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Abstract. The Maxwell elasto-brittle (MEB) rheology uses
a damage parameterization to represent the brittle fracture of
sea ice without involving plastic laws to constrain the sea ice
deformations. The conventional MEB damage parameteriza-
tion is based on a correction of super-critical stresses that
binds the simulated stress to the yield criterion but leads to a
growth of errors in the stress field. A generalized damage pa-
rameterization is developed to reduce this error growth and to
investigate the influence of the super-critical stress correction
scheme on the simulated sea ice fractures, deformations and
orientation of linear kinematic features (LKFs). A decohe-
sive stress tensor is used to correct the super-critical stresses
towards different points on the yield curve. The sensitivity of
the simulated sea ice fractures and deformations to the deco-
hesive stress tensor is investigated in uniaxial compression
experiments. Results show that the decohesive stress ten-
sor influences the growth of residual errors associated with
the correction of super-critical stresses, the orientation of
the lines of fracture and the short-term deformation associ-
ated with the damage, but it does not influence the long-term
post-fracture sea ice deformations. We show that when ice
fractures, divergence first occurs while the elastic response is
dominant, and convergence develops post-fracture in the long
term when the viscous response dominates – contrary to lab-
oratory experiments of granular flow and satellite imagery
in the Arctic. The post-fracture deformations are shown to
be dissociated from the fracture process itself, an impor-
tant difference with classical viscous plastic (VP) models in
which large deformations are governed by associative plas-
tic laws. Using the generalized damage parameterization to-
gether with a stress correction path normal to the yield curve
reduces the growth of errors sufficiently for the production
of longer-term simulations, with the added benefit of bring-

ing the simulated LKF intersection half-angles closer to ob-
servations (from 40–50 to 35–45◦, compared to 15–25◦ in
observations).

1 Introduction

Sea ice is a thin layer of solid material that insulates the
polar oceans from the cold atmosphere. When sea ice frac-
tures and a lead opens, large heat and moisture fluxes take
place between the ocean and the atmosphere, significantly
affecting the polar meteorology on short timescales and the
climate system on long timescales (Maykut, 1982; Ledley,
1988; Lüpkes et al., 2008; Li et al., 2020). The refreezing
of leads contributes to the sea ice mass balance (Wilchinsky
et al., 2015; Itkin et al., 2018); the associated brine rejection
drives the thermohaline ocean circulation in the Arctic and
vertical eddies in the ocean mixed layer (Kozo, 1983; Mat-
sumura and Hasumi, 2008). As such, the production of ac-
curate seasonal-to-decadal projections using coupled models
requires an accurate representation of sea ice deformations
along linear kinematic features (LKFs).

As sea ice models are moving to higher spatial resolu-
tions, they become increasingly capable of resolving LKFs
(Hutter et al., 2018, 2021). The representation of smaller-
scale fracture physics on the other hand yet remains a chal-
lenge, as most sea ice models are based on a continuum ap-
proach and rely on parameterizations to relate sea ice de-
formations to unresolved fractures. To this day, this is most
commonly done using plastic rheologies or modifications
thereof (Hibler, 1979; Hunke and Dukowicz, 1997), which
have benefited from improved numerical schemes and effi-
ciency to solve the highly non-linear momentum equation
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(Lemieux et al., 2008, 2014; Kimmritz et al., 2016; Koldunov
et al., 2019). These models use plastic flow rules to represent
the rate invariance of sea ice deformations at large spatio-
temporal scales, in which the sea ice can be considered duc-
tile, but neglect the influence of the smaller-scale physics as-
sociated with the brittle fractures. A number of other rheolo-
gies have been developed over the years to relate the sea ice
deformations to the smaller-scale fracture physics (Tremblay
and Mysak, 1997; Wilchinsky and Feltham, 2004; Schreyer
et al., 2006; Sulsky and Peterson, 2011; Rampal et al., 2016;
Dansereau et al., 2016; Damsgaard et al., 2018). This brings
a diversity of sea ice rheologies, with different physical and
numerical frameworks influencing the representation of sea
ice deformations at different scales.

The Sea Ice Rheology Experiment (SIREx; Bouchat et al.,
2021; Hutter et al., 2021), a coordinated effort between sev-
eral ice–ocean modelling groups, assessed the pan-Arctic sea
ice deformation statistics simulated by different sea ice rhe-
ologies. SIREx included the classical viscous–plastic (Hi-
bler, 1979) and elastic–viscous–plastic (Hunke and Dukow-
icz, 1997) sea ice rheologies as well as the elastic–anisotropic
(Wilchinsky and Feltham, 2004) and Maxwell elasto-brittle
(MEB; Dansereau et al., 2016) rheologies that include pa-
rameterizations of unresolved small-scale physics. All partic-
ipating sea ice models produced sea ice deformation charac-
teristics that have previously been associated with brittle be-
haviour, such as the scaling and spatio-temporal coupling of
sea ice deformations (Bouchat et al., 2021), when run at suf-
ficiently high resolution. The extent at which the inclusion of
smaller-scale fracture physics improves this brittle behaviour
thus remains an open question. Additionally, all rheologies
produce similar angles between conjugate pairs of LKFs, a
measure usually intimately related to the fracture mechan-
ics and shear strength of a material (Bardet, 1991; Wang,
2007), showing a peek probability at 90◦ while the observed
angles are in the range of 30–50◦ (Hutter et al., 2021). This
calls for the improvement of sea ice rheological models, such
as modifications of the mechanical strength parameters and
yield curve (Bouchat and Tremblay, 2017; Ringeisen et al.,
2019; Dansereau et al., 2019), the use of non-associated flow
rules (in the case of classical plastic models; Ringeisen et al.,
2021) or modifications of fine-scale fracture parameters (in
the case of the elastic anisotropic plastic (EAP) and MEB
rheologies).

