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Abstract. Predictions of future mass loss from ice sheets are
afflicted with uncertainty, caused, among others, by insuffi-
cient understanding of spatiotemporally variable processes at
the inaccessible base of ice sheets for which few direct obser-
vations exist and of which basal friction is a prime example.
Here, we present a general numerical framework for study-
ing the relationship between bed and surface properties of ice
sheets and glaciers. Specifically, we use an inverse modeling
approach and the associated time-dependent adjoint equa-
tions, derived in the framework of a full Stokes model and
a shallow-shelf/shelfy-stream approximation model, respec-
tively, to determine the sensitivity of grounded ice sheet sur-
face velocities and elevation to time-dependent perturbations
in basal friction and basal topography. Analytical and numer-
ical examples are presented showing the importance of in-
cluding the time-dependent kinematic free surface equation
for the elevation and its adjoint, in particular for observations
of the elevation. A closed form of the analytical solutions to
the adjoint equations is given for a two-dimensional verti-
cal ice in steady state under the shallow-shelf approximation.
There is a delay in time between a seasonal perturbation at
the ice base and the observation of the change in elevation. A
perturbation at the base in the topography has a direct effect
in space at the surface above the perturbation, and a pertur-
bation in the friction is propagated directly to the surface in
time.

1 Introduction

Over the last decades, ice sheets and glaciers have expe-
rienced mass loss due to global warming, both in the po-
lar regions and also outside of Greenland and Antarctica
(Farinotti et al., 2015; Mouginot et al., 2019; Pörtner et al.,
2019; Rignot et al., 2019). The most common benchmark
date for which future ice sheet and glacier mass loss and as-
sociated global mean sea level rise is predicted is the year
2100 CE, but recently, even the year 2300 CE and beyond
are considered (Pörtner et al., 2019; Steffen et al., 2018).
Global mean sea level rise is predicted to continue well be-
yond 2100 CE in the warming scenarios typically referred to
as RCPs (representative concentration pathways; see van Vu-
uren et al., 2011), but rates and ranges are afflicted with un-
certainty, caused by, among others, insufficient understand-
ing of spatiotemporally variable processes at the inaccessi-
ble base of ice sheets and glaciers (Pörtner et al., 2019; Ritz
et al., 2015). These include the geothermal heat regime, sub-
glacial and base-proximal englacial hydrology, and particu-
larly the sliding of the ice sheet and glaciers across their base,
for which only few direct observations exist (Fisher et al.,
2015; Key and Siegfried, 2017; Maier et al., 2019; Pattyn
and Morlighem, 2020).

In computational models of ice dynamics, the description
of sliding processes, including their parametrization, plays a
central role and can be treated in two fundamentally differ-
ent ways, viz. using a so-called forward approach on the one
hand or an inverse approach on the other hand. In a forward
approach, an equation referred to as a sliding law is derived
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from a conceptual friction model and provides a boundary
condition to the equations describing the dynamics of ice
flow (in glaciology often referred to as the full Stokes (FS)
model), which, once solved, render, e.g., ice velocities part of
the solution. Studies of frictional models and resulting slid-
ing laws for glacier and ice sheet flow emerged in the 1950s –
see, e.g., Fowler (2011), Iken (1981), Lliboutry (1968), Nye
(1969), Schoof (2005), and Weertman (1957) – have subse-
quently been implemented into numerical models of ice sheet
and glacier behavior – e.g., in Brondex et al. (2017), Bron-
dex et al. (2019), Gladstone et al. (2017), Tsai et al. (2015),
Wilkens et al. (2015), and Yu et al. (2018) – and continue
to be discussed (Zoet and Iverson, 2020), occasionally con-
troversially (Minchew et al., 2019; Stearn and van der Veen,
2018).

Because few or no observational data are available to con-
strain the parameters in such sliding laws (Minchew et al.,
2016; Sergienko and Hindmarsh, 2013), actual values of the
former, and their variation over time (Jay-Allemand et al.,
2011; Schoof, 2010; Sole et al., 2011; Vallot et al., 2017),
often remain elusive. Yet, they can be obtained computation-
ally by solving an inverse problem provided that observa-
tions of, e.g., ice velocities at the ice surface and elevation
of the ice surface are available (Gillet-Chaulet et al., 2016;
Isaac et al., 2015). Note that the same approach, here de-
scribed for the case of the sliding law, can be used to deter-
mine other “inaccessibles”, such as optimal initial conditions
for ice sheet modeling (Perego et al., 2014), the sensitivity of
melt rates beneath ice shelves in response to ocean circula-
tion (Heimbach and Losch, 2012), the geothermal heat flux
at the ice base (Zhu et al., 2016), or to estimate basal topog-
raphy beneath an ice sheet (Monnier and des Boscs, 2017;
van Pelt et al., 2013). The latter is not only difficult to sepa-
rate from the determination of the sliding properties (Kyrke-
Smith et al., 2018; Thorsteinsson et al., 2003), but also has
limitations related to the spatial resolution of surface data
and/or measurement errors; see Gudmundsson (2003, 2008)
and Gudmundsson and Raymond (2008).

Adopting an inverse approach, the strategy is to minimize
an objective function describing the deviation of observed
target quantities (such as the ice velocity) from their coun-
terparts as predicted following a forward approach when a
selected parameter in the forward model (such as the friction
parameter in the sliding law) is varied. The gradient of the ob-
jective function is computed by solving the so-called adjoint
equations to the forward equations, where the latter often are
slightly simplified, such as by assuming a constant ice thick-
ness or a constant viscosity (MacAyeal, 1993; Petra et al.,
2012). However, when inferring friction parameter(s) in a
sliding law using an inverse approach, recent work (Gold-
berg et al., 2015; Jay-Allemand et al., 2011) has shown that
it is not sufficient to consider the time-independent (steady-
state) adjoint to the momentum balance in the FS model.
Rather, it is necessary to include the time-dependent advec-
tion equation for the ice surface elevation in the inversion.

Likewise, but perhaps more intuitively understandable, the
choice of the underlying glaciological model (FS model vs.,
e.g., shallow-shelf/stream approximation (SSA) model; see
Sect. 2) has an impact on the values of the friction parame-
ters obtained from the solution of the corresponding inverse
problem (Gudmundsson, 2008; Schannwell et al., 2019). A
related problem is to find the relation between perturbations
of the friction parameters and the topography at the base and
the resulting perturbations of the ice velocity and the ele-
vation at the surface. The parameter sensitivity of the solu-
tions is studied in Gudmundsson (2008) and Gudmundsson
and Raymond (2008) by linearizing the governing equations.
They show that basal perturbations of short wavelength are
damped when they reach the surface, but the effect of long
wavelengths can be observed at the top.

Here, we present an analysis of the sensitivity of the ve-
locity field and the elevation of the surface of a dynamic,
grounded ice sheet (modeled by both FS and SSA, briefly
described in Sect. 2) to perturbations in the sliding parame-
ters contained in Weertman’s law (Weertman, 1957) and the
topography at the ice base. The perturbations in a velocity
component or the ice surface elevation at a certain location
and time are determined by the solutions to the forward equa-
tions and the associated adjoint equations of a grounded ice
sheet. A certain type of perturbation at the base may cause
a very small perturbation at the top of the ice. Such a basal
perturbation will be difficult to infer from surface observa-
tions in an inverse problem. High-frequency perturbations
in space and time are examples when little is propagated to
the surface. This is also the conclusion in Gudmundsson and
Raymond (2008), derived from an analysis differing from the
one presented here. The adjoint problem that is solved here
to determine this sensitivity (Sect. 3) goes beyond similar
earlier works by MacAyeal (1993) and Petra et al. (2012) be-
cause it includes the time-dependent advection equation for
the kinematic free surface. The key concepts and steps in-
troduced in Sect. 3 are supplemented by detailed derivations,
collected in Appendix A. The same adjoint equations are ap-
plicable in the inverse problem to compute the gradient of
the objective function and to quantify the uncertainty in the
surface velocity and elevation due to uncertainties at the ice
base. Examples of uncertainties are measurement errors in
the basal topography and unknown variations in the parame-
ters in the friction model. Analytical solutions in two dimen-
sions of the stationary adjoint equations subjected to simpli-
fying assumptions are presented, from which the dependence
of the parameters, on, e.g., friction coefficients and bedrock
topography, becomes obvious. The time-dependent adjoint
equations are solved numerically, and the sensitivity to per-
turbations varying in time is investigated and illustrated.

The sensitivity of the surface velocity and elevation to
perturbations in the friction and topography is quantified
in extensive numerical computations in a companion paper
(Cheng and Lötstedt, 2020). The adjoint equations derived
and studied analytically in this paper are solved numerically
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for the FS and SSA models in Cheng and Lötstedt (2020)
and compared to direct calculations of the surface perturba-
tions with the forward equations. Discrete transfer functions
are computed and analyzed as in Gudmundsson (2008) for
the relation between surface perturbations and basal pertur-
bations. While Gudmundsson’s analysis is based on Fourier
analysis, the analysis in Cheng and Lötstedt (2020) relies on
analytical solutions of the SSA equations. The analysis in
this paper and the numerical experiments in Cheng and Löt-
stedt (2020) confirm the conclusion in Gudmundsson (2008)
that the perturbations with a long wavelength and low fre-
quency will propagate to the surface while those of a short
wavelength and high frequency are damped.

2 Ice models

In this section, the equations emerging from adopting a for-
ward approach to describing ice dynamics are presented, to-
gether with relevant boundary conditions, for the FS (4) and
SSA model (9), respectively. These, and the notation and ter-
minology introduced here, provide the framework in which
the adjoint equations are discussed in Sect. 3.

The flow of large bodies of ice is described with the help
of the conservation laws of mass, momentum, and energy
(Greve and Blatter, 2009), which together pose a system of
nonlinear partial differential equations (PDEs) commonly re-
ferred to as the FS equations in glaciological applications.
In the FS equations, nonlinearity is introduced through the
viscosity in Glen’s flow law, a constitutive relation between
strain rates and stresses (Glen, 1955). Continental sized ice
masses (ice sheets and, if applicable, their floating exten-
sions known as ice shelves) are shallow in the sense that
their vertical extension V is orders of magnitudes smaller
than their horizontal extension L, such that the aspect ra-
tio V/L is on the order 10−2 to 10−3. The aspect ratio is
used to introduce simplifications to the FS equations, result-
ing, e.g., in the shallow-ice (SIA) (Hutter, 1983), shallow-
shelf (Morland, 1987), and shelfy-stream (MacAyeal, 1989)
approximations, parts of which can be coupled to FS using
ISCAL (Ahlkrona et al., 2016), a method applicable to any
FS framework and implemented in Elmer/Ice. They are all
characterized by substantially reduced computational costs
for numerical simulation, compared to using the FS model.
A common simplification, also adopted in our analysis in the
following, is the assumption of isothermal conditions, which
implies that the balance of energy need not be considered.

The upper surface of the ice mass and also the ice–ocean
interface constitute a moving boundary and satisfy an advec-
tion equation describing the evolution of its elevation and
location (in response to mass gain, mass loss, or/and mass
advection). For ice masses resting on bedrock or sediments,
sliding needs to be parameterized at the interface. The in-
terface between floating ice shelves and sea water in the ice
shelf cavities is usually regarded as frictionless.

2.1 Full Stokes model

We adopt standard notation and denote vectors in bold italics
and matrices in three-dimensional space in bold, and we de-
note derivatives with respect to the spatial coordinates and
time by subscripts x, y, z, and t . The horizontal plane is
spanned by the x and y coordinates, and z is the coordinate in
the vertical direction (see Fig. 1a). Specifically, we denote by
u1,u2, and u3 the velocity components of u= (u1,u2,u3)

T

in the x,y, and z direction, where x = (x,y,z)T is the posi-
tion vector and T denotes the transpose. Further, the elevation
of the upper ice surface is denoted by h(x,y, t), the elevation
of the bedrock and the location of the base of the ice are
b(x,y) and zb(x,y, t), and the ice thickness is H = h− zb.
Upstream of the grounding line, γGL, zb = b, and down-
stream of γGL we have zb > b (see Fig. 1). In two dimen-
sions, γGL consists of one point with x coordinate xGL.

The boundary 0 enclosing the domain � occupied by the
ice has different parts (see Fig. 1b). The lower boundaries of
� are denoted by 0b (where the ice is grounded at bedrock)
and 0w (where the ice has lifted from the bedrock and is
floating on the ocean). These two regions are separated by
the grounding line γGL, defined by (xGL(y),y) based on the
assumption that ice flow is mainly along the x axis. The up-
per boundary is denoted by 0s (ice surface) at h(x,y, t) in
Fig. 1a. The footprint (or projection) of � in the horizontal
plane is denoted by ω and its boundary is γ .

