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Abstract. Short-term glacier variations can be important for
water supplies or hydropower production, and glaciers are
important indicators of climate change. This is why the in-
terest in near-real-time mass balance nowcasting is consid-
erable. Here, we address this interest and provide an evalua-
tion of continuous observations of point mass balance based
on online cameras transmitting images every 20min. The
cameras were installed on three Swiss glaciers during sum-
mer 2019, provided 352 near-real-time point mass balances
in total, and revealed melt rates of up to 0.12 m water equiv-
alent per day (mw.e.d™") and of more than 5mw.e. in 81d.
By means of a particle filter, these observations are assimi-
lated into an ensemble of three TI (temperature index) and
one simplified energy-balance mass balance models. State
augmentation with model parameters is used to assign tem-
porally varying weights to individual models. We analyze
model performance over the observation period and find that
the probability for a given model to be preferred by our pro-
cedure is 39 % for an enhanced TI model, 24 % for a simple
TI model, 23 %, for a simplified energy balance model, and
14 % for a model employing both air temperature and poten-
tial solar irradiation. When compared to reference forecasts
produced with both mean model parameters and parameters
tuned on single mass balance observations, the particle filter
performs about equally well on the daily scale but outper-
forms predictions of cumulative mass balance by 95 %—96 %.
A leave-one-out cross-validation on the individual glaciers
shows that the particle filter is also able to reproduce point
observations at locations not used for model calibration. In-

deed, the predicted mass balances is always within 9 % of the
observations. A comparison with glacier-wide annual mass
balances involving additional measurements distributed over
the entire glacier mostly shows very good agreement, with
deviations of 0.02, 0.07, and 0.24 mw.e.

1 Introduction

Glaciers around the world are shrinking. For example,
Switzerland has lost already more than a third of its glacier
volume since the 1970s (Fischer et al., 2015), glaciers are
currently melting at about —0.6 mw.e.a~! (water equivalent
per year) on average (Sommer et al., 2020), and it is expected
that glaciers will continue to lose mass (Jouvet et al., 2011;
Salzmann et al., 2012; Beniston et al., 2018; Zekollari et al.,
2019). Since glaciers are important for the supply of drink-
ing water or for irrigation and electricity production, there
is high interest in near-real-time glacier mass balance infor-
mation. Such information has also become important in the
context of public outreach, e.g., for demonstrating the con-
sequences of climate change (e.g., Euronews, 2019; Science
Magazine, 2019).

A glacier mass balance nowcasting framework assimi-
lating relevant observations could deliver these near-real-
time mass balances whenever required. While nowcasting
frameworks exist, for example, for the mass balance of the
Greenland Ice Sheet (Fettweis et al., 2013; NSIDC, 2020a),
for snow (NSIDC, 2020b; SLF, 2020) or for hydrological
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purposes (Zappa et al., 2008; Pappenberger et al., 2016;
Zappa et al., 2018; WSL, 2020; Hydrique, 2020; Wu et al.,
2020), there is no specific framework providing such anal-
yses for mountain glaciers yet. In general, data assimilation
is widespread in oceanography, meteorology, hydrology, and
snow sciences, “but its introduction in glaciology is fairly re-
cent” (Bonan et al., 2014). Especially regarding glacier mass
balance studies, data assimilation and Bayesian approaches
have appeared only slowly in published work (Dumont et al.,
2012; Leclercq et al., 2017; Rounce et al., 2020; Werder
et al., 2020).

