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Abstract. The spatial distribution of snow in the mountains
is significantly influenced through interactions of topogra-
phy with wind, precipitation, shortwave and longwave radia-
tion, and avalanches that may relocate the accumulated snow.
One of the most crucial model parameters for various ap-
plications such as weather forecasts, climate predictions and
hydrological modeling is the fraction of the ground surface
that is covered by snow, also called fractional snow-covered
area (fSCA). While previous subgrid parameterizations for
the spatial snow depth distribution and fSCA work well, per-
formances were scale-dependent. Here, we were able to con-
firm a previously established empirical relationship of peak
of winter parameterization for the standard deviation of snow
depth σHS by evaluating it with 11 spatial snow depth data
sets from 7 different geographic regions and snow climates
with resolutions ranging from 0.1 to 3 m. An enhanced per-
formance (mean percentage errors, MPE, decreased by 25 %)
across all spatial scales ≥ 200 m was achieved by recalibrat-
ing and introducing a scale-dependency in the dominant scal-
ing variables. Scale-dependent MPEs vary between −7 %
and 3 % for σHS and between 0 % and 1 % for fSCA. We
performed a scale- and region-dependent evaluation of the
parameterizations to assess the potential performances with
independent data sets. This evaluation revealed that for the
majority of the regions, the MPEs mostly lie between±10 %
for σHS and between −1 % and 1.5 % for fSCA. This sug-

gests that the new parameterizations perform similarly well
in most geographical regions.

1 Introduction

Whenever there is snow on the ground, there will be large
spatial variability in snow depth. In mountainous terrain, this
spatial distribution of snow is significantly influenced by to-
pography due to corresponding spatial variations in wind,
precipitation, and shortwave and longwave radiation and in
steep terrain due to avalanches that may relocate the accu-
mulated snow. As a result, the snow-covered landscape can
consist of a complex mix of snow-free and snow-covered ar-
eas, especially in steep terrain or during snowmelt. A param-
eter which describes how much of the ground is covered by
snow is the fractional snow-covered area (fSCA). Most of
the time, fSCA is tightly linked to snow depth (HS) and in
particular to its spatial distribution. A fSCA is able to bridge
the spatial mean HS and the actual observed snow coverage.
Sound fSCA models are therefore crucial since for the same
spatial mean HS in early winter and in late spring, the as-
sociated fSCA can be completely different (e.g., Luce et al.,
1999; Niu and Yang, 2007; Magand et al., 2014).

A fSCA plays a key role in modeling physical processes
for various applications such as weather forecasts (e.g.,
Douville et al., 1995; Doms et al., 2011), climate simula-
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tions (e.g., Roesch et al., 2001; Mudryk et al., 2020) and
avalanche forecasting (Bellaire and Jamieson, 2013; Horton
and Jamieson, 2016; Vionnet et al., 2016). As climate warms,
fSCA is an highly relevant indicator for spatial snow-cover
changes in climate projections (e.g., Mudryk et al., 2020).
A decrease in spatial snow extent prominently changes sur-
face characteristics, such as albedo in mountain landscapes,
leading to changes in surface radiation, which is a primary
component of the surface energy balance. A fSCA is also a
parameter in hydrological models to scale water discharges
appropriately to help manage basin water supply (e.g., Luce
et al., 1999; Thirel et al., 2013; Magnusson et al., 2014;
Griessinger et al., 2016). Errors in fSCA estimates directly
translate into errors of snowmelt rates and melt water dis-
charge (Magand et al., 2014). Thus, accurately describing fS-
CAs is of key importance for multiple model applications in
mountainous terrain where highly variable spatial snow dis-
tributions occur.

A fSCA can be obtained from satellite remote sensing
products using optical imagery with varying spatiotemporal
resolutions. For instance, Sentinel-2 gathers data at a spa-
tial resolution of 10 to 20 m at frequent global revisit inter-
vals (< 5 d, cloud permitting) (Drusch et al., 2012; Gascoin
et al., 2019). The availability of satellite-derived fSCA re-
mains, however, inconsistent due to time gaps between satel-
lite revisits, data delivery and the frequent presence of clouds
which obscure the ground, especially in winter in mountain-
ous terrain, thus reducing the availability of images drasti-
cally (e.g., Parajka and Blöschl, 2006; Gascoin et al., 2015).
Satellite-derived fSCAs can also not be used directly for fore-
casting. Alternatively, fSCAs can be obtained from spatially
averaging by using snow models at subgrid scales. While
such snow-cover models are available (e.g., Tarboton and
Luce, 1996; Marks et al., 1999; Lehning et al., 2006; Essery
et al., 2013; Vionnet et al., 2016), up until now they could not
be used at very high spatial resolutions over very large re-
gions in part due to a lack of detailed input data such as fine-
scale surface wind speed and precipitation, as well as due
to high computational cost. Often they are limited by model
parameters and structure requiring calibration. Integrating
data assimilation algorithms in snow models is able to mit-
igate some of these limitations, which has led, for instance,
to improvements in runoff simulations (e.g., Andreadis and
Lettenmaier, 2006; Nagler et al., 2008; Thirel et al., 2013;
Griessinger et al., 2016; Huang et al., 2017; Griessinger et al.,
2019). However, uncertainties inherently present in the input
or assimilation data still remain, which are generally accen-
tuated over snow-covered catchments (Raleigh et al., 2015).
Today, fSCA parameterizations describing the subgrid snow
depth variability therefore remain unavoidable for complex
model systems and for complementing the assimilation of
satellite-retrieved fSCA products especially over mountain-
ous terrain.

A parameterization of fSCAs describes the relationship
between fSCA and grid-cell-averaged HS or snow wa-

ter equivalent (SWE) by a so-called snow-cover depletion
(SCD) curve. SCD curves were originally introduced in mod-
els without taking into account subgrid topography or vegeta-
tion. In principle, there are two commonly applied forms: so-
called closed functional forms and parametric probabilistic
SCD curve formulations (Essery and Pomeroy, 2004). Para-
metric SCD curves have disadvantages for practical appli-
cations such as numerical stability, computational efficiency
and assuming an unimodal distribution which might be less
appropriate for large grid cells covering heterogeneous sur-
face such as mountainous terrain (e.g., Essery and Pomeroy,
2004; Swenson and Lawrence, 2012). Various closed func-
tional forms for fSCAs are therefore applied in land sur-
face and climate models (e.g., Douville et al., 1995; Roesch
et al., 2001; Yang et al., 1997; Niu and Yang, 2007; Su
et al., 2008; Swenson and Lawrence, 2012). Most of these pa-
rameterizations use simple relationships between fSCA and
spatial mean HS or SWE. Since topography strongly deter-
mines the spatial snow depth or snow water equivalent dis-
tribution (Clark et al., 2011), in the past, terrain character-
istics were mostly heuristically introduced in closed form
curves to account for subgrid terrain influences on fSCA
(e.g., Douville et al., 1995; Roesch et al., 2001; Swenson
and Lawrence, 2012). To verify the commonly applied closed
forms of fSCA, Essery and Pomeroy (2004) integrated log-
normal SWE distributions and fitted the parametric SCD
curves. The best fit obtained resulted in a function propor-
tional to tanh, which is a previously derived closed form from
Yang et al. (1997). By using a normal probability density
function (pdf), Helbig et al. (2015) obtained the same form
fit for fSCA as Essery and Pomeroy (2004). The functional
form for fSCA from Yang et al. (1997) could thus be in-
ferred from integrating normal, as well as log-normal, snow
depth distributions with subsequent fitting of the parametric
SCD curves. The main difference between the form of Yang
et al. (1997) and Essery and Pomeroy (2004) is the variable
in the denominator. Yang et al. (1997) used the aerodynamic
roughness length, whereas Essery and Pomeroy (2004) ob-
tained the standard deviation of snow depth (σHS) at the peak
of winter in the denominator. The advantage of introducing
σHS in the closed form for fSCAs is that subgrid terrain char-
acteristics contributing to shape the dominant spatial snow
depth distribution can be used to parameterize σHS and thus
to extend the fSCA parameterization of Essery and Pomeroy
(2004) for mountainous terrain (Helbig et al., 2015).

