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Abstract. Cold content (CC) is an internal energy state
within a snowpack and is defined by the energy deficit re-
quired to attain isothermal snowmelt temperature (0 ◦C).
Cold content for a given snowpack thus plays a critical
role because it affects both the timing and the rate of
snowmelt. Measuring cold content is a labour-intensive task
as it requires extracting in situ snow temperature and den-
sity. Hence, few studies have focused on characterizing this
snowpack variable. This study describes the multilayer cold
content of a snowpack and its variability across four sites
with contrasting canopy structures within a coniferous boreal
forest in southern Québec, Canada, throughout winter 2017–
2018. The analysis was divided into two steps. In the first
step, the observed CC data from weekly snowpits for 60 %
of the snow cover period were examined. During the second
step, a reconstructed time series of modelled CC was pro-
duced and analyzed to highlight the high-resolution temporal
variability of CC for the full snow cover period. To accom-
plish this, the Canadian Land Surface Scheme (CLASS; fea-
turing a single-layer snow model) was first implemented to
obtain simulations of the average snow density at each of the
four sites. Next, an empirical procedure was used to produce
realistic density profiles, which, when combined with in situ
continuous snow temperature measurements from an auto-
matic profiling station, provides a time series of CC estimates
at half-hour intervals for the entire winter. At the four sites,
snow persisted on the ground for 218 d, with melt events oc-
curring on 42 of those days. Based on snowpit observations,
the largest mean CC (−2.62 MJ m−2) was observed at the
site with the thickest snow cover. The maximum difference
in mean CC between the four study sites was−0.47 MJ m−2,

representing a site-to-site variability of 20 %. Before ana-
lyzing the reconstructed CC time series, a comparison with
snowpit data confirmed that CLASS yielded reasonable bulk
estimates of snow water equivalent (SWE) (R2

= 0.64 and
percent bias (Pbias) =−17.1 %), snow density (R2

= 0.71
and Pbias = 1.6 %), and cold content (R2

= 0.93 and Pbias
=−3.3 %). A snow density profile derived by utilizing an
empirical formulation also provided reasonable estimates
of layered cold content (R2

= 0.42 and Pbias = 5.17 %).
Thanks to these encouraging results, the reconstructed and
continuous CC series could be analyzed at the four sites,
revealing the impact of rain-on-snow and cold air pooling
episodes on the variation of CC. The continuous multilayer
cold content time series also provided us with information
about the effect of stand structure, local topography, and me-
teorological conditions on cold content variability. Addition-
ally, a weak relationship between canopy structure and CC
was identified.

1 Introduction

The use of spatially distributed, process-based (physical)
hydrological models has substantially improved water re-
sources decision-making (Wigmosta et al., 2002). The snow
processes included in such models rely on the energy balance
(EB) approach, since snow accumulation and melt depend
on the exchanges of energy and mass between the snowpack
and its surrounding environment (soil, atmosphere, and veg-
etation). A pioneering study on snow hydrology, led by the
U.S. Army Corps of Engineers (1956), also highlighted the
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importance of the snowpack energy budget. Since then, the
single bulk layer representation (e.g Wigmosta et al., 1994)
has evolved into multilayer schemes (Gouttevin et al., 2015;
Koivusalo et al., 2001; Lehning et al., 2002; Vionnet et
al., 2012; Wigmosta et al., 2002). Recent studies have looked
at the sources of uncertainty associated with snow models
(Essery et al., 2013; Rutter et al., 2009) and revealed the im-
portance of including some key state variables, particularly
cold content, in their modelling schemes.

Cold content (CC) is the amount of energy required for
a snow cover to reach 0 ◦C for its entire depth. Any addi-
tional energy input translates into melting. By definition, CC
is a linear function of the snow water equivalent (SWE) and
snowpack temperature and is defined by

CC= ciρsHS(Ts− Tm), (1)

where CC is cold content (MJ m−2), ci is the specific heat
of ice (2.1× 10−3 MJ kg−1 ◦C−1), ρs is the snow density
(kg m−3), HS is the snow depth (m), Ts is the snowpack
temperature (◦C), and Tm is the melting temperature (0 ◦C).
Thus, CC ranges from −∞ to 0 MJ m−2, meaning that the
larger the absolute value of CC, the more energy required for
the snowpack to eventually reach a uniform temperature of
0 ◦C, over the entire depth of the snowpack.

CC plays a central role in the timing of the snowmelt
(Molotch et al., 2009), as a deep, dense, and cold snowpack
requires a substantial amount of energy for snow to reach
0 ◦C and initiate melt. As such, understanding CC is essential
for the accurate forecasting of water availability in demand-
ing sectors such as agricultural systems, urban water supply
(Barnett et al., 2005), and hydropower generation (Schaefli
et al., 2007).

The exact determination of CC requires direct observa-
tions of the snowpack temperature, density, and depth, usu-
ally collected from manual snowpit surveys. As manual col-
lection is time-consuming, few datasets that describe snow-
pack CC are available (e.g. Williams and Morse, 2020). For
lack of a better approach, CC is often estimated using one of
the following three methods (Jennings et al., 2018): an em-
pirical formulation that relies solely on air temperature (De-
Walle and Rango, 2008; Seligman et al., 2014), an empir-
ical formulation based on air temperature and precipitation
(Andreadis et al., 2009; Wigmosta et al., 1994), or a residual
from an energy balance model (Marks and Winstral, 2001).
Jennings et al. (2018) employed snowpit data, collected at
alpine and subalpine sites within the Rocky Mountains in
Colorado, to study CC and reported a weak relationship be-
tween CC and the cumulative mean of air temperature. The
authors found that newly fallen snow was responsible for
84.4 % and 73.0 % of the daily gains in CC for alpine and
subalpine snowpacks, respectively. The authors also tested
the role of CC in delaying snowmelt. When CC at 06:00 was
less than 0 MJ m−2, the onset was delayed by as much as
5.7 h at the alpine site and 6.7 h at the subalpine site. This

delaying effect of CC on melt is less marked in spring (Selig-
man et al., 2014), when excess radiative energy contributes
more significantly to melt. Also, during spring storms, fresh
snow is near 0 ◦C and thus adds little cold content to the ex-
isting snow cover. Under these conditions, it is therefore the
addition of a new dry interstitial space (which must reach
saturation) that is primarily responsible for delaying melt-
ing. Quantitatively, Seligman et al. (2014) reported that the
addition of pore spaces by dry fresh snow was responsi-
ble for 86 % of the energy deficit within the snowpack of
Columbia River headwaters. This suggests that even a small
energy deficit has a substantial effect on the rate and timing
of snowmelt. Overall, previous studies agree that the careful
consideration of CC improves snowmelt simulations (Jost et
al., 2012; Mosier et al., 2016; Valéry et al., 2014).