In many cases, mass balance analyses are available twice
a year and are based on seasonal in situ observations (Cog-
ley et al., 2011). This relatively low frequency is related
to the fact that in situ observations are expensive in terms
of both time and manpower. Only recently have low-cost
and high-frequency monitoring approaches emerged (Hulth,
2010; Fausto et al., 2012; Keeler and Brugger, 2012; Biron
and Rabatel, 2019; Carturan et al., 2019; Gugerli et al., 2019;
Netto and Arigony-Neto, 2019). However, even with these
observations, it is not straightforward to provide analyses at
higher frequencies. This is because near-real-time estimates
are often based on ensemble modeling in order to enable a
correct quantification of uncertainties. Ensemble modeling is
used in glaciology in the context of model intercomparison
projects (Hock et al., 2019), future projections for ice sheets
and mountain glaciers (e.g., Ritz et al., 2015; Shannon et al.,
2019; Golledge, 2020; Marzeion et al., 2020; Seroussi et al.,
2020), and also determining the initial conditions for model-
ing (Eis et al., 2019). However, ensembles are currently not
prominent in the calculation of seasonal or daily glacier mass
balances. Another reason why calculating higher-frequency
glacier mass balance analyses is not straightforward is the
lack of knowledge about the short-term variability in the pa-
rameters of the necessary models. Temperature index (TT)
models, for example, are parametrizations of the full energy
balance equation, and they offset some of the changes occur-
ring in the driving processes through parameter fluctuations
(Ohmura, 2001; Lang and Braun, 1990; Hock, 2003; Hock
et al., 2005). In a comparison of four TT models and a full
energy balance model, Gabbi et al. (2014) showed that all
models perform very similarly on a multi-year scale.

In this study, we address the issue of low-frequency ob-
servations, ensemble modeling, and the lack of knowledge
about short-term parameter variability as part of the project
CRAMPON (Cryospheric Monitoring and Prediction On-
line). The latter aims at delivering near-real-time glacier
mass balance estimates for mountain glaciers using data as-
similation. To obtain high-frequency data at a relatively low
cost, we equipped three Swiss glaciers — Glacier de la Plaine
Morte, Findelgletscher, and Rhonegletscher — with seven
cameras in total. The cameras were operated in summer 2019
and took images of a mass balance stake marked every 2 cm
at 20 min intervals, thus providing estimates of surface point
mass balance aggregated to the daily scale. By using a parti-
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cle filter (e.g., Arulampalam et al., 2002; Beven, 2009; Mag-
nusson et al., 2017), we assimilate these observations into an
ensemble of three TI models and one simplified energy bal-
ance model.

Ensemble stability and suitability for operational use is
ensured by designing the particle filter such that, at any in-
stance, each model has a minimum contribution to the mass
balance model ensemble. In particular, models with tem-
porarily bad performance are not excluded from the ensem-
ble and can thus regain weight later. To address parameter
uncertainty, we drive the mass balance model ensemble with
both Monte Carlo samples of uncertain meteorological input
and prior parameter distributions obtained from calibration
to past, longer-term seasonal mass balance series. By using
an augmented state formulation of the particle filter, we con-
strain model parameters as well (e.g., Ruiz et al., 2013). We
are not aware of glacier mass balance studies that have ap-
plied a multi-model ensemble based on a particle filter with
the resampling methods we propose, although multi-model
particle filters have been used for other applications (e.g.,
Kreucher et al., 2004; Ristic et al., 2004; Saucan et al., 2013;
Wang et al., 2016).

As a result, we demonstrate (1) how a workflow including
daily melt observations, ensemble modeling, and data assim-
ilation works in practice, (2) to what extent the assimilated
mass balances are able to reproduce cumulative observations,
and (3) how the ensemble performs with respect to both ref-
erence forecasts and seasonal analyses from in situ measure-
ments.

2 Study sites, data, and field instrumentation

We use Glacier de la Plaine Morte, Rhonegletscher, and Find-
elgletscher in summer 2019 as test sites (Fig. 1). The basic
morphological characteristics and instrumentations of these
glaciers are given in Table 1.

2.1 Continuous in situ mass balance observations
2.1.1 Technical camera station setup

For acquiring daily point mass balances in the field, we use
off-the-shelf cameras and logger boxes from the company
Holfuy Ltd. We mount the cameras to a construction of alu-
minum stakes that we designed for glacier applications. Fig-
ure 2 provides an overview of the camera installation.