Until recently, it was not possible to derive an empiri-
cal parameterization for σHS based on high-resolution snow
depth data due to the lack of such high-resolution spatial
data. New measurement methods such as terrestrial laser
scanning (TLS), airborne laser scanning (ALS) and air-
borne digital photogrammetry (ADP) nowadays provide a
wealth of spatial snow data at fine-scale horizontal resolu-
tions. Since recently, digital photogrammetry can also be ap-
plied to high-resolution optical satellite imagery (Marti et al.,
2016; Deschamps-Berger et al., 2020; Eberhard et al., 2021;
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Shaw et al., 2020). Snow depth data at these high resolutions
now enable statistical analyses of spatial snow depth pat-
terns for various purposes (e.g., Melvold and Skaugen, 2013;
Grünewald et al., 2013; Kirchner et al., 2014; Grünewald
et al., 2014; Revuelto et al., 2014; Helbig et al., 2015; Voegeli
et al., 2016; López-Moreno et al., 2017; Helbig and van Her-
wijnen, 2017; Skaugen and Melvold, 2019). Based on spa-
tial snow depth data sets, σHS could be related to terrain
parameters. For instance, Helbig et al. (2015) parameter-
ized σHS at the peak of winter using spatial mean HS and
subgrid terrain parameters, namely a squared-slope-related
parameter and terrain correlation length, and Skaugen and
Melvold (2019) parameterized σHS for the accumulation sea-
son using current spatial mean HS and stratifications accord-
ing to landscape classes and standard deviations in squared
slope. Though both approaches are promising and also some-
how similar, e.g., both use the squared slope as a significant
scale variable, they also differ, e.g., in the considered hor-
izontal scale lengths at the development of the parameter-
ization. While the parameterization of Helbig et al. (2015)
was developed for squared grid cell sizes from 50 m to 3 km,
Skaugen and Melvold (2019) presented parameterizations
for 0.5 km× 1 km grid cells. Helbig et al. (2015) observed
improved performances for larger scales (> 1000 m), Skau-
gen and Melvold (2019) observed the same performances
when validating it for 0.5 km× 10.25 km grid cells. This can
be explained by the physical processes shaping the com-
plex mountain snow cover which is predominantly interact-
ing with topography at different length scales, e.g., precipita-
tion, wind and radiation (Liston, 2004). A multiscale behav-
ior has been found in various studies using different spatial
coverages and measurement platforms (e.g., Deems et al.,
2006; Trujillo et al., 2007; Schirmer et al., 2011; Mendoza
et al., 2020), but a thorough analysis of spatial autocorre-
lations using many spatial snow depth data sets up to sev-
eral kilometers at horizontal resolutions far below the first
estimated scale break of about 10 to 20 m has not been pre-
sented so far. Such an analysis could reveal a scale range
from which the spatial snow distribution in mountainous ter-
rain can be parameterized with consistent accuracy. Using the
newly available wealth of spatial snow data, we now have the
opportunity to better understand the differences in previous
empirically developed closed form fSCA parameterizations
by adding variability in the evaluation of data sets, i.e., by
using data from different geographic regions, as well as by
taking into account the spatial scale in scaling parameters.

This article presents a new fSCA parameterization for
mountainous terrain for various snow model applications.
Since snow model applications operate at different spatial
scales, a fSCA parameterization should work across spatial
scales, as well as for various snow climates. Two important
points were therefore tackled compared to a previous fSCA
parameterization. (1) We derived the empirical parameteriza-
tion for σHS from a large pool of spatial snow depth data sets
at the peak of winter from various geographic sites and vali-

Figure 1. The map shows the approximate location of the 11 spatial
snow depth data sets. The colors of the trays indicate the region,
measurement platforms or acquisition date as presented in Fig. 2.

dated it scale- and region-dependently. (2) Based on a spatial
scale analysis, we introduced scale-dependent parameters in
peak of winter parameterization of Helbig et al. (2015) for
σHS such that the new fSCA parameterization can be reliably
applied for grid cell sizes starting at 200 m and increasing to
5 km. While a seasonal fSCA model algorithm can be built
using parameterized σHS at the peak of winter, we need ad-
ditional information on the history of previous HS and SWE
values to mimic the real seasonal fSCA evolution. We will
present a seasonal fSCA algorithm separately.

2 Data

We compiled 11 spatial snow depth data sets from 7 differ-
ent geographic sites in mountainous regions of Switzerland,
France and the US, i.e., from two continents (Fig. 1). These
data sets have horizontal grid cell resolutions1x between 0.1
and 3 m and cover areas from 0.14 to 280 km2. In addition to
that, the snow depth data sets were acquired by five differ-
ent remote sensing methods, i.e., using different platforms.
The diversity of the data sets can be seen in Fig. 2, which
shows the pdfs for snow depth, elevation and the squared-
slope-related parameter µ (Helbig et al., 2015) which is de-
scribed in Sect. 3.1. All snow depth data were gathered at the
local approximate point in time when snow accumulations
had reached their annual maximum. Except for the two snow
depth data sets shown in Fig. 3, the data sets have been pub-
lished before, or the geographic location is described else-
where. In the following, all snow depth data sets are listed
and grouped according to their mountain range.

2.1 Eastern Swiss Alps

We used snow depth data sets acquired by three different
platforms at four different alpine sites in the eastern Swiss
Alps.

The first platform was airborne digital scanning (ADS)
using an optoelectronic line scanner on an airplane. Data

https://doi.org/10.5194/tc-15-615-2021 The Cryosphere, 15, 615–632, 2021



618 N. Helbig et al.: Fractional snow-covered area

Figure 2. Probability density functions for fine-scale (a) snow depth, (b) elevation and (c) squared-slope-related parameter per observation
data set in its original horizontal resolution, i.e., between 0.1 and 3 m. Densities were normalized with the corresponding maximum density of
all data sets. Note that for elevation (b) the y axis was cut for better visibility. Colors represent the different geographic regions, measurement
platforms or acquisition dates (number) of the compiled data set as indicated in Sect. 2.1 to 2.4.