Little to no previous research has focused on compar-
ing the CC behaviour across variable stand structures within
forest environments. Snowpack energy exchanges within a
forest are different than those in open or alpine areas, as
the presence of a canopy impacts snow accumulation and
melt (Andreadis et al., 2009; Gouttevin et al., 2015; Mahat
and Tarboton, 2012; Wigmosta et al., 2002). For instance,
intercepted snow may sublimate, undergo densification, or
fall beneath the canopy when maximum canopy storage is
reached or when there are heavy winds present (DeWalle and
Rango, 2008). Snow interception typically leads to shallower
snow depths and less melt beneath the canopy (Musselman
et al., 2008), even in the presence of rain-on-snow events
(Marks et al., 1998). Frequent density profiles of the snow
cover allow for the tracking of unloading episodes and the
identification of spatial differences of CC within a forest.

Despite all the associated challenges, it is possible to sim-
ulate snow in a forested environment with some success. For
instance, physically based land surface models are regularly
used to simulate snow at forested sites (e.g. Roy et al., 2013).
One such example is the Canadian Land Surface Scheme
(CLASS), which relies on a single-layer snow model based
on the energy balance. In a recent study, Alves et al. (2020)
used CLASS driven by ERA5 reanalysis data to model snow
depths from four dissimilar forested sites across the Cana-
dian boreal biome. They reported average snow persistence
lengths and average spring melting periods that were simi-
lar to field observations. By definition, CLASS considers the
whole snowpack as a single bulk unit and as such is unable
to simulate the multilayer behaviours that one sees in na-
ture. One option for addressing this is to use a multilayer
snow model such as SNOWPACK (Lehning et al., 2002),
which was recently equipped with a detailed canopy mod-
ule (Gouttevin et al., 2015); however, even models such as
this are not free of biases. For instance, Raleigh et al. (2016)
tested three physically based snow models (Utah Energy Bal-
ance, UEB; Distributed Hydrology Soil Vegetation Model,
DHSVM; and Snow Thermal Model, SNTHERM) and re-
ported biases in the longwave radiation estimation, ranging
from −12 to +18 W m−2. Alternatively, bulk snowpack val-
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ues can be distributed between several layers. For instance,
Roy et al. (2013) disaggregated CLASS-derived snow wa-
ter equivalents into multilayer values at each time step, for
the purpose of estimating the specific surface area (SSA)
of snow grains within the snowpack. In their study, the
authors reported specific surface areas ranging from 33.1
to 155.8 m2 kg−1, while attaining an acceptable root mean
square error (RMSE) of 8.0 m2 kg−1 in CLASS-derived SSA
for individual layers.

In view of the lack of observational studies (particularly on
CC) that are required to support model development in forest
environments, detailed analyses of multilayer in situ snow-
pack CC are necessary. Building on Jennings et al. (2018),
this study investigates 53 snowpit-derived CC observations
at four distinct coniferous forested sites, over the course of
one winter. The temporal variability of the CC is also an-
alyzed by reconstructing time series that include bulk and
multilayer CC with a 30 min time step and combine auto-
mated snow temperature observations and bulk snow density
estimates that were calculated using the CLASS model.

2 Methods

2.1 Study sites and data collection

Observations were collected in the Bassin Expérimental du
Ruisseau des Eaux-Volées (BEREV), which is a small bo-
real forest catchment within Montmorency Forest, Quebec,
Canada (Fig. 1). This region experiences substantial pre-
cipitation (1583 mm), with 40 % falling in solid form be-
tween November and May (Isabelle et al., 2018). The bo-
real catchment lies in the Laurentian Mountains of the Cana-
dian Shield and is characterized by a humid continental cli-
mate (Schilling et al., 2021). There are patches of forest
clearings found within the basin due to past logging opera-
tions that have led to variability in stand structure (Parajuli et
al., 2020b). Over the years, several vegetation species such as
black spruce (Picea mariana (Mill.)) and white spruce (Picea
glauca (Moench.)) were planted. However, the environment
favoured the regrowth of balsam fir (Abies balsamea) stands.
Isabelle et al. (2020) provide detailed information on the veg-
etation cover at the study site. The current analysis focuses
on the four contrasting sites presented in Table 1.

Inspired by Lundquist and Lott (2008), we deployed an au-
tomated snow-profiling station at each location, composed of
18 T-type thermocouples vertically spaced 10 cm apart and
an ultrasonic depth sensor (Judd Communications, USA).
These stations report the local evolution of the snowpack
temperature profile and height. An additional T-type thermo-
couple was enclosed in a radiation shield (Fig. 1c) 2 m above
ground for simultaneous air temperature measurements.

Snowpit samples at 10 cm vertical intervals (temperature
profile, depth, and density profile) were collected in the
vicinity of the snow-profiling stations on a weekly basis from

17 January 2018 to 24 May 2018 (≈60 % of the snow cover
period), enabling CC calculation following Eq. (1) and vali-
dation of the modelled output such as the snow water equiv-
alent (SWE), snow density, and CC. Maintaining a weekly
timeline was sometimes difficult due to uncontrollable cir-
cumstances such as freezing rain, rain-on-snow events, or
even winter storms. During melt, from 21 April 2018 and
on, it was impossible to reach all study sites because of re-
duced snow depths preventing the safe use of snowmobiles,
except for site Juv1 that was more easily accessible from the
main road. Snow-profiling stations malfunctioned occasion-
ally (less than 1 % of the time), mostly in spring. Missing
values were filled with snowpit observations. An exponential
moving average procedure was implemented to reduce noise
in automatic snow depth observations.