In the Maxwell elasto-brittle (MEB) rheology (Dansereau
et al., 2016), the smaller-scale fracture physics is represented
by a damage parameterization that was derived for rock me-
chanics and seismic models (Amitrano et al., 1999; Amitrano
and Helmstetter, 2006) and adapted for the large-scale mod-
elling of sea ice (Girard et al., 2011; Bouillon and Rampal,
2015; Rampal et al., 2016). This parameterization aims at
representing the brittle character of sea ice by using a dam-
age parameter to represent the changes in material proper-
ties associated with fractures. This differs from parameteri-
zations used in viscous plastic models in that the large-scale

sea ice deformations are not governed by plastic or granu-
lar flow rules. Instead, the sea ice deformations in the MEB
model are preconditioned by the presence of damage, and the
development of LKFs is associated with the far-field stress
concentration response to local damage, leading to the prop-
agation of the damage (i.e. fractures) in space (Dansereau
et al., 2019). While still based on the continuum assumption,
it allows for brittle fractures to influence the sea ice dynamics
over shorter timescales. It is currently used in the large-scale
sea ice finite element model neXtSIM (Rampal et al., 2019)
and a finite difference version was recently implemented in
the McGill Sea Ice Model Version 5 (McGill SIM5) (Plante
et al., 2020).

With the MEB rheology being relatively new, the extent to
which the sea ice deformations are sensitive to the numeri-
cal and material strength parameters has not been thoroughly
tested yet. Nonetheless, the orientation of the simulated faults
in uniaxial compression experiments is known to be sensi-
tive to the angle of internal friction and to the Poisson ratio
(Dansereau et al., 2019). This sensitivity is attributed to the
influence of these parameters on the far-field stress concen-
tration response to local damage, which determines the direc-
tion of the damage propagation. This suggests that the sim-
ulated angle of fracture may be sensitive to the exact choice
of damage parameterization, but has not yet been tested. Ad-
ditionally, while the neXtSIM model performed well com-
pared to other SIREx models, its different numerics (e.g.
Lagrangian scheme with a triangular adaptive mesh) could
also be responsible for the different scaling and localization
statistics (Bouchat et al., 2021). The finite difference imple-
mentation of the MEB rheology in the McGill SIM5 model,
on the other hand, shows fast growth of residual errors at the
grid scale – in ideal experiments – that significantly affect the
post-fracture sea ice deformations (Plante et al., 2020). These
errors result from the stress correction scheme used in the
MEB rheology to define the growth of damage and to bring
super-critical stresses back to the yield curve. To our knowl-
edge, defining the damage in terms of the super-critical stress
correction is new and unique to the EB and MEB sea ice rhe-
ologies. For instance, many progressive damage models in-
stead represent the damage parameter as a discrete function
of the number of failure cycles (Amitrano and Helmstetter,
2006; Carrier et al., 2015). In continuum damage mechan-
ics, the damage parameter is derived instead from thermody-
namic laws (Murakami, 2012) to simulate material fatigue.
In the elastic–decohesive (ED) rheology, material damage is
not parameterized but a decohesive strain rate explicitly rep-
resents the material discontinuity associated with the ice frac-
ture and reduces the material strength of sea ice, based on the
orientation of the failure surface (Schreyer et al., 2006; Sul-
sky and Peterson, 2011).

In this paper, we present a generalization of the damage
parameterization in which a decohesive stress tensor is in-
troduced in the stress correction scheme such that the super-
critical stresses can be brought back to the yield curve fol-
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Table 1. Default model parameters.

Parameter Definition Value

1x Spatial resolution 1 km
1t Time step 0.2 s
Td Damage timescale 1 s
Y Young modulus 109 Nm−2

ν Poisson ratio 0.33
λ0 Viscous relaxation time 105 s
α Viscous transition parameter 3
φ Angle of internal friction 45◦

c0 Cohesion 10 N m−2

ρa Air density 1.3 kg m−3

ρi Sea ice density 9.0× 102 kgm−3

ρw Sea water density 1.026× 103 kgm−3

Cda Air drag coefficient 1.2× 10−3

Cdw Water drag coefficient 5.5× 10−3

lowing different stress correction paths in the stress invariant
space. The generalization is used to reduce the growth of the
residual errors associated with the stress correction and tested
in uniaxial loading experiments to examine the influence of
the stress correction on the simulated sea ice fracture and de-
formations. The sensitivity of the simulated fracture angles
to the decohesive stress tensor is also investigated to find the
stress correction paths that present the added benefit of bring-
ing the simulated fracture angles closer to observations.

This paper is organized as follows. In Sect. 2, we present
the MEB rheology and governing equations. The generalized
stress correction scheme is described in Sect. 3. The uniax-
ial loading experiment set-up is presented in Sect. 4 along
with the definition of diagnostics used to quantify the growth
of damage and of residual errors. Results are presented in
Sect. 5, with a focus on the material behaviour in uniaxial
compression experiments and its response to the changes in
the damage parameterization. In Sect. 6, we provide a dis-
cussion on the generalized damage parameterization perfor-
mance and other model sensitivities. Conclusions are sum-
marized in Sect. 7.

2 Model

2.1 Momentum and continuity equations

The simulations are run using the MEB model implemented
on an Eulerian, finite difference Arakawa C grid in the
McGill SIM5 (Tremblay and Mysak, 1997; Lemieux et al.,
2008; Plante et al., 2020). The vertically integrated 2D mo-
mentum equation for sea ice can be written as (ignoring
the sea surface tilt, the Coriolis term and the ice grounding
terms),

ρih
∂u

∂t
=∇ · σ + τ , (1)

where ρi is the ice density, h is the mean ice thickness, u
(= uî+vĵ ) is the ice velocity vector, σ is the vertically inte-
grated internal stress tensor and τ is the net external surface
stress from winds and ocean currents. This simplified for-
mulation is appropriate for short-term uniaxial loading ex-
periments but can result in small errors in ice velocity when
using a realistic model domain and forcing (Turnbull et al.,
2017). Following Plante et al. (2020), we define the uniaxial
loading by a surface wind stress τa and prescribe an ocean at
rest below the ice:

τ ≈ τ a− ρwCdw|u|u, (2)

where ρw is the water density, Cdw is the water drag coeffi-
cient and u is the sea ice velocity (see values in Table 1).

The prognostic equations for the mean ice thickness h
(volume per grid cell area) and concentration A are written
as

∂h

∂t
+∇ · (hu)= 0, (3)

∂A

∂t
+∇ · (Au)= 0, (4)

where the thermodynamic source and sink terms are ignored.

2.2 Maxwell elasto-brittle rheology

The MEB model differs from classical sea ice models in that
it represents the brittle character of sea ice using a dam-
age parameter to represent the effect of local fracture on the
large-scale sea ice material properties. The sea ice deforma-
tions in the MEB model thus occur post-fracture, rather than
simultaneously as in most sea ice models using granular or
plastic flow laws, and the formation of LKFs follows from
the propagation of damage in space over short timescales
during the fracture process.