The vertical lateral boundary (in the x–z plane, Fig. 1b)
has an upstream part denoted by 0u in black and a down-
stream part denoted by 0d in blue, where 0 = 0u∪0d. Obvi-
ously, if x ∈ 0u, then (x,y) ∈ γu, or if x ∈ 0d, then (x,y) ∈
γd, where γ = γu∪γd. Letting n be the outward-pointing nor-
mal on 0 (or γ in two dimensions (x,y)), the nature of ice
flow renders the conditions n ·u≤ 0 at 0u and n ·u> 0 at
0d. For a two-dimensional flow line geometry (Fig. 1a), this
corresponds to x = (x,z)T, ω = [0,L], γu = 0, and γd = L,
where L is the horizontal length of the domain. In summary,
the domains are defined as

�= {x|(x,y) ∈ ω, zb(x,y, t)≤ z ≤ h(x,y, t)},

0s = {x|(x,y) ∈ ω, z= h(x,y, t)},

0b = {x|(x,y) ∈ ω, z= zb(x,y, t)

= b(x,y), x < xGL(y)},

0w = {x|(x,y) ∈ ω, z= zb(x,y, t), x > xGL(y)},

0u = {x|(x,y) ∈ γu, zb(x,y, t)≤ z ≤ h(x,y, t)},

0d = {x|(x,y) ∈ γd, zb(x,y, t)≤ z ≤ h(x,y, t)}. (1)

Before the forward FS equations for the evolution of the
ice surface 0s and the ice velocity in � can be given, further
notation needs to be introduced: ice density is denoted by
ρ, accumulation and/or ablation rate on 0s by as, and grav-
itational acceleration by g. The values of these physical pa-
rameters are given in Table 1. On 0s, h= (hx,hy,−1)T de-
scribes the spatial gradient of the ice surface (in two vertical
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Figure 1. A schematic view of an ice sheet in the (a) x–z plane and (b) x–y plane.

dimensions h= (hx,−1)T). The strain rate D and the viscos-
ity η are given by

D(u)= 1
2 (∇u+∇u

T), η(u)= 1
2A
−

1
n (trD2(u))

1−n
2n , (2)

where trD2 is the trace of D2. The rate factorA in (2) depends
on the temperature, and Glen’s flow law determines n > 0,
here taken to be n= 3. The stress tensor is

σ (u,p)= 2ηD(u)− Ip, (3)

where p is the isotropic pressure and I is the identity matrix.
Turning to the ice base, the basal stress on 0b is re-

lated to the basal velocity using an empirical friction law
Tσn=−βTu, where a projection (Petra et al., 2012) on the
tangential plane of 0b is denoted by T= I−n⊗n, where the
Kronecker outer product between two vectors a and c or two
matrices A and C is defined by

(a⊗ c)ij = aicj , (A⊗C)ijkl = AijCkl .

The friction coefficient has a general form β(u,x, t)=

C(x, t)f (u), where C(x, t) is independent of the velocity u
and f (u) represents some linear or nonlinear function of u.
For instance, f (u)= ‖u‖m−1 with the norm ‖u‖ = (u ·u)

1
2

introduces a Weertman-type friction law (Weertman, 1957)
on ω with a Weertman friction coefficient C(x, t)≥ 0 and an
exponent parameter m> 0. Common choices of m are 1

3 and
1.

With these prerequisites at hand, the forward FS equations
and the advection equation for the ice sheet’s elevation and
velocity for incompressible ice flow are

ht +h ·u= as, on 0s, t ≥ 0,

h(x,0)= h0(x), x ∈ ω, h(x, t)= hγ (x, t), x ∈ γu,

−∇ · σ (u,p)=−∇ · (2η(u)D(u))+∇p = ρg,
∇ ·u= 0, in �(t),

σn= 0, on 0s,

Tσn=−Cf (Tu)Tu, n ·u= 0, on 0b, (4)

where h0(x) > b(x,y) is the initial surface elevation and
hγ (x, t) is a given height on the inflow boundary. In the

floating ice, the equations and the boundary conditions are
as above plus an equation for the free surface zb with zb ≥ b
and a boundary condition on the wetted ice 0w:

zbt + uzbx + vzby −w = ab, on 0w, t ≥ 0,
σn=−pwn, on 0w,

(5)

where ab is the basal mass balance and pw is the water pres-
sure at 0w. With the sea level at z= 0 and the water density
ρw, pw =−ρwgzb.

The solution at the grounding line satisfies a nonlinear
complementarity problem. Let d be the distance between the
ice base and the bedrock such that

d(x, t)= zb(x, t)− b(x).

On 0w, we have d(x, t) > 0 and n · σn+pw = 0 and on 0b,
we have d(x, t)= 0 and n · σn+pw < 0. The complemen-
tarity relation at the ice base 0b ∪0w can be summarized as

d(x, t)≥ 0, n · σn+pw ≤ 0, d(x, t)(n · σn+pw)= 0.

There are additional constraints on the solution. For exam-
ple, the thickness of the ice is non-negative H ≥ 0, there is a
lower bound on the velocity in Weertmann’s friction law, and
there is an upper bound on the viscosity η. These conditions
have to be handled in a numerical solution of the equations
but are not discussed further here.

The boundary conditions for the velocity on 0u and 0d are
of Dirichlet type such that

u|0u = uu, u|0d = ud, (6)

where uu and ud are known. These are general settings of the
inflow and outflow boundaries which keep the formulation
of the adjoint equations as simple as in Petra et al. (2014).
Should 0u be at the ice divide, the horizontal velocity is set
to u|0u = 0. The ice velocity at the calving front is defined
as ud to simplify the analysis. The vertical component of σn
vanishes on 0u.

2.2 Shallow-shelf approximation

The three-dimensional FS problem (4) in� can be reduced to
a two-dimensional, horizontal problem with x = (x,y) ∈ ω
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by adopting the SSA, in which only u= (u1,u2)
T is consid-

ered. This is because the basal shear stress is negligibly small
at the base of the floating part of the ice mass, viz. the ice
shelf, rendering the horizontal velocity components almost
constant in the z direction (MacAyeal, 1989). The SSA is of-
ten also used in regions of fast flow over lubricated bedrock
(MacAyeal, 1989).

The simplifications associated with adopting the SSA im-
ply that the viscosity (see 2 for the FS model) is now given
by

η(u)=

1
2
A−

1
n

(
u2

1x + u
2
2y +

1
4
(u1y + u2x)

2
+ u1xu2y

) 1−n
2n

=
1
2
A−

1
n

(
1
2

B : D
) 1−n

2n
, (7)

where B(u)= D(u)+∇ ·u I, with ∇ ·u= trD(u). This η
differs from (2) because B 6= D due to the cryostatic ap-
proximation of p in the SSA. In (7), the Frobenius inner
product between two matrices A and C is used, defined by
A : C=

∑
ijAijCij . The vertically integrated stress tensor

ς(u) (cf. 3 for the FS model) is given by

ς(u)= 2HηB(u) , (8)

where H is the ice thickness (see Fig. 1). The friction
law in the SSA model is defined as in the FS case. Note
that basal velocity is replaced by the horizontal velocity.
This is possible because vertical variations in the horizon-
tal velocity are neglected in SSA. Then, Weertman’s law
is β(u,x, t)= C(x, t)f (u)= C(x, t)‖u‖m−1 with a friction
coefficient C(x, t)≥ 0, just as in the FS model. In summary,
the forward equations describing the evolution of the ice sur-
face and ice velocities based on an SSA model (in which u is
not divergence-free) read

Ht +∇ · (uH)= a, t ≥ 0, x ∈ ω,

h(x,0)= h0(x), x ∈ ω, h(x, t)= hγ (x, t), x ∈ γu,

∇ · ς −Cf (u)u= ρgH∇h, x ∈ ω,

n ·u(x, t)= uu(x, t),x ∈ γu, n ·u(x, t)= ud(x, t),

x ∈ γd,

t · ςn=−Cγ fγ (t ·u)t ·u, x ∈ γg,

t · ςn= 0, x ∈ γw. (9)

Above, t is the tangential vector on γ = γu ∪ γd such that
n · t = 0 and a = as−ab. The inflow and outflow normal ve-
locities uu ≤ 0 and ud > 0 are specified on γu and γd. The lat-
eral side of the ice γ is split into γg and γw with γ = γg∪γw.
There is friction in the tangential direction on γg which de-
pends on the tangential velocity t ·u with the friction coef-
ficient Cγ and friction function fγ . There is no friction on
the wet boundary γw. When the equations are solved for the
grounded part, Ht = ht with a time-independent topography.

A flotation criterion determines the position of the ground-
ing line (see, e.g., Seroussi et al. (2014)). The thickness H is
compared to a flotation height Hf given by

Hf =−ρwzb/ρ.

If H >Hf then the ice is grounded and C > 0 in (9). If
H <Hf then it is floating with C = 0. The grounding line
is defined by H =Hf.

For ice sheets that develop an ice shelf, the latter is as-
sumed to be at hydrostatic equilibrium. In such a case, a calv-
ing front boundary condition (Schoof, 2007; van der Veen,
1996) is applied at γd, in the form of the depth-integrated
stress balance (ρw is the density of seawater):

ς(u) ·n=
1
2
ρgH 2

(
1−

ρ

ρw

)
n, x ∈ γd. (10)

2.2.1 The flow line model of SSA

In this section, the SSA equations are presented for the case
of an idealized, two-dimensional vertical sheet in the x–
z plane (see Fig. 1). The forward SSA equations are de-
rived from (9) by letting H and u1 be independent of y
and setting u2 = 0. Since there is no lateral force, Cγ = 0.
The position of the grounding line is denoted by xGL, and
0b = [0,xGL], 0w = (xGL,L]. Basal friction C is positive
and constant where the ice sheet is grounded on bedrock,
while C = 0 at the floating ice shelf’s lower boundary. To
simplify notation, we let u= u1. The forward equations thus
become

Ht + (uH)x = a, 0≤ t ≤ T , 0≤ x ≤ L,

h(x,0)= h0(x), h(0, t)= hL(t),
(Hηux)x −Cf (u)u− ρgHhx = 0,
u(0, t)= uu(t), u(L, t)= ud(t), (11)

where uu is the speed of the ice flux at x = 0 and ud is the
speed at the calving front at x = L. If x = 0 is at the ice
divide, then uu = 0. By the stress balance (10), the calving
front satisfies

ux(L, t)= A

[
ρgH(L,t)

4
(1−

ρ

ρw
)

]n
.

Assuming that u > 0 and ux > 0, the viscosity becomes η =

2A−
1
n u

1−n
n
x , and the friction term with a Weertman law turns

into Cf (u)u= Cum.

2.2.2 The two-dimensional forward steady-state
solution

We now discuss the steady-state solutions to the system (11).
Except for letting all time derivatives vanish, even the longi-
tudinal stress can be ignored in the steady-state solution (see
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Table 1. The model parameters.

Parameter Quantity

a = 0.3 m yr−1 Surface mass balance
A= 1.38× 10−24 s−1 Pa−3 Rate factor of Glen’s flow law
C = 7.624× 106 Pa m−1/3 s1/3 Basal friction coefficient
g = 9.8 m s−2 Acceleration of gravity
m= 1/3 Friction law exponent
n= 3 Flow-law exponent
ρ = 900 kg m−3 Ice density

Schoof (2007)). With a sliding law in the form f (u)= um−1

and the thickness given at xGL, (11) thus reduces to

(uH)x = a, 0≤ x ≤ xGL,

H(xGL)=HGL,

−Cum− ρgHhx = 0,
u(0)= 0.

(12)

The solution to the forward equation (12) is derived for the
case when a and C are constant (for details, see D3 and D4
in Appendix D):

H(x)=

(
Hm+2

GL +
m+ 2
m+ 1

Cam

ρg
(xm+1

GL − x
m+1)

) 1
m+2
,

0≤ x ≤ xGL,

H(x)=HGL, xGL < x < L,

u(x)=
ax

H
, 0≤ x ≤ xGL, u(x)=

ax

HGL
,

xGL < x < L. (13)

The solution is normalized with the ice thickness HGL =

H(xGL) at the grounding line. Both xGL and HGL are as-
sumed to be known in the formula. Similar equations to those
in (12) are derived in Nye (1959) using the properties of large
ice sheets. A formula for H(x) resembling (13) and involv-
ing H(0) is the solution of the equations. By including the
longitudinal stress in the ice, an approximate, more compli-
cated expression for H(x) is obtained in Weertman (1961).

