ρ+1.861ρ3, according to Mätzler
(1987), and for simplicity assumed ρ = 0.3 for all estimates
(discussed further in Sect. 5.1).

We then implemented the SlopeVar estimator described in
Sect. 3.4. For each candidate value of 1Sw, the periodogram

https://doi.org/10.5194/tc-16-1497-2022 The Cryosphere, 16, 1497–1521, 2022



1506 J. Eppler et al.: Snow water equivalent change mapping

magnitude, |〈ej (φ−1Sw ξ̃ )〉|, can be computed efficiently using
a 2D fast-Fourier-transform-based rectangular smooth filter
over the complex-valued interferogram, allowing for the gen-
eration of spatially oversampled maps at the interferogram
sample spacing instead of the much coarser estimation win-
dow size. We evaluated the periodogram over the 1SWE
range of [−50 mm, 80 mm]with an interval spacing of 2 mm.
Peak locations for each spatial point were then refined by fit-
ting a quadratic by least squares using three points centered
on the maximum value found over the search grid.

Solutions where the maximum was within two grid inter-
vals from the edge of the search range were labelled as in-
valid. This provides a means for excluding poor results from
low-coherence areas since for these areas the periodogram
analysis typically does not result in a peak within the search
range. We considered adding an additional exclusion thresh-
old based on coherence magnitude but found it unnecessary.
Water-body areas were also labelled as invalid.

Figure 8a shows the resulting 1SWE map after applying
the estimator to all areas of the example interferogram de-
picted in Fig. 6 using a 500 m square estimation window.

3.6 Monte Carlo estimation of 1SWE estimation
variance

The amount of decorrelation can vary significantly both spa-
tially within each interferogram and temporally depending
on changing surface conditions and pass-to-pass variations
in the SAR orbit. It is therefore important to estimate the
1SWE variance contribution as a space- and time-varying
quantity.

Specifying the transfer function between phase noise and
1̂Sw variance is made difficult by the fact that the distribu-
tion of ξ̃ is generally unique for each estimation window. We
decided to apply the Monte Carlo approach by simulating
a sufficiently large ensemble of zero-signal partially decorre-
lated interferograms, applying the1SWE estimation on each
instance, and then computing statistics over the ensemble
of estimates. We approximate the phase noise as a circular
complex stationary white process with zero mean phase as
described by Just and Bamler (1994) and which is uniquely
specified by the coherence magnitude, γ . We estimate γ as
the ensemble coherence of the residual phase after removing
8s estimated using 1̂Sw:

γ̂ =

∣∣∣∣〈ej(φ−1̂Sw ξ̃
)〉∣∣∣∣ . (16)

Figure 8b–d, respectively, show the residual phase coher-
ence map, the standard deviation of ξ under the window (i.e.,
〈ξ̃2
〉
1/2), and the resulting Monte-Carlo-based error estima-

tion for the same interferogram depicted in Fig. 6. Local fac-
tors affecting the 1̂Sw variance include (1) the residual co-
herence magnitude, (2) the diversity of ξ within the estima-
tion window, and (3) the spatial support under the window

(areas adjacent to water bodies have a smaller ensemble of
valid phase samples and hence a larger variance).

3.7 Precision comparison with Delta-K 1SWE
estimator

Our method has some similarity with the Delta-K method for
estimating 1SWE in that both methods exploit a diversity in
the dry-snow phase sensitivity so that absolute 1SWE can
be estimated without the need for phase unwrapping. Fur-
thermore, both methods operate over an estimation window,
yielding results at a resolution lower than the single-look res-
olution. In order to compare the two methods, we consider
their relative precision estimated over a spatial window with
N multi-looked-resolution cells and assume Gaussian phase
noise, which is reasonable when multi-looked interferograms
with sufficient looks are used (i.e.,> 10 as noted by Hagberg
et al., 1995). Note that for the Delta-K method, multi-looking
of sub-band interferograms prior to computing the band dif-
ference phases has been suggested by Bamler and Eineder
(2005) to preserve the Gaussian phase noise assumption and
shown by De Zan et al. (2015) to yield better precision than
the alternative of first computing the sub-band difference and
then multi-looking.

The Delta-K method exploits the ξ diversity that exists be-
tween separate radar-frequency sub-bands corresponding to
ξ ±1ξ/2, where ξ in this case is the value at the central
carrier frequency, and 1ξ = B(1− b)ξ , where B ∈ [0,1] is
the bandwidth of the SAR normalized with respect to carrier
frequency and b ∈ [0,1] is the sub-bandwidth fraction used.
Assuming multi-looked phase noise with variance σ 2

8, the
mean sub-band interferometric phase will have the variance
σ 2
8/bN , and therefore the Delta-K difference phase will have

the variance σ 2
8_DK = 2σ 2

8/bN . Delta-K estimates 1SWE
according to 1̂SDK =8DK/1ξ , and therefore the 1̂SDK
standard deviation (σ1S_DK) is

σ1S_DK =

√
2
N

σ8

B(1− b)b
1
2 ξ
. (17)

For the SlopeVar method, the estimation of 1SWE cor-
responds to a linear regression over N samples, and there-
fore, assuming ξ̃ is Gaussian-distributed under the estimation
window with variance 〈ξ̃2

〉, the estimation standard deviation
(σ1S_SV) is

σ1S_SV =
σ8

√
N
〈
ξ̃2
〉1/2 . (18)

The relative estimation precision ratio between the two
methods is therefore given by

σ1S_DK

σ1S_SV
=

√
2
〈
ξ̃2
〉 1

2

B(1− b)b
1
2 〈ξ〉

, (19)
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Figure 8. Example of estimated 1SWE and 1SWE standard deviation due to uncorrelated phase components (described in Sect. 3.6) for
the 20120317_20120410 scene pair (same interferogram as shown in Figs. 6 and 7) using a window size of 500 m× 500 m. (a) Estimated
1SWE using the SlopeVar estimator, (b) coherence of residual phase after estimated dry-snow phase correction, (c) standard deviation of ξ
computed over the estimation window, and (d) Monte-Carlo-estimated standard deviation of estimated 1SWE generated with ensemble of
40 simulated interferograms. Water areas are greyed out in each panel. Points with no solution in the 1SWE search range are also greyed
out in panels (a), (b), and (c).

where we have replaced ξ in Eq. (17) with the mean under the
estimation window, 〈ξ〉. We use b = 1/3, which, neglecting
system noise, is the optimum value for minimizing σ1S_DK,
and B = 0.0185, which is the normalized range bandwidth
for the RADARSAT-2 Spotlight-A mode. Figure 9 shows
the distribution of σ1S_DK/σ1S_SV computed for all 500 m
square estimation windows in the RS2-SLA study footprint,
excluding water bodies. The distribution has a median value
of 3.8 and is > 1 for 97.5 % of the area, indicating that the
SlopeVar estimator can be expected to provide substantially
better 1SWE precision compared to Delta-K for the great
majority of areas within the study footprint.