Figure 3. Snow depth maps of the eastern Swiss Alps: (a) in the Dischma region (ALS data) and (b) at Gaudergrat (UAS data) at the peak of
winter. The red dot in the inset map for Switzerland shows the location of the two sites. Pixmap © 2020 Swisstopo (5704000000), reproduced
with the permission of Swisstopo (JA100118).

were acquired from the Wannengrat and Dischma areas near
Davos in the eastern Swiss Alps (Bühler et al., 2015). ADS-
derived snow depth data sets were used from 20 March
2012 (“ads-CH2”) to 9 March 2016 (“ads-CH1”), together
with summer digital elevation models (DEMs) (Marty et al.,
2019). The data set covers about 150 km2 at 2 m resolution.
Bühler et al. (2015) validated the 2 m ADS-derived snow
depth data among others with TLS data. They obtained a root
mean square error (RMSE) of 33 cm and a normalized me-

dian absolute deviation (NMAD) of the residuals (Höhle and
Höhle, 2009) of 26 cm.

The second platform was an unmanned aerial system
(UAS) recording optical imagery with real-time kinematic
(RTK) positioning of the image acquisition points of the
snow cover with a standard camera over two different smaller
regions near Davos in the eastern Swiss Alps (Bühler et al.,
2016; Eberhard et al., 2021). These images were photogram-
metrically processed into a digital surface model (DSM). By
subtracting the snow-free DSM from the winter flight, the
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HS values were obtained (Bühler et al., 2017). An UAS-
derived snow depth data set was used from 7 April 2018
(“uav-CH9”) from Schürlialp, together with a UAS-acquired
summer DEM (Eberhard et al., 2021). The Schürlialp data
set covers about 3.2 km2 which we used at 30 cm resolution.
A second UAS-derived snow depth data set was used from
29 March 2019 (“uav-CH8”) from Gaudergrat, together with
a UAS-acquired summer DEM. The Gaudergrat data set cov-
ers about 0.8 km2 at 10 cm resolution (Fig. 3b). Compared to
snow depth data from snow probing, Eberhard et al. (2021)
obtained an RMSE of 16 cm and a NMAD of 11 cm for UAS-
derived snow depth data at 9 cm horizontal resolution from
Schürlialp.

The third platform was airborne laser scanning (ALS)
above the Dischma region near Davos in the eastern Swiss
Alps (Fig. 3a). This acquisition was a Swiss partner mis-
sion of the Airborne Snow Observatory (ASO) (Painter et al.,
2016). For consistency reasons, the same lidar setup was
used, and similar processing standards to the ASO campaigns
in California were applied (Sect. 2.2). ALS-derived snow
depth data were used from 20 March 2017 (“als-CH3”), to-
gether with a summer DEM from 2017. The ALS data set
from Switzerland used here covers about 260 km2 at 3 m res-
olution. Details on the derivation of the ALS data can be
found in Mazzotti et al. (2019), though this study focused on
three 0.5 km2 forested sub-data sets. Validation of 1 m ALS-
derived snow depth grids from 20 March 2017 against data
from snow probing within the forest but outside the canopy
(i.e., not below a tree) resulted in an RMSE of 13 cm and a
bias of −5 cm.

2.2 The Sierra Nevada, CA, US

We used data sets acquired by two different platforms above
Tuolumne basin in the Sierra Nevada (California) in the US.

The first platform was ALS performed by ASO (Painter
et al., 2016). ALS-derived snow depth data were used from
26 March 2016 (“als-US7”) and 2 May 2017 (“als-US6”),
together with a summer DEM (Painter, 2018). The second
platform was a Pléiades product from 1 May 2017 (“plei-
US6”). A detailed data description of the Pléiades data set
derivation is given in Deschamps-Berger et al. (2020).

We used the ASO summer DEM for the Pléiades, as well
as the ALS snow depth data sets. Given that the extent of
the Pléiades snow depth data set was much smaller than the
ALS domain, we cropped the ALS data sets to the Pléiades
data set extension resulting in a coverage of about 280 km2.
The horizontal resolution used here was 3 m for both data
sets. Compared to snow probe measurements in relatively
flat areas, ALS snow depth data at 3 m horizontal resolution
was found unbiased with an RMSE of 8 cm (Painter et al.,
2016). Pléiades-derived snow depth data were recently vali-
dated with ASO data over 137 km2 at 3 m resolution above
Tuolumne basin (Deschamps-Berger et al., 2020). An RMSE

of 80 cm, a NMAD of 69 cm and a mean bias of 8 cm were
obtained for the Pléiades data set.

2.3 Eastern French Pyrenees

A Pléiades product was acquired over the Bassiès basin in the
northeastern French Pyrenees. Pléiades-derived snow depth
data were used from 15 March 2017 (“plei-FR4”), together
with a summer DEM (Marti et al., 2016). The data set we
used covers about 113 km2 at 3 m resolution. Marti et al.
(2016) derived a median of the bias between 2 m Pléiades
data and snow probe measurements of−16 cm and with UAS
measurements of−14 cm. They further obtained a NMAD of
45 cm with snow probe measurements and a NMAD of 78 cm
with UAS measurements.

2.4 Southeastern French Alps

TLS-derived snow depth data were acquired at two alpine
mountain passes in the southeastern French Alps. One snow
depth data set was acquired over Col du Lac Blanc on
9 March 2015 (“tls-FR10”) (Revuelto et al., 2020). A site and
data description can be found in Naaim-Bouvet et al. (2010),
Vionnet et al. (2014), and Schön et al. (2015, 2018). We used
a UAS-acquired summer DEM (Guyomarc’h et al., 2019).
The data set covers about 0.6 km2 at 1 m resolution. The sec-
ond TLS-derived snow depth data set was acquired over Col
du Lautaret at 27 March 2018 (“tls-FR5”) (Revuelto et al.,
2020, ?). We used a TLS-acquired summer DEM. The data
set covers about 0.14 km2 at 1 m resolution. Previously, mean
biases between 4 and 10 cm for TLS laser target distances
up to 500 m were obtained between TLS-derived and refer-
ence tachymetry measurements (Prokop, 2008; Prokop et al.,
2008; Grünewald et al., 2010).

2.5 Preprocessing

In all data sets, grid cells 1x with forest, rivers, glaciers
or buildings were masked out. In order to avoid introducing
any biases, we consistently neglected fine-scale snow depth
values in all data sets that were lower than 0 m or larger
than 15 m. We used a snow depth threshold of 0 m to decide
whether or not a fine-scale grid cell was snow-covered.

3 Methods

We parameterize the standard deviation of snow depth σHS to
reassess the validity of the fSCA parameterization for com-
plex topography from Helbig et al. (2015) for a range of spa-
tial scales, in particular for sub-kilometer spatial scales.