Figure 2 displays solutions from (13) obtained with data
from the Marine Ice Sheet Model Intercomparison Project
(MISMIP) (Pattyn et al., 2012) test case EXP 1 chosen in
Cheng and Lötstedt (2020). The modeling parameters in (13)
are given in Table 1. The ice sheet flows from x = 0 to L=
1.6× 106 m on a single slope bed defined by b(x)= 720−

778.5x
7.5×105 and lifts from it at the grounding line position xGL =

1.035×106 m. As x approaches xGL,H decreases to become
HGL at xGL in Fig. 2b.

The larger the friction coefficient C and accumulation rate
a are, the steeper the decrease inH is in (13). The numerator
in u increases and the denominator decreases when x→ xGL,
resulting in a rapid increase in u. The MISMIP example is
such that the SSA solution is close to the FS solution. Nu-
merical experiments in Cheng and Lötstedt (2020) show that

an accurate solution compared to the FS and SSA solutions
is obtained with u and H in (13) solving (12).

Finally, it is noted that an alternative solution to (11) valid
for the floating ice shelf, x > xGL, but under the restraining
assumption of H(x) being linear in x, is found in Greve and
Blatter (2009).

3 Adjoint equations

In this section, the adjoint equations are discussed, as emerg-
ing in a FS framework (Sect. 3.1) and in a SSA framework
(Sect. 3.2), respectively. We derive the adjoint equations for
the grounded part of the ice sheet. There the friction coeffi-
cient can be perturbed with δC 6= 0, and a perturbation δb of
the topography has a direct influence on the flow of ice. The
adjoint equations follow from the Lagrangian based on the
forward equations after partial integration. Lengthy deriva-
tions have been moved to Appendix A. A numerical example
based on the MISMIP (Pattyn et al., 2012) used also in Cheng
and Lötstedt (2020) illustrates the findings presented.

On the ice surface 0s and over the time interval [0,T ], we
consider the functional F :

F =
T∫

0

∫
0s

F(u,h)dx dt . (14)

We wish to determine its sensitivity to perturbations in both
the friction coefficient C(x, t) at the base of the ice and the
topography of the base itself b(x), which is a smooth func-
tion in x. We distinguish two cases: u and h satisfy either the
FS equation (4) or the SSA equation (9). Given F , the for-
ward solution (u,p,h) to (4) or (u,h) to (9), and the adjoint
solution (v,q,ψ) or (v,ψ) to the adjoint FS and adjoint SSA
equations (both derived in the following and in Appendix A),
we introduce a Lagrangian L(u,p,h;v,q,ψ;b,C). The La-
grangian for the FS equations is

L(u,p,h;v,q,ψ;C)=
T∫

0

∫
0s

F(u,h)+ψ(ht +h ·u− a)dx dt

+

T∫
0

∫
ω

h∫
b

−v · (∇ · σ (u,p))− ρg · v

− q∇ ·u dx dt, (15)

with the Lagrange multipliers v,q, and ψ corresponding to
the forward equations for u,p, and h. The effect of perturba-
tions δC and δb in C and b on F is given by the perturbation
δL, viz.

δF = δL= L(u+ δu,p+ δp,h+ δh;v+ δv,q + δq,
ψ + δψ;b+ δb,C+ δC)−L(u,p,h;v,q,ψ;b,C). (16)
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Figure 2. The analytical solutions u(x) and H(x) in (13) for a grounded ice in [0,xGL].

Examples of F(u,h) in (14) are F = ‖u−uobs‖
2, and

F = |h−hobs|
2 in an inverse problem, in which the task is to

find b and C such that they match observations uobs and hobs
at the surface 0s (see also Gillet-Chaulet et al., 2016; Isaac
et al., 2015; Morlighem et al., 2013; and Petra et al., 2012).
Another example is F(u,h)= 1

T
u1(x, t)δ(x− x∗) with the

Dirac delta δ at x∗ to measure the time-averaged horizontal
velocity u1 at x∗ on the ice surface 0s with

F =
T∫

0

∫
0s

F(u,h)dx dt =
1
T

T∫
0

u1(x∗, t)dt, (17)

where T is the duration of the observation at 0s. If the
horizontal velocity is observed at (x∗, t∗) then F(u,h)=

u1(x, t)δ(x− x∗)δ(t − t∗) and

F =
T∫

0

∫
0s

F(u,h)dx dt = u1(x∗, t∗). (18)

The sensitivity in F and u1 in (17) or (18) to perturbations
in C and b is then given by (16) with the forward and adjoint
solutions.

The same forward and adjoint equations are solved both
for the inverse problem and the sensitivity problem but with
different forcing function F in (14). If we are interested in
how u1 changes at the surface when b and C are changed at
the base by given δb and δC, then F is as in (18). The for-
ward and adjoint equations are then solved once. In the in-
verse problem with velocity observations, F is the objective
function in a minimization procedure and F = ‖u−uobs‖

2.
The change δF in F is of interest when C and b are changed
during the solution procedure. In order to minimize F , δC
and δb are chosen such that δF < 0 and F decreases with
C+ δC and b+ δb and u is closer to uobs. Precisely how δC

and δb are chosen depends on the optimization algorithm.
This procedure is repeated iteratively, and b and C are up-
dated by b+δb and C+δC until δF→ 0 and F has reached
a minimum. The forward and adjoint equations have to be
solved in each iteration in the inverse problem.

3.1 Adjoint equations based on the FS model

In this section, we introduce the adjoint equations and the
perturbation of the Lagrangian function. The detailed deriva-
tions of (19) and (22) below are given in Appendix A, starting
from the weak form of the FS equation (4) on� and by using
integration by parts, and applying boundary conditions as in
Martin and Monnier (2014) and Petra et al. (2012).

The definition of the Lagrangian L for the FS equations
is given in (15) and (A15) in Appendix A. To determine
(v,q,ψ) in (15), the following adjoint problem is solved:

ψt +∇ · (uψ)−h ·uzψ = Fh+Fu ·uz, on 0s,

0≤ t ≤ T ,
ψ(x,T )= 0, ψ(x, t)= 0, on 0d,

−∇ · σ̃ (v,q)=−∇ · (2η̃(u) ?D(v))+∇q = 0,
∇ · v = 0, in �(t),

σ̃ (v,q)n=−(Fu+ψh), on 0s,

Tσ̃ (v,q)n=−Cf (Tu)(I+Fb(Tu))Tv, on 0b,

n · v = 0, on 0b, (19)

where the derivatives of F with respect to u and h are

Fu =

(
∂F

∂u1
,
∂F

∂u2
,
∂F

∂u3

)T

, Fh =
∂F

∂h
.

Note that (19) consists of equations for the adjoint elevation
ψ , the adjoint velocity v, and the adjoint pressure q. The
equations are the same as when the derivatives are computed
in the inverse problem except for the terms depending on F ,
which is the misfit between the numerical solution and the
observation in the inverse problem. Compared to the steady-
state adjoint equation for the FS equations discussed in Pe-
tra et al. (2012), an advection equation is added in (19) for
the Lagrange multiplier ψ(x, t) on 0s with a right-hand side
depending on the observation function F and one term de-
pending on ψ in the boundary condition on 0s. The adjoint
elevation equation for ψ can be solved independently of the
adjoint stress equation since it is independent of v. If h is
observed and Fh 6= 0 and Fu = 0, then the adjoint elevation
equation must be solved together with the adjoint stress equa-
tion. Otherwise, the termψh is ignored in the right-hand side
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of the boundary condition of the adjoint stress equation and
the solution is v = 0 with δF = 0 in (22); see below.

The adjoint viscosity and adjoint stress are

η̃(u) = η(u)
(
I + 1−n

nD(u):D(u)D(u)⊗D(u)
)
,

σ̃ (v,q) = 2η̃(u) ?D(v)− qI;
(20)

cf. also Petra et al. (2012). For the rank four-tensor I,
Iijkl = 1 only when i = j = k = l; otherwise Iijkl = 0. The
? operation in (20) between a rank four-tensor A and a
rank two-tensor (viz. a matrix) C is defined by (A ?C)ij =∑
klAijklCkl . In general, Fb(Tu) in (19) is a linearization

of the friction law f (Tu) in (4) with respect to the vari-
able Tu. For instance, with a Weertman-type friction law,
f (Tu)= ‖Tu‖m−1,

Fb(Tu)=
m− 1

Tu ·Tu
(Tu)⊗ (Tu). (21)

The perturbation of the Lagrangian function with respect
to a perturbation δC in the slip coefficient C(x, t) involves
the tangential components of the forward and adjoint veloci-
ties, Tu and Tv at the ice base 0b, and is given by

δF = δL=
T∫

0

∫
0b

f (Tu)Tu ·Tv δC dx dt. (22)

For this formula to be accurate, δC has to be small. Other-
wise, nonlinear effects may be of importance.

3.1.1 Time-dependent perturbations

Let us now investigate the effect of time-dependent perturba-
tions in the friction parameter on modeled ice velocities and
ice surface elevation. Suppose that the velocity component
u1∗ = u1(x∗, t∗) is observed at (x∗, t∗) at the ice surface as
in (18) and that t∗ < T , then

u1∗ = F =
T∫

0

∫
0s

F(u)dx dt, (23)

with F(u)= u1δ(x− x∗)δ(t − t∗), Fu1 = δ(x− x∗)δ(t −

t∗), Fu2 = Fu3 = 0, and Fh = 0. Above, we have introduced
the simplifying notation that a variable with subscript ∗ is
a shorthand for it being evaluated at (x∗, t∗) or, if it is time
independent, at x∗. Here we have chosen to consider the
perturbation at a certain point in space and time (x∗, t∗),
which is sufficient because other types of sensitivity over
a certain period of time and space as in (17) are the linear
combination of point-wise sensitivities.

The procedure to determine the sensitivity is as follows.
First, the forward equation (4) is solved for u(x, t) and
h(x, t) from t = 0 to t = T . Then, the adjoint equation (19)
is solved backward in time (from t = T to t = 0) with

ψ(x,T )= 0 as the corresponding final condition. Obviously,
the solution for t∗ < t ≤ T is ψ(x, t)= 0 and v(x, t)= 0.
Letting ei denote the unit vector with 1 in the ith compo-
nent, the boundary condition in (19) becomes σ̃ (v,q)n=
−e1δ(x−x∗)δ(t− t∗)−ψh at t = t∗. For t < t∗, σ̃ (v,q)n=
−ψh. Since ψ is small for t < t∗ (see Sect. 3.1.4), the domi-
nant part of the solution is v(x, t)= v0(x)δ(t − t∗) for some
v0.

We start by investigating the response of ice velocities to
perturbations in friction at the base: when the slip coefficient
at the ice base is changed by δC, then the change in u1∗ at 0s
is, according to (22), given by

δu1∗ = δL=
T∫

0

∫
0b

f (Tu)Tu ·Tv δC dx dt

≈

∫
0b

f (Tu)Tu ·Tv0 δC(x, t∗)dx. (24)

This implies that the perturbation δu1∗ mainly depends on δC
at time t∗ and that contributions from previous δC(x, t), t <
t∗, are small. If we observe the horizontal velocity, then it
responds instantaneously in time to the change in basal fric-
tion.

Further, to investigate the response of the ice surface eleva-
tion, h∗ at 0s, to perturbations in basal friction, one considers

F(h)= h(x, t)δ(x− x∗)δ(t − t∗), Fh = δ(x− x∗)δ(t − t∗),

Fu = 0.

The solution of the adjoint equation (19) with σ̃ (v,q)n=
−ψh at 0s for v(x, t) is non-zero since ψ(x, t) 6= 0 for t <
t∗.

In applied scenarios, friction at the base of an ice sheet
is expected to exhibit seasonal variations. These can be
expressed by δC(x, t)= δC0(x)cos(2πt/τ), viz. a time-
dependent perturbation added to a stationary time average
C(x), with 0< δC0 ≤ C. If, for illustrational purposes, τ =
1 (1 year, from January to December), then Northern Hemi-
sphere cold and warm seasons can in a simplified manner be
associated with nτ, n= 0,1,2, . . . (winter) and (n+ 1/2)τ ,
n= 0,1,2, . . . (summer).

