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Abstract. Four calving events of Petermann Glacier hap-
pened in 2008, 2010, 2011, and 2012, which resulted in the
drift and deterioration of numerous ice islands, some reach-
ing as far as offshore Newfoundland. The presence of these
ice islands in the eastern Canadian Arctic increases the risk
of interaction with offshore operations and shipping activ-
ities. This study uses the recently developed Canadian Ice
Island Drift, Deterioration and Detection database to inves-
tigate the fracture events that these ice islands experienced,
and it presents a probabilistic model for the conditional oc-
currence of such events by analyzing the atmospheric and
oceanic conditions that drive the causes behind the ice island
fracture events. Variables representing the atmospheric and
oceanic conditions that the ice islands were subjected to are
extracted from reanalysis datasets and then interpolated to
evaluate their distributions for both fracture and non-fracture
events. The probability of fracture event occurrence for dif-
ferent combinations of input variable conditions is quantified
using Bayes’ theorem. Out of the seven variables analyzed
in this study, water temperature and ocean current speed are
identified as the most and least important contributors, re-
spectively, to the fracture events of the Petermann ice is-
lands. It is also revealed that the ice island fracture proba-
bility increases to 75 % as the ice islands encounter extreme
(very high) atmospheric and oceanic conditions. A validation
scheme is presented using the cross-validation approach and
Pareto principle, and an average error of 13 %–39 % is re-
ported in the fracture probability estimations. The presented
probabilistic model has a predictive capability for future frac-
ture events of ice islands and could be of particular interest to
offshore and marine ice and risk management in the eastern

Canadian Arctic. Future research, however, is necessary for
model training and testing to further validate this ice island
fracture model.

1 Introduction

With the advancement of offshore operations and shipping
activities into the harsh environment in the eastern Canadian
waters, these activities are being subjected to greater risks
from glacial ice features (Saper, 2011). The shipping and re-
source extraction industries in this region, therefore, require
a better understanding of the dynamics and physical prop-
erties of these ice features to be able to devise appropriate
ice management strategies for safe operations. Specifically,
a better understanding of the drift and deterioration charac-
teristics of icebergs and ice islands (large tabular icebergs)
is needed for risk management strategies. However, due to
the occasional presence of ice islands in regions with lower
latitudes such as offshore Newfoundland and Labrador (Jo-
hannessen et al., 2011), there has been limited research on
the dynamics of ice islands, when compared to the research
concerning the annual presence of smaller icebergs in the re-
gion. Ice island research studies have been mainly focused
on their potential risks to shipping activities and offshore op-
erations (Peterson, 2011; Mueller et al., 2013; Fuglem and
Jordaan, 2017), as well as their meltwater input as they dete-
riorate and melt over large regions (Stern et al., 2015; Merino
et al., 2016; Wagner et al., 2017; Crawford et al., 2018d).

For offshore operations, whether or not a drifting ice fea-
ture is manageable, or if activities should be suspended, de-
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pends on its velocity, its mass, and the number of ice fea-
tures approaching the vicinity. Mass and size distribution are
both dependent on the deterioration of each ice feature via
melting and/or fracturing, processes that are associated with
several atmospheric and oceanic variables. Therefore, it is
important to evaluate the effect of metocean (meteorology
and oceanography) variables on the deterioration of ice is-
lands. However, the harsh conditions in the eastern Cana-
dian marine environment make it very challenging to col-
lect in situ metocean data. Also, due to the difficulties in-
volved in tracking a large number of ice islands over their
lives (Merino et al., 2016; Rackow et al., 2017; Stern et al.,
2016), it has been a challenge to investigate the conditions
that lead to ice island deterioration. An alternative way to
track a large number of ice islands and monitor their deteri-
oration is using remote sensing observations. Unlike optical
methods, synthetic aperture radar (SAR) imagery can pro-
duce images of ice islands even when the amount of day-
light is low and cloud cover is high (Jeffries, 2002). The re-
cent calving events of Petermann Glacier (2008–2012) and
other northern Greenland glaciers have been accompanied
by SAR satellite imagery (July 2008 to December 2013),
which allowed researchers to track the ice islands through-
out their periods of drift and deterioration. Through a col-
laboration between the Canadian Ice Service (CIS) and Wa-
ter and Ice Research Lab (WIRL) at Carleton University, a
large number of SAR images from the CIS archive were an-
alyzed using a geographical information system to develop
a geospatial database associated with the ice islands origi-
nally calved from Petermann Glacier in 2008–2012, as well
as the Ryder, Steensby, C.H. Ostenfeld, and North Greenland
ice tongues (Crawford et al., 2018a). The ice islands were
delineated and monitored as they deteriorated (via melting
and/or fracturing) down to a threshold of 0.25 km2 in sur-
face area (Crawford et al., 2018d), and the information was
recorded in the Canadian Ice Island Drift, Deterioration and
Detection (CI2D3) database. The calving events of the Peter-
mann Glacier in 2008, 2010, 2011, and 2012 corresponded to
the removal of 36, 302, 4, and 145 km2 from the Petermann
ice tongue, respectively (Crawford et al., 2018a). The calving
event that occurred in 2010 was the most significant of all and
resulted in the loss of about 25 % of the Petermann Glacier
ice tongue (Nick et al., 2012). These calving events generated
numerous smaller ice islands that drifted southwards toward
the Labrador Sea, which were tracked in the CI2D3 database.
More information on the CI2D3 database and its documen-
tation can be found in Desjardins et al. (2018) and Crawford
et al. (2018b).

Past studies on iceberg deterioration

A key component for a reliable ice drift model and risk as-
sessment of icebergs is the ability to estimate their mass
(Crawford et al., 2018c), a variable that constantly changes
as a result of melting and small- and large-scale fracturing as