4 Results

4.1 1SWE estimation maps

We computed 95 coherent sequential interferograms from
the assembled set of 120 RS2-SLA SLCs, and these were
used with the SlopeVar estimator to generate 1̂Sw maps
using an estimation window of 500 m× 500 m (ground
range× azimuth). This corresponds to 46 snow-season inter-
ferograms over two partial and eight complete snow seasons
and 49 non-snow interferograms over nine snow-free sea-
sons. The estimator was run on the snow-free-season inter-
ferograms to serve as control cases since these are known to
have zero dry-snow 1SWE. Additionally, the Monte-Carlo-

Figure 9. Histogram of the predicted 1SWE estimation
precision ratio between the Delta-K and SlopeVar methods
(σ1S_DK/σ1S_SV) for all 500 m square estimation windows in the
RS2-SLA study footprint. The vertical bar denotes the point of
equal precision (i.e., σ1S_DK/σ1S_SV= 1). This shows that the
SlopeVar estimator provides substantially better precision for al-
most all areas within the study footprint.

based variance estimator described in Sect. 3.6 was run on all
interferograms. Water bodies and areas with no valid solution
from the periodogram peak-finding analysis were labelled as
invalid and masked out. Figure 10 shows an example set of
five such1SWE maps from the 2017–2018 snow season (all
snow-season 1SWE maps from the 2012–2021 dataset are
shown in Fig. S1 in the Supplement).
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Figure 10. Dry-snow-season 1SWE maps from the 2017–2018
snow season, estimated with the SlopeVar estimator. Water areas
and points with no solution in the 1SWE search range are greyed
out. Date pairs are formatted as yyyymmdd_yyyymmdd.

4.2 Comparison of 1SWE estimates with in situ
measurements

To compare the results with the in situ transect measure-
ments presented in Sect. 2.2, we generated snow-season cu-
mulative SWE maps by integrating the sequential 1̂Sw maps
through time, starting with the first dry-snow interferogram
identified for each snow season. As discussed in Sect. 3.5,
some 1̂Sw values are labelled as invalid due to a lack of
a distinct periodogram peak. On average these correspond
to about 10 % of non-water spatial samples, and therefore,
in order to preserve temporal continuity for the integration,
these were replaced with values obtained by smoothing all
valid estimates within a 2 km square window. The cumula-
tive SWE maps do not represent estimates of true absolute
SWE because early snow-season interferograms are gener-
ally not sufficiently coherent to allow 1SWE estimation,
and therefore some amount of accumulated SWE is not ac-
counted for. Therefore, for the comparison, the in situ mea-
surements correspond to an upper limit for the expected
SlopeVar-estimated total SWE maps, neglecting any biases.
However, given the error sources described in Sect. 5, actual
estimates may exceed this expected upper limit.

We also estimated variances for the cumulative SWE maps
by summing the Monte-Carlo-derived per-interval variance
estimates, assuming they are uncorrelated through time.

For each transect dataset, all SWE measurements were
averaged to generate a mean value for the local area and
the sample standard deviation was used to compute a cor-
responding standard error. This was done because the tran-

Figure 11. Comparison of SlopeVar estimator cumulative SWE
with in situ snow-tube-sampled SWE transect measurements. Error
bars correspond to the snow-season accumulated SWE standard de-
viation (vertical) and the transect measurement standard error (hor-
izontal). Labels A–E correspond to the survey locations, shown in
Fig. 1a.

sect lengths, listed in Table 2, were 200 m or less, being well
within the 500 m SlopeVar estimator window size. The in situ
measurements were each made on a particular date, whereas
the InSAR cumulative SWE maps are produced at 24 d inter-
vals. The cumulative SWE maps temporally bracketing each
transect date were therefore sampled at the spatial mean po-
sition of the transect and then linearly interpolated in time to
generate a cumulative SWE estimate for that point in space
and time. Likewise, the error variance maps were also inter-
polated and converted to standard deviations.

Figure 11 shows a scatterplot comparison of the InSAR-
derived cumulative SWE estimates and the transect mean
SWE values. Vertical and horizontal error bars correspond
to 1 standard deviation and 1 standard error, respectively.
Seven of the eight transects are within 1 standard deviation
of the 1 : 1 line and demonstrate good agreement between
the measured and estimated values. Treating the transect
mean values as truth and neglecting the unaccounted early
snow-season SWE, the RMSE for all transect comparisons
is 14.8 mm and the bias is −6.6 mm. It is noteworthy that
the author-surveyed transects (locations “A”, “B”, and “C”)
correspond to areas of low topographic variation as indicated
by the two rightmost columns of Table 2, and, as shown in
Fig. 11, locations “A” and “C” have larger predicted total
SWE standard deviations (i.e., > 25 mm). This is consistent
with the fact that estimation variance is expected to increase
with decreasing ξ diversity.

4.3 Comparison of 1SWE estimates with predicted
temporal change

The estimator results were examined temporally by com-
paring the spatial mean of each 1̂Sw map, after projec-
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Table 3. SWE error statistics for SlopeVar estimator compared to
ERA5 reanalysis estimates.

Subset Sample Bias RMSE Correlation
size (n) (mm) (mm) coefficient (r)

Jan–Mar 29 1.7 6.1 0.64
Apr–Jun 18 11.5 23.5 −0.01
Jul–Sep 32 0.4 4.1 0.44
Oct–Dec 21 8.6 9.9 0.69
All 100 4.5 11.7 0.56
Oct–Mar 50 4.6 7.9 0.57
No snow∗ 23 1.7 4.2 –

∗ All intervals with zero ERA5 SWE at both interval endpoints.

tion to ground-range geometry, with the corresponding SWE
change predicted by the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA5 reanalysis model (Hers-
bach et al., 2020) over the same time interval. We chose
ERA5 for comparison based on Mortimer et al. (2020), who
report that it compares favourably with independent snow
course data and more so than currently available global pas-
sive microwave products do. The gridded ERA5 results were
spatially interpolated to the RS2-SLA scene center. Note
that all but five of the analyzed interferograms span 24 d in-
tervals. The additional five intervals each span 48 d due to
missed SAR acquisitions. For the temporal comparison, each
of these five intervals were split into two 24 d intervals with
half the 1̂Sw arbitrarily assigned to each interval.