Assume further that f (Tu)Tu ·Tv is approximately con-
stant in time. This is the case if u varies slowly in time.
Then ψ ≈ constant and v ≈ constant for t < t∗. The change
in ice surface elevation, δh, due to time-dependent variations
in basal friction varies as

δh∗ = δL=
∫ T

0

∫
0b

f (Tu)Tu ·Tv δC(x, t)dx dt

≈ J
∫ t∗

0 cos(2πt/τ)dt = J τ
2π sin(2πt∗/τ),

(25)

where the integral J is

J =
∫
0b

f (Tu)Tu ·Tv δC0 dx. (26)
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Obviously, from the properties of the cosine function, the
friction perturbation δC is large at t∗ = 0,τ/2,τ, . . ., and
vanishes at t∗ = τ/4,3τ/4, . . .. Yet, (25) shows that δh∗ = 0
at t∗ = 0,τ, . . . (during maximal friction in the winter) and
at t∗ = τ/2,3τ/2, . . . (during minimal friction in the sum-
mer), while δh∗ 6= 0 when δC = 0 at t∗ = τ/4,3τ/4, . . . in
the spring and the fall. The response in h by changing C is
delayed in phase by π/2 or in time by τ/4= 0.25 years. This
is in contrast to the observation of u1 in (24) where a pertur-
bation in C is directly visible.

Particularly in an inverse problem where the phase shift
between δC and δh in (25) is not accounted for, if h∗ is mea-
sured in the summer with δh(x, t∗)= 0, then the wrong con-
clusion would be drawn such that there is no change in C.

In another example, suppose that there is an interval with a
step change of C with δC(x, t)= δC0(x)s(t), where s(t)=
1 in the time interval [t0, t1] and 0 otherwise. Then with J in
(26), δh∗ in (25) is

δh∗ ≈ J
t∗∫

0

s(t)dt =

 0, t∗ ≤ t0,

J (t∗− t0), t0 < t∗ < t1,

J (t1− t0), t∗ > t1.

The effect of the basal perturbation successively increases
in the elevation when t∗ > t0 and stays at a higher level for
t∗ > t1 when δC has vanished.

3.1.2 Example with seasonal variation

To illustrate the phase delay in an oscillatory perturba-
tion, a two-dimensional numerical example is shown in
Fig. 3, where the timescale and friction coefficient are cho-
sen as follows: τ = 1 year, δC(x, t)= 0.01C cos(2πt) in x ∈
[0.9,1.0]×106 m. We reuse the MISMIP (Pattyn et al., 2012)
test case EXP 1 as in Sect. 2.2.2. The parameters of the
setup are the same as in Fig. 2 and are given in Table 1. The
variables u1 and h are observed at x ∈ [0.85,1.02]× 106 m.
The steady-state solution of the forward equation with the
GL located at xGL = 1.035× 106 m is perturbed by δu1 and
δh when C is perturbed by δC as expressed in formulas
δu1 = u1(C+δC)−u1(C) and δh= h(C+δC)−h(C). After
perturbation, the GL position will oscillate in time. The ice
sheet is simulated by FS with Elmer/Ice (Gagliardini et al.,
2013) for 10 years using the method implemented there for
the position of the grounding line.

Figure 3 shows that the perturbations δu1 and δh in
the grounded part of the ice sheet, specifically at x∗ =
0.85,0.9,0.95,1.0, and 1.02× 106 m for which individual
panels are shown, oscillate regularly with a period of 1 year.
The perturbations are small outside the interval [0.9,1.0]×
106. The initial condition at t = 0 is the steady-state solution
of the MISMIP problem and the FS solution with a variable
C is essentially that steady-state solution plus a small oscil-
latory perturbation, as in Fig. 3.

The weight f (Tu)Tu ·Tv0 in (24) is negative, and an in-
crease in the friction, δC > 0, leads to a decrease in the veloc-

ity, and δC < 0 increases the velocity in all panels of Fig. 3.
The velocities δu1 and the surface elevations δh are separated
by a phase shift in time, 1φ = π/2, as predicted by (24) and
(25).

The weight in (25) for δC0 in the integral over x changes
sign when the observation point is passing from x∗ = 0.9×
106 to 1.0×106, explaining why the shift changes sign in the
red dashed lines shown in the two lower panels of Fig. 3.

3.1.3 The sensitivity problem and the inverse problem

From a theoretical point of view, it is interesting to note that
there is a relation between the sensitivity problem where the
effect of perturbed parameters in the forward model is esti-
mated and the inverse problem used to infer “unobservable”
parameters such as basal friction from observable data, e.g.,
ice velocity at the ice sheet surface. The same adjoint equa-
tion (19) are solved in both problems but with different driv-
ing functions defined by F(u,h) in (14).

Let (vi,qi,ψ i), i = 1, . . .,d, be the steady-state solution
to (19) when ui is observed at x̄ and Fu = eiδ(x−x). These
are solutions to the sensitivity problem. We will show that the
adjoint solution and the variation δF of the inverse problem
can be expressed in (vi,qi,ψ i). The perturbation δC is cho-
sen such that δF < 0 in each step in the iterative solution of
the inverse problem. Then the objective function F decreases
stepwise toward the minimum.

It is shown in Appendix B that∫
ω

d∑
i=1

wi(x̄)v
i dx,

∫
ω

d∑
i=1

wi(x)q
i dx,

∫
ω

d∑
i=1

wi(x)ψ
i dx


is a solution of (19) with arbitrary weights wi(x), i =

1, . . .,d, when

Fu =

∫
ω

d∑
i=1

wi(x)e
iδ(x− x)dx =

d∑
i=1

wi(x)e
i . (27)

When C is perturbed, the first variation of the functional in
(22) is

δF =
∫
0b

f (Tu)Tu ·T

∫
ω

d∑
i=1

wi(x)v
i dx

 δC dx. (28)

In the inverse problem in Petra et al. (2012),

F =
1
2

∫
ω

‖u(x)−uobs(x)‖
2 dx, Fu = u(x)−uobs(x). (29)

The weights in (27) for the inverse problem are wi(x)=
ui(x)− uobs,i(x). Let ṽ denote a weighted sum of the so-
lutions of the sensitivity problem vi over the whole domain
ω:

ṽ(x)=

∫
ω

d∑
i=1
(ui(x)− uobs, i(x))v

i dx. (30)
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Figure 3. Observations at x∗ = 0.85,0.9,0.95,1.0,1.02× 106 m with FS in time t ∈ [0,10] of δu1 (solid blue) and δh (dashed red) with
perturbation δC(t)= 0.01C cos(2πt) for x ∈ [0.9,1.0]× 106 m. Notice the different scales on the y axes.

Then the effect of δC on F in the inverse problem is by (28)

δF =
∫
0b

f (Tu)Tu ·Tṽ(x) δC dx. (31)

The same construction of the solution is possible when hobs
is given. Then d = 1, F(h)= 1

2 (h−hobs)
2, and Fh = w =

h−hobs.
We have investigated the relation between the sensitiv-

ity problem and the inverse problem. By solving d sensi-
tivity problems with Fu = eiδ(x−x), i = 1, . . .,d, to obtain
their adjoint solutions (vi,qi,ψ i) and combine them with
the weights wi from Fu in (29) for the inverse problem, the
adjoint solution to the inverse problem is (30). This solution
can then be inserted into (28) to evaluate the effect in F of
a change in C as in (31). In practice, if we are interested
in solving the inverse problem and determine δF in (28) in
order to iteratively compute the optimal solution with a gra-
dient method, then we solve (19) directly with Fu = u−uobs
or Fh = h−hobs to obtain ṽ without computing d vectors vi .
Taking δC =−f (Tu)Tu·Tṽ in (31) guarantees that δF < 0.

3.1.4 Steady-state solution to the adjoint elevation
equation in two dimensions

A further theoretical consideration shows that the solution
ψ to the adjoint elevation equation need not be computed to
estimate perturbations in the velocity for a two-dimensional

vertical ice sheet at a steady state. We show with the ana-
lytical solution in the FS model that the influence of ψ is
negligible. It is sufficient to solve the adjoint stress equation
for v to estimate the perturbation in the velocity.

The adjoint steady-state equation in a two-dimensional
vertical ice in (19) is

(u1ψ)x = Fh+ (hψ +Fu) ·uz, z= h, 0≤ x ≤ L. (32)

The velocity from the forward equation is u(x,z)=

(u1,u3)
T , and the adjoint elevation ψ satisfies the right

boundary condition ψ(L)= 0.
The analytical solutionψ to (32) is derived in Appendix C.

Let g(x)= u1z(x) if u1 is observed and let g(x)= 1 if h is
observed. Then the adjoint solution is

ψ(x)=


−
g(x∗)

u1(x)
exp

(
−

∫ x∗

x

h ·uz(y)

u1(y)
dy
)
,

0≤ x ≤ x∗,
0, x∗ < x ≤ L.

(33)

So, this solution has a jump −g(x∗)/u1(x∗) at x∗.
With a small h ·uz(y)≈ 0 in (33), an approximate solu-

tion is ψ(x)≈−g(x∗)/u1(x). If u1 is observed and g(x)=
u1z ≈ 0, then ψ(x)≈ 0 in (33) and ψh≈ 0 in (19). This is
the case in the SSA of the FS model where u1z(x)= 0 and
in the SIA of the FS equations where u1z(x,h)= 0 (Greve
and Blatter, 2009; Hutter, 1983). When these approximations
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are accurate then u1z will be small. Consequently, when u1
is observed, the effect on v in the adjoint stress equation of
the solution ψ of the adjoint advection equation in (19) is
small. Solving only the adjoint stress equation for v as in
Gillet-Chaulet et al. (2016), Isaac et al. (2015), and Petra
et al. (2012) yields an adequate answer. Numerical solution
in Cheng and Lötstedt (2020) of the adjoint FS equation (19)
in two dimensions confirms that when u1 is observed then
ψ(x) is negligible. The situation is different when h is ob-
served and ψ ≈ 1/u1(x∗) in (33).

3.2 Adjoint equations based on SSA

Starting from (9), a Lagrangian L of the SSA equations is
defined, using the technique described and applied to the FS
equations in Petra et al. (2012). The SSA Lagrangian in (A4)
in Appendix A is similar to the FS Lagrangian in (15). By
partial integration in L and evaluation at the forward solution
(u,h), the adjoint SSA equations are obtained. Then, the ef-
fect of perturbed data at the ice base manifests itself at the
ice surface as a perturbation δL; for details, see Appendix A.

The adjoint SSA equations read

ψt +u · ∇ψ + 2ηB(u) : D(v)− ρgH∇ · v
+ ρgv · ∇b = Fh, in ω, 0≤ t ≤ T ,

ψ(x,T )= 0, in ω, ψ(x, t)= 0, on γw,

∇ · ς̃(v)−Cf (u)(I+Fω(u))v−H∇ψ
=−Fu, in ω,

t · ς̃(v)n=−Cγ fγ (t ·u)(1+Fγ (t ·u))t · v,
onγg,

t · ς̃(v)n= 0, on γw,

n · v = 0, on γ, (34)

where the adjoint viscosity η̃ and adjoint stress ς̃ are (cf. 20
for the case of FS)

η̃(u)= η(u)

(
I +

1− n
nB(u) : D(u)

B(u)⊗D(u)
)
,

ς̃(v)= 2H η̃(u) ?B(v). (35)

From (34) it is seen that the adjoint SSA equations have the
same structure as the adjoint FS equation (19). There is one
stress equation for the adjoint velocity v and one equation
for the Lagrange multiplier ψ corresponding to the surface
elevation equation in (9). However, the advection equation
for ψ in (34) depends on v, implying a fully coupled system
for v andψ . Equations (34) are solved backward in time with
a final condition on ψ at t = T . As in (9), there is no time
derivative in the stress equation. With a Weertman friction
law, viz. f (u)= ‖u‖m−1 and fγ (t ·u)= |t ·u|m−1 (cf. also
Appendix A1),

Fω(u)=
m− 1
u ·u

u⊗u,Fγ =m− 1.

If the friction coefficient C at the ice base (both where
it is grounded on bedrock (C > 0) and floating (C = 0)) is
changed by δC, if the bottom topography is changed by δb,
and if the lateral friction coefficient Cγ is changed by δCγ ,
then it follows from Appendix A2 that the Lagrangian L is
changed by (note that the weight in front of δC in Eq. 36 is
actually the same as in Eq. 22)

δL=
T∫

0

∫
ω

(2ηB(u) : D(v)+ ρgv · ∇h+∇ψ ·u) δb

− f (u)u · v δC dx dt −

T∫
0

∫
γg

fγ (t ·u)t ·ut

· v δCγ ds dt. (36)

The same perturbations in δC,δb, and δCγ could be allowed
for the FS equations in (22), but because the FS equations are
more complicated than the SSA equations, the complexity
of the derivation in the appendix and the expression for δL
would increase considerably, which is why we refrain from
considering them here.