it drifts. This can be investigated through melt rate and small-
scale physical calving models, field measurements, or remote
sensing observations. Iceberg melt rate models predict pro-
cesses such as forced convection caused by air at the ice-
berg sail and water at the keel, solar radiation on the iceberg
sail, natural convection on sidewalls, and sidewall erosion at
the waterline caused by waves (Job, 1978; El-Tahan et al.,
1987; Savage, 2001). The resulting iceberg calving caused
by wave erosion has been modelled using empirical models
(e.g., White et al., 1980; Savage, 2001) and physical models
(e.g., Wagner et al., 2014). Savage (2001) studied the rela-
tive contribution of each of these mechanisms to the over-
all deterioration of three different icebergs and found that
wave erosion at the waterline was the dominant mechanism
in contributing to the overall iceberg deterioration (by 50 %–
65 %), followed by the resultant wave-induced calving events
(by 20 %–30 %). Savage (2001) also found that surface melt
played a minor role in the deterioration of icebergs, but it was
revealed in another study that the deterioration of ice islands
was significantly influenced by the surface melt due to the
large surface area of ice islands (Crocker et al., 2013). Ku-
bat et al. (2007) used the deterioration mechanisms described
by Savage (2001) to build an operational iceberg forecast-
ing model for the CIS. The sensitivity of the deterioration
model to various metocean variables was examined, and it
was revealed that the overall deterioration of icebergs was
most significantly influenced by wave height (via erosion at
the waterline and calving of the overhanging slabs), followed
by water temperature (Kubat et al., 2007). The importance of
waves and wave-related calving in the overall deterioration of
icebergs was also highlighted by Rackow et al. (2017), who
investigated the influence of the wave-induced calving, basal
melt, and buoyant convection on the deterioration of 6912
icebergs with varying sizes (0.3–4717.6 km2) in the Antarc-
tic. Rackow et al. (2017) highlighted the importance of ice-
berg size in their thermodynamic characteristics and that
while waves played the most important role in the decay of
smaller icebergs (< 10 km) basal melt was an important con-
tributor to the overall mass loss of giant icebergs (> 10 km).
In a similar study, Stern et al. (2017) presented a novel frame-
work to simulate drifting tabular icebergs for climate stud-
ies. The authors modelled the melt of tabular icebergs sub-
merged in the ocean in the Antarctic through the three mech-
anisms that were used in Rackow et al. (2017). Crawford et
al. (2015) modelled the energy fluxes at the surface using
the bulk aerodynamic approach to estimate the surface melt
of an ice island sail and validated the results against three
surface ablation models (from Kubat et al., 2007; Ballicater
Consulting Ltd., 2012; Hock, 2003). Bouhier et al. (2018)
studied the observed vertical melt of two large Antarctic ice-
bergs through the combined analysis of satellite altimetry and
imagery and compared this against melt rate estimates from
two different models: a forced convection approach and a
thermal turbulent exchange approach. While the former ap-
proach was found to underestimate the iceberg melt rates, the
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latter approach was more reliable in modelling iceberg thick-
ness variations. Zeinali-Torbati et al. (2020) estimated the re-
duction in the mass of four ice island fragments offshore of
Newfoundland using a surface ablation model (from Hock,
2003), a basal ablation model (from Crawford, 2018), and
the observed areal surface reduction from SAR images. The
authors revealed that basal melt had a greater contribution to
the overall thickness melt of the ice island fragments, which
was in agreement with the results of the thickness melt model
in Crawford (2018) and Bouhier et al. (2018). In a field study
(Halliday et al., 2012), however, the melt and thinning rate
of an ice island offshore of Labrador was measured using
ablation stakes and ground-penetrating radar, and it was re-
vealed that surface ablation contributed more than basal ab-
lation to the overall thinning rate of the ice island. In other
fieldwork, Crawford et al. (2020) deployed an ice-penetrating
radar on an ice island originating from the 2012 calving event
of Petermann Glacier to measure the surface and basal ab-
lation rates over an 11-month period. It was revealed that
while basal ablation contributed to 73 % of the total thinning
rate, it played a minimal role in the overall ice island mass
loss when compared to areal surface reduction likely caused
by wave erosion, wave-induced calving, and fracture events.
The authors, however, stated that basal ablation significantly
influences the thickness of ice islands, which would likely
increase the probability of large-scale fracture event occur-
rence (Crawford et al., 2020).

The deterioration mechanisms mentioned earlier describe
formulations for the melt rates and small-scale calving events
of icebergs caused by various metocean conditions. However,
there are other mechanisms associated with iceberg deterio-
ration such as large-scale fracture caused by internal stress
and convection caused by iceberg rolling (Kubat et al., 2007).
While fracture mechanisms play a more important role than
melting in the overall deterioration of large icebergs (Bouhier
et al., 2018), they are not as well studied and are often ne-
glected due to the infrequent occurrence of fracture events
(Kubat et al., 2007). It has also been difficult to model these
processes using physical models due to the lack of quantita-
tive theories to explain these mechanisms (Savage, 2001). To
date, there are only a few deterministic models to describe
the large-scale fracture mechanisms for icebergs (e.g., Die-
mand et al., 1987; Wagner et al., 2014; Bouhier et al., 2018;
England et al., 2020). Additionally, the accuracy of determin-
istic deterioration models for glacial ice will be limited by the
uncertainty in the physical parameters that govern the deteri-
oration processes. Iceberg fracture processes have previously
been studied using numerical methods to investigate fracture
events for different iceberg geometries (Bassis and Jacobs,
2013), due to buoyancy-driven flexure (Sazidy et al., 2019)
as well as the accumulation of microcracks in the ice struc-
ture (Bahr, 1995). Also, a recent study (Smith, 2020) inves-
tigated the fracture events of ice islands when a large protu-
berance develops on their keels, where a finite-element anal-
ysis was used to estimate the buoyancy-driven bending stress

and predict the associated fractures. However, these numeri-
cal models did not account for the relative role of metocean
conditions in the fracture processes. Probabilistic methods,
however, have the ability to account for the relative contri-
bution of meteorological and hydrological conditions to the
fracture events of glacial ice features. Bouhier et al. (2018)
investigated the fracture-related decay of two large Antarc-
tic icebergs through analyzing the correlation between their
relative volume loss and environmental variables (sea sur-
face temperature, current speed, difference of iceberg and
current velocities, significant wave height, wave peak fre-
quency, and wave energy at the bobbing period). The authors
found that while wave-related quantities had no significant
impact on the relative volume loss, sea surface temperature
and iceberg velocity showed the highest correlation with the
observed volume loss. Based on these two salient variables,
Bouhier et al. (2018) characterized fracture events using a
probability distribution and presented a deterministic bulk
fracture model, which performed successfully in the estima-
tion of iceberg relative volume loss. However, they noted that
given the stochastic nature of the fracturing process, individ-
ual fracture events cannot be predicted. England et al. (2020)
presented an approach for modelling the fracture events of
large tabular icebergs by incorporating a stochastic represen-
tation of the “footloose mechanism” (Wagner et al., 2014)
into the analytical iceberg drift by Wagner et al. (2017). The
authors showed that coupling their fracture model with an an-
alytical drift model significantly impacted the iceberg melt-
water distribution and resulted in improved simulated iceberg
trajectories. England et al. (2020), however, noted that the
fracture mechanism in their model is simplified based on sev-
eral assumptions, a key one being the probability of a child
iceberg fracturing from the parent iceberg set as constant in
time. However, this parameter should be, in fact, dependent
on the environmental variables such as sea surface tempera-
ture.

The fracture models noted above are not able to quantify
the probability of fracture events under different atmospheric
and oceanic conditions, a quantity that can be estimated us-
ing a Bayesian approach. To date, no previous research has
adopted a Bayesian approach to predict the probability of ice
island fracture events under the influence of the metocean
conditions that control these events, likely due to the lack of
reliable data. However, several studies have adopted a proba-
bilistic approach using a Bayesian belief network and hydro-
meteorological variables for navigational risk assessment of
ships (Zhang et al., 2013) or to estimate the conditional prob-
ability of ship besetting in sea-ice-covered waters (Turnbull
et al., 2019; Fu et al., 2016; Montewka et al., 2015, 2013).
This study uses the CI2D3 database and adopts a similar
methodology to that used in these besetting studies to present
a probabilistic fracture model for ice islands as a function of
the metocean conditions.

The CI2D3 database was previously used by Crawford et
al. (2018d) to investigate the size distributions and meltwa-
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ter flux of the Petermann ice islands. The analysis of size
distribution revealed that small ice islands constituted a sig-
nificant proportion of ice island population, but large ice is-
lands contributed the most to the total mass and meltwater
flux (Crawford et al., 2018d). The authors also revealed that
fracture processes significantly contributed to the overall de-
terioration of the Petermann ice islands as the ice island size
distribution followed a power law model, which corroborated
the results of Stern et al. (2016), Tournadre et al. (2016),
Enderlin et al. (2016), Bouhier et al. (2018), and Barbat et
al. (2019).

This study uses the CI2D3 database to study fracture
events of the ice islands which originated from the calving
events of Petermann Glacier in 2008–2012. Various atmo-
spheric and oceanic variables are analyzed to probabilisti-
cally determine the set of conditions that lead to the highest
chance of fracture event occurrence. This study first presents
a description of the data structure in the CI2D3 database.
Then, an overview of the results from a preliminary data
analysis on the deterioration of the Petermann ice islands is
presented, followed by the results of the probabilistic fracture
model. Finally, a validation scheme is presented to quantify
the accuracy of the probabilistic fracture model.