The camera observes an ablation stake, which is marked
with colored tape at 2 cm intervals. When the surface melts,
the aluminum construction holding the camera slides along
the mass balance stake. Pictures are taken every 20 min and
are sent in real-time to our servers via the Swiss mobile
phone network. Differences between subsequent pictures are
used to infer daily glacier surface height changes relative
to the stake top, which are the basis for ablation measure-
ments (Cogley et al., 2011). All pieces of the construction
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Figure 1. (a) Locations of the glaciers equipped with cameras within Switzerland and (b—d) detailed topographic maps of the glaciers with
dots for cameras (red) and reference mass balance stakes (blue). Coordinates are given as Swiss coordinates (EPSG:21781). The blue glacier
outlines stem from GLAMOS (Glacier Monitoring Switzerland), and background web mapping service tiles are provided by © swisstopo

and © Google Maps.

Table 1. Main characteristics and installed cameras for the investigated glaciers. Glacier area and elevation range refer to the year 2019
(GLAMOS, 2020), and slope and aspect have been calculated using a recent DEM (digital elevation model) (swisstopo, 2020).

Parameter Glacier de la Plaine Morte  Findelgletscher Rhonegletscher

Area (km?) 7.1 12.7 15.3

Elevation range (m a.s.l.)  2470-2828 2561-3937 2223-3596

Average slope (°) 6 13 14

Average aspect (°) 341 (NNW) 321 (NW) 225 (SW)

Camera stations PLM 1 (2681 ma.s.l.) FIN 1 (2564ma.s.l.) RHO 1 (2233 ma.s.l.)
FIN2 (3021 ma.s.l.) RHO 2 (2235ma.s.l.)

RHO 3 (2392 ma.s.l.)
RHO 4 (2589 ma.s.1.)

are lightweight (4 kg for the station plus 4 kg for 8 m of mass
balance stakes) and can be mounted by one person.

2.1.2 Camera acquisitions in summer 2019

Figure 3 shows an overview of camera acquisitions and data
gaps over the summer 2019.

https://doi.org/10.5194/tc-15-5017-2021

In total, we obtained 352 daily point mass balance obser-
vations between 20 June 2019 and 3 October 2019. The cam-
era longest in the field was on Glacier de la Plaine Morte
(91 d between 20 June 2019 and 18 September 2019), while
those shortest in the field were two cameras at the tongue of
Rhonegletscher (52d between 13 August 2019 and 2 Octo-
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Figure 2. The camera setup used to obtain daily estimates of glacier
point mass balance. Here, the camera has just been mounted on the
snow-covered surface of Glacier de la Plaine Morte (19 June 2019).

ber 2019). Very few data gaps occurred due to failure of the
mobile network over which the data were transmitted.

Once camera images are on our servers, they are read man-
ually to obtain daily cumulative surface height change A (¢, z)
since camera setup. We assume that the observational error €;
of a reading is Gaussian distributed and uncorrelated in time
and space. To estimate the standard deviation of the Gaussian
error distribution, we performed a round-robin experiment
with seven participants. In this kind of experiment all partic-
ipants were given the task to read i (#, z) from the same cam-
era images independently, and statistics were made about the
degree of agreement between the readings. We found a stan-
dard deviation of 1.5 cm, with a range from 0.2 to 1.7 cm. The
estimate accounts for reading errors, errors in stake marker
positions, and unknown thickness of the melt crust on the ice
surface, but it does not account for systematic errors.

The relationship between observations of surface height
change since an initial point in time (in our case the time at
which a camera is set up) and the cumulative glacier mass
balance is given through the simple linear observation oper-
ator H:

bse(t,2) - pw

h(t,2) =Hbste(t,2)) t €= ———— + €z, (D
Pbulk

where b (¢,z) (mw.e.) is the accumulated surface mass
change at elevation z and time ¢ since the day of the first cam-
era observation, py, = 1000 kg m™3 is the water density, and
Poulk 18 the temporally weighted bulk density of snow and ice
at the camera location (kg m~3). We expect the observation
errors to be uncorrelated in time, since every reading is in-
dependent from the previous one. To avoid systematic errors
in the readings, we exclude the initial, snow-covered phase
after camera setup at stations FIN 2 and PLM 1. This is be-
cause the camera construction can sink into the snow cover,
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potentially biasing the snowmelt signal. This “sinking bias”
is virtually impossible to distinguish from the actual melt sig-
nal. Moreover, the temporally varying density of the melting
snow is unknown. Short snow events during the melt season
are assigned a density of 150kgm™>. The calculated snow
water equivalent is assigned an uncertainty of 2-3cmw.e.
If a stake reading was impossible, we have resumed with a
zero balance after the snowfall melted again. For days with-
out snow, there are three cases that require special attention
when reading mass balances: (1) maintenance operations like
setup, redrilling, and unmounting of a station, (2) melt that
happens during night and that is thus only visible on the
next day, and (3) data gaps. Regarding maintenance opera-
tions (point “(1)”), we do not consider the observations from
days when maintenance has taken place. This is either be-
cause those days are not fully covered or because the mass
balance stake and the entire station might melt into the ice af-
ter redrilling. For nighttime melting (i.e., “(2)”), we equally
distribute the overnight melt between the 2 d concerned. This
is a trade-off between warmer temperatures before midnight
and colder temperatures but longer time span after midnight.
For data gaps (point “(3)”), we experienced only short image
transmission outages which were mainly due to a 6 d failure
in the mobile network connection on Plaine Morte during
September 2019. We excluded the daily readings on these
days but were able to reconstruct estimates of cumulative
mass balance over the time gaps when acquisitions resumed.

2.2 Meteorological input data

To model glacier mass balance, we employ verified prod-
ucts of daily mean and maximum 2 m temperature 7" and
Tmax, precipitation sum P, and mean incoming shortwave
radiation G from MeteoSwiss as model input (MeteoSwiss,
2018, 2021a, b). These are delivered on grids with ap-
prox. 0.2° spatial resolution, which for Switzerland corre-
sponds to a horizontal resolution of about 2 km.

Temperature uncertainty, given as a root-mean-square er-
ror, varies per season from 0.94 K (May to March) to 1.67K
(December to February) in the Alpine region (Frei, 2014;
Christoph Frei, personal communication, 2020). We assume
a Gaussian-distributed additive error perfectly correlated in
space for a single glacier but independent on different days.
The assumption of a perfect error correlation can be justified
by the fact that the station network from which the gridded
temperature values are interpolated is much sparser than the
scale of individual glaciers. The air temperature lapse rate
is derived from the 25 closest cells to a glacier outline cen-
troid using a Bayesian estimation based on a linear regression
model:

Tii =e +qihi +v, 2

where T; ; is the temperature of the ith grid cell out of the 25
considered cells at time 7, ¢; is the regression line intercept,
q: is the regression slope (i.e., %), h; is the height of the ith
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Figure 3. Overview of camera station availability during summer 2019. Cameras have been mounted and torn down at different times due
to weather and staff restrictions. Station names are defined in Table 1. The category “snow” means that the glacier surface is snow covered,
“ice” indicates that bare ice is exposed, and “fail” indicates either a failure in image transmission, station maintenance, or the inability to

read the mass balance.

grid cell, and v, ; ~ N (0, ou% ;) are the residuals independent
in space and time. Using a g-prior of Zellner (Zellner, 1986),
being non-informative in the intercept ¢, and model noise
variance a]i , of the regression, we draw samples of the lapse
rate g; from the following posterior distribution:

( 1 o\ —25/2
g A
qr — 1+gqf - 1+g610>
T; 1 3
p(gr | Ty) + 242 3)
with
= g —
24(1+8) Y (hi —h)?
1 _
2 2/ A 2
. P hi —h — . 4
(s,+1+g%(z ) (gr qo)) )

Above, p(-) means “probability of”’, g determines a weight-
ing factor composing the posterior mean (we set g = 1), g, is
the least squares estimator of the slope, g is the prior mean,
which we choose to be an annually varying climatological
mean gradient at the respective grid location, / is the aver-
age height of the 25 grid cells, and st2 is the residual sum of
squares. This is, up to a constant, the probability density of
a t-distributed random variable with 24 degrees of freedom,
shifted by % and multiplied by c. The samples drawn
from this distrif)ution are then propagated into the particle
filter.