3.1 Fractional snow-covered area parameterization

Helbig et al. (2015) derived an fSCA parameterization by
integrating a normal pdf assuming spatially homogeneous
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melt. Subsequent fitting over a range of coefficients of vari-
ation CV (standard deviation divided by its mean) between
0.06 and 1.00 resulted in a similar closed form fit for fSCA
as Essery and Pomeroy (2004) obtained by integrating a log-
normal pdf,

fSCA= tanh
(

1.3
HS
σHS

)
, (1)

using current HS and the standard deviation of previous max-
imum snow depth or peak of winter. The standard deviation
of snow depth at the peak of winter was derived by relating
the peak of winter high-resolution spatial snow depth data
from Switzerland and Spain to underlying summer terrain
parameters (Helbig et al., 2015):

σHS = HSaµb exp
[
−(ξ/L)2

]
, (2)

with a = 0.549, b = 0.309, HS and terrain correlation length
ξ are in meters, and ξ and µ are summer terrain parame-
ters, where µ is related to the mean squared slope via µ={
[(∂xz)2+ (∂yz)2]/2

}1/2
using partial derivatives of subgrid

terrain elevations z, i.e., from a DEM. The correlation length
ξ or typical width of topographic features in a domain size
L was derived via ξ =

√
2σz/µ with the standard deviation

of elevations σz. The L/ξ ratio indicates how many charac-
teristic topographic features of length scale ξ are included
in each L. Figure 2 in Helbig et al. (2009) shows a tran-
sect of a topography indicating the described characteristic
length scales. Similar to Helbig et al. (2015), we linearly de-
trended the summer DEM before deriving the terrain param-
eters to unveil the correct terrain characteristics associated
with the shaping process of the snow depth distribution at
the corresponding scale. Using Eq. (1), fSCA can thus be
derived with grid cell mean snow depth from a snow model
and grid cell mean subgrid terrain parameters derived from a
fine-scale summer DEM. With the σHS formulation shown in
Eq. (2), Helbig et al. (2015) extended the fSCA parameteri-
zation (Eq. 1) for mountainous terrain.

3.2 Aggregating and pooling of data sets

Pooling all snow depth data sets yields a data pool with a vast
variety in snow climates, topographic characteristics and thus
snow depth distributions. We first aggregated all snow data
in squared domain sizes L in regular grids between 3 m and
5 km covering each geographic site. Our choice of the small-
est applicable L in a data set was defined by a large enough
L/1x ratio (here≥ 20) to minimize the influence of grid cell
resolutions when spatially averaging (Helbig et al., 2009).
When aggregating, we required at least 70 % valid data in a
domain size which was the maximum threshold to obtain a
sufficient number of domains for the largest domain sizes L
of 3 m to 5 km. In addition to that, we excluded L with spa-
tial mean slope angles larger than 60◦ and spatial mean snow

Figure 4. Total number of valid domain sizes L per domain size L
in log–log scale.

depth HS lower than 5 cm. By applying these limitations and
since horizontal resolutions 1x, as well as the overall ex-
tent of the data sets, vary, the full range of L values, con-
sisting of 41 different L values, was not represented by each
data set. Overall, this resulted in a pool of 367 643 domains
with L values between 3 m and 5 km. We obtain a decreas-
ing number of domains for increasing L with a range be-
tween 59 376 for L= 90 m and 17 for L= 5000 m (Fig. 4).
Spatial averages and standard deviations were built for each
L. The resulting pooled data set shows a large variability in
summer terrain characteristics. Spatial average slope angles
range from 4 to 60◦ (µ from 0.05 to 1.22; Fig. 5c), terrain cor-
relation lengths ξ from 6 to 775 m and L/ξ -ratios from 3 to
40. Thus, typical summer terrain characteristics captured by
coarse climate model grid cells are well represented. The di-
versity of the remaining domains with regards to snow depth
is shown by means of the pdfs for spatial mean HS and σHS
as a function of domain size L in Fig. 5a and b. Since the data
pool also covers a broad range in spatial mean HS (from 5 cm
to 12.4 m) and spatial variability in snow depth σHS (from
1 cm to 4.6 m) (Fig. 5a and b), we assume interannual snow
depth variability is well described. In the following, overbars
are neglected for spatial averages, i.e., for instance HS repre-
sents spatial mean snow depth exclusively.

3.3 Autocovariances for scale breaks

The spatial autocovariance allows us to find spatial scale
breaks up to which snow depth values are highly correlated,
i.e., up to which length scale the snow depth distribution
is strongly dictated by local topographic interactions of the
snow cover with wind, precipitation and radiation. Below this
scale, break process models should ideally explicitly resolve
these interactions to reliably describe the spatial snow depth
distribution. Above this scale break, we assume that dom-
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Figure 5. Probability density functions for (a) snow depth, (b) standard deviation of snow depth and (c) squared-slope-related parameter per
domain size L after preprocessing, pooling all data sets and building spatial averages.

inant wind or precipitation patterns due to larger-scale to-
pography impacts dictate spatial snow depth distributions. At
this scale range, the normalized standard deviations of snow
depth σHS start leveling out (Fig. 6a), as well as the normal-
ized variability in σHS among similarly sized L (Fig. 6b).

We calculated spatial autocovariances for snow depth data
sets with the fast Fourier transform (FFT), which allows for
the computing of spatial autocovariances up to large dis-
tances by keeping the fine grid cell resolutions. We used the
R function fft() of the “stats” package (see R Core Team,
2020). For each autocovariance, we then determine scale
breaks using the R function uik() of the “inflection” package
(R Core Team, 2020).

3.4 Deriving a new scale-independent fractional
snow-covered area parameterization

Helbig et al. (2015) showed that fSCA performances in-
creased with spatial scale and yielded their best performance
for spatial scales larger than 1000 m. Since the fSCA param-
eterization was empirically developed on snow depth data
from two geographic regions, here we reevaluated the scal-
ing variables for the spatial variability in snow depth σHS,
as well as the functional form of the parameterization using
the much larger compiled HS data set of this study. Various
scaling variables were previously employed to capture σHS
in mountainous terrain. Helbig et al. (2015) selected HS, the
squared-slope-related parameter µ and the L/ξ ratio (Eq. 2).
Skaugen and Melvold (2019) used HS and the standard de-
viation of the squared slope, with sqS being derived using
sqS= tan2ζ , where ζ is the slope angle in radians. Since
tan2ζ is the same as 2µ2 (e.g., Löwe and Helbig, 2012), we
here derive sqS from 2µ2. Several other studies used σz as
terrain parameter (e.g., Roesch et al., 2001). Here, we were
interested in finding dominant scaling variables that corre-
late consistently across scales with σHS. We therefore ana-
lyzed the Pearson correlation coefficient r between various
candidate parameters and σHS as a function of spatial scale,

i.e., domain size L. Based on the results of previous studies,
we selected the following candidate parameters: HS, µ, sqS,
σsqS, L/ξ and σz.

3.5 Performance measures

The performance in this article is evaluated by the following
measures: the root mean square error (RMSE), normalized
root mean square error (NRMSE; normalized by the range
of measured data – max-min – or the mean of the measure-
ments for fSCA), mean absolute error (MAE), the mean ab-
solute percentage error (MAPE; absolute bias with measured
minus parameterized and normalized with measurements),
the mean percentage error (MPE; bias with measured minus
parameterized and normalized with measurements) and the
Pearson correlation coefficient r as a measure for correla-
tion. We also evaluate the performances by deriving the two-
sample Kolmogorov–Smirnov test (K-S test) statistic values
D (Yakir, 2013) for the pdfs and by computing the NRMSE
for quantile–quantile plots (NRMSEquant; normalized by the
range of measured quantiles, max-min) for probabilities with
values in the range of [0.1,0.9].