2 Methodology

2.1 Data extraction from the CI2D3 database

The CI2D3 database (version 1.1) contains data extracted
from around 25 000 satellite imagery observations of ice is-
lands from various glaciers, including the Petermann, Ry-
der, Steensby, C.H. Ostenfeld, and North Greenland glaciers.
The data contain a geospatial polygon and 28 attribute fields
for each observation. An algorithm was developed in MAT-
LAB (version R2017b) to extract the data subsets associ-
ated with the 2008, 2010, 2011, and 2012 Petermann ice is-
lands (17 755 observations). For each observation, the spatial
and temporal data (latitude, longitude, and time) were ex-
tracted. Here it should be noted that the “birth” or beginning
of a given ice island is considered to be immediately after it
calved from another ice island (or glacier), and the “death” or
end of that feature is taken as when it calves into two or more
fragments. By this definition, 328 fracture events and 845 ice
islands were identified. The ice islands were tracked in the
CI2D3 database, and the parent–child relationship between
the ice islands was captured as fracture events happened. To
identify the parent–child relationship, the unique identifier
for each ice island observation was extracted and matched
with the lineage and mother fields (i.e., fields in the database
structure that tie subsequent observations together and relate
the ice islands to their parents). This permits identification of
the previous observations of each ice island back to the time
it was born, which were later used for estimating the cumu-
lative effect of variables (e.g., air and water temperatures and

waves) that each ice island experienced over its lifespan. The
algorithm also used the ddinfo field to identify whether the
ice island was grounded or drifting at the time of observa-
tion. This was used to estimate the grounding time over the
lifespan of each ice island.

2.2 Atmospheric and oceanic data extraction

A series of atmospheric and oceanic data were collected from
reanalysis databases in the region of interest between north-
west Greenland and offshore of Newfoundland (46–83◦ N,
45–95◦W) from July 2008 to December 2013. Daily average
values (0.3◦ spatial resolution) for zonal–meridional compo-
nents of 10 m wind velocity (m s−1) and 2 m air tempera-
ture (◦C) were extracted from the North American Regional
Reanalysis (NARR): daily-average values (1/12◦) for zonal–
meridional components of ocean current velocity (m s−1)
and potential water temperature (◦C) in 25 depth layers
(down to 156 m) from the Global Ocean Physics Reanal-
ysis model in Copernicus Marine Environment Monitoring
Service (CMEMS), 6-hourly values (1/8◦) for significant
height of combined wind waves and swell (m) and mean
wave period (s) from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-Interim Reanal-
ysis, and sea ice concentration (%) from the CIS digital daily
ice charts. The extracted metocean data were linearly inter-
polated in space and time to the positions and times of the ice
island centroids recorded in the CI2D3 database to represent
the distribution of atmospheric and oceanic conditions over
the drift tracks of the ice islands.

The temporal resolution of the satellite observations in
the CI2D3 database were not consistent for all ice islands
over their drift periods. The reanalysis variables used in this
study were usually available sub-daily (hourly, 3-hourly, or
6-hourly), but the temporal resolution of the images used
to create the CI2D3 database ranges periodically from sub-
daily to bi-weekly (once every 2 weeks). Therefore, all at-
mospheric and oceanic data were extracted or averaged as
daily values and then interpolated in space and time to the
positions and times of the ice island observations.

2.3 Probabilistic model development

To evaluate the conditional dependence of ice island frac-
ture events on atmospheric and oceanic variables, a Bayesian
approach was employed. Bayesian analysis is a well-used
method in probabilistic studies to evaluate the probability of
a certain outcome using the most salient predictive variables
(Gutierrez et al., 2011). This method is recognized by its
strong reasoning ability in uncertain situations and its ability
to combine and analyze data from various datasets (Fu et al.,
2016). Using the Bayesian method, the dependency and in-
dependency of a set of variables (Fig. 1a) were analyzed via
a directed acyclic graph (Fig. 1b). Initially, the distribution
of 10 atmospheric and oceanic variables was studied. These
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included wind speed (Vw), air temperature (Ta), ocean cur-
rent speed (Vc), water temperature (Tw), wave energy index
(Ew), lifetime mean air temperature (Ta_avg), lifetime mean
water temperature (Ta_avg), lifetime mean wave energy in-
dex (Ew_avg), grounding time (tg), and sea ice concentration
(Csi). Wind and current speeds were estimated as the magni-
tude of the extracted zonal–meridional components for wind
and ocean currents, respectively. Water temperature was esti-
mated as the average of water temperatures at all layers from
the water surface down to a depth of 50 m. Given that wave
energy flux is proportional to mean wave period and signif-
icant wave height squared (Christakos et al., 2020; Akpınar
et al., 2019; Waters, 2008; Falnes, 2007), the wave energy
index was defined as

Ew = (Hwave)
2 (Twave) , (1)

where Hwave represents the significant height of combined
wind waves and swell (m) and Twave represents the mean
wave period (s). Time since previous calving was also ex-
plored as a variable, but this had very little predictive power
and was excluded from subsequent analyses. However, in or-
der to capture the cumulative effect of temperature and waves
over the lifespan of the ice island, we first identified all pre-
vious observations of each ice island back to the time and
location that it was born. Then, the air and water tempera-
tures and wave energy index were interpolated spatially and
temporally to all previous observations. To exclude the effect
of observation frequency, these variables were interpolated
in space and time to a daily interval. These daily-average
values were then averaged over the number of days the ice
island drifted to effectively compute the lifetime mean wave
energy index, as well as the mean air and water tempera-
tures over the lifespan of the ice island, which differ from
positive-degree-day calculations that are often used in ice
melt rate models (e.g., Hock, 2003). To better capture the
short-lived extreme conditions in air and water temperatures
prior to fracture events, the 2-week mean values for air and
water temperatures were also tested, but they did not make
a significant difference in the outcome and brought no im-
provement to the model performance, so they were subse-
quently excluded from the model inputs. Grounding time
was estimated by adding the number of days that an ice is-
land was grounded over its lifespan. The distribution of these
variables around fractured ice islands and all ice island ob-
servations were investigated and compared. However, further
analysis of Ew_avg and tg distributions for fracture events and
all observations identified no correlation between these vari-
ables and the occurrence of fracture events, so they were ex-
cluded from the Bayesian fracture model development. Also,
studying the sea ice cover around the ice island observations
showed that sea ice concentrations were less than 3/10ths for
about 99 % of the observations, so it was discarded from fur-
ther analysis as a model input variable. Sea ice, however, may
play a role in fracture events of ice islands in other regions

(e.g., England et al., 2020), so the presented model would
need to be extended for application in such regions.

The distribution of the metocean variables presented in
Fig. 1 was studied for all ice island observations and com-
pared against the variable distributions at the time of frac-
ture events. However, the extracted reanalysis data revealed
a different number of data points available for the analy-
sis of the seven variables presented. For example, for wind
speed and air temperature, 17 735 data points were available
for all observations of the Petermann ice islands. For current
speed and water temperature, 16 791 and 16 784 data points
were available for all observations of the Petermann ice is-
lands, respectively. These points covered most of the spatial
and temporal records from the CI2D3 database. However, for
wave energy index, only 3985 data points from all observa-
tions were available during the same time period. Similarly,
a different number of data points were available for each
variable during the fracture events. The different numbers of
data points for each variable are likely due to the fact that
the ice islands drifted near the coastlines at times, and these
data were extracted from reanalysis models that have insuffi-
cient spatial resolution to model data close to the coastlines.
Therefore, the distributions of the studied variables from all
observations and fractured subset are represented by relative
frequencies to allow for consistent comparison of these dis-
tributions.

The correlation between a pair of variables was investi-
gated using the Pearson product-moment correlation coeffi-
cient (r), given by (Freedman et al., 2010)

r =

∑n
i (xi − x)(yi − y)√∑n

i (xi − x)2
√∑n

i (yi − y)2
, (2)

where xi and yi are a pair of variables for the ith set of data
and x and y are the means of variables x, y from all observa-
tions (n). The full set of data was used to perform the corre-
lation analysis, and the inter-relationships between the vari-
ables are presented in Fig. 1b. Directed arrows were drawn
from each variable to all of the variables that showed a cor-
relation coefficient greater than 0.35.