Figure 12a compares the continuous ERA5 24 d interval
1SWE history time series with the SlopeVar estimator re-
sults. Figure 12b shows the same data as a scatterplot com-
parison. Both plots are labelled according to the time of year
as four annual quarters to highlight seasonal effects. Treat-
ing the ERA5 estimates as truth, Table 3 shows error statis-
tics (bias, RMSE, and correlation coefficient) for a number
of temporal subsets that include the four seasonal quarters,
all intervals, the nominal dry-snow period (October–March),
and the “no snow” intervals (all intervals with zero ERA5
SWE at both interval endpoints).

Regarding correspondence with ERA5, we are primarily
concerned with the October–December and January–March
estimates because these correspond to the dry-snow period
when the estimator is expected to provide useful results. Fig-
ure 12b shows that these do follow the 1 : 1 correspondence
line. However, the October–December points appear to have
a significant positive bias, whereas the January–March points
do not. This is quantified in Table 3, which shows that, in
aggregate, the October–March time period has a correlation
of 0.57 with respect to ERA5, which is moderately strong.
There is an 8.6 mm per-interval 1SWE bias for October–
December but only 1.7 mm for January–March. This is con-
sistent with the expected impact of early freeze-season heave,
which is discussed further in Sect. 5.3.2. The no-snow inter-

vals are of interest because they serve as a control set with
known zero1SWE. These show a bias of +1.7 mm, which is
discussed further in Sect. 5.3.2. The RMSE of the no-snow
set is 4.2 mm, which serves as a measure of the estimation
uncertainty due to factors other than 1SWE inhomogene-
ity. The April–June intervals are included for completeness
even though these are not expected to agree because this cor-
responds to the snowmelt period. This is especially apparent
for the two intervals with large negative ERA51SWE values
corresponding to periods of intense snowmelt. The Slope-
Var estimates for these periods are near zero likely because
only snow-free areas (snow already melted) are coherent and
hence contribute to the estimates, and seasonal active-layer
thaw has not yet commenced.

4.4 Distribution of the estimated 1SWE

Spatial variations in the 1̂Sw maps are due to a com-
bination of true 1SWE spatial variations, stochastic
error due to decorrelation, and spatially variable biases
as described in Sect. 5. An independent set of densely
sampled 1SWE measurements over our study area does
not exist, which precludes direct estimation of the errors.
Instead, we compare temporally averaged seasonal sub-
sets of the 1̂Sw maps since we expect the bias to differ
between seasons. Figure 13a, c, and e show the temporal
mean 1SWE maps for the early snow season (October–
December), late snow season (January–March), and all
snow-free intervals. These show a moderate degree of
negative correlation between the October–December and
snow-free maps, especially in the upland area east of the
delta margin. The Pearson correlation coefficients between
the three maps are ROctober–December/January–March= 0.28;
ROctober–December/Snow-free=−0.52; and
RJanuary–March/Snow-free= −0.17. These are consistent
with a dominant bias contribution from surface normal
heave and subsidence contributing to the October–December
and snow-free subsets but with opposite polarity. The weaker
correlations between these and the January–March subset
suggest a weaker surface-normal bias contribution during
this period which is consistent with the expected annual
cycle of active-layer heave and subsidence discussed further
in Sect. 5.3.2.

Figure 13b, d, and f show the normalized distribu-
tions for all 1SWE estimates partitioned by season.
Since the snow-free intervals have a known 1SWE of
zero, a global RMSE value can be computed. This
value, computed over all non-water areas and all snow-
free maps, is RMSEsnow-free= 21 mm. We know from
Eqs. (13) and (30) that both additive and multiplicative
bias contributions are modulated by the local ξ vari-
ance inverse. We repeated the RMSE calculation for the
top ξ variance quartile of spatial samples (correspond-
ing to threshold of 〈ξ̃2

〉
1/2 > 7.6 radmm−1), resulting in

RMSEsnow-free= 15 mm, which shows that the impact of bias
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Figure 12. Time series (a) and scatterplot (b) comparisons of SlopeVar estimator 24 d interval 1SWE with ERA5 reanalysis estimates.
SlopeVar estimator point symbols are separated according to season to illustrate the seasonal dependence of the bias (especially the difference
between October–December and January–March points) apparent in the scatterplot.

can be reduced by restricting the estimator to areas with
greater ξ diversity, albeit with a loss of spatial coverage. Nor-
malized distributions for this restricted subset are also shown
in Fig. 13b, d, and f.

5 Discussion

5.1 Snow density misspecification

Our proposed method relies on knowing ξ , which, as shown
in Eq. (3), depends on ρ. Therefore ρ must either be known a
priori or an assumed value must be specified. Here we assess
the effect of misspecifying ρ. Since the method estimates
1SWE from the interferometric phase, the required ρ corre-
sponds to the snowpack change rather than the actual bulk ρ
of the snowpack. For the case of fresh snowfall on a dense
late season snowpack, the ρ of the added layer will be less
than the mean ρ before and after the change.

A misspecification of ρ will bias the resulting1SWE esti-
mate. This effect can be quantified by parameterizing ξ with
respect to ρ so that 8s(ρ)= ξ(ρ)1S. The fractional 1SWE

bias caused by specifying ρ′ rather than the true value, ρ, is

1̂S−1S

1S
=
ξ(ρ)

ξ (ρ′)
− 1. (20)

This fractional bias is shown in Fig. 14a for true and as-
sumed ρ over the interval [0, 0.5], and it indicates that as-
sumed ρ greater or less than the true ρ results in a positive
or negative bias, respectively. Figure 14a also shows that the
bias magnitude is< 5 % of the true SWE change for the con-
sidered ρ range.