In the MEB rheology, the ice behaves as a visco-elastic
material with a fast elastic response to forcing and a slower
viscous response that acts over a longer timescale. The gov-
erning equation for this visco-elastic material can be written
as (Dansereau et al., 2016, 2017; Plante et al., 2020)

∂σ

∂t
+

1
λ
σ = EC : ε̇, (5)

where E is the elastic stiffness defined as the vertically inte-
grated Young modulus of sea ice, λ is the viscous relaxation
timescale, C is the (fourth-order) elastic tensor, : denotes the
inner double tensor product and ε̇ is the (second-order) strain
rate tensor. The tensors C and ε̇ on the right-hand side of
Eq. (5) can be written in matrix form by representing the
three independent components of the stress and strain ten-
sors in a vector (see Rice, 2010) and the nine independent
components of the elastic modulus tensor in a 3× 3 matrix
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as

C=
1

1− ν2

1 ν 0
ν 1 0
0 0 1− ν

 , (6)

ε̇xxε̇yy
ε̇xy

=


∂u
∂x
∂v
∂y

1
2

(
∂u
∂y
+

∂v
∂x

)
 , (7)

where ν (= 0.33) is the Poisson ratio, which defines the rela-
tive amount of deformation on the plane parallel to the load-
ing.

The relative importance of the elastic and viscous compo-
nents (first and second terms on the left-hand side in Eq. 5)
are determined by the magnitude of the elastic modulus E
and viscous relaxation timescale λ. E and λ are functions of
the ice thickness, concentration and damage, such that the
elastic term dominates when the ice is undamaged while the
viscous term dominates when the ice is heavily fractured.
The elastic modulus E and viscous relaxation timescale λ
are written as

E = Yhe−a(1−A)(1− d), (8)

λ= λ0(1− d)α−1, (9)

where Y (= 1 GPa) is the Young modulus of undeformed
sea ice, d is the damage parameter (0< d < 1), a (= 20)
is the standard ice concentration parameter (Hibler, 1979;
Rampal et al., 2016), λ0 (= 105 s, ≈ 1 d) is the viscous re-
laxation timescale for undamaged sea ice and α is a pa-
rameter defining the post-fracture transition to the viscous
regime. This damage-based transition to post-fracture viscos-
ity represents a simplification of the observed plasticity (rate
independence) of sea ice deformations (Coon et al., 1974;
Tuhkuri and Lensu, 2002).

2.3 Yield criterion

Damage (or fracture) occurs when the internal stress state
exceeds the Mohr–Coulomb failure criterion,

F(σ)= σII+µσI− c < 0, (10)

where

σI =
σxx + σyy

2
, (11)

σII =

√(
σxx − σyy

2

)2

+ σ 2
xy, (12)

where σI is the isotropic normal stress invariant (compres-
sion defined as negative), σII is the maximum shear stress
invariant, (σxx ,σyy ,σxy) are the components of the stress ten-
sor, µ (= sinφ) is the coefficient of internal friction of sea
ice, φ (= 45◦) is the angle of internal friction and c is the
vertically integrated cohesion, defined as

c = c0he
−a(1−A), (13)

where c0 (= 10 kNm−2) is the cohesion of sea ice derived
from observations (Sodhi, 1977; Tremblay and Hakakian,
2006; Plante et al., 2020) or laboratory experiments (Timco
and Weeks, 2010). No compressive or tensile strength cut-off
is used in this analysis. The reader is referred to Table 1 for
a list of default model parameters.

2.4 Damage parameterization

The prognostic equation for the damage parameter d in the
standard MEB rheology is parameterized using a relaxation
term with timescale Td (= 1 s) as

∂d

∂t
=
(1−9)(1− d)

Td
, (14)

where

9 =
σc

σ ′
=min

(
1,

c

σ ′II+µσ
′
I

)
, (15)

is a damage factor (0<9 < 1), σc is the critical stress lying
on the yield curve and σ ′ is the uncorrected stress state ly-
ing outside of the yield curve. Thermodynamic healing and
the advection of damage are neglected as we are focusing on
the ice fracture, which occurs at a timescale (seconds) much
shorter than the healing and advection timescales (hours).
Adding these terms does not change the results and conclu-
sions presented in this paper but increases the localization
of the ice fractures with higher damage values that in turn
increases ridging. These terms should be included in longer-
term integration of the MEB model.

When the ice fractures, the damage factor 9 is used to
scale the super-critical stresses back towards the yield curve.
The prognostic equation for the temporal evolution of the
super-critical stress tensor σ ′ is written as a relaxation equa-
tion of the same form as in Eq. (14):

∂σ ′

∂t
=−

(1−9)σ ′

Td
. (16)

This stress correction scheme corresponds to scaling all
the individual stress components by the factor 9, such that
the stress state is corrected back onto the yield curve in the
stress invariant space by following a line passing through
the origin. This results in a dependency of the stress cor-
rection magnitude and of the damage on the super-critical
stress state; i.e., the stress correction path becomes increas-
ingly parallel to the yield curve for increasing compressive
super-critical stresses, which also increases the numerical er-
rors (Plante et al., 2020). We hereafter refer to this scheme as
the “standard stress correction”.

3 Generalized stress correction

We propose a generalized damage parameterization where
the super-critical stresses are corrected back to the yield
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Figure 1. (a) Mohr–Coulomb yield criterion (±σII+µσI = c, blue lines) in stress invariant space. σ ′ is the uncorrected super-critical stress
state, σ c is the critical stress state for a given correction path angle γ (red dashed line) and c is the cohesion. The decohesive stress tensor
σD is defined as the difference between σ c and the scaled super-critical stress (9σ ′). (b) Proposed correction paths for various super-critical
stresses σ ′ that minimize the error amplification ratio (R), which consist of the standard parameterization for large tensile stresses (orange)
and a correction path with γ = 45◦ for small tensile and compressive stresses (purple). The green line indicates the transition between the
two formulations.

curve along a line oriented at any angle γ from the y axis
in the stress invariant space (see Fig. 1). This generalization
is developed with the goal of reducing the growth rate of the
numerical errors in the MEB model by removing the depen-
dency of the stress correction path on the super-critical stress
state, while keeping the changes in the damage parameteri-
zation to a minimum so that it can be easily added to other
MEB model implementations (and other damage-based mod-
els). In the MEB model, the exact path along which the super-
critical stresses is returned to the yield curve is not known a
priori, as the stress state never exceeds the yield criterion in
reality. The proposed generalization allows us to investigate
the influence of the super-critical stress correction path an-
gle on the simulated fractures and deformations. Other phys-
ically meaningful modifications of the stress correction that
are based on thermodynamics principles are left for future
work (see for instance Murakami, 2012).