The probability of fracture event occurrence in extreme
metocean conditions (i.e., conditions where the values of the
model variables were extremely high) was investigated us-
ing a full set of model criteria with the high state (> x∗)
of each variable. States here refers to the variable intervals
defined based on a threshold. The selected criteria (x∗) for
the extreme condition of each variable were identified by
varying each criterion over the range of each variable from
the fracture subset to maximize the fracture event proba-
bility. The distribution of conditional posterior probability
was calculated through Bayes’ theorem, given by Stuart and
Ord (1994):

P (X|Y )=
P (X)×P (Y |X)

P (Y )
, (3)
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Figure 1. The classification of variables for the Bayesian fracture network (a) and the associated directed acyclic graph that shows the
inter-relationship between the variables, with the arrowheads showing the causality and the r values showing the associated correlation
coefficients (b).

where P (X) is the prior probability of fracture event
occurrence, Pfrac; P (Y |X) is the likelihood of a spe-
cific criteria set occurrence during fracture events,
P
(
Vw,Ta,Vc,Tw,Ew,Ta_avg,Tw_avg|Frac

)
; and P (Y )

is the evidence of the criteria set occurrence for all ob-
servations, P

(
Vw,Ta,Vc,Tw,Ew,Ta_avg,Tw_avg

)
. The

probabilities in Eq. (3) should be recalculated when new
evidence becomes available, a process that reduces the
dependence of the posterior probability on the original
estimated prior probability (Eleye-Datubo et al., 2006).
Given the large size of the CI2D3 database, the value of
P (X) was estimated as the frequency of fracture events
(i.e., the number of fracture events divided by the total
number of observations) before any criteria set based on
metocean conditions was considered. The values of P (Y |X)

and P (Y ) were determined using the relative frequency
of the set of states in fracture events and all observations,
respectively. The relative frequency is given by Bonafede
and Giudici (2007):

P (Si)=
ni

n
, (4)

where Si represents a set of the variables’ states, ni repre-
sents the count of the observed set of the states in fracture
events (or all observations), and n represents the total num-
ber of fracture events (or all observations) in the dataset.

To calculate the probability of fracture events in different
metocean conditions, the ranges of atmospheric and oceanic
variables at the time of fracture events were first divided
into two states using the variable distribution medians from
the fracture subset (Table 1). The conditional fracture prob-
abilities were then estimated using a similar Bayesian ap-
proach (Eq. 3) through analyzing concurrent atmospheric and
oceanic conditions at the time of fracture events that were ex-
tracted from the entire record for all ice island observations.
Due to the limited number of fracture events (328), the num-
ber of state combinations in the presented model needed to

be reduced to avoid model saturation and increase the model
reliability. Among the atmospheric and oceanic variables an-
alyzed in this study, current speed played an insignificant role
in the fracture events of the ice islands, so it was not consid-
ered for further analysis.

The developed probabilistic model was validated using a
resampling approach based on the Pareto principle (Macek,
2008), which suggests 80 % of the data be used for model
training and development and 20 % be reserved for testing
the developed model (Suthaharan, 2016). To reduce the ef-
fect of variation in the subset selection and have a more
robust evaluation of the developed model, a k-fold cross-
validation approach (Ozdemir, 2016) was used (k = 5). So,
input variables associated with the fracture and non-fracture
data were randomly partitioned into five disjoint subsets of
approximately equal size, where each time one of these sub-
sets served for model testing, and the rest were used to train
the model. This corresponded to the selection of training
subsets with approximately 14 204 data points (262 fracture
events and 13 942 non-fracture events) and test subsets with
approximately 3551 data points (66 fracture events and 3485
non-fracture events). The conditional fracture probabilities
of ice islands for the given criteria sets were calculated using
the atmospheric and oceanic conditions for each test subset
and then cross-validated against the predicted values associ-
ated with its corresponding training set.

3 Results and discussion

3.1 Preliminary analysis of ice island fracture events

The descendants of ice islands resulting from the calv-
ing events of Petermann Glacier in 2008, 2010, 2011, and
2012 generally drifted in a southward direction toward the
Labrador Sea (Fig. 2a). These ice islands experienced 328
fracture events (Fig. 2b), which resulted in 845 ice islands.
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Table 1. Various states of atmospheric and oceanic variables for the Bayesian fracture model.

Variables Median∗ Unit State 1 State 2

Wind speed (Vw) 2.8 m s−1
≤ 2.8 > 2.8

Air temperature (Ta) −2.1 ◦C ≤−2.1 >−2.1
Water temperature (Tw) −0.3 ◦C ≤−0.3 >−0.3
Wave energy index (Ew) 5.1 m2 s ≤ 5.1 > 5.1
Lifetime mean air temperature (Ta_avg) −3.5 ◦C ≤−3.5 >−3.5
Lifetime mean water temperature (Tw_avg) −0.7 ◦C ≤−0.7 >−0.7

∗ Median values in the distributions of the given variables from the fracture subset.

Table 2. Description of the ice islands originating from the massive
calving events of Petermann Glacier in 2008, 2010, 2011, and 2012.

Glacier Main Surface Number of Number of
calving calving area digitized fracture
year date (km2) polygons events

2008 10 July 36.4 332 9

2010 5 August 302.4 9658 242

2011 16 August 4.3 502 4
21 September

2012 17 July 144.6 7263 73

The 2010 event calved the largest ice island (Table 2), which
generated 637 ice islands through its fractures (242 times),
some of which drifted as far as offshore Newfoundland
(Fig. 2a). The second largest calving event happened in 2012
and generated 169 ice islands through 73 fracture events, but
the resulting ice islands were only recorded as far as off-
shore Iqaluit, given that the monitoring period in the CI2D3
database ended in December 2013. The other two calving
events (2008 and 2011) generated 29 and 10 ice islands,
which resulted from nine and four calving events, respec-
tively. The size distribution of ice islands showed that large
ice islands (> 10 km2) drifted longer before undergoing a
fracture event and split into greater numbers of pieces per
fracture event. Examples of this are two large ice islands
(∼ 137 and 60 km2) originating from the 2010 calving event,
which generated nine distinct pieces upon fracturing. How-
ever, around 70 % of all fracture events generated only two
children ice islands. A more detailed drift and deterioration
analysis of the Petermann ice islands is presented in Zeinali-
Torbati et al. (2019).

3.2 Distributions of atmospheric and oceanic variables

The atmospheric, oceanic, and lifetime mean variables
shown in Fig. 1 were examined at the time of ice island
fracture events and then compared with the metocean con-
ditions for all ice island observations using the methodol-
ogy described earlier. Figures 3 through 5 show the summary

statistics and histogram plots of the relative frequency of re-
gional metocean variables surrounding the Petermann ice is-
lands from all observations (blue), as well as from the frac-
ture events (red).