2.2 Construction of CC time series

The exercise of constructing 10 cm 30 min time series of the
snowpack CC represents a certain challenge. On the one
hand, it requires time series of the vertical profile of snow
temperature, which is obtained from the snow-profiling sta-
tions. On the other hand, time series of the snow density pro-
file are needed as well. This is where the main difficulty lies.
A simple approach would be to interpolate the density val-
ues extracted from snowpits. However, our research site has
the particularity of being very snowy and experiencing many
episodes delivering >10 cm of fresh snow. Thus, such inter-
polation would be incomplete and error-prone given the lim-
ited number of snowpit surveys and their absence early in the
season and towards the end of the melting period. Herein,
we opted to produce multilayer time series of snow density
thanks to CLASS bulk simulations complemented with em-
pirical formulations, as detailed below. Note that Fig. 2 sum-
marizes our methodological approach, describing the collec-
tion of weekly CC observations via snowpits (see Sect. 2.1)
and the construction of continuous CC data every 30 min,
which are the focus of the present section.

2.2.1 CLASS model

CLASS is a physically based land surface model that simu-
lates the exchanges of water and energy between the Earth’s
surface and the atmosphere (Bartlett et al., 2006; Verseghy,
1991). It considers four distinct surface subareas: bare soil,
canopy cover over bare soil, canopy with snow cover, and
snow cover over bare soil (Bartlett and Verseghy, 2015;
Verseghy et al., 2017). In this analysis, CLASS version 3.6
was used in offline mode and with a 30 min time step, ensur-
ing an uninterrupted time series of the prognostic variables
(Roy et al., 2013), hereby allowing the inclusion of multiple
soil layers and accounts for snow interception, snow ther-
mal conductivity, and snow albedo, as described in Bartlett et
al. (2006). The following subsections describe the meteoro-
logical forcing data required to run CLASS and the method-
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Table 1. General canopy characteristics at the four experimental sites. “Sap” stands for sapling, “Juv” for juvenile, and “Mat” for mature.

Site Mean tree height Canopy density LAI Forest cover
(m) (fraction) (m2 m−2)

Sap1 1.8 0.76 2.8 sapling
Juv1 8.1 0.76 3.4 juvenile
Mat1 8.6 0.97 3.5 mature
Mat2 12.5 0.71 2.3 mature

Figure 1. Overview of the study area. (a) Basin 7 within BEREV showing the locations of the four study sites (note that elevations are in
metres), where snowpit samples were collected and snow-profiling stations were installed, (b) the location of BEREV in eastern Canada, (c)
the snow-profiling station installed at site Sap1, and (d) typical winter conditions at BEREV as seen from the flux tower at site Juv1.

ology (CLASS + snow-profiling station) to produce single-
and multi-layer time series of snow density, following An-
dreadis et al. (2009).

2.2.2 CLASS setup and forcing

The meteorological inputs required to run CLASS include
precipitation rate, wind speed, air specific humidity, in-
coming shortwave and longwave radiation, air temperature,
and surface atmospheric pressure (Table 2). As CLASS is
designed to explicitly consider the energy exchanges be-
tween the soil surface, vegetation, snowpack, and atmo-
sphere, above-canopy meteorological forcings are used. The
model accounts for local effects associated with the pres-
ence of a canopy (e.g. attenuation of incident radiation, etc.)

and incorporates user-defined parameters such as tree height,
canopy density, and leaf area index (Table 1).

These inputs serve to derive the energy budget components
of the soil, vegetation, snowpack, and atmosphere. After
solving the energy balance equation for the above-mentioned
interfaces, the residual term (the available energy for melting
or refreezing (Qm, in W m−2)) is derived. The amount of
available melting/freezing energy next serves to compute the
meltwater mass M given as

M =Qm(ρwLfB)
−1, (2)

where M is the melt rate (m s−1), ρw is the density of water
(kg m−3), Lf is the latent heat of fusion (J kg−1), and B is the
thermal quality of the snowpack, which is defined as the en-
ergy required to melt a unit mass of snow divided by energy
required by unit mass of ice at 0 ◦C, and is dimensionless.
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Figure 2. Schematic representation of the methodology adopted in this study. The left column describes the acquisition of CC from weekly
snowpits, while the right column describes the construction of continuous CC data every 30 min using an approach combining observations
(orange cells) and modelling (green cells). ρs stands for snow density, HS for snow height, and Ts for snow temperature.

Table 2. Local availability of meteorological forcing data for use in CLASS simulations. Precipitation data are from Environment and Climate
Change Canada (ECCC), weather station 7042388, located 4 km north of the BEREV.

Inputs
Sites

Sap1 Juv1 Mat1 Mat2 ECCC

Meteorological inputs

Precipitation rate ×

Incoming shortwave radiation × ×

Incoming longwave radiation × ×

Air temperature × × × ×

Surface atmospheric pressure × ×

Wind speed × ×

Air specific humidity × ×

Vegetation information

Leaf area index (LAI) × × × ×

Canopy height × × × ×

Canopy density × × × ×

The melting or refreezing of the snowpack is associated with
the available energy (Qm). A positive value of Qm might re-
sult in the melting of the snowpack, given that the available
energy is large enough to eliminate the cold content and in-
duce melt. However, a negative value of Qm contributes to
the refreezing of liquid water or simply adds to the CC.

Precipitation rates were determined using a GEONOR
weighing gauge equipped with a single Alter shield approx-
imately 4 km north of the study area and were considered
to be uniformly distributed throughout the catchment, which
is a reasonable but imperfect assumption. Given the known

wind-induced bias associated with this type of gauge (Pierre
et al., 2019), a simple adjustment was applied. This adjust-
ment involved twice-daily manual precipitation observations
from a Double Fence Intercomparison Reference (DFIR)
setup close by, as in Parajuli et al. (2020a). Although topogra-
phy affects precipitation, no correction for height differences
between stations was applied, as these are relatively small
(<200 m). Vegetation parameters were extracted at each site
from a lidar dataset. Wind speed, air specific humidity, short-
wave and longwave radiation, and surface atmospheric pres-
sure measurements were taken from flux towers at sites Sap1
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and Juv1. Comparable data were unavailable at sites Mat1
and Mat2 (Table 2).