In the absence of any 1SWE, snowpack evolution may
result in a bulk ρ change (e.g., due to settling) which will
cause a 8s contribution. This contribution will be spuriously
attributed to a SWE change. Consider the case of a snowpack
with total SWE of S that undergoes a ρ change from initial ρ1
to final ρ2. According to Eq. (5), this will cause a8s change:

8s = S(ξ(ρ2)− ξ(ρ1)). (21)

Assuming that the temporal mean ρ of (ρ1+ ρ2)/2 is
somehow known and used for estimation, the resulting
1SWE error, Se, as a fraction of total SWE will be

Se

S
= 2

ξ(ρ2)− ξ(ρ1)

ξ(ρ1)+ ξ(ρ2)
. (22)
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Figure 13. (a), (c), and (e) Comparison of mean seasonal 1SWE maps, showing means for the early snow season (October–December),
late snow season (January–March), and all snow-free periods (temporal subsets described in Table 3). Water areas are greyed out. (b), (d),
and (f) Corresponding normalized seasonal distributions of all valid 1SWE estimates. Distributions for the subset of estimates for high ξ
diversity areas are also shown.

Figure 14. (a) Fractional 1SWE estimation bias caused by mis-
specification of the snow density. (b) Apparent 1SWE caused by
a bulk snowpack density change in the absence of actual SWE
change, as a fraction of total actual SWE.

This fractional error is shown in Fig. 14b for initial and
final ρ over the interval [0, 0.5]. This shows that a ρ in-
crease or decrease will, respectively, cause a negative or posi-
tive1SWE error. Since snowpack evolution generally results
in densification, this effect will tend to negatively bias esti-
mated1SWE. However, for the considered ρ range, the bias
is < 5 % of the total SWE.

For simplicity we assumed a value of ρ= 0.3 for all
1SWE estimates. This value is likely too large for the dry-
snow season in Inuvik. For example, the mean snow den-
sity measured across all transects summarized in Table 2 is
ρ= 0.17, and according to Eq. (20), the use of the assumed
value results in a 2.1 % bias which is small compared to the
other errors discussed in Sect. 5. This small bias could be
mostly mitigated by assuming a more appropriate ρ accord-
ing to the location and time of year (e.g., Sturm and Wagner,
2010).

Regarding the effect of vertical density layering, our study
area is prone to wind slab formation in which the late sea-
son snowpack can consist of a dense wind slab overlaying a
low-density hoar layer (Rutter et al., 2019; King et al., 2018).
Considering the extreme case of near-zero density hoar over-
lain by ρ= 0.5 wind slab, assuming a uniform ρ= 0.3 results
in a +2.5 % estimation bias which is still a small error com-
pared to the other bias sources considered in our analysis.

https://doi.org/10.5194/tc-16-1497-2022 The Cryosphere, 16, 1497–1521, 2022



1512 J. Eppler et al.: Snow water equivalent change mapping

5.2 Violation of 1SWE horizontal homogeneity
assumption

Temporal changes in SWE can be caused by a number of dif-
ferent processes including deposition of new snow, as well
as redistribution by wind, melt, and sublimation. Each of
these processes is spatially modulated in natural terrain by
the configuration of topography and vegetation (Morse et al.,
2012; Anderton et al., 2004; Palmer et al., 2012). Further-
more, vegetation distribution is itself modulated by topog-
raphy (Walker, 2000). For these reasons, spatial variation in
1SWE over a particular time period is likely to show some
correlation with topography, either directly with elevation or
with derived indices such as slope, aspect, or measures of
curvature.

As shown in Sect. 3.3, the estimation of 1SWE within a
spatial window through the correlation with ξ̃ is subject to
bias when there are horizontal 1SWE variations within the
window that are correlated with either ξ̃ itself or with ξ̃2.
To investigate the significance of this effect, we simulated
the seasonal evolution of spatially variable 1SWE distribu-
tions due to variations in topography and vegetation using
SnowModel (Liston and Elder, 2006), implemented as a For-
tran software package that includes sub-models for metrolog-
ical forcing conditions, surface energy exchanges, snowpack
evolution, and 3D wind transport. We simulated an evolving
snowpack over several snow seasons for two cases: (1) bare-
earth case with no snow-holding vegetation to examine the
impact of topographic variation only, and (2) spatially vari-
able vegetation heights (i.e., variable snow-holding capacity)
to consider the additional influence of vegetation. The spa-
tially varying vegetation was modelled using the NALCMS
2015 land-classification data for our study area.

We chose a study area and time period for the simulation
that correspond to the spatial footprint and a similar time pe-
riod as the RS2-SLA dataset we used for the method demon-
stration described in Sect. 2.1. SnowModel also takes as in-
put the digital elevation model of the study area and one
or more time series of meteorological driving data in the
form of regularly sampled temperature, wind, and precipi-
tation data. We ran the model using the same 12 m TanDEM-
X DEM used for InSAR topographic phase correction and
SWE change estimation. Therefore, the model did not sim-
ulate variations in SWE at scales finer than 12 m. Note that
spatial SWE variations finer than the resolution of the Slope-
VAR input data, ξ and φ, will not bias the estimates but in-
stead will contribute to phase decorrelation and therefore af-
fect the estimation variance, as discussed in Sect. 3.6.

Meteorological forcing data was input from three loca-
tions: (1) Environment and Climate Change Canada (ECCC)
Inuvik climate station (68.32◦ N, 133.53◦W), adjacent to po-
sition “E” in Fig. 1a and 6 km from the scene center (ECCC,
2021b); (2) ECCC Trail Valley Creek station (68.74◦ N,
133.50◦W), 43 km north of the scene center; and (3) the
Government of Northwest Territories – Department of En-

vironment and Natural Resources (GNWT-ENR) southern
ITH station (68.54◦ N, 133.77◦W), 21 km north of the scene
center (dataset provided directly from GNWT-ENR). Snow-
Model weights the station inputs according to an inverse dis-
tance squared parameter, and therefore the Inuvik Climate
Station dominates the model input. The model was run with
default settings at a daily time step interval with results out-
put every 24 d corresponding to the imaged dates of the RS2-
SLA dataset. The resulting absolute SWE maps, produced in
the original DEM spatial reference, were resampled to the
RS2-SLA range–Doppler geometry and sequentially differ-
enced to produce 24 d 1SWE maps.

These 1SWE maps were then used along with the ξ map,
computed from the DEM with a nominal value of ρ = 0.3, to
determine the expected 1̂Sw error according to the first two
terms in Eq. (13), i.e., those related to 1̃S. The modelled
1SWE error maps were computed with rectangular estima-
tion windows with 500 m× 500 m ground footprint.