We define the damage factor in the generalized damage
parameterization in terms of the shear stress invariant only
as

9 =
σIIc

σ ′II
, (17)

where σIIc is the critical shear stress invariant. The equation
defining the stress correction path with angle γ (see Fig. 1)
can be written as

σII = (1/ tan(γ ))σI+B, (18)

where B (= σ ′II− 1/ tan(γ )σ ′I ) is defined from the super-
critical stress state (σ ′). The critical shear stress invariant
(σIIc) is then defined as the intersection point between the

yield curve (Eq. 10) and the stress correction path (Eq. 18),

σIIc =
c+µ tan(γ )σ ′II−µσ

′
I

1+µ tan(γ )
. (19)

The damage factor can then be written in terms of the
super-critical stress state invariants (σ ′I , σ ′II), the correction
path angle γ and the coefficient of internal friction µ as

9 =
c+µ tan(γ )σ ′II−µσ

′
I

(1+µ tan(γ ))σ ′II
. (20)

In this manner, the correction of super-critical stresses can
follow any path in the stress invariant space provided that
the damage increases when ice fractures (9 < 1 or γ < 90◦).
This formulation can also be used with a yield curve with
zero isotropic tensile strength (i.e. c= 0 kNm−1), as opposed
to the standard parameterization in which case any super-
critical stress state is returned to the origin (see Eq. 15 when
c= 0 Nm−1).

Note that using a stress correction path other than the stan-
dard path to the origin means that the corrected normal stress
differs from the scaled super-critical stress 9σ ′I . We define
this difference as the decohesive stress tensor (see Fig. 1),
which is added to the damage parameterization to keep the
corrected stress state on a given stress correction path. This
effectively changes the stress correction while keeping the
scalar definition of the damage parameter. The stress correc-
tion equation (Eq. 16) in the generalized damage parameter-
ization then becomes

∂σ ′

∂t
=−

(1−9)σ ′+ σD

Td
, (21)
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and the invariants of the decohesive stress tensor (σID and
σIID) are now defined as

σID = σIc−9σ
′
I =

c−9(σ ′II−µσ
′
I )

µ
, (22)

σIID = 0, (by definition). (23)

When tanγ = σ ′I/σ
′
II and σID = σIID = 0, we obtain the stan-

dard damage parameterization of Dansereau et al. (2016).
Note that the decohesive stress tensor used in this param-

eterization has a similar role as the decohesive strain rates
used in the elastic–decohesive model (Schreyer et al., 2006).
In Schreyer et al. (2006), the decohesive strain represents the
discontinuity in sea ice displacement associated with a frac-
ture and relaxes the effective stress rates. It is derived from
a decohesion function that depends on the mode of failure.
Here, we do not define the strain discontinuity associated
with the fractures but use the decohesive stress tensor σD to
prescribe the orientation at which the stress state is relaxed
back onto the yield curve. This only indirectly influences the
local strain rate via the constitutive equation.

3.1 Projected error

The error δ9 on the damage factor 9(σ ′I ,σ
′
II) can be written

as (Plante et al., 2020)

δ9 =

√(
∂9

∂σ ′I

)2

δσ ′I
2
+

(
∂9

∂σ ′II

)2

δσ ′II
2
, (24)

where δσ ′I and δσ ′II are the errors of the calculated stress in-
variants. Using Eq. (21) and re-writing δσ ′I and δσ ′II in terms
of the relative error ε (i.e., δσ ′I = εσ

′
I , δσ ′II = εσ

′
II), we obtain

δ9=

√
µ2

(1+µ tan(γ ))2σ ′2II
ε2σ

′2
I +

(c−µσ ′I )
2

(1+µ tan(γ ))2σ ′4II
ε2σ

′2
II , (25)

=9ε

√
µ2σ

′2
I + (c−µσ

′
I )

2

(c+µ tan(γ )σ ′II−µσ
′
I )

2 , (26)

=9εR, (27)

where R is the error amplification ratio.
Given that the uncorrected stress is close to the yield cri-

terion (i.e. σ ′II+µσ
′
I − c ∼ 0), the error amplification ratio R

tends to infinity for

tan(γ )=−1/µ, (28)

which corresponds to a path that runs parallel to the yield
curve. This result is consistent with the instabilities in the
standard stress correction scheme during ridging reported in
Plante et al. (2020), given that a line passing through the ori-
gin is nearly parallel to the Mohr–Coulomb yield curve for
large compressive stresses. In contrast, the path that maxi-
mizes the denominator (smallest error growth) has γ = 90◦.

Figure 2. Idealized domain for uniaxial compression simulations,
with a solid boundary (Dirichlet conditions, u= v = 0) at the bot-
tom and open boundaries (Neumann conditions, ∂u/∂n= 0) on the
sides and top. The initial conditions are h= 1 m and A= 100 % in a
region of 250 km× 60 km in the center of the domain (white), with
two 20 km wide bands of open water on each side (blue). The ori-
entation of the LKFs (θ ) is defined as half of the angle between
conjugate pairs of fracture lines (orange lines).

This path, however, corresponds to 9 = 1 and does not cre-
ate damage. The possible stress correction path angles γ thus
lie in the range arctan(−1/µ) < θ < 90◦.

Note that the error amplification ratio R is small for σ ′I <
0 but becomes infinitely large at the yield curve tip when
σ ′II approaches 0 (see Eq. 25). This behaviour is opposite to
that of the standard stress correction scheme, which has small
R values in tension and large values in compression (Plante
et al., 2020). For this reason, we use both schemes (i.e. Eq. 20
in compression and Eq. 15 in tension; see Fig. 1b) and set
the transition between the two schemes at the points where
their paths are the same (i.e., at σ ′I/σ

′
II = tanγ , green line in

Fig. 1b). The damage factor is then defined as

9 =


c+µγσ ′II−µσ

′
I

(1+µγ )σ ′II
, if σ ′I < σ

′
II tanγ,

c
σ ′II+µσ

′
I
, otherwise.