Figure 3a shows that the mean water temperature sur-
rounding all the Petermann ice islands was negative
(−0.8 ◦C), indicating that they mainly drifted within cold
waters; however, the water temperature values reached up
to 10.4 ◦C. The statistics for lifetime mean water tempera-
ture from all observations (Fig. 3c) were almost the same
as water temperature: a negative mean value of −0.8 ◦C and
a range of −1.8 to 10.4 ◦C. Comparing the distribution of
water temperatures in Fig. 3a, b reveals that fracture events
happened at higher water temperatures: while only 20 % of
ice islands from the entire dataset were surrounded by water
temperatures above 0 ◦C, 42 % of fractured ice islands were
subjected to positive water temperatures. In a similar way, it
was revealed from long-term water temperature distributions
that only 13 % of the ice islands from all observations drifted
in positive lifetime mean water temperatures (Fig. 3c). This,
however, corresponded to about 34 % of the ice islands in
the fracture subset (Fig. 3d). The summary statistics pre-
sented in Fig. 3 reveal that water temperature and lifetime
mean water temperature played significant roles in the frac-
ture events of the Petermann ice islands; compared to the
temperature records for all ice island observations, the ice is-
lands at the time of fracture events experienced, on average,
1.2 and 0.8 ◦C greater values of water temperature and life-
time mean water temperature, respectively. This indicates the
important contribution of warm waters to faster deterioration
of glacial ice features (as stated by Kubat et al., 2007), likely
due to higher internal stress caused by the increased heat
transfer from water to the ice feature. The significant con-
tribution of water temperature to the fracturing process was
corroborated by Bouhier et al. (2018), where a significant
correlation between iceberg relative volume loss and sea sur-
face temperature was found. Warm surface waters also play
an important role in the initiation of fractures on large tab-
ular Antarctic icebergs (England et al., 2020) through edge-
wasting (see Scambos et al., 2005).

Figure 4a shows that the air temperatures to which the ice
islands were subjected ranged from −35.6 to 17.9 ◦C for all
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Figure 2. The drift trajectories (a) and the locations of fracture events (b) for the ice islands originating from the calving events of Petermann
Glacier in 2008 (red), 2010 (blue), 2011 (yellow), and 2012 (green).

observations, but the mean air temperature of −9.4 ◦C re-
veals that the ice islands drifted a significant amount of time
in cold air temperatures. Similarly, the Petermann ice islands
were mainly subjected to negative lifetime mean air temper-
atures with an average of −11.6 ◦C ranging from −33.7 to
17.9 ◦C (Fig. 4c). Investigation of air temperature and its
long-term effect at the time of fracture events (Fig. 4b, d)
revealed that, on average, the ice islands were subjected to
much higher values of these variables. The average air tem-
perature at the time of fracture events was −5.2 ◦C, which
was 4.2 ◦C higher than the mean air temperature surround-
ing all ice islands. In a similar way, the ice islands from the
fracture subset were, on average, subjected to 5.7 ◦C higher
lifetime mean air temperature than the ice islands from all
observations. The air temperature distributions (Fig. 4a, b)
show that while the air temperatures associated with all ice
island observations were most frequent around 0 ◦C, the val-
ues associated with the fracture events were most frequent
between 0 and 4 ◦C. This, along with a 4.2 ◦C higher mean
air temperature value from the fracture subset, indicates that
higher air temperature values are likely linked with the oc-
currence of fracture events. The analysis of lifetime mean
air temperature distributions over the lifespan of each ice
island (Fig. 4c, d) revealed that while only 14 % of all ice
island observations experienced lifetime mean air tempera-
tures greater than 0 ◦C, about 35 % of the ice islands from
the fracture subset were subjected to positive lifetime mean
air temperatures. This indicates that the long exposure of ice
islands to relatively warm air temperatures was likely an im-
portant factor in the occurrence of the fracture events.

The results associated with all observations of waves
(Fig. 5a) show that while the wave energy index values var-

ied from 0.1 to 62.1 m2 s, the ice islands were mainly sub-
jected to relatively low wave energy index with an aver-
age value of 5.3 m2 s. Similarly, the regional wind and cur-
rent speeds surrounding the ice islands from all observa-
tions were often relatively low, with a mean value of 2.9 and
0.08 m s−1, respectively (Fig. 5c, e). The summary statistics
of the records from the fracture events (Fig. 5b, d, f) revealed
that the regional mean wave energy index, wind speed, and
current speed around the ice islands at the time of fracture
events were statistically higher (by 38 %, 17 %, and 38 %, re-
spectively) when compared to the associated values for all
ice island observations. The analysis of wave energy index
distributions around the Petermann ice islands presented in
Fig. 5a, b shows that only 30 % of the Petermann ice islands
encountered wave energy index values greater than 6 m2 s.
The fracture events, however, occurred at greater wave en-
ergy index values, where 46 % of ice island observations
experienced wave energy index values greater than 6 m2 s.
The analysis also shows that while relatively high values of
wave energy index, coupled with other metocean variables,
most likely contribute to the occurrence of ice island fracture
events, this variable by itself does not lead to a high frac-
ture probability of the Petermann ice islands. This is con-
sistent with the results of the iceberg deterioration study by
Bouhier et al. (2018), where the authors found no significant
link between the relative volume loss of two large Antarc-
tic icebergs and the wave-related variables. Investigation of
wind speeds over the ice islands (Fig. 5c, d) showed that
the ice islands from all observations were subjected most
frequently to weak winds (∼ 1–3 m s−1). Similarly, at the
time of fracture events, the ice islands were most frequently
subjected to weak winds (∼ 2–4 m s−1). The fact that there

The Cryosphere, 15, 5601–5621, 2021 https://doi.org/10.5194/tc-15-5601-2021



R. Zeinali-Torbati et al.: A probabilistic model for fracture events of Petermann ice islands 5609

Figure 3. Relative frequency histogram plots of water temperature (a; n= 16784, b; n= 298) and lifetime mean water temperature (c;
n= 13537, d; n= 256) surrounding the Petermann ice islands for all observations (a, c) and for the fracture events (b, d).

is little difference in these distributions suggests that wind
speed by itself was not a significant variable in the fracture of
ice islands. The comparison of ocean current speed records
around the studied ice islands (Fig. 5e, f) revealed that the
current speed values from the fracture subset were statisti-
cally greater than the full observational records. However,
similar to all records, the fractured ice islands were mainly
subjected to weak regional current speeds, which suggests a
minor contribution of current speed to the fracture event oc-
currence.

The enhancement of fracture events under the conditions
where the ice islands experienced higher values of metocean
variables was investigated through ratios of the relative fre-
quency for fracture events and all observations over the range

of variables presented in Figs. 3–5. These results are pre-
sented in Appendix A (Figs. A1–A3), where values close
to 1 imply that fracture events are as likely to occur as the
frequency of observations. Values larger than 1 indicate that
fracture events are more likely to occur than the frequency of
observations. Values less than 1 imply that fracture events are
less likely to occur relative to the frequency of observations.
The results in Figs. A1–A3 reveal that the ratio of the rela-
tive frequency for fracture events and all observations gener-
ally increases with the values of metocean variables, which
clearly indicate a tendency for fracture events to occur under
more extreme conditions.

The pairwise correlation between the metocean variables
revealed that water temperature was positively correlated
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Figure 4. Relative frequency histogram plots of air temperature (a; n= 17 735, b; n= 328) and lifetime mean air temperature (c; n= 17 755,
d; n= 328) surrounding the Petermann ice islands for all observations (a, c) and for the fracture events (b, d).

with the air temperature, a finding that was stated in a num-
ber of other studies (e.g., Morrill et al., 2001; Erickson and
Stefan, 2000). Table 3 also revealed a correlation between the
wind speed and wave energy index, which was expected as
the wave energy index is dependent on the significant wave
height (Eq. 1). The positive correlation between wind speed
and wave height was also stated in Fu et al. (2016). Other
inter-relationships between the variables include the correla-
tions between the daily-average air–water temperatures and
the lifetime mean air–water temperatures. These correlations
are expected given that the lifetime mean variables were de-
fined as the time average of daily-average variables over the
life of each ice island.