We analyzed our simulations for all 24 d intervals from
17 July 2011 to 29 April 2020 falling within the expected
dry-snow season, nominally chosen to be 1 October to
31 March of each year based on the climate normals for Inu-
vik (see Fig. 2). The results, summarized in Fig. 15, show
the spatial distribution of the 1SWE error averaged over
all modelled time intervals and histograms of all expected
1SWE errors and the per-interval spatially averaged mean
1SWE error.

For the bare-earth case (Fig. 15a–c), a single outlier in-
terval (5 January 2012 to 29 January 2012) was omitted
from the summary analysis because the errors for that inter-
val were very large compared to all other intervals. This ap-
pears to be due to a strong correlation of the simulated spa-
tial 1SWE distribution with ξ̃ for that 24 d interval which
can occur when a strong wind-transport event directionally
aligns with the horizontal projection of the SAR line-of-
sight. Hence, the simulated topography-modulated scouring
and deposition along the wind-direction axis can, by chance,
align with the SAR geometry ground-range direction which
results in a very large estimation bias. It may be possible
to detect these events by analysis of the wind history (e.g.,
thresholding of a suitable blown-snow index while also con-
sidering the wind direction with respect to the SAR ground-
range direction). We investigated this approach by computing
the time-varying blowing snow probability as modelled by
Li and Pomeroy (1997) which provides the probability that
blowing snow conditions will occur as a function of wind
speed and temperature. We computed these at daily time
steps, assigned the mean wind direction to each time step,
and then integrated these 2D vectors over the 24 d simula-
tion intervals. The result is a directional cumulative blowing
snow index in units of hours (of blowing snow) and is shown
in Fig. 16 for all simulated 24 d intervals. This shows that
the SnowModel outlier case is also an outlier with respect to
the blowing snow index magnitude (and also when projected
to the SAR look direction axis) suggesting that wind-driven
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Figure 15. Results for 1SWE simulation for the bare ground (top row) and NALCMS 2015 vegetation distribution (bottom row) cases for
the RS2-SLA geometry over Inuvik for the period 17 July 2011 to 29 April 2020. Sequential 24 d 1SWE values were simulated for the
dry-snow season each year (nominally chosen to be 1 October to 31 March according to Fig. 2) resulting in a total of sixty 24 d intervals
being simulated. Panels (a) and (d) are temporal means of the expected 1SWE error, (b) and (e) are histograms of all expected errors (all
spatial estimates over all time intervals), and (c) and (f) are histograms of the spatial mean 1SWE error for the set of intervals. Water areas
are greyed out.

redistribution is responsible for the predicted large 1SWE
bias.

Another potential mitigation is to use SAR images from
the opposite pass direction. The bias from the near-opposite
horizontal direction should have the opposite sign, and there-
fore the estimated1SWE should differ significantly between
pass directions, allowing for the effect to be detected and per-
haps mitigated by averaging the results.

For the bare-ground case, the temporal mean 1SWE error
map shows mean errors in the± 2 mm range with spatial fea-
tures (Fig. 15a) that are generally aligned with topographic
variations (Fig. 1b). The distribution of all 1SWE errors
(Fig. 15b) has a mean of just −0.2 mm which corresponds
to a small negative overall estimation bias and an RMS value
of 2.0 mm which corresponds to approximately 20 % of the
simulated mean per-interval1SWE value. The histograms of
the per-interval spatially averaged errors (Fig. 15c) show that
the majority of 24 d intervals have a mean error near zero,
suggesting that averaging estimates over wider areas reduces
the bias effect introduced by spatially variable 1SWE distri-
bution.

For the NALCMS 2015 vegetation case, the temporal
mean 1SWE error map (Fig. 15d) shows mean errors with
magnitudes that are much larger than for the bare-earth case
(up to 100 mm in some areas) corresponding to areas with
heterogenous vegetation classifications (see Fig. 1c). The dis-
tribution of 1SWE errors (Fig. 15e and f) has a mean and
RMS value of 4.3 mm and 39.6 mm which are very substan-

Figure 16. Directional cumulative blowing snow hours computed
using ERA-5 surface parameters applied to the Li and Pomeroy
(1997) probability model for all simulated 24 d intervals. The
20120105_20120129 interval appears as an outlier with respect to
the cumulative magnitude. The SAR look direction axis is shown
for comparison.

tial. This suggests that spatially varying vegetation snow-
holding conditions may substantially bias the 1SWE esti-
mates. However, it should be noted that results from real
data, presented in Sect. 4, do not show such large variations
as would be expected by the error magnitudes in Fig. 15d–f.
The reason could be that the simulation driven by the NAL-
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CMS vegetation classification significantly over-represents
the effect of spatially variable vegetation. Nevertheless, these
results highlight the relative importance of vegetation as a
source of method bias and suggest that some form of mitiga-
tion may be required to yield useful estimates from the pro-
posed method in areas with variable vegetation snow-holding
heights.

We compared the relative values of the 〈ξ〉〈ξ̃ 1̃S〉 and
〈ξ̃21̃S〉 contributions to the 1SWE error which showed that
for all 24 d intervals, and both bare-earth and NALCMS
2015 cases, the RMS of the 〈ξ〉〈ξ̃ 1̃S〉 component was much
greater than that of the 〈ξ̃21̃S〉 component so that with re-
spect to the influence of 1̃S, the spatial correlation with re-
spect to ξ̃2 can be neglected.

5.3 Correlated phase components

As shown in Eq. (12), additional phase components, other
than 8s, will contribute to 1̂Sw error according to their spa-
tial correlation with ξ̃ : 〈ξ̃8e〉/〈ξ̃

2
〉. We distinguish between

(1) systematic spatial correlation between ξ and the8e com-
ponents that have a topographic dependence and (2) spurious
correlations with 8e components that are not systematically
dependent on topography. In this section we consider the for-
mer by examining several8e components, their spatial char-
acteristics with respect to topographic slope, and their ex-
pected contribution to 1̂Sw error.
8e components not systematically correlated with ξ̃ will

contribute to the 1̂Sw error due to finite sampling over the
estimation window. These include decorrelation phase noise
and the non-ξ̃ -correlated parts of other phase components. In
the case of these spurious correlations, the resulting estima-
tion error magnitude can be expected to diminish with larger
estimation window sizes and, in the global sense, will not
systematically bias the estimates but instead contribute to the
variance.