(29)

4 Methods

4.1 Experiment setup

We test the numerical and material behaviour of the MEB
model and the generalized damage parameterization in uni-
axial compression experiments. Uniaxial experiments are de-
signed to present conditions similar to those in laboratory ex-
periments and have been used with MEB (Dansereau et al.,
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2016), VP (Ringeisen et al., 2019) and discrete element
(Herman, 2016) models to assess ice fracture characteris-
tics, LKF angles and intermittency. In this analysis, we use
the experiment designed by Ringeisen et al. (2019) to test
the sensitivity of the residual error growth, sea ice defor-
mation and LKF orientation on the correction path angle γ
in the generalized stress correction scheme. The model do-
main is 250 km× 100 km with 1 km spatial resolution. The
initial conditions are 1 m ice thickness and 100 % concen-
tration in the middle 60 km of the domain with two narrow
bands of open water (20 km width) on each side (Fig. 2). A
solid-wall Dirichlet boundary condition (u= v = 0) is used
at the bottom, and open-water Neumann boundary condi-
tions (∂u/∂n= 0) are used on the top and sides. In all ex-
periments, the forcing is specified by a downward surface
stress τ a (see Eq. 2) over the entire domain. This differs
from Ringeisen et al. (2019) and Dansereau et al. (2016)
where the upper boundary is represented by a moving wall
acting as external forcing. The magnitude of τ a is ramped
up from 0 to 0.60 N m2 (corresponding to ∼ 20 ms−1 winds
or ∼ 0.33 ms−1 surface currents) in a 2 h period and then re-
mains constant.

Note that all simulations are performed without including
heterogeneity in order to clearly identify the model perfor-
mance (both numerics and physics), unless specified other-
wise. This allows us to quantify the growth of residual nu-
merical errors in a problem with full symmetry and their im-
pact on the simulated LKF orientation and post-fracture sea
ice deformations.

4.2 Numerical approaches

The MEB model is implemented in the McGill Sea Ice Model
Version 5 (McGill SIM5) using an Eulerian, second-order
finite difference numerical scheme (Tremblay and Mysak,
1997; Lemieux et al., 2014; Plante et al., 2020). The equa-
tions are discretized in space using an Arakawa C grid and in
time using a semi-implicit backward Euler scheme (Plante
et al., 2020). A solution to the non-linear momentum and
constitutive equations (Eqs. 1 and 5) is found using a Pi-
card solver. The Picard solver uses an outer loop in which
the equations are linearized and solved at each iteration using
a preconditioned flexible general minimum residual method
(FGMRES, Lemieux et al., 2008). The non-linear terms are
then updated and the linear problem solved again until the
residual error εres, defined as the L2 norm of the solution
residual vector, is lower than 10−8 Nm2 (Lemieux et al.,
2014, for details). The prognostic equations for the tracers
(Eqs. 3, 4 and 14) are updated within the outer loop iteration
using an implicit–explicit (IMEX) approach (Lemieux et al.,
2014). The reader is referred to Plante et al. (2020) for more
details.

4.3 Diagnostics

4.3.1 Field asymmetry

We monitor the influence of the residual errors on the model
solution in the simulations using a normalized domain-
integrated asymmetry factor (εasym) in the maximum shear
stress invariant field (σII). This diagnostic measures the
asymmetry in the model solution about the y axis (the ver-
tical center line) and represents a measure of the numerical
accuracy given that the model equations, initial conditions
and boundary conditions are all fully symmetric. The asym-
metry factor is defined as

εasym =

∑b
i=a

∑ny
j=1|(σII)i,j − (σII)nx−i,j |∑b
i=a

∑ny
j=1|(σII)i,j

, (30)

where i and j are the x–y grid indices, respectively; nx and
ny are the number of grid cells in the x and y directions; and
a and b are the indices of the first and last ice-covered grid
cells on the x axis.

Note that the field asymmetry measures the degradation
of the originally fully symmetric problem as numerical er-
rors are integrated and includes the physical response to the
integrated errors. This is in contrast with the residual error
amplification ratio R, which is a measure of the local ampli-
fication of the residual error by the damage parameterization
at a given time step. The maximum R values in the domain at
each time step (Rmax) are also shown below to visualize the
contribution of the damage parameterization to the growth of
the residual errors.

4.3.2 Damage activity

We quantify the development of fractures in the experiments
using the damage activity D, defined as the total damage in-
tegrated over the original ice domain in a given time interval
1 (= 60 s):

D =

b∑
i=a

ny∑
j=1

d
t+1/2
i,j − d

t−1/2
i,j

1
. (31)

This parameter is analogous to the damage rate in
Dansereau et al. (2016, 2017) and is used to identify the time
at which the ice fractures. Note that this definition of damage
activity (or damage rate) emphasizes activity in undamaged
ice (i.e. new fractures) and is not sensitive to activity in al-
ready heavily damaged ice.

4.3.3 Fracture angle

The angles between conjugate LKFs in the Arctic are of-
ten discussed in relation with the orientation of the smaller-
scale brittle fractures observed in the laboratory under uni-
axial compression loads (i.e., Marko and Thomson, 1977;
Schulson, 2004). The orientation of such compressive-shear
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fractures is often related to brittle fracture theories (e.g. to the
development of wing cracks; Schulson, 2004; Wachter et al.,
2009) and in terms of granular properties such as Coulombic
friction or dilatancy (Erlingsson, 1988; Tremblay and Mysak,
1997; Overland et al., 1998).

Here, we define the fracture angle θ as the angle between
the y axis and the fracture lines (see Fig. 2), and we compare
the simulated fracture angles in our experiments to two theo-
ries that are often used to describe the orientation of frac-
tures: the Mohr–Coulomb fracture theory and the Roscoe
theory of dilatancy. Widely used in geoscience and engi-
neering, the Mohr–Coulomb theory (Coulomb, 1773; Mohr,
1900) relates the orientation of fractures to the angle of inter-
nal friction, as

θ =
π

4
−
φ

2
. (32)

In the Roscoe theory (Roscoe, 1970), the fracture angle is
defined instead in terms of the angle of dilatancy (δ) of the
granular material:

θ =
π

4
−
δ

2
. (33)

If δ = φ, the two theories give the same fracture angle θ . In
general, the fracture angle in geomaterial and soils falls be-
tween values predicted by the Mohr–Coulomb and Roscoe
theories with zero dilatancy (δ = 0) (Arthur et al., 1977;
Bardet, 1991).