For operational reasons, the precipitation grids contain
the 06:00-06:00 local time precipitation sums and thus do
not conform with the 00:00-00:00 temperature values (Isotta
et al., 2019; MeteoSwiss, 2021b). This might introduce an
error, which we cannot quantify. As for temperature, we thus
focus again on random errors and pretend for simplicity that
the precipitation sum was also from 00:00-00:00. Precipita-
tion uncertainty is generally harder to assess than tempera-
ture uncertainty since it involves undercatch errors and skew
error distributions. Here, we follow the error assessment by
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quantiles of precipitation intensity proposed by Isotta et al.
(2014) and Christoph Frei, personal communication (2020),
who calculated that, for the Alpine region, the standard er-
ror at moderate precipitation intensities roughly corresponds
to an over- or underestimation by a factor of 1.25. The error
increases (decreases) towards low (high) precipitation inten-
sities, and it is generally slightly higher in the summertime.
We draw samples from a multiplicative Gaussian error distri-
bution and for the same reason as for temperature, we assume
perfect precipitation error correlation at the glacier scale. We
also derive Bayesian precipitation lapse rates from the sur-
rounding 25 grid cells in the same fashion as we do for the
temperature lapse rate. However, to circumvent high errors in
the slope calculation due to the boundedness of precipitation
towards zero, we (1) calculate the slope on the square root
of the precipitation and (2) assign a probability that the ref-
erence has actually received precipitation when the reference
cell value is zero but other cells have non-zero precipitation.

Shortwave radiation is derived using data from the geosta-
tionary satellite series Meteosat. As an uncertainty, Stockli
(2013) gives a mean absolute bias between 9 and 29 Wm™2.
We assume the errors to be Gaussian and assign a standard
deviation of 15Wm™2, perfectly correlated on the glacier
scale and independent in time. Shortwave radiation is down-
scaled from the grid to the glacier with potential radiation
(see Sect. 3.1).

2.3 Glacier outlines and measured mass balances

Glacier outlines for the year 2019 are obtained from
GLAMOS (Glacier Monitoring Switzerland), and mass bal-
ances are calculated over a fixed glacier surface area (Elsberg
et al., 2001; Huss et al., 2012).

For calibration and verification, we use mass balance data
acquired in the frame of GLAMOS (Glacier Monitoring
Switzerland, 2018). First, intermediate stake readings inde-
pendent from our near-real-time stations but close to our in-
stallations have been made explicitly for this study. Stake lo-
cations are depicted in Fig. 1. The reading error for these
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measurements is usually estimated to be around 5cm (e.g.,
Miiller and Kappenberger, 1991). Second, we use seasonal,
glacier-wide mass balances based on in situ observations.
These observations are acquired during two field campaigns
in April and September, respectively. Glacier-wide mass bal-
ances are obtained by extrapolating the in situ observations
and making the extrapolated values consistent with long-
term mass changes. The latter procedure is sometimes re-
ferred to as “homogenization” (e.g., Bauder et al., 2007; Huss
et al., 2015). For recent years, this homogenization has not
been performed since no geodetic mass balances are avail-
able yet. The extrapolation method used to infer glacier-wide
mass balance from point measurements involves an adjust-
ment of the model parameters of an accumulation and TI
melt model (Hock, 1999) at locations where observations
are available, while mass balances at grid cells without ob-
servations are produced using the calibrated model (Huss
et al.,, 2009, 2015). Uncertainties of the glacier-wide an-
nual mass balance for the measurement period have been es-
timated to be 0.09-0.2mw.e. in six experiments in which
GLAMOS (1) model parameters (temperature lapse rate, ra-
tio between melt coefficients, summer precipitation correc-
tion) and (2) snow extrapolation parameters have been var-
ied within prescribed ranges and for which (3) mass balance
stake reading uncertainty, (4) DEM (digital elevation model)
and outline uncertainty, (5) climate forcing uncertainty, and
(6) point data availability have been accounted.