4 Results

4.1 Spatial correlation range from snow depth data

We derived a total of 40 autocovariances for the available do-
main sizes L of 3 km with grid cell sizes 1x of 2 or 3 m.
We obtained scale breaks between 183 and 681 m with a
mean of 284 m (±σ 86 m) (Fig. 7). The zero crossings for
each autocovariance were between 402 and 1815 m with a
mean of 1011 m (±σ 402 m). For the mean autocovariance,
we obtained a scale break at about 279 m and a zero cross-
ing at about 1212 m. Based on the observed scale breaks,
we selected a minimum length scale of 200 m for deriving
a new scale-dependent fSCA parameterization for all larger
scales. In the following, all results are therefore restricted to
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Figure 6. (a) Normalized standard deviation of HS as a function of domain size L for each data set separately. (b) Normalized percentage of
standard deviation of panel (a) among each L. L ranges from 3 m to 5 km. Colors represent the different geographic regions, measurement
platforms or acquisition dates (number) of the compiled data set as indicated in Sect. 2.1 to 2.4.

Figure 7. FFT-derived autocovariances for spatial snow depth. Indi-
vidual ranges, mean range and mean autocovariance zero crossing
are shown.

L≥ 200 m, leaving a pool of 41 249 domain sizes L with L
between 200 m and 5 km for the development of the parame-
terization.

4.2 Scaling variables for σHS

Correlation coefficients varied differently across spatial
scales (Fig. 8a). For all scales, we obtained the largest cor-
relation coefficients for HS ranging from 0.48 to 0.98 with
a mean of 0.79. From correlations with the various subgrid
terrain parameters, the largest correlations across all scales
were reached for the squared-slope-related parameterµ rang-
ing from 0.22 to 0.61 with a mean of 0.36. Similar consistent

correlation coefficients across scales but slightly smaller for
L≤ 1800 m resulted in the squared slope sqS having an over-
all mean of 0.33. The correlation coefficients for the stan-
dard deviation of sqS (σsqS) and σz were much less consis-
tent across scales than for µ and sqS and were overall lower.
The mean correlation for σsqS is 0.15, for L/ξ 0.21 and for
σz 0.01. Though the mean correlation between σHS and L/ξ
is rather low, the correlation remains more consistent across
scales up to about 2500 m and increases for larger scales con-
siderably up to 0.67 (cf. Fig. 8a).

We selected HS, µ and L/ξ as main scaling parameters for
σHS across spatial scales from 200 m to 5 km (Fig. 8b).

4.3 Scale-independent fSCA parameterization

The correlation analysis across scales revealed the same
dominant correlation parameters as in Helbig et al. (2015).
We therefore kept the functional form for σHS at the peak
of winter suggested by Helbig et al. (2015) using the three
scaling variables HS, µ and L/ξ . The new σHS parameter-
ization at the peak of winter thus has the same functional
form than the one suggested by Helbig et al. (2015) which
was presented in Eq. (2). However, the fit parameters a and b
therein are replaced by the new parameters c and d which we
specify below. To derive the new parameters c,d , we fitted
nonlinear regression models by robust M-estimators using it-
erated reweighed least squares; see R (R Core Team, 2020)
and its robustbase package version 0.93-6 (Maechler et al.,
2020). We started at the scale length of 200 m, defined by the
scale break which we derived before from spatial snow depth
autocovariances.

Fit parameters were first derived for the entire data pool
and L≥200 m yielding c = 0.6589 (±0.0037) and d =
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Figure 8. (a) Correlation coefficients between σHS and various parameters as a function of domain size L. (b) Standard deviation of snow
depth σHS as a function of HS and µ.

Figure 9. Fit parameters for Eq. (2) as a function of domain sizes L
to scale variables (a) HS and (b) µ. Colored lines show the fit pa-
rameters derived for each of the 500 random 80 % samples of each
of the 25 sub-data pools. The dark blue dots depict the ensemble
median per L. Previously obtained constant parameters of Helbig
et al. (2015) (light blue dots) and newly fitted constant (red dots), as
well as newly fitted scale-dependent (pink circles) parameters are
shown.

0.5638 (±0.0043) with the 90 % confidence intervals of the
fit parameters given in parentheses. These “new” constant pa-
rameters c,d are larger than the previously derived constants
a,b in Eq. (2) (cf. Fig. 9).

In addition to fitting over the entire data pool and
L≥ 200 m, we split the entire data pool into 25 sub-data
pools for any available domain size between 200 m and 5 km

(cf. Fig. 4). Thereby, each sub-data pool comprised all do-
mains larger than or equal to the corresponding domain size,
i.e., L≥ 200 m, L≥ 240 m, etc. Fitting over such a sub-data
pool should allow us to describe the combined larger-scale
topography–wind–precipitation impacts on the spatial snow
depth distribution in mountainous terrain acting at scales
larger than the observed scale break of about 200 m. From
each of the 25 created sub-data pools, we randomly took 500
subsamples in which each subsample was restricted to 80 %
data of the sub-data pool. Each of the 500 subsamples per
sub-data pool was unique. Scale-dependent parameter val-
ues were derived for each of the 500 subsamples drawn from
each of the 25 sub-data pools (cf. individual colored lines in
Fig. 9). Given that the values of c,d clearly increase with
spatial scale L (Fig. 9), we introduced L in c,d to improve
the application of Eq. (2) across scales. By fitting the en-
semble medians of all scale-dependent fit parameters (dark
blue dots in Fig. 9) across all domain sizes between 200 m
and 5 km, we obtained scale-dependent parameters c(L) and
d(L). Thus, Eq. (2) using the following scale-dependent pa-
rameters c(L) and d(L) assembles our new σHS parameteri-
zation for L≥ 200 m:

c(L)= 0.5330L0.0389,

d(L)= 0.3193L0.1034, (3)

with the 90 % confidence intervals of±0.0097,±0.0026 and
±0.0183, and ±0.0079 in the order of introduced constants
in Eq. (3).

The new σHS parameterization using c(L) and d(L) (Eq. 2
with Eq. 3) is applied in the previously derived fSCA param-
eterization (Eq. 1). To demonstrate the resulting differences
when using scale-dependent versus scale-independent fit pa-
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rameters in parameterized σHS (Eq. 2), we will also validate
the performance using constant c,d in the previously derived
fSCA parameterization, as well as in the σHS parameteriza-
tion.

4.4 Evaluation

4.4.1 Evaluation for σHS and fSCA for all L values

Parameterized σHS and fSCA perform well for all domain
sizes, i.e., for L≥ 200 m, of the entire data pool. Very simi-
lar performance measures are obtained for the parameteriza-
tions using the newly derived constant fit parameters c,d and
the parameterizations using the scale-dependent parameters
c(L),d(L) (cf. Table 1 and Ia and IIa). We obtain a slightly
better MPE for σHS when using scale-dependent fit parame-
ters (−4 % versus -5 %); however, for fSCA, MPEs are the
same (0.2 %). The same rather low NRMSE results for σHS
(8 %) and for fSCA (2 %) are obtained when using constant
or scale-dependent fit parameters.