Suppose that only h is observed with Fh 6= 0 and Fu = 0
in (34). Then the adjoint elevation equation must be solved
for ψ 6= 0 to have a v 6= 0 in the adjoint stress equation and
a perturbation in the Lagrangian in (36). The same result fol-
lows from the adjoint FS equations. If Fh 6= 0 and Fu = 0
in (19), then ψ 6= 0. Consequently, v 6= 0 and a perturbation
δC will cause a perturbation δL in (22). The conclusion that
the adjoint elevation equation must be solved if the surface
elevation is observed is independent of the two ice models.

In a broader context, it is worth emphasizing that the ad-
joint equation derived in MacAyeal (1993) is identical to the
stress equation in (34), ifH is constant, Fω = 0 (e.g.,m= 1),
and η̃(u)= η(u).

3.2.1 The two-dimensional adjoint solution

The adjoint SSA equations in two vertical dimensions are de-
rived from (34) in the same manner as (11), by letting ψ and
v1 be independent of y and setting v2 = 0 and Cγ = 0. To
simplify the notation, we also let v = v1. The adjoint equa-
tions for v and ψ follow either from simplifying (34) or from
the Lagrangian and (11) and read as follows:

ψt + uψx + (ηux − ρgH)vx + ρgbxv = Fh,

0≤ t ≤ T , 0≤ x ≤ L,
ψ(x,T )= 0, ψ(L, t)= 0,

(
1
n
ηHvx)x −Cmf (u)v−Hψx =−Fu,

v(0, t)= 0, v(L, t)= 0. (37)

Note that the viscosity above is multiplied by a factor 1/n,
n > 0, which represents an extension of the adjoint SSA in
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MacAyeal (1993), where n= 1 implicitly. The effect on the
Lagrangian of perturbations δb and δC is obtained from (36):

δL=
T∫

0

L∫
0

(ψxu+ vxηux + vρghx) δb

− vf (u)uδC dx dt. (38)

The weights or sensitivity functions wb and wC multiplying
δb and δC in the integral are defined by

wb(x, t)= ψxu+ vxηux + vρghx,

wC(x, t)=−vf (u)u. (39)

The steady-state solutions to the system (37) can be ana-
lyzed as in the forward equations in Sect. 2.2.2 after simpli-
fications. The viscosity terms in (37) are often small and can
hence be neglected, and we assume that the basal topogra-
phy is characterized by a small spatial gradient bx . The ad-
vantage resulting from these simplifications is that both the
forward and adjoint equations can be solved analytically on a
reduced computational domain where x ∈ [0, xGL]. The an-
alytical approximations are less accurate close to the ice di-
vide where some of the above assumptions are not valid. The
adjoint equation (37) reduce to

uψx − ρgHvx = Fh, 0≤ x ≤ xGL,

ψx(0)= 0, ψ(xGL)= 0,

−Cmum−1v−Hψx =−Fu,

v(0)= 0. (40)

3.2.2 The two-dimensional adjoint steady-state solution
with velocity observation

In this section, the analytical solution to the adjoint equa-
tion (40) is discussed. The derivation of the solution is de-
tailed in Appendix E to Appendix F. It is here sufficient to
recall that the solution given below is derived under the as-
sumptions that bx �Hx , and that a and C are constants.

For observations of u at x∗,

F =
L∫

0

u(x)δ(x− x∗)dx = u∗, Fu = δ(x− x∗), Fh = 0,

and the adjoint solutions are

ψ(x)=
Camx∗

ρgHm+3
∗

(
xmGL− x

m
)
, x∗ < x ≤ xGL,

ψ(x)=−
1
H∗
+

Camx∗

ρgHm+3
∗

(
xmGL− x

m
∗

)
, 0≤ x < x∗,

v(x)=
ax∗

ρgHm+3
∗

Hm, x∗ < x ≤ xGL,

v(x)= 0, 0≤ x < x∗, (41)

where ψ(x) and v(x) have discontinuities at the observation
point x∗. The perturbation of the Lagrangian (38) is with the
Heaviside step function H(x) and the Dirac delta δ(x) (cf.
Appendix F):

δu∗ = δL=
xGL∫
0

wb δb+wC δC dx

=

xGL∫
0

(ψxu+ vxηux + vρghx) δb− vu
m δC dx

=

xGL∫
x−∗

ax∗H
m

Hm+3
∗

[(m+ 1)HxH(x− x∗)

+Hδ(x− x∗)] δb−
ax∗(ax)

m

ρgHm+3
∗

δC dx

=
u∗δb∗

H∗
−

u∗

ρgHm+2
∗

xGL∫
x∗

C(ax)m

(
(m+ 1)

δb

H
+
δC

C

)
dx, (42)

or, after scaling with u∗,

δu∗

u∗
=
δb∗

H∗
−

1

ρgHm+2
∗

xGL∫
x∗

C(ax)m

(
(m+ 1)

δb

H
+
δC

C

)
dx. (43)

The relation in (43) between the relative perturbations
δb/H,δC/C, and δu/u can also be interpreted as a way to
quantify the uncertainty in u. The uncertainty may be due to
measurement errors in the topography b. For example, it is
known that the true surface is in an interval [b− δb,b+ δb]
around b where, e.g., δb = 1 m or δb has a normal distribu-
tion with zero mean and some variance. Such an uncertainty
δb in b or similarly an uncertainty δC in C is propagated to
an uncertainty δu∗ in u at x∗ by (43); see Smith (2014). As
an example, suppose that a 5 % error in the surface velocity
is acceptable, then the tolerable error in the topography could
be 20–30 m with a 1000 m thick ice.

The perturbations δu1i at discrete points x∗,i, i = 1,2, . . .
due to perturbations δCj at discrete points xj , j = 1,2, . . .
are connected by a transfer matrix WC in Cheng and Lötstedt
(2020). The relation between δu1i and δCj is for all i and j
such that

δu1i =
∑
j

WCij δCj .

The elements WCij of the transfer matrix correspond to
quadrature coefficients in the discretization of the first inte-
gral in (42) with δb = 0. The properties of WC are examined
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numerically in Cheng and Lötstedt (2020). We conclude that
certain perturbations of C (not only highly oscillatory) are
difficult to observe in u1 at the surface. The same analysis is
performed for the other combinations of δb,δC and δu1,δh.

Finally, let us comment on other approaches to investigate
the sensitivity of surface data to changes in b and C, e.g., us-
ing three linear models as in Gudmundsson (2008) and along
a flow line at a steady state in Gudmundsson and Raymond
(2008) with a linearized FS model with n= 1 and m= 1.
In these papers, transfer functions for the perturbations from
base to surface corresponding to our formulas (42) and (43)
are derived by Fourier and Laplace analysis. The perturba-
tions with long wavelength λ and small wave number k are
propagated to the surface, but short wavelengths are effec-
tively damped in Gudmundsson (2008). The transfer func-
tions are utilized in Gudmundsson and Raymond (2008) to
estimate how well basal data can be retrieved from surface
data. Retrieval of basal slipperiness C is possible for pertur-
bations δC of long wavelength and if the error in the basal
topography δb is small. Short wavelength perturbations δb
can be determined from surface data. The same conclusions
as in Gudmundsson (2008) and Gudmundsson and Raymond
(2008) can be drawn from our explicit expressions for the de-
pendence of δu∗ and δh∗ on δC and δb. For example, it fol-
lows from (45) that only δC with a long wavelength is visible
at the surface and that δb also with a short wavelength affects
δu∗ in (43). If δb is small or zero in (43), then it is easier to
determine the δC that causes a certain δu∗.

The analytical adjoint solutions ψ(x) and v(x) in (41) of
the MISMIP case in Fig. 2 with parameters in Table 1 at dif-
ferent x∗ positions are shown in Figs. 4a and 5a.

The weights wb and wC in (42) multiplying δb and δC,
defined in the same manner as in (38) and (39), are shown in
Figs. 6a and 7a with the solutions ψ and v in Figs. 4a and 5a.
The Dirac term is plotted as a vertical line at x∗ in Fig. 7a.

All perturbations in C between x∗ and xGL will result in a
perturbation of the opposite sign in u∗ at the surface because
wC < 0 in (x∗,xGL) in Fig. 6a and (42). The same conclusion
holds true for perturbations in b because wb < 0 in (x∗,xGL)

in Fig. 7a, but an additional contribution is added from δb at
x∗ by the Dirac delta inwb. A perturbation is less visible in u
the farther away from xGL the observation point is since the
amplitude of both wC and wb decays when x∗ decreases.

The following conclusions can be drawn from (42) and
(43) and Figs. 6 and 7.

i The closer perturbations in basal friction are located to
the grounding line, the larger perturbations of veloc-
ity will be observed at the surface. This is because the
weight in front of δC increases when x∗→ xGL, see
Fig. 6, which in turn is an effect of the increasing veloc-
ity u∗ and the decreasing thicknessH∗, as the grounding
line is approached (see Fig. 2). Or, compactly expressed,
δC with support in [x∗,xGL] will cause larger pertur-
bations at the surface the closer x∗ is to xGL and the

closer δC(x) is to xGL. The same conclusion is drawn in
Cheng and Lötstedt (2020) with numerically computed
SSA adjoint solutions.

ii Variations in the observed velocity δu∗ at the surface
at observation point x∗ will include contributions from
changes in the frictional parameter, δC, between x∗ and
the grounding line xGL, as well as from changes in basal
topography, δb, but it is impossible to disentangle their
individual contributions to δu∗.

iii When the variation in ice thickness is small compared
to the overall ice thickness, Hx �H , a small pertur-
bation in basal topography δb is directly visible in the
surface velocity. This is because in such a case, δu∗ ≈
u∗δb∗/H∗, and the main effect on u∗ from the perturba-
tion δb is localized at each x∗ (see Eq. 42).

iv For an unperturbed basal topography, two different per-
turbations of the friction coefficient will result in the
same perturbation of the velocity. In other words, the
perturbation δC cannot be uniquely determined by one
observation of δu. This follows if we let the perturba-
tion of the friction coefficient be a constant δC0 6= 0 in
[x0,x1] ∈ [x∗,xGL] and evaluate the integral in (42) to
obtain

δu∗ =−
u∗

ρgHm+2
∗

x1∫
x0

(ax)mδC0 dx

=−
amu∗

(m+ 1)ρgHm+2
∗

(xm+1
1 − xm+1

0 )δC0. (44)

The same δu∗ is observed with a constant perturbation
in [x2,x3] ∈ [x∗,xGL] with the amplitude δC0(x

m+1
1 −

xm+1
0 )/(xm+1

3 − xm+1
2 ).

v A rapidly varying friction coefficient at the base of the
ice sheet will be difficult to identify by observing the ve-
locity at the ice surface. In contrast, a smoothly varying
friction coefficient at the base will be easily observable
at the ice sheet surface. This is seen as follows: Perturb
C by δC = ε cos(kx/xGL) in (42) for some wave num-
ber k, which determines the smoothness of the friction at
the bedrock and amplitude ε, and let δb = 0 and m= 1.
The wavelength of the perturbation is λ= 2πxGL/k.
When k is small then the wavelength is long and the
variation of C+ δC is smooth. When k is large then the
friction coefficient varies rapidly in x with a short λ.
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Figure 4. The analytical solutions ofψ in (40) of the observations of (a) u and (b) h at different locations x∗ = 0.25×106,0.5×106,0.7×106,
and 0.9× 106 m.

Figure 5. The analytical solutions of v in (40) of the observations of (a) u and (b) h at different locations x∗ = 0.25×106,0.5×106,0.7×106,
and 0.9× 106 m.