5.3.1 Atmospheric delay

The troposphere contributes substantial phase delay during
SAR imaging (Hanssen, 2001). This delay can be decom-
posed into static and dynamic components. Temporal differ-
ences in the static component between image acquisitions
results in a 8e component that is modulated by topogra-
phy. Neglecting any height dependence of the delay over the
height range within the estimation window, the static atmo-
spheric phase contribution (8sa) can be modelled as a simple
linear function (Lin et al., 2010),

8sa =
4π
λ
1Kh+β, (23)

where 1K is the linear transfer function coefficient corre-
sponding to the volumetric mean delay difference between
SAR acquisitions, h is the topographic height, and β is an
offset constant which we set to zero without loss of general-

ity since we consider only the correlation of 8sa with zero-
mean ξ̃ . Note that the horizontal variation in 1K is gradual,
and therefore 1K can be assumed constant within the esti-
mation window. Therefore, the spatial variation in8sa within
the 1SWE window (assumed to be ≤ 1 km as discussed in
Sect. 5.5) can be attributed solely to variation in h.

The dynamic component is driven by turbulent mixing,
and therefore its spatial power spectrum follows a power-law
relationship, which limits the amplitude at spatial scales be-
low a few kilometres (Hanssen, 2001). Therefore, for esti-
mation windows < 1 km, the dynamic component can rea-
sonably be neglected. For larger estimation windows (not
explicitly considered in this paper), the influence of the dy-
namic component can be mitigated by spatial high-pass fil-
tering both the InSAR phase and ξ prior to 1SWE estima-
tion, similar to the method employed by Lin et al. (2010) for
estimating 1K from interferograms.

Figure 17a and b show the expected 1̂Sw error for the case
of1K = 10−5 (i.e., 10 mmkm−1). For this case the RMS er-
ror is 1.1 mm. However, the distribution is centered around
zero so that the mean error is only 0.04 mm. Therefore, spa-
tial averaging of the estimates over a sufficient area will tend
to mitigate the error due to static atmospheric delay.

Regarding the temporal distribution of 1K , given that it
is a pairwise differential quantity, it has zero expectation
on an annualized timescale. However, there is some sea-
sonal dependence on tropospheric delay (Cong et al., 2012),
and therefore 1K , for sequential dry-snow-season interfer-
ograms, should not be considered temporally random. For a
particular spatial location, the errors may accumulate con-
structively over a snow season to yield a consistent, albeit
small, bias effect for that location. However, methods ex-
ist for the estimation of 1K either by correlation with to-
pographic height over estimation windows corresponding to
the full-scene or tens of kilometres (Lin et al., 2010; Bekaert
et al., 2015) or from climate reanalysis data (Cong et al.,
2012). Therefore, interference from 8sa is not considered a
limiting factor for the proposed method since the effect can
be largely mitigated.

5.3.2 Surface displacement

Surface displacements may result from freezing that causes
upward heave and thawing that causes downward subsi-
dence. Surface displacements associated with freezing or
thawing are predominantly in the direction of the local sur-
face normal, and therefore spatial variation in the InSAR
phase signal induced by such displacement (8he) is approxi-
mated by

8he =−
4π
λ
dh cosθ, (24)

where dh is the displacement magnitude away from the ref-
erence surface, with positive and negative displacements, re-
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Figure 17. Expected contribution of topographically correlated phase components to 1̂Sw error. Panels (a) and (b) show the error due to
a static atmospheric volumetric delay error of 1K = 10−5, (c) and (d) show the error per 10 mm of surface heave over the time interval,
discussed in Sect. 5.3.2, and (e) and (f) show the error for the reference solifluction case (dsf= 10 mm · tanα), discussed in Sect. 5.3.3. Water
areas are greyed out.

spectively, corresponding to freezing (heave) and thawing
(subsidence).

In equilibrium climate conditions, seasonal active-layer
displacement tends to follow a pattern of heave in early to
mid-winter related to freeze-back to the top of permafrost,
which is followed by static conditions until the spring. Then
the active layer thaws gradually throughout the summer.
Therefore, the dry-snow season can be divided into an initial
period of positively valued displacement followed by a static
period. Longer-term positively or negatively valued displace-
ment may be superimposed onto this seasonal pattern due to
changes in permafrost conditions. Annual displacement am-
plitudes for seasonally frozen terrain typically occur in the
range of 20 to 120 mm (Gruber, 2020).

Areas with heavily organic soil (e.g., peat) can have sig-
nificantly higher seasonal displacements. In the vicinity of
the study area, we have observed that these occur in local-
ized areas without significant topographic variation, i.e., ar-

eas already not well suited for the method because of lim-
ited ξ diversity. It may be possible to exclude these areas by
masking based on local ξ diversity or analysis of summer in-
terferograms (we have observed that these areas tend to have
low temporal coherence due to their significant displacement
phase).

To assess the significance of heave as an interfering fac-
tor we consider a reference case in which dh= 10 mm over
a 24 d interval. Figure 17c and d show the expected 1̂Sw er-
ror for this reference case. The error is always positively val-
ued and corresponds to an approximately +9 mm1SWE bias
over the 24 d estimation interval which is very substantial,
considering that 24 d 1SWE values are typically < 20 mm
for the study area (see Fig. 12). Hence, there is potential for
displacement processes, if present, to significantly interfere
with the proposed estimation method. Regarding whether we
can assume that dh is constant over the estimation window,
surface conditions affecting heave can certainly vary at scales
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shorter than the 500 m window size, e.g., as observed by Liu
et al. (2012), and this spatial variability will contribute to
estimation error to some degree, although we have not at-
tempted to quantify this effect.

Regarding the results presented in Sect. 4.3, the 1SWE
values are expected to yield a positive bias until freeze-back
of the active layer is completed. Considering the reference
case presented here in which 10 mm of heave results in a
mean 1SWE bias of 9 mm, the October–December bias can
be explained by (8.6mm/0.9)(92d/24d)= 37 mm of mean
upward displacement amplitude, which is a plausible value
for the area during active-layer freeze-back (Gruber, 2020).

The +1.7 mm bias for the snow-free periods presented in
Sect. 4.3 is unexpected since the snow-free period is ex-
pected to correspond to subsidence and therefore a nega-
tive bias with magnitude similar to but less than October–
December because the subsidence is expected to occur over
a longer time interval than the re-freeze. This disagreement
suggests other factors that are difficult to separate from one
another; perhaps the thaw is directionally asymmetric with
the heave (i.e., contribution from solifluction) as described in
Sect. 5.3.3.