4.4.2 Scale-dependent evaluation for σHS and fSCA

While mean performance measures of the σHS and fSCA pa-
rameterization are almost uninfluenced by using constant or
scale-dependent fit parameters (cf. Table 1 and Ia and IIa), we
found diverging performances when analyzing performance
measures as a function of scale (Fig. 10). Across scales,
improved or similar performances were achieved when us-
ing scale-dependent fit parameters in parameterized σHS, es-
pecially for larger scales. Maximum performance improve-
ments for σHS of 4 % and for fSCA of 0.7 % occurred for L
of 2500 m when using scale-dependent fit parameters. Thus,
introducing scale-dependent fit parameters enhanced the σHS
parameterization for application across scales.

4.4.3 Scale- and region-dependent evaluation for σHS
and fSCA

A large data set from various geographic regions allows us
to develop a more reliable empirical parameterization than
being limited to the characteristics of a few data sets. Here,
we not only compiled data sets from various geographic re-
gions, but the data sets were also acquired by different mea-
surement platforms coming with a range of inaccuracies be-
tween below 10 and 80 cm. As a consequence, larger scat-
ter in performances appears when performance measures are
depicted not only as a function of spatial scale but also re-
gionwise, including platformwise. While most of the MPEs
are still between −20 % and 10 %, some regions stand out
because they have much larger MPEs when binned by scale,
as well as by region (Fig. 11). For instance, a MPE of up
to 60 % for σHS was obtained for TLS data from the south-
eastern French Alps, and overall larger MPEs, though consis-
tent across scales, for the Pléiades data from the northeastern
French Pyrenees were obtained. MPEs for fSCA on the other

hand do not show a similar large spread among the regions
and are low between −1 % to 2 % (Fig. 11b).

4.4.4 Evaluation of previous closed form
parameterizations

To increase our understanding of the performances achieved
with the new parameterizations, we also tested two previ-
ously derived empirical parameterizations. Specifically, we
investigated how parameterized σHS using Eq. (2) (Helbig
et al., 2015) and using the recently published formulation
of Skaugen and Melvold (2019) compare to observed σHS
of our compiled data set (Fig. 12a). We further tested both
σHS parameterizations in the fSCA parameterization (Eq. 1;
Fig. 12b). The parameterization of Helbig et al. (2015) works
well. The performance measures for all L values are only
slightly worse compared to the new parameterizations us-
ing both constant and scale-dependent fit parameters (Ta-
ble 1). However, compared to the performance measures for
the parameterization of Skaugen and Melvold (2019), the
performances of Helbig et al. (2015) are clearly improved.
Though MPEs of both previous σHS parameterizations are
scale-dependent, the MPEs of Skaugen and Melvold (2019)
reveal a larger scale-dependency of the performances com-
pared to Helbig et al. (2015) (Fig. 12a). In particular, indi-
vidual MPEs vary a lot from MPEs for all L values given in
Table 1.

5 Discussion

5.1 Spatial correlation range

While multiscale behavior for spatial snow depth data has
been found in various studies, observed scale breaks depend
on the extent and horizontal resolution of the investigated
snow depth data sets. A first scale break of spatial snow
depth data in treeless, alpine terrain has been observed be-
tween 10 to 20 m (e.g., Deems et al., 2006; Trujillo et al.,
2007; Schweizer et al., 2008; Schirmer and Lehning, 2011;
Helfricht et al., 2014; Mendoza et al., 2020), and a second
scale break has been observed at around 60 m (Trujillo et al.,
2009). By computing spatial autocovariances starting with
domain sizes L of 200 m at 0.1 to 1 m resolution and increas-
ing up to 3 km at 2 to 3 m resolution, we also detected the
two previously found scale breaks (not shown). However, by
additionally covering larger spatial extents than have been
previously investigated, we also detected a third scale break
with a mean at about 280 m (Fig. 7). Similar long-range scale
breaks between 185 and 300 m were very recently reported
from analyzing 24 TLS-derived snow depth data sets ac-
quired during six snow seasons in a subalpine catchment in
the Spanish Pyrenees (Mendoza et al., 2020). Furthermore,
a similar scale break at around 200 m was recently found by
analyzing performance decreases in distributed snow model-
ing in various grid cell sizes, together with a semivariogram
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Table 1. Performance measures for all L values between measurement and parameterization of (I) standard deviation of snow depth σHS
with (a) Eq. (2) and constant or L-dependent fit parameters c,d (Eq. 3) and (b) σHS as in Helbig et al. (2015) and Skaugen and Melvold
(2019) and of (II) fSCA with (a) Eq. (1) and (1a) and (b) fSCA as in Helbig et al. (2015) and Skaugen and Melvold (2019) using Eq. (1).

NRMSE RMSE MPE MAPE MAE r K-S NRMSEquant
(%) (cm) (%) (%) (cm) (%)

(I) σHS

(a) Eq. (2) with
constant c,d parameter 7.9 26.6 −5.3 22.6 19.7 0.83 0.05 5.3
c(L),d(L) (Eq. (3)) 7.9 26.7 −4.1 22.4 19.6 0.83 0.05 5.5

(b) Previous parameterizations from
Helbig et al. (2015) 9.3 31.1 −29.5 36.7 25.3 0.82 0.22 14.6
Skaugen and Melvold (2019) 20.4 68.5 −77.9 82.8 57.9 0.68 0.48 37.6

NRMSE RMSE MPE MAPE MAE r K-S NRMSEquant
(%) (%) (%) (%)

(II) fSCA

(a) Eq. (1) with
Eq. (2) and constant c,d parameter 2.4 0.02 0.22 1.11 0.01 0.64 0.37 0.5
Eq. (2) and c(L),d(L) (Eq. 3) 2.4 0.02 0.16 1.09 0.01 0.63 0.37 0.4

(b) Previous parameterizations from
Helbig et al. (2015) 3.2 0.03 1.45 1.8 0.02 0.74 0.47 1.6
Skaugen and Melvold (2019) using Eq. (1) 6.2 0.06 3.87 4.8 0.05 −0.04 0.75 4.4

Figure 10. Mean percentage error (MPE) as a function of L for (a) σHS and (b) fSCA. MPEs are shown for the σHS and fSCA parameteriza-
tions using Eq. (1) to (3) with scale-dependent c(L),d(L), as well as for constant c,d . The second y axis shows the number of valid domains
per L on a logarithmic scale.

analysis of subgrid summer terrain slope angles in the same
catchment in the High Atlas (Baba et al., 2019). While for
other application studies, such as in avalanche forecasting,
the smaller-scale breaks are decisive for explicitly describing
the relevant snow-cover processes, here we are more inter-
ested in the largest detected scale break. Above scale lengths
of 200 m, the longer-range processes of precipitation, wind
and radiation interactions with topography most dominantly

influence the spatial snow distribution in mountainous ter-
rain, while we believe there are different physical processes
which establish the smaller-scale breaks at around 10 to 20
and 60 m. The results presented here indicate that the model
described by Eqs. (1) and (3) is reliably parameterizing the
spatial snow distribution shaped by the longer-range precip-
itation, wind and radiation interactions with topography for
spatial scales between 200 m and 5 km. Above the detected
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Figure 11. Mean percentage error (MPE) as a function of L for the compiled data set for (a) σHS and (b) fSCA using Eqs. (1) to (3) with
scale-dependent c(L),d(L). Colors represent the different geographic regions, measurement platforms or acquisition dates (number) of the
compiled data set as indicated in Sect. 2.1 to 2.4.