It should be noted here that correlation does not imply cau-
sation, but there is clearly an element of causation within
the correlations noted above. Given the positive correlation

between the temperature variables (Ta,Tw, Ta_ave, Tw_ave), it
is expected that ice islands exposed to warm water temper-
atures also experience warm air temperatures and lifetime
mean air and water temperatures, conditions that contribute
to ice melting. The resulting ablation could lead to ice is-
land gravitational change and trigger fracture events. Simi-
larly, the positive correlation between Vw and Ew implies a
high chance for simultaneously high states of wind speed and
wave energy index. These variables are linked to the exter-
nal forces acting on ice islands. While strong winds increase
the associated wind drag forces, large values of wave energy
index result in higher forces from waves. These forces to-
gether contribute to the accumulation of stress in the ice is-
land, which could ultimately exceed the local threshold of
fracture energy and result in fracture events. Wave actions
also play a role via the “footloose mechanism” (Wagner et
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Figure 5. Relative frequency histogram plots of wave energy index (a; n= 3985, b; n= 131), wind speed (c; n= 17 735, d; n= 328), and
current speed (e; n= 16 791, f; n= 296) surrounding the Petermann ice islands for all observations (a, c, e) and for the fracture events (b, d,
f).
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Table 3. Pearson product-moment correlation coefficients of the metocean variables in the developed fracture model. The variables included
water temperature (Tw), wind speed (Vw), air temperature (Ta), current speed (Vc), wave energy index (Ew), lifetime mean air temperature
(Ta_avg), and lifetime mean water temperature (Tw_avg).

Variable Vw Ta Vc Tw Ew Ta_avg Tw_avg

Vw 1
Ta 0.132 1
Vc 0.097 0.079 1
Tw 0.236 0.547 0.076 1
Ew 0.403 0.046 0.066 0.232 1
Ta_avg 0.216 0.650 0.145 0.581 0.097 1
Tw_avg 0.265 0.366 0.153 0.847 0.297 0.647 1

The associated p values for all correlations show significance at the level of 0.00005
(p value < 0.00005).

al., 2014), which could result in the instability of the ice ge-
ometry and potentially lead to ice island fracture events.

3.3 Metocean conditional criteria sets and fracture
event frequency

To examine the probability of fracture event occurrence in
very high states of metocean conditions, a full set of model
criteria associated with the atmospheric and oceanic condi-
tions at the time of fracture events was obtained and pre-
sented as criteria set i = 6 (Table 4), using the methodology
described earlier. The same approach was employed to inves-
tigate the influence of simplifying the fracture model using
fewer variables, and the results are presented by criteria sets
i = 1–5 in Table 4.

Table 4 has a predictive capability for the occurrence of
fracture events for the Petermann ice islands under different
extreme atmospheric and oceanic conditional criteria sets.
For example, if the conditions associated with the criteria
set i = 2 hold (i.e., water temperatures greater than 4 ◦C and
wind speeds greater than 6 m s−1), there is a 28 % chance
that these conditions lead the ice islands to fracture. To elab-
orate, criteria set i = 2 accounts for only water temperature
and wind speed, where there are five events from the frac-
ture subset (328 events) and 18 events from all observations
(17 755 events) that meet the given criteria. Therefore, a con-
ditional fracture probability of 0.28 was obtained for this cri-
teria set, as follows.

P
(

Frac|Tw > 4 ◦C,Vw > 6ms−1
)

=
Pfrac×P

(
Tw > 4 ◦C,Vw > 6ms−1

|Frac
)

P
(
Tw > 4 ◦C,Vw > 6ms−1

)
=

328
17 755 ×

5
328

18
17 755

≈ 0.28 (5)

Some features of the criteria sets presented in Table 4 and
their associated fracture event probability are noteworthy. An
important implication of the results in Table 4 is the pre-
dominant link between the daily-average variables (i.e., Tw,

Vw, Ta, Vc, and Ew) and the fracture event occurrence. When
only the criteria for the air and water temperatures, wind and
current speeds, and wave energy index are considered with-
out accounting for the lifetime mean variables (criteria set
i = 5), 75 % of all events meeting these criteria occurred for
the ice islands from the fracture subset. However, when only
the high states of one or two variables are considered, the
fracture probability drops to less than 30 %, which indicates
the strong effect of concurrent atmospheric and oceanic con-
ditions on the occurrence of ice island fracture events. Also,
the criteria set i = 6 in Table 4 reveals that the addition of the
lifetime mean variables did not increase the fracture prob-
ability above 75 %. This is due to the fact that the criteria
set i = 5 narrowed down the atmospheric and oceanic con-
ditions to a condition that already meets the criteria added
in criteria set i = 6, implying that the conditions presented
in criteria set i = 5 are enough to predict a fracture event
probability up to 75 %. It is worth noting that the criteria
sets represented in Table 4 implicitly account for the inter-
relationship between the variables. For example, the criteria
set i = 3, which considers high air and water temperatures,
accounts for the correlation between air and water tempera-
tures (Table 3), indicating that there is a high chance for the
coincident occurrence of high air and water temperatures. It
is also important to note that Table 4 only shows the criteria
sets associated with the fracture events of ice islands originat-
ing from the calving events of the Petermann Glacier in 2008,
2010, 2011, and 2012. If more data become available from
other fracture events of the Petermann ice islands, where the
fracture events occur under different combinational criteria
sets of atmospheric and oceanic conditions, then the variable
ranges, the number of criteria sets, and the fracture probabil-
ities presented in Table 4 would need to be updated. Under
such conditions, the model variables themselves could also
be modified if additional variables (e.g., sea ice concentra-
tion) were deemed to be important.

The atmospheric and oceanic conditional criteria sets pre-
sented in Table 4 only show some specific criteria sets for
extreme conditions and clearly do not represent all possible
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Table 4. Fracture model conditional criteria sets and the associated conditional probability (Pfrac) for extreme conditions. The variables
included water temperature (Tw), wind speed (Vw), air temperature (Ta), current speed (Vc), wave energy index (Ew), lifetime mean air
temperature (Ta_avg), and lifetime mean water temperature (Tw_avg).

Criteria Tw Vw Ta Vc Ew Ta_avg Tw_avg Pfrac
set i (◦C) (m s−1) (◦C) (m s−1) (m2 s) (◦C) (◦C) (%)

1 > 4 16
2 > 4 > 6 28
3 > 4 > 6 > 7 45
4 > 4 > 6 > 7 > 0.1 60
5 > 4 > 6 > 7 > 0.1 > 5 75
6 > 4 > 6 > 7 > 0.1 > 5 > 0 > 0 75

combinations of the conditions. These criteria sets were se-
lected by the progressive addition of one or two conditions
to the previous criteria set, so that the associated conditional
fracture probability would increase. However, to account for
all possible conditions of the variables, the ranges for the
atmospheric and oceanic variables were divided into two
states using the methodology described earlier in Table 1.
The elimination of the current speed variable (as explained
in Sect. 2.3) reduced the number of state combinations from
128 to 64, which allowed for a greater number of occurrences
for each combination of the states, with bin edges previously
described in Table 1. Through an iterative process, the condi-
tional fracture probability for each combination of the states
was then calculated using Bayes’ theorem (Eq. 3). Due to the
large number of elements (64 values) in the conditional prob-
ability table, it is not possible to illustrate all combinations of
the variable states (Table 1) and their associated probability.
So, the model description is limited to its qualitative part.

The results obtained from the presented Bayesian ap-
proach provide a framework to probabilistically forecast the
future fracture events of ice islands originally calved from the
Petermann Glacier. This probabilistic model can provide sup-
plementary information to the available deterministic ice dy-
namic prediction models by quantifying the probability of ice
island fracture event occurrence under various sets of concur-
rent atmospheric and oceanic conditions. To use this model,
one needs to first identify the spatial and temporal coordi-
nates of a given ice island and then extract or forecast the six
daily-average and lifetime mean variables discussed earlier.
Then, the obtained set of conditions is identified in the devel-
oped conditional probability table to quantify the associated
probability of fracture event occurrence under the given set
of atmospheric and oceanic conditions.