One mitigation approach is to limit use of the estima-
tor spatially and temporally to correspond to known areas
and periods of low displacement activity. For example, tem-
poral analysis of summer interferograms can be used to
identify areas with significant subsidence, and these can be
masked out during 1SWE estimation under the assump-
tion that thaw-period subsidence is spatially correlated with
freeze-period heave. Of course, this is not possible for the
case of widespread seasonal surface displacement as is com-
mon in periglacial regions. Such areas are relatively com-
mon (e.g., Obu et al., 2019, report that 22 % of the exposed
land area of the Northern Hemisphere potentially contains
permafrost). It may also be possible to estimate and correct
for the early winter heave component by estimating the thaw
subsidence from summer-season interferograms and then ap-
plying a model for the cyclical deformation.

5.3.3 Solifluction

We consider slow-moving, gravity-driven surface soil flux,
i.e., solifluction, as a potential 8e component since it is cor-
related with topographic slope. We do not expect solifluction
to be a significant bias source during the dry-snow season
but include it because it may affect snow-free interferograms
analyzed for the purpose of method validation.

Solifluction is driven by cyclical surface displacement (di-
urnal or seasonal) coupled with sufficient topographic slope
magnitude and surface conditions (Matsuoka, 2001), and it
is common in periglacial regions. The flow direction is prin-
cipally in the local downslope direction, and therefore the
resulting InSAR phase (8sf) is approximated by

8sf =
4π
λ
dsf(l · d), (25)

where dsf is the downslope surface displacement magnitude
due to solifluction, and l and d are the unit magnitude SAR
line-of-sight and downslope direction vectors. Spatial varia-
tion in dsf can be modelled as a function of dh and α only.
An upper bound for dsf suggested by Matsuoka (2001) on an
annualized basis is

dsf ≤ dh tanα, (26)

which attributes downslope soil motion to the heave process
minus any retrograde motion due to soil cohesion. In order
to assess the significance of solifluction as an interfering fac-
tor we consider a reference case in which dsf= 10 mm · tanα.
Figure 17e and f show the expected 1̂Sw error for this ref-
erence case. The error is always positively valued and corre-
sponds to a 0.6 mm bias per 10 mm heave on an annualize ba-
sis, which is significantly less than that due directly to heave
discussed in Sect. 5.3.2.

5.3.4 Soil moisture

Near-surface soil moisture conditions are a known contribu-
tor to the InSAR phase signal (Nolan et al., 2003), and these
are likely modulated by topographic slope both in terms of
gravity-driven effects on near-surface hydrology and the in-
fluence of slope aspect on solar heating. As such, there may
be some correlation with ξ leading to estimation bias. As
with solifluction, we do not expect soil moisture to signifi-
cantly affect dry-snow interferograms but consider its effect
on snow-free interferograms used as method validation con-
trols.

Although the correlation of soil moisture phase with to-
pographic slope is difficult to model, it is possible to estab-
lish a bound on its impact on 1̂Sw by considering that the
soil moisture phase magnitude,8sm, is limited to some max-
imum value, 8sm_max, according to sensor wavelength and
soil type (De Zan et al., 2014). Considering a case where
ξ ∈ [ξmin,ξmax], the spatial distribution of 8sm producing
maximum possible 1̂Sw bias is

8sm =8sm_max
ξ − ξmin

ξmax− ξmin
, (27)

which corresponds to perfect correlation between8sm and ξ .
According to Eq. (12) this yields a 1SWE bias limit of
8sm_max/(ξmax− ξmin). Considering our study case, ξ ∈
[0.22 radmm−1, 0.28 radmm−1 ] (see Fig. 6a), and assuming
8sm_max= 90◦, which is reasonable considering the model of
De Zan et al. (2014) and the simulation results from Rabus
et al. (2010), this corresponds to a bias magnitude limit of
1.3 mm which is relatively small especially when consider-
ing that any actual spatial correlation is likely much less than
this ideal upper limit.
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5.4 DEM error

Errors in the DEM used for analysis contribute to the 1̂Sw
error due to both the residual topographic phase, as a compo-
nent of 8e, and error in ξ̃ used by the estimator.

The topographic phase error (8topo) scales linearly with
both perpendicular orbit baseline, B⊥, and DEM error, 1h.
Considering the 8e term in Eq. (13) and the fact that
1h varies spatially, the resulting 1SWE bias scales with
E(B⊥)E(〈ξ̃1h〉) with respect to all interferograms. We as-
sume that E(B⊥) is zero for a sensor with a maintained orbit,
and therefore this effect is likely unbiased with respect to a
temporal set of 1SWE maps.

Next, we consider the effect of errors in ξ̃ caused by DEM
errors. The estimator defined in Eq. (12) can be better ex-
pressed using the DEM-derived ξ̃D = ξ̃ + ξ̃1h instead of true
ξ̃ , in which ξ̃1h is the error in ξ̃D . As a first-order analysis of
this error, we neglect the second-order terms involving both
ξ̃1h and the bias terms in Eq. (12). Therefore,

1̂S =

〈
ξ̃D8̃

〉
〈
ξ̃2
D

〉 ∼= 〈1S〉


〈
ξ̃2
〉
+

〈
ξ̃ ξ̃1h

〉
〈
ξ̃2
〉
+

〈
ξ̃2
1h

〉
+ 2

〈
ξ̃ ξ̃1h

〉
 . (28)

If we assume that ξ̃1h is uncorrelated with ξ̃ ,

1̂S ∼= 〈1S〉

1−

〈
ξ̃2
1h

〉
〈
ξ̃2
〉
+

〈
ξ̃2
1h

〉
 , (29)

which corresponds to a multiplicative bias towards lower am-
plitudes that is more pronounced in areas with low ξ vari-
ance. We have not attempted to quantify 〈ξ̃2

1h〉 for our
TanDEM-X DEM-derived ξ map, but we made efforts to re-
duce it by smoothing the DEM (see Sect. 3.5), noting that
this approach has its limits since over-smoothing will tend to
increase 〈ξ̃2

1h〉. Note that smoothing the DEM has the ben-
efit of reducing potential bias introduced by short-scale hor-
izontal heterogeneity in the snowpack (e.g., those noted by
Sturm and Benson, 2004). Instead, the effect of these varia-
tions will be limited to an increase in the uncorrelated phase
components discussed in Sect. 3.6.