Figure 12. Mean percentage error (MPE) as a function of L for the compiled data set for (a) σHS and (b) fSCA. MPEs are shown for the
σHS and fSCA parameterizations of Helbig et al. (2015), as well as for the σHS parameterization of Skaugen and Melvold (2019) and the
σHS parameterization of Skaugen and Melvold (2019) applied in the fSCA parameterization of Helbig et al. (2015) (Eq. 1).

scale range of around 200 m, not only the spatial autocorre-
lations approach zero (Fig. 7), but normalized σHS clearly
start leveling out, as well as the normalized variability in
σHS among similarly sized L (Fig. 6). Thus, even though we
could not verify the fSCA parameterization for length scales
larger than 5 km, we believe that as long as grid cell mean
slope angles are larger than zero, Eqs. (1) and (3) might also
hold for larger grid cell sizes than 5 km.

5.2 Scaling parameter

We not only investigated dominant correlations between the
spatial snow depth distribution and terrain parameters, but
we also analyzed these correlations as a function of spa-

tial scale. For some commonly applied scaling parameters,
this revealed large variations in correlations across scales
such as for σz (Fig. 8a). Similar to our results, Skaugen
and Melvold (2019) also obtained large correlations between
σHS and mean squared slope sqS for spatial snow depth data
sets acquired at the peak of winter in Norway, though this
was only analyzed for grid cells of 0.5 km2 (0.5 km× 1 km).
Nevertheless, this confirms our findings since mean squared
slope is related to the slope-related parameter µ used here
by sqS= 2µ2. However, Skaugen and Melvold (2019) ob-
tained a slightly improved correlation for the standard devia-
tion of squared slope and therefore selected this parameter to
stratify the topography for parameterizing σHS. Across spa-
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tial scales, as well as for all L values, we obtained lower
correlations between the standard deviation of squared slope
and σHS, though we observed cross-correlations between the
mean and the standard deviation of squared slope of 0.71,
indicating that both parameters correlate well with σHS.

5.3 Scale-independent fSCA parameterization

The closed form fractional snow-covered area parameteriza-
tion fSCA given in Eq. (1) got enhanced by recalibration and
introducing scale-dependent fit parameters (Eq. 3) to make
the performance consistent across spatial scales.

We developed the parameterization on a large snow depth
data set. Large variability in the snow depth data set was
gained by compiling 11 individual data sets from varying ge-
ographic regions, as well as various measurement platforms.
While the latter might explain the remaining performance
differences discussed below, the first led to large variabil-
ity in summer terrain characteristics and snow climates and
consequently spatial snow depth distributions (cf. Fig. 2).
Though our presented parameterization for σHS was empiri-
cally derived, it is reassuring that for a new empirical deriva-
tion on a much larger and more diverse snow depth data
set, the same underlying functional form could be used. Fur-
thermore, larger (about 17 % and 45 %) but overall consis-
tent constant fit parameters were obtained compared to those
from Helbig et al. (2015) based on a more limited number of
data sets and just two geographic regions (cf. a and b in Eq. 2
and c,d presented in Sect. 4.3 or Fig. 9).

In addition to deriving constant fit parameters across spa-
tial scales, we took 500 random 80 % subsamples from
each of the 25 sub-data pools (Sect. 4.3). Scale-dependent
constants considerably increased with increasing scale from
L= 200 m to L= 5 km by at most 12 % and 38 %, respec-
tively (Fig. 9). This demonstrates that accounting for scale-
dependent constants in the fSCA parameterization (Eq. 1
with Eqs. 2 and 3) had to be done. While we did not split
our data set in development and validation subsets, fitting
over the ensemble median of all scale-dependent parameters
to derive c(L),d(L) ensures confidence in the resulting fit
parameters.

An increase in scatter among all c(L) and d(L) with in-
creasing domain scaleL (Fig. 9) can be most likely explained
by a concurrent decrease in available valid data in larger L
values. Though we required at least 70 % valid data per L
when aggregating fine-scale snow depth data in domain sizes
L, the maximum threshold of 70 % was more often required
for the larger L values than for smaller L values.

5.4 Evaluation

5.4.1 Evaluation for σHS and fSCA

Upon deriving performance measures on parameterized and
observed σHS and fSCA for all L values (i.e., the pooled

performance), we obtained very similar performances when
using newly derived constant or scale-dependent fit parame-
ters, i.e., c,d or c(L),d(L) (Table 1). Despite considerable
differences up to 12 % for c and up to 38 % for d between
constant and scale-dependent fit parameters (Fig. 9), pooled
performances for all L values for σHS and fSCA were sim-
ilar (Table 1). An explanation for this is that the number of
available domains is strongly decreasing with increasing L.
For L≥ 3000 m, we have only about 0.33 % (137 in total)
valid domains available compared to the total of 41 249 for
L < 3000 m (Fig. 4). This emphasizes the need for a scale-
dependent evaluation.

5.4.2 Scale-dependent evaluation for σHS and fSCA

The largest improvement in MPE for all L values seems to
originate from the recalibration using the new compiled data
set with a reduction in MPE from −30 % to −5 % com-
pared to a reduction from −5 % to −4 % when introducing
scale-dependent fit parameters (Table 1). However, MPEs as
a function of scale clearly demonstrated the improved behav-
ior when using scale-dependent c(L),d(L) instead of con-
stant fit parameters c,d in the σHS and fSCA parameteriza-
tion (Fig. 10). Given that constant c,d were fitted over the
entire data set as have been c(L),d(L), any performance im-
provement using c(L),d(L) instead of constant c,d for pa-
rameterized σHS and fSCA originates in introducing scale-
dependent parameters. For the parameterizations using the
constant fit parameters c,d , errors varied slightly more across
scales than when using the scale-dependent c(L),d(L) ver-
sion. Individual scale-dependent errors were in part larger
than the MPEs for all L values given in Table 1. Unequal
numbers of valid domains per L most likely also contributed
to this.