The perturbation in the velocity is

δu∗ =−

xGL∫
x∗

ε
a2x∗

ρgH 4
∗

x cos
(
kx

xGL

)
dx

=−ε
a2x∗

ρgH 4
∗

x2
GL
k

(
sin(k)−

x∗

xGL
sin
(
kx∗

xGL

)
+

1
k

(
cos(k)− cos

(
kx∗

xGL

)))
. (45)

For a thin ice with a smallH∗, a perturbation inC is eas-
ier to observe at the surface than for a thick ice. When k
grows at the ice base, the amplitude of the perturbation
at the ice surface decays as 1/k. Thus, the effect of high
wave number perturbations of C will be difficult to ob-
serve at the top of the ice, but smooth perturbations at
the base will propagate to the surface. If k is large and
the surface velocity is of interest in a numerical simu-
lation, then there is no reason to use a fine mesh at the
base to resolve the fast variation in C because it will not
be visible at the top of the ice. How the damping de-

pends on λ in the FS equations is computed in Cheng
and Lötstedt (2020).

vi A perturbation in the topography with long wavelength
is easier to detect at the surface than a perturbation with
short wavelength. If δC = 0 and b is perturbed by δb =
ε cos(kx/xGL), then any perturbation at x∗ is propagated
to the surface by u∗δb∗

H∗
, which is the first term on the

right-hand side of (42). The effect is larger if the ice is
thin and moving fast. The integral term will behave in
the same way as in (45), with mainly perturbations with
small wave numbers and long wavelengths visible at the
surface.
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Figure 6. The analytical solution of the weights wC =−vum on δC in (38) for (a) u and (b) h observed at x∗ = 0.25×106,0.5×106,0.7×
106, and 0.9× 106 m.

Figure 7. The analytical solution of weights wb = ψxu+vxηux+vρghx on δb in (38) for (a) u and (b) h observed at x∗ = 0.25×106,0.5×
106,0.7× 106, and 0.9× 106 m.

3.2.3 The two-dimensional adjoint steady-state solution
with elevation observation

In the case when h is observed at x∗ and Fu = 0 and Fh =
δ(x− x∗), the expressions for ψ and v satisfying (40) are

ψ(x) =−
Cam−1

ρgHm+1
∗

(
xmGL− x

m
)
, x∗ < x ≤ xGL,

ψ(x) =−
Cam−1

ρgHm+1
∗

(
xmGL− x

m
∗

)
, 0≤ x < x∗,

v(x) =−
Hm

ρgHm+1
∗

, x∗ < x ≤ xGL,

v(x) = 0, 0≤ x < x∗.

(46)

The corresponding formulas when u is observed are found
in (41). There is a discontinuity at the observation point x∗
in v(x) illustrated in Fig. 5b, but ψ(x) is continuous in the
solution of (40) and in Fig. 4b.

The second derivative term ( 1
n
ηHvx)x is neglected in the

simplified Eq. (40) but is of importance at x∗. A correc-
tion ψ̂ of ψ at x∗ in (46) is therefore introduced to satisfy(

1
n
ηHvx

)
x
−Hψ̂x = 0. With vx(x∗)=−δ(x−x∗)/(ρgH∗),

the correction is ψ̂(x)=−δ(x− x∗)η∗/(nρgH∗). The solu-
tion ψ is updated at each x∗ in Fig. 4b, with ψ̂ as a vertical
line representing the negative Dirac delta.

The perturbation in h is as in (42) with ψ and v in (46) and
the additional term ψ̂ :

δh∗

H∗
=

xGL∫
x−∗

−
uη∗

nρgH 2
∗

δx(x− x∗)δb dx

+

xGL∫
x∗

C(ax)m

ρgHm+2
∗

(
(m+ 1)

δb

H
+
δC

C

)
dx

=
aη∗

nρgH 2
∗

(
x
δb

H

)
x

(x∗)+
1

ρgHm+2
∗

xGL∫
x∗

C(ax)m

(
(m+ 1)

δb

H
+
δC

C

)
dx, (47)

where a(xδb/H)x(x∗)= (uδb)x(x∗) represents the x-
derivative of uδb evaluated at x∗. When δb = 0 then δu∗ in
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(43) and δh∗ = δH∗ in (47) satisfy δu∗H∗ =−δH∗u∗ as in
the integrated form of the advection equation in (12) and in
(D1) in the Appendix.

As in (42), (47) is rewritten with the weights wb and wC
in (39):

δh∗ =

xGL∫
0

(ψxu+ vxηux + vρghx) δb− vu
m δC dx

=

xGL∫
0

wb δb+wC δC dx. (48)

These weights are shown in Figs. 6b and 7b. The negative
derivative of the Dirac delta is depicted in Fig. 7b as a vertical
line in the negative direction immediately followed by one in
the positive direction.

The contribution from the integrals in (43) and (47) is
identical except for the sign (compare wC in Fig. 6a and b
and wb in Fig. 7a and b). The first term in (43) depends on
δb/H , and the first term in (47) depends on the derivative of
axδb/H = uδb. The derivative of uδb at x∗ directly affects
the perturbation of h at x∗. A perturbation of b at the base is
directly visible locally in u at the surface, while the effect of
δC is non-local in the integral in (47). Because of the simi-
larities between (43) and (47) and the left and right columns
of Figs. 6 and 7, the conclusions (i), (ii), (iv), (v), and (vi) in
Sect. 3.2.2 from (42) and (43) for δu∗ are valid also for δh∗
in (47).

3.2.4 The two-dimensional time-dependent adjoint
solution

Finally, the time-dependent adjoint equation (37) is investi-
gated. Equation (37) is solved numerically for the same MIS-
MIP test case as Fig. 2 in Sect. 2.2.2 with the parameters in
Table 1. As in Sect. 3.1.2, the friction coefficient C has a sea-
sonal variation (period τ 1 year, where the beginning of the
year is associated with winter) in the forward equation (11):

C(x, t)= C0(1+ κ cos(2πt)), 0< κ < 1. (49)

Apparently, C has its highest value at t = n, n= 0,1,2, . . .,
i.e., the winter, and its lowest value at t = n+ 1/2, i.e., the
summer, as in Fig. 3. The amplitude of the variation in C is
set to κ = 0.5, and the forward equation (11) is solved for 11
years. The GL is determined by the conditions in Sect. 2.2
and will move in time because of the variation in C. The to-
pography b is kept constant in time. Observations of u and h
are made at x∗ = 9× 105 m for 0.1 year in the four seasons
starting from the summer of the 10th year, e.g., in the summer
(t∗ = 9.5), the fall (t∗ = 9.75), the winter (t∗ = 10), and the
spring (t∗ = 10.25). The forward equation (11) is solved nu-
merically from t = 0 with the steady-state solution as initial
data to the observation points t = t∗, and the adjoint equa-
tion (37) is solved from t = t∗ backward in time to t = 0.

According to a convergence test, the time step is chosen to
be 0.01 year and the spatial resolution is 103 m. A visual
inspection of the computed solutions after halving the step
sizes indicates that a sufficiently converged numerical solu-
tion has been reached.

Figure 8 shows the results for the adjoint weights wC(x, t)
and wb(x, t) multiplying the perturbations δC and δb, as de-
fined in (38), for the observations of u and h at x∗ = 9×105 m
in all four seasons, where each column represents one sea-
son. The friction coefficient C follows the seasonal variation
in (49). Each row is one of the combinations of the weights
wC and wb for the observations of u and h. The time axis
(or ordinate) in the figure follows the time direction in the
forward problem (11). Most of the weights in space and time
are negligible, implying that perturbations in those domains
are not visible at (x∗, t∗). Only δC and δb in a narrow interval
around x∗ for t in [0, t∗] have an influence on δu∗ and δh∗.
Therefore, we take a snapshot of the x axis (or abscissa) with
the width of 105 m in space around x∗ in Fig. 8. The weights
oscillate in time because of the seasonal variation in the basal
conditions in (49). A perturbation at the base is propagated
to the x∗ position on the surface but with a possible delay
in time. The earlier a perturbation in C or b takes place in
the interval [0, t∗), the smaller the effect of it is at t∗. After
5 years a perturbation can hardly be detected at the surface.

The temporal variations of the adjoint weights at x∗ in
Fig. 8 are shown in Fig. 9 for the four seasons with four dif-
ferent colors. As expected, the weights vanish when t > t∗.
In Fig. 9a and b, the perturbations δC∗ and δb∗ have a direct
effect on δu∗ at t∗, where both wC(x∗, t∗) and wb(x∗, t∗) are
negative. The same direct effect of δC is found for δu1∗ solv-
ing the FS equation (24) in Sect. 3.1.1. A change in δC∗ at the
base is observed immediately as a change in u at the surface.
The effect of δC on δu∗ for t < t∗ is weak in Fig. 9a; i.e.,
the memory of old perturbations is short. The largest effect
of δC on δu∗ and δh∗ appears with t∗ in the summer when C
is small in (49) (the blue lines in Fig. 9a and b).

However, when h is observed, the effects of δC∗ and δb∗
are not visible directly because wC∗ ≈ 0 and wb∗ ≈ 0 in
Fig. 9c and d. An intuitive explanation is that there is an im-
mediate effect on the velocity, but there is a delay in h since it
is integrated in time from the velocity field. Additionally, the
effects of δC and δb are difficult to separate, since the weight
wb(x∗, t) has a shape similar to wC(x∗, t). The largest effect
on δh∗ is from δC in the summer due to the peaks in wC in
Fig. 9c. For the same δC, the largest δh∗ is observed in the
fall (orange), and then the second largest δh∗ is in the win-
ter (green), followed by the spring observation (red). If δh∗
is observed in the fall and the time dependency is ignored,
then the wrong conclusion is drawn that δC in the fall has
the strongest effect (but it is the summer perturbation). There
is a delay in time between the perturbation and the observa-
tion of the effect in the surface elevation. The same shift in
time is what we found in Sect. 3.1.1, (25), and Fig. 3 for the
FS equations.
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Figure 8. The adjoint weights for the observations at x∗ = 9× 105 m of the four seasons. (a) wC for the observation of u. (b) wb for the
observation of u. (c) wC for the observation of h. (d) wb for the observation of h.
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Figure 9. The adjoint weights at x∗ in the four seasons of the 10th year with seasonally varying friction coefficient. The black dashed line is
a reference solution without seasonal variations which is observed at t∗ = 9.75. (a) wC for the observation of u. (b) wb for the observation
of u. (c) wC for the observation of h. (d) wb for the observation of h.

A reference adjoint solution at x∗ observed during the fall
season (t∗ = 9.75) with time-independent C and b, κ = 0
in (49), as parameters in the forward equations is shown
in black dashed lines in all the four panels of Fig. 9. The
weight wb at x∗ for a constant b is well approximated by
wb∗ exp(−(T−t)/τ ) in time with τ = 1.4 years for somewb∗
for the observation of both u and h in Fig. 9b and d. For the
weight wC , the same exponential function holds with weight
wC∗, but the time constant τ = 1.8 years for the observation
of h∗ in Fig. 9c and τ = 2.2 years for the u∗ case.

Suppose that the temporal perturbation is oscillatory with
frequency f and located in space at x∗ with

δC(x, t)= δC0 cos(2πf t)δ(x− x∗).

A low-frequency f with f � 1 corresponds to decennial or
centennial variations and a high-frequency f with f � 1
corresponds to diurnal or weekly variations. Then the per-
turbation in h at t = t∗ is

δh∗ =

t∗∫
0

wC∗ exp(−(t∗− t)/τ )δC0 cos(2πf t)dt

=

(
cos(2πf t∗)+ 2πτf sin(2πf t∗)− e−t∗/τ

4π2τf 2+ τ−1

)
wC∗δC0;

(50)

cf. (45). If the frequency is high, f � 1, then δh∗ ∝ 1/f and
high-frequency perturbations are damped efficiently. At cer-
tain times of observation t∗ when sin(2πf t∗)= 0, the damp-
ing is even stronger with δh∗ ∝ 1/f 2. If the frequency is low,

f � 1, then δh∗ ∝ τ and the change in h∗ is insensitive to
the frequency. The same conclusions hold true for δb where
decennial perturbations seem more realistic.

4 Conclusions

The adjoint equations are derived in the FS and the SSA
frameworks including time and the surface elevation equa-
tion. Time-dependent perturbations δC and δb in basal fric-
tion coefficient C and basal topography b are introduced, and
their effect on observations of the velocity u and the surface
elevation h at the top surface of the grounded ice is studied.
With the solution of the adjoint equations, we can determine
the perturbation at a given point in space and time on the sur-
face due to all basal perturbations. By solving the forward
equations twice with C and C+ δC or b and b+ δb, we can
compute the perturbation in all points in space and time on
the surface, e.g., δu1 = u1(C+ δC)− u1(C) in the first ve-
locity component, for a given δC or δb.

The perturbations in the observations are determined nu-
merically in Cheng and Lötstedt (2020) either using the ad-
joint equations and their solutions in Sect. 3 or by solving the
forward equations with unperturbed and perturbed parame-
ters to obtain δu∗ and δh∗. The numerical solutions are com-
pared to each other and to analytical solutions for SSA. The
agreement is good in the comparisons.