In our experiment, the fracture angle is calculated graph-
ically for each individual simulation. We define the uncer-
tainty as ± tan(W/L)∼± 2◦, where W is the fracture width
(typically a few grid cells wide, or ∼ 2–5 km) and L is the
fracture length (∼ 45 km). This error increases to ± 6◦ for
the few cases where the fracture is not as localized.

5 Results

5.1 Control simulation: standard damage
parameterization

In the control simulation, a pair of conjugate LKFs first ap-
pear when the surface forcing τa= 0.29 Nm2, along with
secondary lines that are the results of interactions between
the ice floe and the solid boundary that extends across the
full width of the domain at the base (Fig. 3). All LKFs are
oriented at 39◦ from the y axis, smaller than reported by
Dansereau et al. (2019) using a finite element implementa-
tion of the same model (θ =∼ 43◦) and higher than seen in
observations (θ =∼ 15–25◦; Marko and Thomson, 1977; Hi-
bler III and Schulson, 2000; Schulson, 2004; Hutter et al.,
2021). This orientation also falls in between that predicted by
the Mohr–Coulomb (θ = 22.5◦) and Roscoe theories (θ = 4◦

when δ = 0), in accord with the common observation that

Figure 3. (a) Damage (unitless), (b) ice thickness (m, colour) and
velocity vectors (ms−1), (c) mean normal strain rate invariant (ε̇I,
d−1), and (d) maximum shear strain rate invariant (ε̇II, d−1), after
2 h of integration in the control simulation using the standard stress
correction scheme.

both the angle of internal friction and the dilatancy (δ) are im-
portant in defining the fault orientation (Arthur et al., 1977;
Vardoulakis, 1980; Balendran and Nemat-Nasser, 1993).

The deformation along the fully developed LKFs in our
experiment is mostly shear and convergent (i.e. ridging,
Fig. 3c and d). This contrasts with the early stage of the
LKF development during which the material response to the
new damage is elastic and shows mostly divergent deforma-
tions (see the positive strain rates in Fig. 4b). This elastic re-
sponse to damage influences the propagation of the fractures
in space at short timescales (seconds) governed by the elas-
tic wave speed. The convergent deformations only develop
over a longer timescale as the sea ice deformation continues
post-fracture in the damaged ice, and the deformation transi-
tions from the elastic- to the viscous-dominated regime. This
transition is clearly seen in the development of a linear de-
pendence between stress and strain rate invariants (scaled by
(1− d)3), where the slope corresponds to the viscosity (see
the transition from Fig. 4b and d–f). The simulation reaches
steady state with deformations that are fully viscous and lo-
calized in the heaviest damage areas (Fig. 4e and f). This
causes a predominance of shear and convergence deforma-
tion along the LKFs throughout the simulation.
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Figure 4. Scatter plots of local stress invariants (σI vs. σII,
in kNm−1, left column) and of the normal stresses and scaled strain
rate invariants (σI vs. (1−d)3ε̇II, right column) in heavily damaged
(d > 0.9) grid cells, at t = 57 min (during the fracture development,
top row), t = 60 min (a few minutes after the fracture, middle row)
and t = 90 min (∼ 30 min after the fracture, bottom row). Colour in-
dicates the local damage. The strain rates are normalized to account
for the non-linear dependency of the viscosity η on the damage pa-
rameter. The gradual alignment of the points in the σI vs. (1−d)3ε̇II
diagram indicates the development of a linear–viscous stress–strain
relationship over time.

The asymmetries in the solution are very small at the be-
ginning of the simulation (t ≤ 57 min) and do not grow un-
til fractures occur (Fig. 5a and b). As the LKFs develop,
small errors grow rapidly, with εasym increasing in large steps
crossing multiple orders of magnitude. Note that the model
is always iterated to convergence with a strict residual error
tolerance (εres= 10−8 Nm2). The steep growth in εasym is as-
sociated with large (> 1) values of the error amplification ra-
tioR (see Eq. 27), which reach∼ 20 in the control simulation
(Fig. 5b). Since εasym is a domain-integrated quantity, it in-
creases in time following large local error growths R. This
illustrates the long-range and long-term influence of residual
errors, which act on the development of the future fractures.
Note that εasym saturates when the σII field is no longer sym-

Figure 5. (a) Temporal evolution of the damage activity D; (b) the
solution residual εres, asymmetry factor εasym and convergence
criterion on εres; and (c) the maximum error amplification ra-
tio Rmax, in the control simulation using the standard stress cor-
rection scheme.

metric and becomes insensitive to additional error growth.
We assess the precision of the solution using the maximum
error amplification ratio Rmax, which indicates the level of
amplification of residual errors in the simulations, at times
by more than 1 order of magnitude locally (Rmax> 10).

5.2 Generalized stress correction

The generalized damage parameterization reduces the
growth of residual errors, with decreasing asymmetry factor
and maximum error amplification ratio Rmax for increasing
path angle γ (Fig. 6). In particular, using γ > 0◦ stabilizes
the damage parameterization and eliminates the large spikes
in Rmax seen in the control simulation or when using γ < 0◦,
where the amplification ratio R increases by up to 2 orders
of magnitude locally (Fig. 6b). The increased stability results
in an overall smaller and smoother growth of the asymme-
try factor εasym (Fig. 6a), allowing for longer-term symmetri-
cal simulations that include post-fracture deformations. Note
that despite this improvement, the asymmetry factor εasym
still grows over time as the simulations remain sensitive to
the residual errors in heavily damaged ice, due to the non-
linear relationship between the sea ice deformation and the
damage. This effect is less important when using large cor-
rection path angles (γ > 45◦) due to a slower LKF develop-
ment, as discussed below.
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Figure 6. (a) Time evolution of the asymmetry factor εasym and
(b) time series of the maximum error amplification ratio Rmax, in a
sensitivity experiment on the stress correction path angle γ , using
the generalized stress correction scheme.

Figure 7. Sensitivity of the LKF orientation θ on the stress correc-
tion path angle γ (degrees) in uniaxial loading experiments using
the generalized stress correction schemes. The theoretical LKF an-
gles from the Mohr–Coulomb and Roscoe theories are indicated by
dashed–dotted and dashed lines, respectively, for reference.

Results show that the LKF orientation is sensitive to the
decohesive stress tensor, with a decreasing angle θ for in-
creasing stress correction path angle γ (Fig. 7). This finding
is in line with results from Dansereau et al. (2019), where
the orientation of faults was related to the far-field stress as-
sociated with the collective damage. In the MEB model, the
far-field stresses directly depend on the corrected stress state,
which includes σD in the generalized damage parameteriza-
tion. Increasing the correction path angle γ reduces the LKF
angles, in better agreement with observations.