3.4 Case study

To better describe the utility of the developed fracture model,
a case study was conducted on a descendant of ice islands
resulting from the calving event of Petermann Glacier in
2010. This ice island was selected for a case study due to
its drift characteristics. The ice island drifted for a long pe-

riod (26 November 2010–5 July 2011; > 7 months) and ex-
perienced a significant change in latitude (> 15◦). The spa-
tial and temporal data for consecutive observations of this ice
island were identified using the CI2D3 database. The atmo-
spheric and oceanic variables were extracted from reanalysis
databases and then interpolated to the positions and times
of the given observations. The lifetime mean variables were
also estimated using the methodology explained earlier, and
the variables were all used as input to the presented fracture
model to study the conditional fracture probabilities of the
ice island over its drift path (Fig. 6a). To investigate the effect
of different atmospheric and oceanic conditions on the frac-
ture events of the same ice island, metocean data from 2017–
2018 were extracted and interpolated to the same positions as
the case study ice island. Here it was assumed that the same
drift trajectory applies; however, this would not likely be
the case given that iceberg drift models are largely governed
by the real-time metocean conditions (Lichey and Hellmer,
2001; Kubat et al., 2005; Eik, 2009; Keghouche et al., 2009;
Rackow et al., 2017; Zeinali-Torbati et al., 2020). This would
be, however, an area for future work, where a drift model
needs to be integrated into the proposed fracture model to
have a reliable estimation of ice island positional data. The
interpolated metocean data for the 2017–2018 case were then
used in the presented fracture model to investigate how the
fracture probability map would change under the influence of
different atmospheric and oceanic conditions (Fig. 6b). The
fracture probability map for the 2010–2011 case (Fig. 6a) re-
veals that the ice island drifted some time (∼ 14 d) in the
medium–high fracture probability zone (shown by the or-
ange and red colours around Labrador coast) before breaking
up into two pieces. This, however, was not the case for the
2017–2018 ice island during the same time period (Fig. 6b)
as this ice island only spent some time (∼ 14 d) in the small–
medium fracture probability zone (shown by the green and
orange colours) towards the end of its hypothetical drift off
the Labrador coast, which could thus likely have been longer
than the 2010–2011 drift. The hypothetical 2017–2018 ice is-
land, in fact, never experienced the metocean conditions that
lead to a probability of fracture < 4 %. This is likely due to
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the fact that the 2017–2018 ice island was generally exposed
to lower water temperature (∼ 0.3 ◦C on average) over its
drift. This result is expected given that water temperature was
identified as the most important contributor to the fracture
events of the Petermann ice islands analyzed in this study.

While a Bayesian network has never been employed for
forecasting ice island fracture events, the probabilistic model
presented in this paper was developed based on the method-
ology used in Turnbull et al. (2019) and Fu et al. (2016),
where the Bayesian approach was used to predict vessel be-
setting events in pack ice. The study by Fu et al. (2016) used
a Bayesian network to investigate the inter-relationship be-
tween nine variables (i.e., ship speed, engine power, wind
speed, air temperature, low visibility, sea temperature, ice
concentration, ice thickness, and wave height), as well as
their influence on the probability of a ship getting stuck in
ice while navigating through the Northern Sea Route. Using
a similar Bayesian approach, Turnbull et al. (2019) studied
two pack ice besetting events of the Umiak I and developed a
probabilistic forecast model for future besetting events expe-
rienced by Umiak I under the influence of nine ice and meto-
cean variables (i.e., ice concentration, ice thickness, floe size,
minimum coast distance, wind-coast direction, wind speed,
current-coast direction, current speed, and wind divergence).
While this approach has not been used in a past iceberg frac-
ture model, there are some deterioration models such as the
one by Kubat et al. (2007) that account for the influence of
metocean variables (e.g., wind speed, current speed, water
temperature, wave height, and wave period) on the calving
events of the overhanging slabs resulting from the repeated
action of waves. Kubat et al. (2007) revealed that wave height
and water temperature dominate effects on iceberg deteri-
oration through melt and small-scale wave-induced calving
events. However, the probabilistic model presented here ac-
counts for the large-scale fracture events in ice islands un-
der the influence of various metocean conditions that gov-
ern the occurrence of these events. To date, there has been
limited research (e.g., Bouhier et al., 2018) investigating the
atmospheric and oceanic conditions that lead to the highest
probability of large-scale iceberg fracture event occurrence.
While the bulk volume loss model by Bouhier et al. (2018)
can provide a representation of iceberg relative volume loss
variation with sea surface temperature and iceberg velocity, it
is not able to estimate iceberg fracture probability under the
influence of environmental variables presented here. There-
fore, it is difficult to provide a validation scheme that can
appropriately compare the results of the presented Bayesian
fracture model with an existing physical ice island fracture
model. Hence, the presented model was validated using a
well-known scheme in probabilistic data analysis studies,
which was described in Sect. 2.3.

4 Probabilistic model validation

The developed fracture model was validated using the k-fold
cross-validation approach described in Sect. 2.3, and the re-
sults are presented in Table 5. The model validation anal-
ysis for the selected criteria sets in Table 5 reveal that the
mean fracture probabilities estimated from the test subsets
are in agreement with the mean estimations from the train-
ing subsets as the ranges for the fracture probability values
overlap. Investigation of the errors between the pairwise (test
vs. training) fracture probability values shows that the test
sets selected using the five-fold cross-validation approach
are able to provide estimations that are, on average, within
13 %–39 % of the values forecasted using the training sets.
It was also revealed from the standard deviation values that
the presented model is more reliable when fewer variables
or state combinations are considered (e.g., criteria set i = 1).
This is because, as the number of variables or state com-
binations increases, there are fewer fracture events and the
ranges of atmospheric and oceanic conditions become more
constrained, so the number of events meeting these given cri-
teria decreases. With fewer observations, there will be more
variability and consequently a higher error in the predicted
fracture probability values. If more fracture data in each cri-
teria set become available, the model will become more ro-
bust and the error in fracture probability estimations is ex-
pected to reduce.

The five-fold cross-validation analysis presented in Table
5 only shows some of the possible combinations of variable
states that were defined based on the median values of the
model variables from the fracture subset (presented in Ta-
ble 1). This corresponds to 1/2 of one-variable combina-
tions (i = 1), 1/4 of two-variable combinations (i = 2), 1/8
of three-variable combinations (i = 3), 1/16 of four-variable
combinations (i = 4), and 1/64 of six-variable combinations
(i = 6). However, the model skill was also analyzed for the
remaining combinations, and it was revealed that the model
does not perform well under implausible combinations of the
atmospheric and oceanic conditions, which are not likely to
be encountered and do not hinder the model most of the time.
As an example, the condition where Tw >−0.3 ◦C, Vw >

2.8 m s−1, Ta ≤−2.1 ◦C, Ew > 5.1 m2 s, Ta_avg >−3.5 ◦C,
and Tw_avg ≤−0.7 ◦C was a very unlikely combination that
only occurred once among all ice island observations, and no
fracture event occurred under such conditions. Based on the
extracted and interpolated metocean data for the full model
with all six variables, 36 combinations (out of 64) never oc-
curred, so the fracture probabilities under such conditions
are unknown. However, the remaining 28 combinations that
were met revealed a larger error (∼ 100 %–200 %) between
the probability estimations from the training and test sub-
sets, when the associated combination was unlikely to occur
(< 1 %). For instance, due to the very few data points ex-
isting for these improbable combinations, there were some
cases that were not observed in the test subsets but were ob-
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Figure 6. The fracture probability map for a descendant of the Petermann ice island from the 2010 calving event (a), compared against the
projected fracture probabilities for the same ice island in 2017–2018 (b). The filled dots show the positions of the ice island at the time it was
born and the time it fractured.