In Sect. 3.1.3, a relation is established between the inverse
problem (aiming to infer parameters from data) and the sen-
sitivity problem (aiming to quantify the effect of variations in
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parameters): the same adjoint equations are solved. However,
the forcing functions differ and are specific to the inverse
problem and the sensitivity problem, respectively. Common
to both problems is that the adjoint equations tell how per-
turbations in the parameters at the ice base are propagated to
perturbations in the velocity and the elevation of the surface.

For steady-state problems, and in an FS setting where u
is observed, we find (cf. Sect. 3.1.4) that the contribution of
the solution of the adjoint elevation equation (32) is small
and that it therefore suffices to solve only the adjoint stress
equations – see, e.g., Gillet-Chaulet et al. (2016), Isaac et al.
(2015), and Petra et al. (2012) – in order to be able to draw
conclusions regarding perturbations of u. For steady-state
problems in a two-dimensional SSA setting for a vertical
ice, (43), (47), and Figs. 6 and 7 show that the sensitivity
of the velocity and elevation increases (because the velocity
increases and the ice thickness decreases) as the observation
point x∗ approaches the grounding line.

In this setting, a non-local effect of a perturbation in C has
been observed, in the sense that δC(x) affects both u(x∗) and
h(x∗) even if x 6= x∗, but a perturbation δb in b has a strong
local effect concentrated at x∗. Nevertheless, the shapes of
the two sensitivity functions (or weights) for δb and δC are
very similar except for the neighborhood of x∗, which makes
it difficult to separate their respective contribution in an ob-
servation. Different combinations of the perturbations in the
basal friction and bedrock elevation can produce the same
effect on the velocity and surface elevation changes at one
observation point.

In the inverse problems based on time-dependent simula-
tions of FS and SSA, it is necessary to include the adjoint el-
evation equation. If the perturbations in the basal conditions
are time dependent and h is observed (see Figs. 3, 9c, and
d), then time cannot be ignored in the inversion. If time de-
pendence is ignored, wrong conclusions concerning the con-
ditions at the ice base may be drawn from observations of
h, in both the FS and the SSA model. In the time-dependent
solution of SSA, a perturbation of the basal condition at x∗
has the strongest impact at x∗ on the surface, possibly with
a time delay. Such a time delay occurs when a perturbation
at the ice base is visible at the surface in h, but in u it is
observed immediately (Fig. 9). The effect of a perturbation
disappears more quickly the older the perturbation is.

Perturbations in the friction coefficient at the base ob-
served in the surface velocity determined by SSA are damped
inversely proportional to the wave number and the frequency
of the perturbations in (45) and (50), thus making very oscil-
latory perturbations in space and time difficult to register at
the ice sheet surface. In such a case, there is no need to have
a fine mesh and a small time step in a numerical solution to
resolve the rapid oscillations in C at the base.
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Appendix A: Derivation of the adjoint equations

A1 Adjoint viscosity and friction in SSA

The adjoint viscosity η̃(u) in SSA in (20) is derived as fol-
lows. The SSA viscosity for u and u+ δu is

η(u+ δu)≈ η(u)
(

1+
1− n
2nη̂

(
(2u1x + u2y)δu1x

+
1
2
(u1y + u2x)δu2x + (2u2y + u1x)δu2y

+
1
2
(u1y + u2x)δu1y

))
. (A1)

Determine B(u) such that

%(u,δu)B(u)= B(u) ?B(δu).

First note that

B(u) : D(δu)= (D(u)+∇ ·uI) : D(δu)= D(u) : D(δu)
+ (∇ ·u)(∇ · δu)= D(u) : (B(δu)−∇ · δuI)
+ (∇ ·u)(∇ · δu)= D(u) : B(δu).

Then use the ? operator to define B:

1− n
2nη̂

∑
kl

Bkl(u)Dkl(δu)Bij (u)

=
1− n
2nη̂

∑
kl

Dkl(u)Bkl(δu)Bij (u)

=

∑
kl

Bijkl(u)Dkl(δu)= (B ?D)ij .

Thus, let

Bijkl =
1− n
2nη̂

Bij (u)Dkl(u),

η̃ijkl(u)= η(u)(Iijkl +Bijkl(u)),

or in tensor form

B =
1− n

nB(u) : D(u)
B(u)⊗D(u),

η̃(u)= η(u)(I +B) . (A2)

Replacing B in (A2) by D, we obtain the adjoint FS viscosity
in (20).

The adjoint friction in SSA in ω and at γg in (34) with a
Weertman law is derived as in the adjoint FS equations (19)
and (20). Then in ω with ξ = u,ζ = v,c = C, and F= Fω
and at γg with ξ = t ·u,ζ = t · v,c = Cγ ,f = fγ , and F=
Fγ , we arrive at the adjoint friction term cf (ξ)(I+F(ξ))ζ ,
where

F(ξ)=
m− 1
ξ · ξ

ξ ⊗ ξ . (A3)

A2 Adjoint equations in SSA

The Lagrangian for the SSA equations is with the adjoint
variables ψ,v,q

L(u,h;v,ψ;b,Cγ ,C)=
T∫

0

∫
ω

F(u,h)+ψ(ht +∇ · (uH)− a)dx dt

+

T∫
0

∫
ω

v · ∇ · (2HηB(u))−Cf (u)v ·u− ρgHv · ∇h dx dt

=

T∫
0

∫
ω

F(u,h)+ψ(ht +∇ · (uH)− a)dx dt

+

T∫
0

∫
ω

− 2Hη(u)(D(v) : D(u)+∇ ·u∇ · v)

−Cf (u)v ·u− ρgHv · ∇h dx dt −

T∫
0

∫
γg

Cγ fγ (t ·u)t

·ut · v ds dt
(A4)

after partial integration and using the boundary conditions.
The perturbed SSA Lagrangian is split into the unperturbed
Lagrangian and three integrals:

L(u+ δu,h+ δh;v+ δv,ψ + δψ;b+ δb,Cγ + δCγ ,

C+ δC)=

T∫
0

∫
ω

F(u+ δu,h+ δh)dx dt +

T∫
0

∫
ω

(ψ + δψ)

(ht + δht +∇ · ((u+ δu)(H + δH))− a)dx dt

+

T∫
0

∫
ω

− 2(H + δH)η(u+ δu)D(v+ δv) : B(u+ δu)

− (C+ δC)f (u+ δu)(u+ δu) · (v+ δv)− ρg(H + δH)

∇(h+ δh) · (v+ δv) dx dt −

T∫
0

∫
γg

(Cγ + δCγ )fγ

(t · (u+ δu))t · (u+ δu) t · (v+ δv)ds dt
= L(u,h;v,ψ;b,Cγ ,C)+ I1+ I2+ I3.

(A5)

The perturbation in L is

δL= I1+ I2+ I3. (A6)
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Terms of order 2 or more in δL are neglected. Then the first
term in δL satisfies

I1 =

T∫
0

∫
ω

F(u+ δu,h+ δh)−F(u,h)dx dt

=

T∫
0

∫
ω

Fuδu+Fhδhdx dt. (A7)

Using partial integration, Gauss’ formula, and the initial and
boundary conditions on u and H and ψ(x,T )= 0,x ∈ ω,
and ψ(x, t)= 0, x ∈ γw, in the second integral we have

I2 =

T∫
0

∫
ω

δψ(ht +∇ · (uH)− a)

+ψ(δht +∇ · (δuH)+∇ · (uδH))dx dt

=

T∫
0

∫
ω

δψ(ht +∇ · (uH)− a)dx dt +

T∫
0

∫
ω

−ψtδh−H∇ψ · δu−∇ψ ·uδH dx dt. (A8)

The first integral after the second equality vanishes since h is
a weak solution and I2 is

I2 =

T∫
0

∫
ω

− (ψt +u · ∇ψ)δh−H∇ψ · δu

+u · ∇ψδbdx dt. (A9)

Using the weak solution of (9), the adjoint viscosity (35),
(A2), the friction coefficient (A3), Gauss’ formula, and the
boundary conditions, as well as neglecting the second-order
terms, the third and fourth integrals in (A5) are

I3 =I31+ I32,

I31 =

T∫
0

∫
ω

− 2(H + δH)η(u+ δu)D(v+ δv)

: B(u+ δu)− (C+ δC)f (u+ δu)(u+ δu)
· (v+ δv)

− ρg(H + δH)∇(h+ δh) · (v+ δv)) dx dt

−

T∫
0

∫
γ

(Cγ + δCγ )fγ (t · (u+ δu))t

· (u+ δu) t · (v+ δv)ds dt
=I311+ I312− I313, (A10)

where

I311 =

T∫
0

∫
ω

− 2HD(v) : (η(u+ δu)B(u+ δu))+ 2HD(v)

: (η(u)B(u))dx dt

=

T∫
0

∫
ω

− 2HD(v) : (η̃(u) ?B(δu))dx dt

I312 =

T∫
0

∫
ωg

− δCf (u)u · v dx dt +

T∫
0

∫
ωg

−C(f (u+ δu)v

· (u+ δu)− f (u)v ·u)dx dt

=

T∫
0

∫
ωg

− δCf (u)u · v+Cf (u)(I+Fω(u))δu · v dx dt

I313 =

T∫
0

∫
γg

(Cγ + δCγ )(fγ (t · (u+ δu))t · v t · (u+ δu)

− fγ (t ·u)t · v t ·u)ds dt

=

T∫
0

∫
γg

(Cγ + δCγ )(fγ (t ·u)t ·ut · v+Cγ fγ (t ·u)

(I+Fγ (t ·u))t · δut · v ds dt

I32 =

T∫
0

∫
ω

− ρgH∇h · v− 2ηD(v) : B(u)δH − ρg∇h

· vδH − ρgHv · ∇δhdx dt

=

T∫
0

∫
ω

− ρgH∇h · v− (2ηD(v) : B(u)+ ρg∇h · v)

δH + ρg∇ · (Hv)δhdx dt.
(A11)
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Collecting all the terms in (A7), (A9), and (A10), the first
variation of L is

δL=I1+ I2+ I3

=

T∫
0

∫
ω

Fuδu− 2HD(v) : (η̃(u) ?B(δu))−H∇ψ

· δudx dt −

T∫
0

∫
ωg

Cf (u)(I+Fω(u))v · δudx dt

−

T∫
0

∫
γg

Cγ fγ (t ·u)(I+Fγ (t ·u))t · v t · δuds dt

−

T∫
0

∫
γg

δCγ fγ (t ·u)t ·ut · v ds dt

+

T∫
0

∫
ω

(Fh− (ψt +u · ∇ψ + 2ηD(v) : B(u)

− ρg∇b · v+ ρgH∇ · v))δhdx dt

+

T∫
0

∫
ω

− δCf (u)v ·u+ (2ηD(v) : B(u)

+ ρg∇h · v+u · ∇ψ)δbdx dt.
(A12)

The forward solution (u∗,p∗,h∗) and adjoint solution
(v∗,q∗,ψ∗) satisfying (9) and (34) are inserted into (A4) re-
sulting in

L(u∗,p∗;v∗,q∗;h∗,ψ∗;b,Cγ ,C)

=

T∫
0

∫
ω

F(u∗,h∗)dx dt. (A13)

Then (A12) yields the variation in L in (A13) with respect to
perturbations δb,δCγ , and δC in b,Cγ , and C:

δL=
T∫

0

∫
ω

(2ηD(v∗) : B(u∗)+ ρg∇h∗ · v∗

+u∗ · ∇ψ∗)δbdx dt −

T∫
0

∫
γg

δCγ fγ (t ·u
∗)t

·u∗ t · v∗ ds dt −

T∫
0

∫
ω

δCf (u∗)v∗ ·u∗ dx dt. (A14)

A3 Adjoint equations in FS

The FS Lagrangian is as in (15):

L(u,p,h;v,q,ψ;C)=
T∫

0

∫
0s

F(u,h)+ψ(ht +h

·u− as)dx dt +

T∫
0

∫
ω

h∫
b

−v · (∇ · σ (u,p))− q∇

·u− ρg · v dx dt =

T∫
0

∫
0s

F(u,h)+ψ(ht +h

·u− a)dx dt +

T∫
0

∫
ω

h∫
b

2η(u)D(v) : D(u)−p∇

· v− q∇ ·u− ρg · v dx dt +

T∫
0

∫
0b

Cf (Tu)Tu

·Tv dx dt. (A15)