3 Methods
3.1 Mass balance modeling

Glacier surface mass balance consists of two components:
accumulation and ablation. We model accumulation and ab-
lation on elevation bins whose vertical extent is determined
by a &~ 20m horizontal spacing of nodes along the central
flow line of the glacier (Maussion et al., 2019). To obtain
glacier-wide mass balance, node mass balances are weighted
with the area per elevation bin. To compute accumulation at
different elevations, we employ a simple but widely used ac-
cumulation model (e.g., Huss et al., 2008):

d P
Cste(t,2) = prcpscale(t) - P(1) - |:1 + (2 — Zret) - ¥:| s (5)

where cg:(f,7) (mw.e.) is the snow accumulation at time
step ¢ and elevation z, prcpgg,.(f) is the unitless multiplica-
tive precipitation correction factor, Pg(¢) is the sum of solid
precipitation at the elevation of the precipitation reference
cell zrr and time step ¢, and 9312 S is the solid precipitation
lapse rate. Following Sevruk (1985), we choose prcpg . to
vary sinusoidally by £8 % around its mean during 1 year, be-
ing highest in winter and lowest in summer. This is to account
for systematic variations in gauge undercatch depending on

the precipitation phase. The water phase change in the tem-
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perature range around 0 °C is modeled using a linear function
between 0 and 2 °C; i.e., at 1 °C there is 50 % snow and 50 %
rain (e.g., Maussion et al., 2019).

Since all three glaciers we investigate are in the GLAMOS
measurement program and winter mass balance observations
are available, the effect of spatial variations in snow accumu-
lation differing from a linear gradient can be incorporated.
This is done by choosing a factor D(z) such that the model
mass balance in the elevation bins matches the measured and
interpolated distribution of the winter mass balance (Farinotti
etal., 2010):

Crflc,glamos (z) =D(2)- C:flc (2). (©6)

Here, C§ (z) (mw.e.) is the modeled winter surface accu-
mulation, i.e., the sum of individual cgg. (¢, z) over the winter
period, and C;’fc’ glamos(z) (mw.e.) is the interpolated winter
surface accumulation at elevation z.

To model surface ablation, we set up an ensemble of
three TI melt models and one simplified energy-balance melt
model. We choose this ensemble since the individual mod-
els differ in the degree of complexity by which they describe
the surface energy balance (Hock, 2003). The models range
from using only temperature as input for determining melt
via employing additionally the potential irradiation to using
temperature and the actual shortwave radiation. The ensem-

ble contains the following:

1. The “BraithwaiteModel” uses only air temperature as
input to calculate melt (Braithwaite and Olesen, 1989;
Braithwaite, 1995):

ase (t, ) = DDFsnowice - max(T'(, z) — Telts 0,

where agf.(f,z) (mw.e.d”!) and T(z,z) (°C) are sur-
face ablation and air temperature at time step ¢ and ele-
vation z, respectively, DDFgow /ice (mW.e. K| d’l) are
the temperature sensitivities (“‘degree-day factors”) of
the surface types (snow and ice), max() is the maxi-
mum operator, and Tl (°C) is the threshold temper-
ature for melt. For this application, we set Ty to 0°C
and keep the ratio of DDFgpow /DDFjce constant at 0.5
(Hock, 2003).

2. The “HockModel” uses potential incoming solar radia-
tion as an additional predictor for melt (Hock, 1999):

asge(t,z) = (MF + Agsnow /ice * Ipot(t’ 7))
~max(7'(t,z) — Tmelt, 0), (3)

where MF (mw.e. K~ d ™) is the temperature melt fac-
o1, dspow/ice (MW.€. m2d~'W-IK~1) are the radia-
tion coefficients for snow and ice, respectively, Iot(Z, 2)
(Wm™2) is the potential clear-sky direct solar radiation
at time ¢ and elevation z, Ty is set again to 0 °C, and
the ratio of agpow /dice 18 0.8 (Hock, 1999; Farinotti et al.,
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2012). Ipot(t, z) is computed at 10 min intervals follow-
ing the methods described in Igbal (1983), Hock (1999),
and Corripio (2003) and by using swissALTI3D (swis-
stopo, 2020) as a background elevation model. Daily
values are then obtained by averaging these values, and
values for the different glacier elevations are aggre-
gated. We assume equal uncertainties for both actual
and potential incoming shortwave radiation G and Iq.