Table 5. Model validation for some of the criteria sets in the model (e.g., criteria set i = 5 shows one of the 64 state combinations of the six
variables; criteria set i = 4 represents one of the 16 state combinations of the four variables). The variables included water temperature (Tw),
wind speed (Vw), air temperature (Ta), wave energy index (Ew), lifetime mean air temperature (Ta_avg), and lifetime mean water temperature
(Tw_avg). Model error is derived through statistical comparison of fracture probability estimations from training sets and test sets, obtained
using the five-fold cross-validation method.

Criteria Tw Vw Ta Ew Ta_avg Tw_avg P 1
frac_training P 1

frac_test Pairwise P 1
frac_all

set i (◦C) (m s−1) (◦C) (m2 s) (◦C) (◦C) (% ) (% ) Error2 (% ) (%)

Mean SD3 Mean SD3 Test vs.
training

1 >−0.3 3.3 0.1 3.4 0.4 13 3.3
2 >−0.3 > 2.8 3.4 0.2 3.5 0.9 20 3.5
3 >−0.3 > 2.8 >−2.1 3.8 0.3 3.8 1.2 24 3.8
4 >−0.3 > 2.8 >−2.1 > 5.1 6.1 0.6 6.0 2.4 33 6.2
5 >−0.3 > 2.8 >−2.1 > 5.1 >−3.5 >−0.7 6.5 0.9 6.6 3.4 39 6.7

1 Pfrac_training, Pfrac_test, and Pfrac_all represent the fracture probability estimations from the training subsets, test subsets, and all data points, respectively. 2 Relative error
between the fracture probability estimations from the training and test subsets. 3 Standard deviation.

served only a few times in the training subsets, which inflated
an error of 100 %. However, our model showed higher relia-
bility under plausible combinations of metocean conditions,
such as the criteria sets i = 1–5 in Table 5 (13 %–39 % error)
or when fewer variables were used in the model that gen-
erated much less error between the probability estimations
from the test and training subsets (e.g., 11 %–97 % for one to
four variables).

5 Conclusions and future work

This study presented a probabilistic forecast model for the
fracture events of ice islands through the analysis of the rel-

ative influences of atmospheric and oceanic forces. The re-
current deterioration of the ice islands originating from four
recent calving events of Petermann Glacier were studied us-
ing the data in the CI2D3 database to probabilistically inves-
tigate the conditions that lead to fracture event occurrence of
the ice islands. It was revealed in Figs. 3 through 5 that while
fracture events generally occurred when the ice islands were
subjected to more severe atmospheric and oceanic conditions
(e.g., high wind and current speed, air and water temperature,
wave energy index, and lifetime mean air and water temper-
ature), warm water temperature played the most important
role in the large-scale fracture events of the Petermann ice
islands. The results also showed that ice islands subjected to
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high values of daily-average metocean variables (as specified
in Table 4) are expected to have a 75 % chance of fracturing.
The model validation was performed using the k-fold cross-
validation approach based on the Pareto principle, and it was
found that the error between the estimated fracture probabil-
ities from training and test sets ranged from 13 % when only
the water temperature criterion is considered to 39 % for the
full set of criteria.

The results of this study provide an important step toward
the development of a probabilistic forecast model for frac-
ture events of ice islands. The model presented here was
built on the fracture event data associated with the ice is-
lands that originated from Petermann Glacier and therefore
applies only to specific ice islands which share similar ice
strength properties. Ice islands from other glaciers may have
higher or lower ice strength characteristics and could ex-
perience fracture events under narrower or wider ranges of
metocean conditions than presented in this study. The atmo-
spheric and oceanic conditions, and their corresponding frac-
ture event probabilities presented in Tables 4 and 5, need to
be updated if more deterioration data become available to im-
prove the model accuracy. The atmospheric and oceanic con-
ditions in the presented model were extracted from reanal-
ysis datasets; however, for the presented model to have an
operational forecast use, the metocean conditions and frac-
ture event probabilities should be estimated using the inputs
from deterministic models that have the ability to provide
short-term forecasts. The results of this study can be used
with a limited number of variables. For example, in case only
daily-average wind and air–water temperature data for the ice
islands are available, the model should be restricted to crite-
ria sets i = 1–3. Once more variable data become available
(e.g., wave and lifetime mean variables), then the probabilis-
tic fracture event estimations may take into account the ex-
panded criteria sets (e.g., i = 4–5).

Future work should focus on improving this model
through expanding the deterioration database of the Peter-
mann ice islands, as well as evaluating the fracture event
data associated with other ice islands. The presented model
was developed based on the data from 328 fracture events;
however, more data are needed to train and test this model.
The probabilistic model presented here only considered two
states for each variable to avoid model saturation given the
limited number of data points. If more data become avail-
able, one can improve the model resolution by using a greater
number of variable states (e.g., three or four). While this
study used seven input variables to develop a probabilistic
fracture model, future research can also investigate the role
of other variables such as sea ice concentration and thick-
ness and ice island size in fracture events of ice islands. Also,
the incorporation of in situ measured metocean data can con-
tribute significantly to further validation of the presented ice
island fracture model. Finally, for this model to have a fore-
cast capability for future ice island fracture events, the pre-
sented fracture model needs to be coupled with a drift model

able to reliably forecast the positional data. The output of
the presented fracture model can generate fracture probabil-
ity distributions over the forecast drift trajectory from an ice
island drift model, which could serve as a framework to pre-
dict the most likely locations and times for fracture event oc-
currence. This would need to be coupled with a size distri-
bution model to estimate the resulting mass of the ice island
fragment(s) following a fracture event. The mass estimation
would then need to be incorporated into a drift forecasting
model until a fracture event is predicted, when the scheme
iterates again. A probabilistic drift model for the Petermann
ice islands in the CI2D3 database is currently under develop-
ment by the same authors, which will then be integrated into
the presented fracture model to ultimately present a coupled
ice island drift and deterioration forecast model.

The research presented here fills some of the critical
knowledge gaps in glacial ice deterioration forecasts. The re-
sults of this study provide an important step in characterizing
the atmospheric and oceanic conditions that govern the large-
scale fracture events of ice islands, which are important for
improving the calibration of operational ice dynamics mod-
els. The increase in the air and water temperatures due to the
climate change is expected to drive more frequent massive
calving events of Petermann Glacier in the future (Münchow
et al., 2016), which could lead to the generation of numer-
ous drifting ice islands off the east coast of Canada. The
ability to predict fracture events of these ice islands could
contribute to the development of more reliable strategies to
mitigate the risks associated with the presence of glacial ice
features, which is necessary for supporting safe offshore op-
erations and marine activities in the ice-prone waters off the
east coast of Canada.
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Appendix A

Figure A1. The ratio of the relative frequency for fracture events and all observations over the range of water temperature (a) and lifetime
mean water temperature (b) that surrounded the Petermann ice islands. Values close to 1 imply that fracture events are as likely to occur as
the frequency of observations. Values larger than 1 indicate that fracture events are more likely to occur than the frequency of observations.
Values less than 1 imply that fracture events are less likely to occur relative to the frequency of observations.

Figure A2. The ratio of the relative frequency for fracture events and all observations over the range of air temperature (a) and lifetime
mean air temperature (b) that surrounded the Petermann ice islands. Values close to 1 imply that fracture events are as likely to occur as
the frequency of observations. Values larger than 1 indicate that fracture events are more likely to occur than the frequency of observations.
Values less than 1 imply that fracture events are less likely to occur relative to the frequency of observations.
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Figure A3. The ratio of the relative frequency for fracture events and all observations over the range of wave energy index (a), wind speed (b),
and current speed (c) that surrounded the Petermann ice islands. Values close to 1 imply that fracture events are as likely to occur as the
frequency of observations. Values larger than 1 indicate that fracture events are more likely to occur than the frequency of observations.
Values less than 1 imply that fracture events are less likely to occur relative to the frequency of observations.
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