Regarding requirements for DEM generation frequency to
accommodate landform changes, at the scale applied in our
study (DEM smoothed to 90 m resolution), DEM genera-
tion frequency can likely be > 10 years. However, if apply-
ing the method using more finely scaled data, a more recent
DEM may be required since fine-scale landform changes oc-
cur more frequently.

5.5 Spatial resolution and geographic suitability

Regarding the choice of estimator window size, larger win-
dows improve precision by mitigating the effect of spatially
random noise. However, as discussed in Sect. 5.3, increasing
window size does not necessarily mitigate deterministic bias

contributions. Therefore, in terms of the trade-off between
estimator error and spatial resolution, there is an upper limit
for which increasing window size will significantly reduce
the expected error. For our study dataset we empirically de-
termined 500 m to be best choice for the window size since
larger windows did not yield significant reductions in the ob-
served spatial variance of 1SWE estimates.

As discussed in Sect. 3.6, the precision of the SlopeVar
estimator depends on both the coherence level and the local
ξ variance. These factors are spatially variable, and there-
fore in order to generalize the achievable spatial resolution to
other locations, one needs to consider both the degree of to-
pographic slope variation and conditions affecting coherence
(e.g., vegetation). Within a single dataset, this heteroskedas-
ticity of the estimator could be addressed by applying an
adaptively sized estimation window during the estimation to
achieve approximately uniform variance but variable spatial
resolution, in other words, growing the window size to com-
pensate in areas of low ξ diversity. Another approach would
be to simply mask out areas expected to have high variance
based on coherence or ξ diversity.

These considerations affect the geographic suitability of
the method; it requires dry-snow conditions and at least
moderate topographic variation. Such conditions are present
at least part of the time in many geographic regions. The
method is less suitable in areas with frequent wet-snow con-
ditions such as coastal areas and in regions that are mostly
flat, such as prairie.

5.6 Correcting for the dry-snow phase component

The main focus of this article is the estimation of 1SWE.
However, for repeat-pass InSAR applications other than
1SWE estimation (e.g., surface deformation estimation),8s
can be considered an interfering factor. In this case, know-
ing the spatial 1SWE distribution for a given interferogram
allows for removal of 8s according to Eq. (5). Furthermore,
1SWE can, in principle, be estimated at scales finer than the
SlopeVar estimation window size by (1) first using Slope-
Var to generate a coarse-scale estimate, (2) removing8s cor-
responding to this initial estimate, and then (3) attributing
the remaining phase to additional (high-spatial-frequency)
1SWE which can then be estimated per resolution cell ac-
cording to Eq. (5). We performed a preliminary investigation
of this by scaling the 1̂Sw maps by the ξ map to generate
spatial maps of estimated8s and then demodulating the orig-
inal interferograms. The result was, in general, a significant
increase in observed spatial phase gradients and short-scale
phase artifacts likely because of short-scale errors in the 1̂Sw
maps. This approach therefore requires further investigation
because, in order to maintain spatial phase smoothness re-
quired for subsequent phase unwrapping, the 1SWE maps
likely require imposition of smoothness constraints.
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6 Conclusions

We have introduced a novel spatial analysis method, “Slope-
Var”, that estimates dry SWE change from wrapped repeat-
pass interferograms by spatially correlating the InSAR phase
to a DEM-derived, slope-dependent dry-snow phase sensitiv-
ity map over a suitably sized estimation window. The method
does not require phase unwrapping or any spatial reference
with known SWE change and therefore addresses some of
the key challenges posed by InSAR-based SWE change esti-
mation.

We tested our method using a 9-year stack of
RADARSAT-2 Spotlight-A mode images over an area sur-
rounding the town of Inuvik, Northwest Territories, Canada,
and corresponding TanDEM-X DEM for the area. We gener-
ated SlopeVar 1SWE maps from the dataset for both snow-
covered and snow-free periods and compared these with a
number of in situ SWE transect measurements made over
two winters, and the results showed good agreement with
an absolute SWE RMSE of 15 mm. We compared our spa-
tially averaged results with the ERA5 1SWE time history,
and the results showed a moderately strong correlation and
7.9 mm RMSE (per 24 d period) over the October–March
period. Seasonal analysis revealed a substantial early win-
ter (October–December) bias (8.5 mm per 24 d period) that
is largely absent in late winter (January–March), which we
suspect is due to seasonal active-layer heave.

We empirically determined that a 500 m estimation win-
dow size provides the best combination of error mitigation
and spatial resolution for our dataset. However, the achiev-
able spatial resolution depends both on terrain factors affect-
ing the coherence and on the degree of slope variation, both
of which are location-dependent.

The method is subject to bias from factors that spatially
correlate with the dry-snow phase sensitivity map. We in-
vestigated the role of spatial SWE change inhomogeneity as
a possible bias factor and determined that vegetation homo-
geneity should be controlled for during estimation, e.g., by
limiting the estimator to homogenous areas. We investigated
the role of static atmospheric delay and surface deformation
as potential bias factors and also investigated solifluction and
soil moisture phase, two bias sources expected to only af-
fect snow-free interferograms used as zero 1SWE controls
for method validation. We found that static atmospheric de-
lay, soil moisture, and solifluction are likely not significant
sources of bias and that surface deformation due to heave,
if present, may lead to substantial estimation bias. We also
considered the effect of DEM error and found that DEM er-
rors lead to damping multiplicative 1SWE bias, and there-
fore DEM filtering, pre-processing, or both should be per-
formed to minimize this effect.

We compared the SlopeVar and Delta-K methods in terms
of their relative achievable precision and found that, for our
test area, SlopeVar is typically about 4× more precise than
Delta-K for a given estimation window size. Regarding the

benefits of the method compared to dual-frequency volume-
scattering-based estimation, our method is less suitable in ar-
eas with relatively low topographic variation, although it may
be possible to exploit even sparse areas of variation such as
along waterways to sparsely map SWE change in otherwise
flat areas. In other areas, the constraints are similar in that
they both require dry-snow conditions, and there is oppor-
tunity for cross-validation in these areas. Our method has
the advantage of only requiring a single band and is there-
fore feasible with existing spaceborne systems, especially L-
band. In comparison to passive microwave-based estimation,
we expect the SlopeVar method to perform better in high-
relief areas which potentially offers complementary coverage
in alpine regions that have previously been difficult areas to
evaluate.
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