Figure 8. Time evolution of the mean normal (a) and maximum
shear (b) strain rate invariants integrated over the ice cover, in sim-
ulations using the generalized damage parameterization with a dif-
ferent stress correction path γ .

The correction path angle γ influences the time integra-
tion required to reach the same damage and deformation rates
(Fig. 8) along the LKFs. This is due to the fact that increas-
ing the angle γ reduces the amount of damage for the same
super-critical stress state because the stress correction path
approaches the horizontal and9 is closer to 1. The simulated
ice deformations are otherwise mostly insensitive to the cor-
rection path angle; i.e. all simulations have divergence during
the initial elastic response when the ice fractures are followed
by a transition to viscous deformations where shear and con-
vergence deformations are predominant (Fig. 8a). In contrast
with plastic flow (Ringeisen et al., 2019, 2021) or typical
granular material behaviour (Balendran and Nemat-Nasser,
1993; Tremblay and Mysak, 1997), divergent post-fracture
deformation is only present when tensile stresses develop,
e.g. at the intersection between conjugate LKFs. This be-
haviour stems from the use of post-fracture viscosity to rep-
resent the large-scale sea ice deformations and differs from
classical VP models, which represent the observed plastic-
ity of sea ice deformations at the macro-scale (Coon et al.,
1974; Tuhkuri and Lensu, 2002) but do not represent the brit-
tle component of the fractures or discontinuities in material
properties.

5.3 Sensitivity to φ and ν

Repeating the experiment using different angles of internal
friction (φ) shows that the LKF orientations decrease with
increasing φ. The simulated angles θ fall within the enve-
lope from the Mohr–Coulomb and Roscoe theories, except
for small angles of internal friction (φ < 20◦), a value that is
rarely observed for granular materials (Fig. 9). Note that the
sensitivity of the LKF orientation to the coefficient of internal
friction also disappears for small angles of internal friction
(φ < 20◦) when using a large correction path angle (γ = 60◦
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Figure 9. Sensitivity of the LKF orientation (θ , degrees) on the an-
gle of internal friction (φ, degrees) in uniaxial loading experiments
using different correction path angles (γ ). The correction path angle
γ = a tan(µ) implies that the stress correction path is perpendicular
to the yield curve. The theoretical LKF orientation from the Mohr–
Coulomb and Roscoe theories is indicated by dashed–dotted and
dashed lines, respectively, for reference.

Figure 10. Time evolution of (a) the mean normal strain rate invari-
ant integrated over the ice cover (d−1) and (b) the maximum shear
strain rate invariant integrated over the ice cover (d−1), when using
different angles of internal friction φ, with a stress correction path
normal to the yield curve (γ = arctan(µ)).

in Fig. 7). When both the stress correction path and the yield
criterion approach horizontal, fracture yields large stress cor-
rections but small damage increases (i.e., 9 = 1), such that
the LKF orientation is mostly governed by the stress correc-
tion and weakly sensitive to other model parameters. Based
on these results, we suggest the use of a correction path that is
normal to the yield criterion (γ = arctanµ; see black points
in Fig. 9).

Decreasing the angle of internal friction reduces the shear
strength of sea ice for a given normal stress, such that the
fracture develops earlier in the simulation (i.e. under smaller
surface forcing, Fig. 10). It also reduces the divergence as-
sociated with the elastic response when ice fractures and in-

Figure 11. Sensitivity of the LKF orientation (θ , degrees) to the
Poisson ratio (ν, unitless), in uniaxial loading experiments using
different correction path angles (γ ). The theoretical orientations
from the Mohr–Coulomb and Roscoe theories are indicated by
dashed–dotted and dashed lines, respectively, for reference.

creases the convergence in the post-fracture viscous regime.
This result is typical for granular material, with smaller fault
orientations (larger angles of internal friction) associated
with larger angles of dilatancy (e.g. the sawtooth model of
Bolton, 1986).

The orientation of LKFs is not sensitive to the Poisson
ratio when the generalized stress correction scheme is used
with a fixed stress correction path angle γ (Fig. 11). This is in
contrast with simulations using the standard stress correction
scheme, where the fracture angle decreases with increasing ν
(see blue points in Fig. 11 and Dansereau et al., 2019). Note
that the Poisson ratio also affects the amount of shear and
normal stress concentration associated with a local disconti-
nuity in material properties (Karimi and Barrat, 2018). The
fact that the LKF orientation is not affected by the changes in
Poisson ratio thus indicates that the stress concentration and
propagation of the fracture in space are mainly controlled by
the stress correction rather than by the relaxation of mate-
rial properties with damage. We speculate that the sensitivity
of the LKF orientation to the Poisson ratio in the standard
stress correction scheme stems from the dependency of the
stress correction path angle to the super-critical stress state
(i.e. γ = tan−1(σ ′I/σ

′
II)).

6 Discussion

The results presented above show that the generalized stress
correction scheme reduces the growth of the residual error as-
sociated with the damage parameterization. Despite the im-
provement, some asymmetries are still present in the simula-
tions (εasym< 10−2). This is due to the memory in the dam-
age parameter (i.e. an integrated quantity) where residual er-
rors accumulate and influence the temporal evolution of the
solution. In regions of heavily damaged ice, the integrated
errors in the damage parameter result in large errors in the
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Figure 12. Time evolution of the mean normal strain rate invariant integrated over the ice cover (d−1) using a stress correction path normal
to the yield curve (γ = arctan(µ)) with α = 3 (blue), α = 1 and a longer viscous dissipation timescale (λ= 108 s).

stress state due to the cubic dependence of the Maxwell vis-
cosity η on d (Eq. 9). Future work includes replacing this
formulation with a function that decreases the sensitivity of
the Maxwell viscosity η for small changes in d around d = 1.

Overall, the use of a decohesive stress tensor yields smaller
simulated LKF angles, without significantly impacting the
material deformations. Using a large correction path angle γ
(> 45◦), however, significantly slows the damage production
and reduces the simulated sensitivity of the LKF orientation
to the mechanical strength parameters. Based on these re-
sults, we suggest using a correction path that is normal to
the yield criterion (γ = arctanµ). This value brings the sim-
ulated LKF angles closer to observations (see black points
in Fig. 9) and reduces the amplification of residual errors,
while correcting the super-critical stresses towards the clos-
est point on the yield curve. Our implementation thus rep-
resents a generalization of the damage parameterization that
can be easily implemented numerically and used to improve
the performance of MEB models. Whether these improve-
ments are also seen in the context of pan-Arctic simulations
remains to be tested and is the subject of future work.