3. The “PellicciottiModel” employs surface albedo and
actual incoming shortwave solar radiation (Pellicciotti
et al., 2005):

TF-T(t,z) +SRF- (1 —«(t,z2))

‘G (Ipot, 1, 2), for T(#,2) > Tmelt , (9

0, for T(¢,2) < Tmelt

asfe(t,2) =

where TF (mw.e.K~1d~1) is the temperature factor,
SRF (m*d~!'W~1) is the shortwave radiation factor,
and a(z,z) and G (Ipo, 1, 2) (Wm_z) are the albedo and
incoming shortwave radiation at time ¢ and elevation z,
respectively. Note that in this case, Tner = 1 °C (Pellic-
ciotti et al., 2005).

Albedo is approximated according to the combined de-
cay equation for deep and shallow snow in Brock et al.
(2000):

Ol(t, Z) — (1 _ g(—swe(t,z)/swe*))
-(p1—p2- logl()(Tacc(ta 2)))
+ e(fswe(t,z)/swe*) (au(t,2)

+p3 e P, (10)

where swe(t, z) is the snow water equivalent at time ¢
and elevation z, swe* = 0.024 mw.e. is a scaling length
for swe, p1 = 0.713, p» =0.155, p3 =0.442, and ps =
0.058 are empirical coefficients as given in Brock et al.
(2000), ¢, is the albedo of the underlying firn/ice below
the snow, and Ty (¢, z) is the accumulated daily max-
imum temperature > 0 °C since a snowfall event at el-
evation z. To avoid infeasible albedo values, « (7, z) is
clipped as suggested in Brock et al. (2000).

4. The “OerlemansModel” calculates melt energy as the
residual term of a simplified surface energy balance
equation (Oerlemans, 2001):

ase(t.2) = 2RO (11
Lf Pw
where
On(t,2) =1 —a(t,2) - Gpot, ,2)
+co+c1-T(t,z). 12)

Here, Om(f,z) (Wm™2) is the melt energy at time ¢
and elevation z, 6t = 1 dis a time step, L f = 3.34 x 10°
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Figure 4. Calibration workflow used to obtain a prior estimate for
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tively, with x referring either to winter (w) or annual (a) values.
The yellow arrows highlight the first iteration step, while the green
arrows highlight the second iteration step. Figure altered from Huss
et al. (2009).

d kg’l) is the latent heat of fusion, and co (W m~2) and
c; (Wm—2K~1) are empirical factors. The albedo « is
calculated as well according to Eq. (10).

3.2 Mass balance model calibration

For the data assimilation procedure described in Sect. 3.3,
we need a prior estimate for the model parameter values of
Egs. (5), (7), (8), (9), and (12). To obtain this, we calibrate
the three investigated glaciers against the GLAMOS glacier-
wide mass balances (Sect. 2.3) and use an iterative procedure
similar to Huss et al. (2009), illustrated in Fig. 4. Addition-
ally, we calibrate the snow redistribution factor D(z) annu-
ally.

Following Huss et al. (2009), all model parameters are ini-
tially set to values reported in the literature (Hock, 1999; Oer-
lemans, 2001; Pellicciotti et al., 2005; Farinotti et al., 2012;
Gabbi et al., 2014), and a two-step calibration procedure is
then applied: first, the precipitation correction factor is tuned
so that the winter mass balance of a given year is reproduced.
In this step, the melt factors are held constant at their initial
values. In a second step, the calibrated precipitation factor is
kept constant, and the melt factors are optimized to repro-
duce the annual mass balance. The two steps are repeated
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alternately, and both precipitation correction and melt fac-
tors converge with every iteration. We terminate the iteration
after the absolute difference to the winter and annual mass
balance drops below 1 mmw.e.