This study was carried out in a small experimental water-
shed with an area of 3.49 km2, where the sampling sites were
close to one another (Fig. 1) but had distinct characteristics
(Table 1). Given the similarity (more or less) in canopy struc-
ture, we opted to use the inputs recorded at site Juv1 to run
CLASS simulations at sites that lacked direct measurements
of meteorological variables (Table 2). Here we assumed neg-
ligible differences in the above-canopy inputs between sites
Juv1, Mat1, and Mat2. The following subsection highlights
the steps adopted to generate the multilayer density estimates
needed to calculate the CC time series for all snow layers.

2.2.3 Reconstruction of multilayer snow density time
series (a hybrid approach)

The empirical formulation described in Andreadis et
al. (2009), based on Anderson (1976), is used to recon-
struct multiple layer snow density estimates by combining
the CLASS-derived SWE estimates (hereafter referred to as
the hybrid procedure). Fresh-snow density follows the for-
mulation from Brun et al. (1989), who developed the method
using data collected in the French Alps. We initialized the
density of fresh snow by imposing a minimum snow density
of 76 kg m−3, based on available snowpit observations, and
then using the following equation:

ρf =max[(109+ 6(Ta− 273.15)+ 26
√
um)76], (3)

where ρf is the density of fresh snow (kg m−3), um is the
wind speed (m s−1), and Ta is the air temperature (K). As
snow undergoes compaction due to metamorphism and the
increasing weight of overlying snow, density is assumed to
increase according to the following rate:

1ρs

1t
= (CRm+CRo)ρs, (4)

where t is time (s), CRm is the snow compaction due to meta-
morphism (kg m−3 s−1), and CRo is the compaction due to
the weight of overlying snow (kg m−3 s−1). CRm is then cal-
culated as in Andreadis et al. (2009):[

CRm = 2.778× 10−6c3c4e
−0.04(273.15−Ts)

]

c3 = c4 = 1 ρs ≤ 150kgm−3

c3 = e
−0.046(ρs−150) if ρs > 150kgm−3

c4 = 2 ρs > 150kgm−3
. (5)

CRo is also calculated as in Andreadis et al. (2009):

CRo =
Ps

n0
e−c5(273.15−Ts)e−c6ρs , (6)

where n0 = 3.6× 10−6 N s m−2 is the snow viscosity, c5 =

0.08 K−1, c6 = 0.021 m3 kg−1, and Ps (N s m−2) is the load

Figure 3. (a) Daily 2 m air temperature (Ta) observations for all
the study sites. (b) Daily 2 m wind speed (um) for sites Sap1
(sapling) and Juv1 (juvenile). Shaded areas denote periods of low
wind speeds (<0.8 m s−1). Coloured points illustrate site-specific
snowpit surveys. Spring melt started on 21 April 2018.

pressure for each layer. The load pressure is defined as

Ps =
1
2
g ρw(SWEns+ f SWEs), (7)

where g is the acceleration due to gravity 9.8 m s−2, ρw is
the density of water (kg m−3), SWEns and SWEs are the
amount of new snow and the snow (derived from CLASS)
within the snowpack layer (mm w.e.), respectively, and f is
the empirical compaction coefficient taken as 0.6 (Andreadis
et al., 2009).

3 Results

3.1 Local meteorological conditions

Figure 3 displays daily air temperature and wind speed ob-
servations. The shaded zone and site-specific dots illustrate
the temporal distribution of the manual snow surveys. Air
temperature measurements were taken at 2 m above ground.
Wind speed sensors were located 3 m and 2 m above ground
at sites Sap1 and Juv1, respectively. To compensate for this
height difference and enable fair comparisons between sites
Sap1 and Juv1, wind speed measurements at site A1 were ad-
justed to a 2 m height, assuming a log profile. As expected,
the sapling site (mean canopy of 1.8 m) experienced higher
wind speeds (mean 1.3 m s−1) than the juvenile one (mean
canopy of 8.1 m and mean wind speed of 0.12 m s−1). Air
temperatures were homogenous from site to site, with aver-
age values of −6.1, −6.3, −6.9, and −6.5 ◦C at sites Sap1,
Juv1, Mat1, and Mat2, respectively.
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Figure 4. Weekly 10 cm CC observations from snowpit surveys.
The colour bar indicates CC values in MJ m−2.

3.2 CC observations from snowpit surveys

Figure 4 illustrates 10 cm CC derived from the snowpit sur-
veys. One has to sum up all the values of a single profile
to find the total CC for a specific date. Variability in snow
depth, mainly induced by contrasting canopy structure, is in-
dicated in Fig. 4. When comparing layer-wise (10 cm) dif-
ferences across our sites (Sap1, Juv1, Mat1, and Mat2), the
lowest (−0.013 MJ m−2) and peak (−0.67 MJ m−2) CC both
occurred at site Juv1. Unlike for spring melt, when CC is
low and relatively uniform, the accumulation period portrays
substantial layer-wise variability structured around three dis-
tinct layers. For instance, sites Sap1, Juv1, Mat1, and Mat2
reported 9, 15, 12, and 5 observations of CC that were below
−0.35 MJ m−2. Note that the occurrence of a large magni-
tude of CC values was not always confined to the topmost
layer, as the layer just beneath the top layer also exhibited
such magnitude (see Fig. 4, week 10, site Mat1 at a snow
depth of 106 cm, for example). However, the layers that are
close to the ground experienced smaller magnitude of CC
throughout the winter. Except for site Juv1 and Mat1, peak
CC occurred in early February (Fig. 5 and Table 3), when the
minimum daily air temperature fell to about−25 ◦C (Fig. 3).
At that time, the magnitude of CC was highest at site Sap1,
which also fostered the deepest snowpack (128 cm). Due to
logistical constraints, we were unable to sample the Sap1 site
on week 5, when all other sites appear to report one of the
largest cold content amplitudes of the winter. Total CC time
series highlight the variability of CC across the four study
sites (Fig. 5). Site Juv1 attained its peak CC in mid-March
(Table 3).