The simulation results show that in the MEB model, the
damage develops at short timescales during which the elas-
tic component of the rheology is important, while most of
the deformations occur post-fracture over a longer timescale
in the heavily damaged ice. This is in contrast with plastic
models, in which a flow rule simultaneously dictates both the
LKF development and the relative amount of shear and nor-
mal deformations occurring along the LKFs. The decoupling
between the development of damage and the post-fracture
deformations in the MEB model explains that the type of
deformations in the LKFs remains similar (uniaxial conver-
gence, i.e. ridging, contrary to observation; Stern et al.,
1995) despite the use of a different stress correction path γ .
This behaviour stems from the dominance of the viscous
regime post-fracture: lead opening cannot occur when the
stress state is compressive and remains limited to locations
where tensile stresses are present, such as at the intersection
of the LKFs. This is contrary to granular theories, in which
the distribution of contact normals determines the amount
of ridging or lead opening (i.e. dilatancy) that is occurring

when forced in uniaxial compression (Balendran and Nemat-
Nasser, 1993). This indicates that the decohesive stress ten-
sor cannot be used to influence the deformations associated
with the fracture of ice in the MEB rheology unless other pa-
rameterizations, such as including a decohesive strain tensor
during the fractures (e.g., see Schreyer et al., 2006; Sulsky
and Peterson, 2011), are added to the rheology.

The viscous dissipation timescale (λ) in our model is set
based on observations (∼ 105; Tabata, 1955; Hata and Trem-
blay, 2015) and is 1 order of magnitude smaller than in other
MEB implementations (Dansereau et al., 2016; Rampal et al.,
2019). The results from the model are robust with respect
to the exact value of λ for a range 105–107, with the in-
creased λ being compensated for by larger damage values
along the LKFs. For even larger λ values, divergent defor-
mations persist longer in the simulation, and the transition
from an elastic- to viscous-dominated regime occurs later
in the simulation (see Fig. 12), decreasing the overall con-
vergence along the LKFs. If the transition to the viscous
regime is removed (e.g. by setting α = 1), divergence domi-
nates throughout the simulations and reaches large values as
the leads open. The elastic waves, however, are no longer dis-
sipated in the LKFs, leading to large and noisy deformation
fields (divergence or convergence). These findings call for a
different viscosity dependence on damage, leading to both
dissipation of elastic waves and a more realistic post-fracture
deformation field.

Note that the results presented above were presented us-
ing a single space and time resolution and ice sample aspect
ratio and without using heterogeneity. While the exact local-
ization of the LKFs in the simulations is affected by these
parameters, the overall physics and sensitivity to the damage
parameterization are robust to these changes. For instance,
repeating the experiment by doubling the space resolution or
the width of the ice sample does not change the LKF posi-
tion and orientation (not shown). On the other hand, adding
heterogeneity changes the LKF development by forming ir-
regular sliding planes instead of the linear diamond shapes
(Fig. 13a), naturally creating contact points where ridging
occurs with lead opening elsewhere along the LKFs. This ef-
fectively creates a form of dilatancy typical of granular mate-
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Figure 13. (a) Damage (unitless), (b) ice thickness (m, colour) and
velocity vectors (ms−1), (c) mean normal strain rate invariant (ε̇I,
d−1), and (d) maximum shear strain rate invariant (ε̇II, d−1) after
2 h of integration in using the generalized stress correction scheme
with γ = 45◦ and including heterogeneity in the initial material co-
hesion field. The heterogeneous cohesion (c0) field is defined lo-
cally at each grid cell by picking a random number between 7.0 and
13.0 kNm−2. The remaining initial conditions are the same as all
other simulations.

rials (see alternating divergence and convergence in Fig. 13c)
and leads to the formation of many secondary fractures, but
the overall LKF orientations and their sensitivities otherwise
remain the same as presented in this paper. Heterogeneity
was also documented to be responsible for the localization
and intermittency of the sea ice fractures, properties that are
not investigated in our paper. These properties and their sen-
sitivity to the decohesive stress tensor and other physical or
numerical parameters require more investigation and are the
subject of future work.

7 Conclusion

We propose a generalized stress correction scheme for the
damage parameterization to reduce the growth of residual er-
rors in the MEB sea ice model documented in Plante et al.

(2020). To this end, we scale the damage factor 9 based on
the super-critical maximum shear stress invariant (σ ′II) only,
together with a decohesive stress tensor defining the path
from the super-critical stress state to the yield curve. With
this added flexibility to the choice of stress correction path,
we determine the influence of the super-critical stress cor-
rection on the simulated sea ice deformations and LKF ori-
entation in the context of uniaxial compression experiments
similar to those presented in Ringeisen et al. (2019). This
knowledge will serve as a basis for the development of other
components to the damage parameterization to improve the
simulated sea ice deformations.

Our results show that in the MEB rheology, most of the de-
formations occur post-fracture in heavily damaged ice, where
the viscous term is dominant. This causes a predominance
of convergence (ridging) in the LKFs, contrary to laboratory
experiments of granular materials and satellite observations
of sea ice. The use of a decohesive stress tensor influences
the LKF orientation in the sea ice cover but does not influ-
ence the type of deformation rates (convergence and shear)
or the simulated dilatancy. Future work will involve the mod-
ification of the non-linear relationship between the Maxwell
viscosity and the damage. We also show that the sensitivity
of the LKF orientation to the Poisson ratio, seen when us-
ing the standard damage parameterization, disappears when
using the generalized stress correction scheme with a fixed
stress correction path. This suggests that in the MEB model
the stress concentration and fracture propagation are gov-
erned by the stress correction rather than by the relaxation
of the mechanical properties associated with the damage.

Based on our results, using the generalized damage pa-
rameterization with a stress correction path normal to the
yield curve reduces the growth of residual errors and allows
longer-term simulations with post-fracture deformations. Us-
ing this stress correction path also reduces the orientation of
LKFs by ∼ 5◦, bringing them closer to observations. Despite
these improvements, some error growth remains inherent to
the formulation of the damage parameterization. Whether
this might be improved by removing the dependency of the
damage parameters on the damage factor (and on the super-
critical stress state) will be explored in future work.
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