5.4.3 Scale- and region-dependent evaluation for σHS
and fSCA

While we did not perform an evaluation using independent
snow depth data sets, studying regionwise performances re-
veals the spread in errors we can expect when the new param-
eterizations are applied on an individual independent data
set (Fig. 11). We obtain much larger positive MPEs for σHS
at lower spatial scales of L= 200 m and L= 300 m for the
two TLS data sets in the southeastern French Alps and over-
all larger MPEs between 20 % and 30 %, though consistent
across scales, for the Pléiades data from the Bassiès basin in
the northeastern French Pyrenees. It is unclear if these larger
MPEs originate in uncertainties of the data acquisition, i.e.,
are platform specific, or if they are linked to spatial snow
depth distributions which could not be captured by the pro-
posed new parameterizations. RMSEs for the various remote
sensing platforms and data sets used here (Sect. 2) decrease
from 80 cm for Pléiades data from the Sierra Nevada to 33 cm
for the ADS, to 16 cm for UAS, to 13 cm for ALS data from
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Switzerland, to 8 cm for ALS data from the Sierra Nevada
and to 4 to 10 cm for TLS data in general. Given the rather
low errors typically obtained for TLS data compared to the
other remote sensing platforms, the reason for the large de-
viations in the TLS data sets might not originate in inaccu-
racies of the data acquisition. On the contrary, the observed
bias in the Pléiades data from the northeastern French Pyre-
nees might indeed be attributed to the rather large inaccu-
racies of the platform with NMADs of 45 to 78 cm (Marti
et al., 2016). However, Pléiades data from the Sierra Nevada
come with a similarly large NMAD of 69 cm, but σHS can be
parameterized very well with MPEs lower than ±3 % across
spatial scales (Fig. 11a). Observed σHS from the TLS, as well
as from the Pléiades data in France, was considerably larger
than parameterized σHS, but mean slope angles alone can also
not explain this behavior (between 6 and 23◦ for the TLS data
and between 13 and 50◦ for the Pléiades data).

While we were not able to clearly relate some of the
poorer regionwise performances to uncertainties related to
the platform, other studies entirely focused on perform-
ing extensive intercomparisons between platforms for large-
scale snow depth mapping in alpine terrain (e.g., Bühler
et al., 2015, 2016; Eberhard et al., 2021; Deschamps-Berger
et al., 2020).

5.4.4 Evaluation of previous closed form
parameterizations

Though we developed a new σHS parameterization (Eq. 3),
empirically derived parameterizations can only describe the
variability inherent in the data set used to derive the param-
eterization. In addition to the regionwise evaluation, analyz-
ing performances of previous empirically derived parameter-
izations may therefore allow us to estimate expected perfor-
mance sensitivity to independent data sets. While both tested
parameterizations of σHS (Helbig et al., 2015; Skaugen and
Melvold, 2019) showed a worse performance than the new
parameterizations and less consistency as a function of scale,
the model performances of Helbig et al. (2015) were only
slightly worse than the new parameterizations (Table 1). The
parameterization for σHS of Skaugen and Melvold (2019)
was developed on mean domain sizes L of 750 m, whereas
Helbig et al. (2015) used L values between 50 m to 3 km.
This difference might be one reason for the overall poorer
performances of Skaugen and Melvold (2019) compared to
Helbig et al. (2015) across spatial scales. Since only 1 out
of the 11 data sets used in this study was previously used to
develop the parameterization of Helbig et al. (2015), an over-
all similar performance of Helbig et al. (2015) (Fig. 12) with
the large compiled data set of this study clearly confirms the
underlying functional form of σHS suggested by Helbig et al.
(2015) which was reapplied here.

6 Conclusions

We presented an empirical peak of winter parameterization
for the standard deviation of snow depth σHS for treeless,
mountainous terrain, describing the spatial snow depth distri-
bution in a grid cell for various model applications. The scal-
ing variables in the new parameterization of σHS and fSCA
are the same as in Helbig et al. (2015) which are spatial mean
snow depth, a squared-slope-related parameter and a terrain
correlation length. All subgrid terrain parameters can be eas-
ily derived from fine-scale summer DEMs for each coarse
grid cell.

By introducing spatial scale dependencies in the variables
in the formulation for σHS of Helbig et al. (2015), σHS can
be consistently parameterized across spatial scales starting at
scales ≥200 m. The spatial snow depth variability or σHS is
the important variable to parameterize the fractional snow-
covered area or fSCA (Helbig et al., 2015). Performance im-
provements across spatial scales of the σHS parameterization
therefore directly enhanced the fSCA parameterization. Be-
tween length scales of 200 m and 5 km, mean percentage er-
rors (MPE) were between−7 % and 3 % for σHS and between
0 % and 1 % for fSCA.

The subgrid parameterization of σHS was developed from
11 spatial snow depth data sets from seven different geo-
graphic regions at high spatial resolutions between 0.1 to
3 m and with spatial coverage between 0.14 to 280 km2. An
evaluation of two previously presented empirical σHS pa-
rameterizations confirmed the functional form of the param-
eterization of Helbig et al. (2015), as well as the need to
enhance its performance across scales. By analyzing data
from the large pool of spatial snow depth data sets, we were
able to recalibrate the subgrid parameterization of σHS and
achieve improved performances using new constant fit pa-
rameters. Additionally introducing a scale dependency in the
dominant scaling variables further improved the performance
across spatial scales. Mean MPEs of σHS over all scales (i.e.,
pooled performance) reduced from−30 % using Helbig et al.
(2015) to −5 % after recalibration to −4 % after introducing
scale-dependent fit parameters (Table 1). Individual scale-
dependent improvements in MPEs reached up to 4 % when
using newly derived scale-dependent fit parameters com-
pared to newly derived constant fit parameters for σHS from
the large data pool. This shows the improvement thanks to
introducing scale-dependent parameters (Fig. 10). Towards
estimating the possible spread in performances when apply-
ing empirically derived σHS and fSCA for independent ge-
ographic regions, we validated the parameterizations sepa-
rately for each region and scale. While this clearly increased
MPEs for three data sets, the majority of the region- and
scale-dependent MPEs were between±10 % for σHS and be-
tween −1 % and 1.5 % for fSCA, indicating that the param-
eterizations perform similarly well in most geographical re-
gions.
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By parameterizing peak of winter σHS in mountainous ter-
rain, Helbig et al. (2015) extended the fSCA parameteriza-
tion of Essery and Pomeroy (2004) for topography. Here, we
extended peak of winter σHS parameterization, and thus the
fSCA parameterization, to be applicable over a large range
of snow climates and topographic characteristics, as well as
across spatial scales. Since fSCA is an essential model pa-
rameter, a seasonal fSCA algorithm describing the variability
throughout a winter season is of relevance for various model
applications. A peak of winter parameterization of σHS that
describes the maximum spatial snow depth variability can
not, however, be used alone to describe that seasonal fSCA
evolution. A reliable model application of any fSCA param-
eterization requires an implementation accounting for alter-
nating snow accumulation and melt events during the season,
i.e., to describe the SCD. Especially at lower elevations, the
separation of the SCD in only one accumulation period fol-
lowed by a melting period is no longer valid (Egli and Jonas,
2009). A description of an algorithm for a seasonal fSCA
model implementation which uses the new scale-independent
peak of winter parameterization of σHS in the fSCA parame-
terization presented here is currently in preparation. Extend-
ing the empirical peak of winter fSCA parameterization to a
broader range of spatial scales and snow climates was thus a
meaningful step towards accounting for spatiotemporal vari-
ability in snow depth for multiple snow model applications.

Data availability. All data used in this study are described in the
data section. The data can be downloaded from the referenced
repositories, or data availability is described in the referenced pub-
lications.
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