Overall, maximum snow depth occurred at site Juv1
(194 cm), which also experienced the largest magnitude of
mean total CC (−2.62 MJ m−2), as a thicker snowpack can
hold more CC (Table 3). For its part, Mat2 experienced the
smallest maximum snow depth (142 cm) and the lowest mag-

Figure 5. Weekly snowpack total CC from snowpit surveys. The
light blue shading represents active spring melt.

nitude of mean total CC (−2.15 MJ m−2). The CC difference
across sites reached 0.47 MJ m−2 in total cold content, repre-
senting a variability of 20 %.

3.3 Analysis of reconstructed CC time series

3.3.1 Snow density modelling

A comparison of CLASS snow simulations and snowpit
(manual) observations reveals that CLASS is reasonably able
to simulate bulk snow density (Fig. 6; R2

= 0.71, Pbias =
1.6 %), SWE (R2

= 0.64, Pbias = −17.1 %), and CC (R2
=

0.93, Pbias =−3.3 %). However, when comparing CLASS
outputs, it appears that SWE is more underestimated than the
snow density and CC (Fig. 6).

Nevertheless, after confirming that CLASS was efficient
in modelling bulk snow cover variables (Fig. 6), we moved
forward with the next step in our methodology (Fig. 2). We
adopted a hybrid procedure in which we reproduced a verti-
cal structure following Andreadis et al. (2009). We compared
layer-by-layer, simulated, and observed CC and snow density
(Fig. 7) and determined that, on average (when all sites are
considered), the empirical density and observed snow tem-
perature yielded reasonable CC estimates (R2

= 0.54 and
Pbias =−21.1 %). At each site, reasonable CC values were
achieved over the entire profile (R2

= 0.67, 0.45, 0.58, and
0.29 and Pbias=−15.8 %,−19.7 %,−23.5 %, and−31.6 %
at sites Sap1, Juv1, Mat1, and Mat2, respectively) (Fig. 8).

As displayed in Fig. 8, we summarized the 10 cm layers
into a three-layer scheme formed of the top (upper 40 cm),
bottom (lower 30 cm), and middle layers (remainder). CCs
for the top layer were more difficult to simulate (R2

= 0.57,
0.35, 0.51, and 0.23) than for the other two layers. Bottom-
layer simulations were the most successful (R2

= 0.98, 0.91,
0.91, and 0.89). Density simulations over the entire profile
behaved similarly (R2

= 0.5. 0.46. 0.51, and 0.34 and Pbias
=−7.7 %, −9.2 %, −12.2 %, and −16.9 % at sites Sap1,
Juv1, Mat1, and Mat2, respectively). The performance of
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Table 3. Peak total CC, date of occurrence, snow depth, mean tree height at the site, maximum snow depth, and mean total CC over a period
of 15 weeks.

Sites Peak total CC Date of occurrence Snow depth at peak Tree height Maximum snow Mean total CC
(MJ m−2) of peak total CC total CC (cm) (m) depth (cm) (MJ m−2)

Sap1 −4.05 2018-02-07 128 1.8 163 −2.45
Juv1 −3.77 2018-03-20 173 8.1 194 −2.62
Mat1 −3.24 2018-03-20 95 8.6 143 −2.26
Mat2 −2.66 2018-02-07 100 12.5 142 −2.15

Figure 6. Observed versus CLASS-simulated bulk values of SWE, snow density, and CC. R2 denotes the coefficient of determination, and
Pbias (%) represents the percent bias.

density simulations, for each layer examined individually,
was much less successful, mostly for the top layer (R2

=

0.06, 0.30, 0.34, and 0.02 and Pbias =−35.9 %, −34.5 %,
−34.5 %, and−48.2 % for sites Sap1, Juv1, Mat1, and Mat2,
respectively). However, snow density estimates had a low im-
pact on CC performance, as described previously (Fig. 6).
These results were deemed sufficient for moving forward
with the fine-scale temporal analysis of the reconstructed CC.

3.3.2 Reconstructed CC time series

Figure 9 illustrates reconstructed multilayer 30 min CC time
series. Although larger peaks (−6.9 MJ m−2 for site Sap1)
and smaller average values (−1.8 MJ m−2 for site Juv1) are
observed, the high-resolution CC time series that were de-
rived using the hybrid procedure follows a pattern similar
to the CC observations presented in Sect. 3.3.1 (Figs. 9 and
10a and Table 2). Additionally, sites with less vegetation (site
Sap1) experienced higher peak CC than sites with mature for-
est (Mat2) (Fig. 9). Notably, the rain-on-snow episodes that
occurred on 11 January, 20 February, and 30 March 2018
(thin vertical bands of low CC) were absent from the weekly
series shown in Fig. 4. Sites Sap1, Mat1, and Mat2 had a
shallower snowpack and the rainfall penetrated deeper, re-
sulting in a reduced CC throughout the snowpack. Con-
trarily, at site Juv1, which had a deeper snowpack, similar
rain penetration into the snowpack was only observed on
11 January 2018. All snowpacks became isothermal from
21 April 2018 onwards, indicating the onset of spring melt.

Some cold spells during spring melt were also noticeable,
especially for the shallower snowpacks (Sap1, Mat1, and
Mat2).

Due to differences in snow accumulation and melt pat-
terns (Fig. 10), mostly induced by differences in vegetation
(Table 1), there is noticeable site-to-site variability in CC
(Fig. 9). The detailed variability of total CC across the four
forested sites is presented in Fig. 10, along with snow depth.
The magnitude of total CC at site Juv1 was larger than at
Sap1 approximately 60 % of the time. At site Mat1, this frac-
tion drops to 32 %.