In the same manner as in (A5), the perturbed FS Lagrangian
is

L(u+ δu,p+ δp;v+ δv,q + δq;h+ δh,ψ + δψ;
C+ δC)= L(u,p,h;v,q,ψ;C)+ I1+ I2+ I3. (A16)

Terms of order 2 or more in δu,δv, and δh are neglected.
The first integral I1 in (A16) is

I1 =

T∫
0

∫
0s

F(u(x,h+ δh, t)+ δu,h+ δh)

−F(u(x,h, t),h)dx dt =

T∫
0

∫
0s

Fu(δu+uzδh)

+Fhδhdx dt. (A17)

Partial integration, the conditionsψ(x,T )= 0 andψ(x, t)=
0 at 0s, and the fact that h is a weak solution simplify the
second integral:

I2 =

T∫
0

∫
0s

δψ(ht +h ·u− as)+ψ(δht +u · δh

+uz ·hδh+h · δu)dx dt =

T∫
0

∫
0s

δψ(ht +h ·u

− as)dx dt +

T∫
0

∫
0s

(−ψt −∇ · (uψ)

+h ·uzψ)δh+h · δuψ dx dt. (A18)
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Define 4,ξ, and ϒ to be

2(u,p;v,q;C)=2η(u)D(v) : D(u)−p∇ · v
− q∇ ·u− ρg · v,

θ(u;v;C)=Cf (Tu)Tu ·Tv,
ϒ(u,p;v,q)=− v · (∇ · σ (u,p))− q∇

·u− ρg · v. (A19)

Then a weak solution, (u,p), for any (v,q) satisfying the
boundary conditions, fulfills

T∫
0

∫
ω

h∫
b

2(u,p;v,q;C)dx dt −

T∫
0

∫
0b

θ(u;v;C)

dx dt = 0. (A20)

The third integral in (A16) is

I3 =I31+ I32,

I31 =

T∫
0

∫
ω

h∫
b

2(u+ δu,p+ δp;v+ δv,q + δq;

C+ δC)dx dt −

T∫
0

∫
0b

θ(u+ δu;v+ δv;

C+ δC)dx dt,

I32 =

T∫
0

∫
ω

h+δh∫
h

ϒ(u,p;v,q)dx dt. (A21)

The integral I31 is expanded as in (A10) and (A11) or Pe-
tra et al. (2012) using the weak solution, Gauss’ formula,
and the definitions of the adjoint viscosity and adjoint fric-
tion coefficient in Appendix A1. When b < z < h we have
ϒ(u,p;v,q)= 0. If ϒ is extended smoothly in the positive
z direction from z= h, then with z ∈ [h,h+ δh] for some
constant c > 0 we have |ϒ | ≤ cδh. Therefore,

|

h+δh(x,t)∫
h

ϒ(u,p;v,q)dz| ≤

h+δh(x,t)∫
h

sup|ϒ |dz

≤ c|δh(x, t)2|,

and the bound on I32 in (A21) is

|I32| ≤ ct |ω|max|δh(x, t)|2, (A22)

where |ω| is the area of ω. This term is a second variation in
δh which is neglected and I3 = I31.

The first variation of L is then

δL=I1+ I2+ I3

=

T∫
0

∫
0s

(Fu+ψh) · δudx dt +

T∫
0

∫
0s

(Fh+Fuuz

− (ψt +∇ · (uψ)−h ·uψ))δhdx dt

+

T∫
0

∫
ω

h∫
b

2D(v) : (η̃(u) ?D(δu))− δp∇ · v

− q∇ · δudx dt +

T∫
0

∫
0b

Cf (Tu)(I+Fb(u))Tv

·Tδudx dt +

T∫
0

∫
0b

δCf (Tu)Tu ·Tv dx dt. (A23)

With the forward solution (u∗,p∗,h∗) and the adjoint solu-
tion (v∗,q∗,ψ∗) satisfying (4) and (19), the first variation
with respect to perturbations δC in C is (cf. A14)

δL=
T∫

0

∫
0b

f (Tu∗)Tu∗ ·Tv∗ δC dx dt. (A24)

Appendix B: The adjoint solution in the inverse and
sensitivity problems

Assume that (vi,qi,ψ i), i = 1, . . .,d, solves adjoint FS
equation (19) in the steady state with observation of ui with
d = 2 or 3

F = ui(x)=
∫
ω

uiδ(x− x)dx, Fu = eiδ(x− x),

i = 1, . . .,d, (B1)

or observation of h with d = 1

F = h(x)=
∫
ω

hδ(x− x)dx, Fh = δ(x− x). (B2)

Introduce the weight functionswi(x), i = 1, . . .,d . It follows
from (19) that (wi(x)vi(x),wi(x)qi(x),wi(x)ψ i(x)) is a
solution with Fu = wi(x)eiδ(x− x) or Fh = w(x)δ(x− x).
Therefore, also∫
ω

wi(x)v
i dx,

∫
ω

wi(x)q
i dx,

∫
ω

wi(x)ψ
i dx

 (B3)

is a solution with Fu =
∫
ω
wi(x)e

iδ(x− x)dx = wi(x)ei or
Fh =

∫
ω
w(x)δ(x−x)dx = w(x). A sum over i, i = 1, . . .,d,

of each integral in (B3) is also a solution.
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Consider a target functional F for the steady-state solution
with a weight vector w(x) with components wi(x) multiply-
ing δui in the first variation of F . Using (22), δF is

δF =
∫
ω

w(x) · δudx

=

∫
ω

d∑
i=1

wi(x)δu
i dx

=

∫
ω

d∑
i=1

wi(x)

∫
0b

f (Tu)Tu ·Tvi δC dx dx

=

∫
0b

f (Tu)Tu ·T

∫
ω

d∑
i=1

wi(x)v
i dx

 δC dx. (B4)

Appendix C: Steady-state solution of the adjoint height
equation in the FS model

In a two-dimensional vertical ice with u(x,z)= (u1,u3)
T ,

the stationary equation for ψ in (19) is

(u1ψ)x = Fh+ (hψ +Fu) ·uz, z= h, 0≤ x ≤ L. (C1)

When x > x∗, where Fh = 0 and Fu = 0, we have ψ(x)= 0
since the right boundary condition is ψ(L)= 0.

If u1 is observed at 0s then F(u,h)= u1(x)χ(x), Fu =
(χ(x),0)T , and Fh = 0. The weight χ on u1 may be a Dirac
delta, a Gaussian, or a constant in a limited interval. On the
other hand, if F(u,h)= h(x)χ(x) then Fh = χ(x) and Fu =
0.

Let g(x)= u1z(x) when Fu 6= 0 and let g(x)= 1 when
Fh 6= 0. Then by (32),

(u1ψ)x −h ·uzψ = g(x)χ(x). (C2)

The solution to (C2) is

ψ(x)=−
1

u1(x)

x∗∫
x

exp

− ξ∫
x

h ·uz(y)

u1(y)
dy

g(ξ)χ(ξ)dξ,

0≤ x < x∗, ψ(x)= 0, x∗ < x ≤ L.
(C3)

In particular, if χ(x)= δ(x− x∗) then F = u1(x∗) or F =
h(x∗), and the multiplier is

ψ(x)=−
g(x∗)

u1(x)
exp

− x∗∫
x

h ·uz(y)

u1(y)
dy

 ,
0≤ x < x∗, (C4)

which has a jump −g(x∗)/u1(x∗) at x∗.

Appendix D: Simplified SSA equations

The forward and adjoint SSA equations in (12) and (40) are
solved analytically. The conclusion from the thickness equa-
tion in (12) is that

u(x)H(x)= u(0)H(0)+ ax = ax, (D1)

since u(0)= 0. Solve the second equation in (12) for u on
the bedrock with x ≤ xGL and insert into (D1) using the as-
sumptions for x > 0 that bx �Hx and hx ≈Hx to have

ρg

C
Hm+1Hx =

ρg

C(m+ 2)
(Hm+2)x =−(ax)

m. (D2)

The equation for Hm+2 for x ≤ xGL is integrated from x to
xGL such that

H(x) =
(
Hm+2

GL +
m+2
m+1

Cam

ρg
(xm+1

GL − x
m+1)

) 1
m+2
,

u(x) =
ax

H
, Hx =−

Cam

ρg

xm

Hm+1 .
(D3)

For the floating ice at x > xGL, ρgHhx = 0, implying that
hx = 0 and Hx = 0. Hence, H(x)=HGL. The velocity in-
creases linearly beyond the grounding line

u(x)= ax/H(x)= ax/HGL, x > xGL. (D4)

By including the viscosity term in (11) and assuming that
H(x) is linear in x, a more accurate formula is obtained for
u(x) on the floating ice in (6.77) of Greve and Blatter (2009).

Appendix E: Jumps in ψ and v in SSA

Multiply the first equation in (40) byH and the second equa-
tion by u to eliminate ψx . We get

−Cmumv− ρgH 2vx =HFh− uFu. (E1)

Use the expression for u and Hx in (D3). Then

ρgH(mHxv−Hvx)=HFh− uFu, (E2)

or equivalently( v

Hm

)
x
=−

1
ρgHm+2 (HFh− uFu). (E3)

The solutions ψ(x) and v(x) of the adjoint SSA equa-
tion (37) have jumps at the observation point x∗. For x close
to x∗ in a short interval [x−∗ ,x

+
∗ ] with x−∗ < x∗ < x

+
∗ , inte-

grate (E3) to receive

x+∗∫
x−∗

( v

Hm

)
x

dx =−

x+∗∫
x−∗

HFh− uFu

ρgHm+2 dx. (E4)
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SinceH is continuous and u and v are bounded, when x−∗ →
x+∗ , then

v(x+∗ )− v(x
−
∗ )=

−
1

ρgH 2
∗

H∗ x
+
∗∫
x−∗

Fh dx− u∗

x+∗∫
x−∗

Fu dx

 . (E5)

A similar relation for ψ can be derived:

ψ(x+∗ )−ψ(x
−
∗ )=

1
H∗

x+∗∫
x−∗

Fu dx. (E6)

With Fu = 0 and Fh = 0 for x < x∗ and v(0)= ψx(0)= 0,
we find that

v(x)= ψx(x)= 0, ψ(x)= ψ(x−∗ ), 0≤ x < x∗. (E7)

If F(u,h)= uδ(x− x∗), then by (E5) and (E6)

v(x+∗ )=
u∗

ρgH 2
∗

, ψ(x+∗ )−ψ(x
−
∗ )=

1
H∗
, (E8)

and if F(u,h)= hδ(x− x∗), then

v(x+∗ )=−
1

ρgH∗
, ψ(x+∗ )−ψ(x

−
∗ )= 0. (E9)

Appendix F: Analytical solutions in SSA

By Appendix E, v(x)= 0 for 0≤ x < x∗. Use equations in
(40) with Hx in (D3) for x∗ < x ≤ xGL to have

vx

v
=−

axCmum−1

ρgH 3 =−
Cmum

ρgH 2 =
mHx

H
.

Let H(x−x∗)=
∫ x−x∗
−∞

δ(s)ds be the Heaviside step function
at x∗. Then

v(x)= CvH(x)
mH(x− x∗), 0≤ x ≤ xGL. (F1)

To satisfy the jump condition in (E8) and (E9), the constant
Cv is

Cv =


ax∗

ρgHm+3
∗

, F (u,h)= uδ(x− x∗),

−
1

ρgHm+1
∗

, F (u,h)= hδ(x− x∗).
(F2)

Combine (F1) with the relationψx = (Fu−Cmu
m−1v)/H

and integrate from x to xGL to obtain

ψ(x)= Cva
m−1C

(
xmGL− x

m
)
, x∗ < x ≤ xGL. (F3)

With the jump condition in (E8) and (E9), ψ(x) at 0≤ x <
x∗ is

ψ(x)=



−
1
H∗
+

Camx∗

ρgHm+3
∗

(
xmGL− x

m
∗

)
,

F (u,h)= uδ(x− x∗),

−
Cam−1

ρgHm+1
∗

(xmGL− x
m
∗ ),

F (u,h)= hδ(x− x∗).

(F4)

The weight for δC in the functional δL in (38) is non-zero
for x∗ < x ≤ xGL:

−vum =−Cv(ax)
m. (F5)

Use (F1) and (40) in (38) to determine the weight for δb in
δL:

ψxu+ vxηux + vρghx = ρg(Hv)x +Fh

= CvρgH
m [(m+ 1)HxH(x− x∗)+Hδ(x− x∗)]

+Fh. (F6)
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