To shed light on site-to-site CC variability, Fig. 11 presents
the average available energy Qm (W m−2) for melting or re-
freezing derived from CLASS. To facilitate the comparison,
the figure divides the cold season into the winter accumula-
tion (WA) period (excluding rain-on-snow events), the spring
melting (SM) period, rain-on-snow (RS) events, and cold air
pooling events, with low wind speed and nighttime air tem-
peratures at site Mat1 smaller than at the other sites dur-
ing the accumulation period (CP) (see also Fig. 3). During
SM and RS, considerable amounts of energy were available,
which might have depleted CC and initiated snowmelt. Con-
versely, WA and CP might have contributed to the refreezing
of liquid water or to an increase in CC (Fig. 11). As expected,
more melting energy was available at site Sap1 (lower veg-
etation) during SM (43.0 W m−2) and RS (46.0 W m−2).
During WA, the mean of available melting/freezing en-
ergy was more or less similar at all sites and ranged from

The Cryosphere, 15, 5371–5386, 2021 https://doi.org/10.5194/tc-15-5371-2021



A. Parajuli et al.: Multilayer observation and estimation of the snowpack cold content 5379

Figure 7. Observed versus modelled snow density and CC derived from the empirical formulation described in Sect. 2.2.3 across the four
sites. Snowpack layers are aggregated into three classes: top (upper 40 cm), bottom (lower 30 cm), and middle (remainder).

Figure 8. Performance of CC and density simulations following the
adopted hybrid procedure, coefficient of determination (R2, left),
and percent bias (Pbias, right). Pbias colour bar applies to both pos-
itive and negative values.

−6.6 W m−2 (Sap1) to −7.2 W m−2 (Juv1). Finally, during
CP, the mean melting/refreezing energy was the smallest at
Mat1 (−6.6 W m−2) and the largest at Juv1 (0.4 W m−2), the
site with the highest elevation (849 m a.s.l.).

Based on the Pearson correlation coefficient (r), we ex-
amined the relationship between CC and the snow density
(ρs), snow depth (HS), snowpack temperature (Ts), and air

temperature (Ta; Fig. 10). Snowpack temperature (r = 0.83
and 0.69) and air temperature (r = 0.56 and 0.66) exhibited
a positive correlation, meaning that cold content magnitude
increased as air temperature and snowpack temperatures de-
creased. Conversely, snow depth (r =−0.5 and −0.45) ex-
hibited a negative correlation, whereas snow density (r = 0.4
and 0.24) showed a weak relationship.

Next, we examined the relationship between each of the
above-mentioned variables and CC at the individual sites.
This was done to identify any trends in the site-wise rela-
tionship between CC and ρs HS, Ts, and Ta. A decreasing
trend in the correlation coefficient (r) with increasing mean
tree heights was observed when we examined the snow tem-
perature and the reconstructed cold content for each site (r =
0.75, 0.69, 0.67, and 0.60 for sites Sap1, Juv1, Mat1, and
Mat2, respectively). Beyond that relationship, we did not
identify any site-wise trends between CC and the other vari-
ables, thereby suggesting a weak dependency on forest struc-
ture in the relationship between CC and other pertinent vari-
ables.

4 Discussion

4.1 CC observations

The importance of snow mass on CC (total) at the study
sites is highlighted in Fig. 5. As expected, a deeper snow-
pack is typically associated with higher CC. For instance,
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Figure 9. Seasonal variability of 10 cm CC simulations stored at 30 min time intervals. The colour bar indicates CC values in MJ m−2. Light
green shading represents rain-on-snow events, and light blue shading represents melt.

Figure 10. (a) Total estimated CC from the reconstructed time se-
ries. An exponential moving average was applied for noise removal.
(b) Snow depth observations. Spring melt period and rain-on-snow
events are highlighted with light blue and light pink colours, respec-
tively.

CC displayed a local maximum at all sites in February, but
with greater amplitudes in the deeper Sap1 and Juv1 snow-
packs. The same finding holds when CC is averaged over
the 15-week period: Juv1 experienced more snow and higher
CC, followed by Sap1. In both instances (peak and aver-
age CC conditions), a deeper snowpack led to larger magni-
tude of CC. In a similar study of alpine and subalpine snow-

Figure 11. Available mean melting/freezing energy at our sites. WA
denotes the winter accumulation period, SM the spring melting pe-
riod, RS the rain-on-snow events, and CP events with low wind
speed coinciding with smaller air temperature at site Mat1.

packs in the Rocky Mountains of Colorado, USA, Jennings
et al. (2018) reported peak CC to be 2.6 times greater for
the alpine snowpack than for the subalpine location, which
they mostly attributed to the higher SWE accumulation at
the alpine site. However, Jennings et al. (2018) also noted
that colder temperatures (up to 4 ◦C) led to higher CC at their
alpine site.

In early February (during peak CC conditions at two of
the sites), the snow depth difference between sites Sap1 and
Juv1 was very small (Table 3). Nonetheless, Sap1 exhibited
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Figure 12. Inter-relationship between CC and snow density, snow
depth, snowpack temperature, and air temperature. The colour bar
represents the absolute value of the Pearson correlation coeffi-
cient (r).

higher CC than Juv1 (Fig. 5). This is because in addition to
snow depth, CC values depend on the density and temper-
ature of the snow (Fig. 12). The higher peak CC found at
site Sap1 can be explained by the higher snow density that
is typically associated with higher wind velocities (Vionnet
et al., 2012) and wind-speed-induced densification. Also, as
illustrated in Fig. 3, site Sap1 was windier than Juv1. This
is expected, as wind speed is lower within forest canopies
(Davis et al., 1997; Harding and Pomeroy, 1996), such as
those in site Juv1. Finally, as explained in Sect. 4.1, the Sap1
site is more exposed to atmospheric conditions without the
protective effect of the canopy, making it more likely to re-
spond to cold snaps for example.

4.2 CLASS performance

Gaps between weekly snowpit surveys failed to capture
short-lived events such as warm and cold spells or rain-on-
snow events. In an attempt to produce higher-frequency CC
time series, we used the CLASS land surface model to simu-
late 30 min bulk snow density and SWE. Based on our find-
ings, CLASS successfully estimated snow density and CC,
while underpredicting SWE (Fig. 6).

Alves et al. (2020), who operated CLASS on the same ex-
perimental watershed as in this study, reported an overesti-
mation in the upper quantile of the latent heat flux. Interest-
ingly, a similar pattern was reported for other Canadian bo-
real forest sites. Similarly, Parajuli et al. (2020a) explored a
simple temperature-index (TI) model, again at the same sites.
They found that the inclusion of snow sublimation led to im-
provements in their model performance. Based on these re-
cent studies, it seems fair to conclude that the overestimation
of latent heat fluxes by CLASS could lead to SWE underes-
timation. The precipitation biases reported in the methodol-

ogy section could also have impacted SWE estimation. It is
equally important to point out that the single-layer represen-
tation of snowpack processes by CLASS stands out as a ma-
jor shortcoming. Given the limitations of bulk estimations,
which are often too broad to properly describe all snow-
pack processes (Roy et al., 2013), several studies have opted
for multilayer snow models (Brun et al., 1997; Lehning et
al., 2002; Vionnet et al., 2012). Whether the model is single-
or multi-layer, a certain degree of uncertainty will persist
when modelling snowpack processes (Jennings et al., 2018;
Raleigh et al., 2015; Alves et al., 2020). Given the preva-
lence of biases in the snow modelling chain, we feel confi-
dent enough to use CLASS-estimated SWE to derive multi-
layer snow density.

4.3 Reconstructed CC time series

For CC reconstruction this study explored the (simpler) hy-
brid procedure proposed by Andreadis et al. (2009). Using
this method, we generated reasonable snow density (10 cm
vertical layers) values to support the derivation of multi-
layer CC time series that are better able to capture short-
lived events (Fig. 9). To better visualize the variability of
snow density and cold content estimates, we aggregated the
snowpack (10 cm layer) into top, middle, and bottom snow
layers (Fig. 8). One should keep in mind though that all
results presented in Sect. 3.3.2 are based on 10 cm vertical
slices. As shown in Fig. 7, snow density was less well mod-
elled for the top layer than for the other two layers, which
obviously also affected the CC estimates (Fig. 8). One of
the challenges of snow modelling is the estimation of fresh-
snow density. Russell et al. (2020) explored a range of fresh-
snow density formulations and concluded that a constant
value of 100 kg m−3 provided a better outcome than most
empirical formulations. In Fig. 13, we compare observations
of the top 10 cm snow density versus model outputs from
three common empirical methods: Diamond–Lowry (Russell
et al., 2020), Hedstrom–Pomeroy (Hedstrom and Pomeroy,
1998), and Brun (Shrestha et al., 2010; Vionnet et al., 2012)
(Fig. 12). As proposed in Russell et al. (2020), we also ex-
plored a constant fresh-snow density of 100 kg m−3. Note
that empirical methods are used to derive fresh-snow den-
sity only, and in cases where the observations are taken more
than 24 h after a precipitation event (Fig. 13b), snow meta-
morphism must be taken into account in order to have a fair
comparison between models and observations. Thus, to ac-
count for snow metamorphism, we resorted to Eq. (5) and
then derived snow density.

All four methods performed poorly (Diamond–Lowry,
Pbias =−53.1 % and R2

= 0.23; Hedstrom–Pomeroy, Pbias
=−51.6 % and R2

= 0.25; Brun, Pbias =−50.2 % and
R2
= 0.18; and constant 100 kg m−3, Pbias =−48.8 % and

R2
= 0.11), largely underestimating snow density (Fig. 8b).

One possible cause of this underestimation is related to the
presence of a canopy. It is well known that intercepted snow
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Figure 13. Top 10 cm snow density derived from different empirical
methods. (a) Observed versus modelled fresh-snow density (<24 h
since last snowfall); (b) observed versus modelled snow density in-
cluding both fresh and snow density after metamorphism based on
Eq. (5).

can stay in place for several days to months (DeWalle and
Rango, 2008). Such snow can densify within the canopy and
eventually unload, thereby transforming the top-layer den-
sity underneath. In addition, the intercepted snow could be
heated by radiation incident on the canopy. In doing so, local
melting could be observed, resulting in dripping and an in-
crease in the density of the top snow layers. It is possible that
CLASS does not capture this phenomenon well. In agree-
ment with both hypotheses, as noted in Figs. 7 and 8, top
snow density estimated at the site with the shortest vegeta-
tion (Sap1), where there is little interception, was better than
at the other sites. In a slightly different context, Raleigh and
Small (2017) concluded that snow density modelling was a
major source of uncertainty when studying catchment SWE
derived from remotely sensed data.

The canopy not only intercepts some of the precipitation,
but it also acts as a buffer on energy exchanges between the
snowpack and the atmosphere. Indeed, the site with the short-
est vegetation, Sap1, has the largest peak CC (Table 3 and
Fig. 9), even if it is not the site with the deepest snow cover.
When looking at the whole winter, we note that site Juv1 ex-
perienced more snow and a greater magnitude of total CC
than Sap1 (Fig. 10). Delving into the reasons for this dif-
ference between the two sites, we find that the absence of
a well-defined forest canopy appears to lead to a more re-
sponsive snow cover to meteorological forcing at site Sap1.
The prevalence of higher wind speeds at site Sap1 intensi-
fies turbulent sensible heat fluxes and thus favours the loss
of heat from the snow cover in cold periods such as the one
corresponding to the peak CC. Yet, this snow cover respon-
siveness at the Sap1 site does not guarantee that it has the
greatest total mean CC, here observed at the site Juv1. Ac-
tually, if winds increase the sensible heat flux at Sap1, they
also favour the lateral transport of snow. The absence of a

well-defined canopy also means greater incoming shortwave
radiation. In fact, our CLASS simulations reveal that the av-
erage of net shortwave radiation was greater by 4.6 W m−2

at Sap1 than at Juv1. Thus, wind scoured thinning combined
with radiation enhanced ablation resulted in less snow accu-
mulation at site Sap1 and, as such, a smaller mean total CC.
This is also the reason why the magnitude of CC was higher
at site Juv1 than at Sap1, i.e. 60 % of the time.

For site Mat1, the magnitude of CC was higher than at
Sap1 32 % of the time, beginning in early February and con-
tinuing through the rest of the study period (Fig. 10). Most of
the time, the measured snow depth at site Mat1 was also shal-
lower than at site Sap1. We hypothesize that cold air pooling
might explain this phenomenon. During stable atmospheric
boundary layer conditions, with weak synoptic forcing, there
is reduced wind flow. This results in thermal decoupling in
the valley depression, which favours the formation of a cold
air pool (Fujita et al., 2010; Mott et al., 2016). This is sub-
stantiated by the rapid cooling of near-surface air within the
valley depression, typically at night or early in the morn-
ing (Smith et al., 2010). Here, in Fig. 3, we assumed that
the reduced wind speed coincides with the rapidly cooling
near-surface temperatures (see the shaded regions) as stable
atmospheric conditions prevail. During these periods, Mat1
experienced cooler air temperature than the other sites. The
mean energy available for melting or refreezing at Mat1 is
also smaller than for the other sites (Fig. 11). As mentioned
above, smaller melt/refreeze energy contribute to the accu-
mulation of CC or the refreezing of liquid water present in
the snowpack.

The site with the tallest trees, Mat2, has the lowest mean
CC (Table 3 and Fig. 9). This is partly due to a lower snow
height on the ground (more interception), the barrier effect of
the canopy on incoming radiation, and enhanced longwave
radiation within forest. Also, this site experienced very few
occurrences where CC was larger than at site Sap1 (1 % of
the data) and all of them during spring melt or rain-on-snow
events. It is obvious because the rain-on-snow events con-
tribute the addition of warm sensible heat to the snowpack
(Marks et al., 1998; DeWalle and Rango, 2008). Any heat
addition results in the elimination of some snowpack CC and
drives destructive metamorphism to initiate melt (Seligman
et al., 2014). For these periods, the taller tree at site Mat2 in-
tercepts more rain than at site Sap1. This is the reason why
the average of available melt energy was smaller at site Mat2
by 9.7 (rain-on-snow events) and 8.4 W m−2 (spring melting
period) than at Sap1 (Fig. 11). Less availability of melt en-
ergy translates into smaller depletion of snowpack CC. Thus,
only during the rain-on-snow and spring melt, one may no-
tice more snowpack CC at site Mat2 than at Sap1.

Initially, based on Figs. 3 and 10, snow depth and air
temperature appear to influence CC distribution across study
sites. However, observed snowpack CC and simulated snow-
pack CC at all sites were strongly (positively) correlated with
snowpack temperature and air temperature and weakly corre-
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lated with the snow density and snow depth values (Fig. 12).
It should be noted that CC values at all sites only showed neg-
ative correlations with snow depth (Fig. 12). When translat-
ing the relationship between CC and the depth of the snow-
pack, one must understand that there is an increase in the
magnitude of CC with an increase in snow depth. This is be-
cause the value of CC is expressed negatively while snow
depth is always positive. Based on CC observations and the
hybrid procedure, we were able to identify a relationship be-
tween the mean CC and the tree height (Table 3 and Fig. 9).
However, we were unable to report any trends in the site-wise
relationship between CC and the above-mentioned variables
(Fig. 12). Conversely, Jennings et al. (2018) attempted to es-
tablish a relationship between CC development and the cu-
mulative mean of air temperature across the alpine and sub-
alpine sites in the Rocky Mountains in Colorado, USA, but
were unsuccessful.

4.4 Sources of uncertainty

Several errors and biases could arise due to poor data quality
and modelling deficiencies, thereby affecting the snowmelt
models (Parajuli et al., 2020a; Raleigh et al., 2015, 2016;
Rutter et al., 2009). For instance, Jennings et al. (2018) ap-
plied the SNOWPACK multilayer model and reported an
overestimation in fresh-snow temperature. As reported in the
present study, CC depends heavily on snowpack tempera-
ture (Fig. 12). Any biases arising due to inaccurate deriva-
tion of snow temperature might affect CC estimations. The
quality of model inputs also influences model performance.
For instance, precipitation inputs extracted 4 km north from
present study sites were used to drive CLASS simulations,
which neglects the presence of small-scale spatial variability
in precipitation. Also, sites Sap1 and Juv1 benefitted from lo-
cal flux tower measurements, but such direct measurements
were not available for sites Mat1 and Mat2, for which many
assumptions were necessary in order to create missing input
time series. This problem has also been observed in several
other studies (e.g. Pomeroy et al., 2007; Qi et al., 2017). Im-
portant snowpack properties beyond just CC, such as thermal
conductivity (Oldroyd et al., 2013) and snow interception
(Hedstrom and Pomeroy, 1998), also need to be further ad-
dressed. As mentioned in Sect. 4.2, snow density estimation
presents a considerable challenge when implementing a mul-
tilayer snowpack model (Fig. 7). Therefore, future research
that utilizes the physically based snow model and describes
the internal snowpack processes should focus on improving
snow density estimations.

5 Conclusion

The purpose of this study was to document the spatial vari-
ability of CC in a humid boreal forest, using detailed mea-
surements supplemented by physically based and empirical

model outputs. The studied boreal forest is characterized by a
non-uniform stand structure that led to site-to-site variations
in the 10 cm weekly observations of CC. The two sites with
lower vegetation had greater snow accumulation and larger
peaks in total CC relative to the sites with taller vegetation
over the 15 weeks.

The Canadian Land Surface Scheme model was cou-
pled with complementary empirical formulations to con-
struct bulk, followed by 10 cm, 30 min snow density time se-
ries. Both CLASS and the empirical formulations supplied
reasonable snow density and CC estimates. When the lat-
ter 10 cm time series were split into three layers, the bottom
and the middle layers also resulted in reasonable simulations.
However, modelling of the top layer was not as successful.
The constructed time series were used to illustrate the influ-
ence of phenomena that are not detectable when only snowpit
data are used, such as rain-on-snow episodes or the formation
of cold air pools at the bottom of the valley.

We used the Pearson correlation coefficient (r) to identify
the role of pertinent variables (snow density, snowpack tem-
perature, snow depth, and air temperature) that affect the dis-
tribution of CC at our boreal forest sites. Snowpack and air
temperature appeared to be highly influential on CC distribu-
tion compared to the depth and the density of the snowpack.
Our study was supported by 30 min time step time series of
10 cm snow temperature profiles and bias-corrected precip-
itation inputs. The inclusion of such inputs helped us to re-
duce errors and biases. This study also highlighted the un-
certainty associated with fresh-snow density estimates when
simulating physically based snowmelt models.
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