Once the model parameters have been optimized, we de-
termine the value of D(z) that matches the interpolated win-
ter mass balance. Since this may result in changes in the re-
quired model parameters, the iterative procedure is applied
one more time as a final step.

3.3 Particle filtering

To ensure that all mass balance model predictions stay within
the observational uncertainty, we perform data assimilation.
In particular, we employ a particle filter since it does not
restrict the class of state transition models and error distri-
butions. Especially when temperatures are around the melt-
ing point, the system becomes nonlinear since melt occurs
above but not below this point. As a consequence, the distri-
butions we deal with are not necessarily Gaussian. The facts
that (a) the temperature chosen to parametrize the melting
point is not the same for all four models, (b) the individual
model prior distributions are combined to obtain the ensem-
ble prediction, and (c) there can also be accumulation con-
tributing to the overall mass balance add further complexity.
We do not use other data assimilation approaches, such as
variational methods or ensemble Kalman filtering, because
variational methods encounter difficulties when dealing with
non-Gaussian priors (van Leeuwen et al., 2019), whilst the
ensemble Kalman filter in its original form is not designed
for multi-model applications as we use in our case. Overall,
particle filtering is a very flexible, generalizable, and readily
implementable data assimilation method.

Some extensions of the common particle filter framework
allow model parameters and model performance to be es-
timated over time. With this, we aim at providing optimal,
daily mass balance estimates at the glacier scale.

3.3.1 General framework

The general framework for data assimilation consists of a
system whose state x; evolves according to a model, but only
partial and uncertain observations y, of the state are avail-
able.

{ Xy = g(xt—l»ﬂz),
yl :H(xl)+ef7

state transition equation (13)
observation equation

Here, x,_; is the state at the previous time step r — 1, g(-)
is the state transition function, # is the observation opera-
tor as introduced in Eq. (1), €; is the observation error vector
at time ¢, and B, is a random variable that describes model
uncertainties. The term for 8, does not need to be strictly
additive, and it should include uncertainties stemming from
the model input variables. The goal of data assimilation is
to compute conditional distributions of the system state x;
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based on observations y.; = (¥, ¥2, ..., ¥;) sequentially for
t =1y, to+1,...tend, Where fg and fepq are the time steps with
the first and last observations, respectively. In our case, these
conditional distributions describe the cumulative mass bal-
ance of a glacier, given all available camera observations.

To put this general framework into practice, we use the
particle filter, which is a sequential Monte Carlo data as-
similation method. Instead of handling conditional distribu-
tions of x, analytically, the particle filter approximates the
conditional distribution of a state x; at time ¢ given the ob-
servations y;., by a weighted sample of size Ny (e.g., van
Leeuwen et al., 2019).

Niot Niot
PEYIL) N DY Wb —xk). Y wie=1 (14)
k=1 k=1

Here §(-) is the Dirac delta function, the elements x; ; of the
sample are called “particles”, and the weights w; x associated
with the particles x; x sum to unity.

Usually, particle filtering comprises three repeated steps:
the predict step, the update step, and the resampling step. In
our case, these steps mean the following: during the predict
step, particles holding possible mass balance states are prop-
agated forward in time using the state transition in Eq. (13),
where g(-) represents the ensemble prediction of mass bal-
ance Eqgs. (5§)—(10). This acts as a prior estimate of the mass
balance distribution. In the update step, the weights of the
propagated particles are recalculated based on Bayes’ theo-
rem. This accounts for the information of the next camera
observation. In the last step, particles are resampled accord-
ing to the updated weights. This step is necessary to restore
particle diversity that is reduced during the update step. Re-
sampling avoids so-called particle degeneracy, in which all
weights collapse on only a few particles. Beyond the com-
mon three-step scheme, we additionally estimate model pa-
rameters with the particle filter by augmenting the state vec-
tor with model parameter values. In this way, we add an ad-
ditional fourth step to the particle filter scheme, in which we
evolve model parameters temporally according to a defined
memory parameter. This prevents a collapse of the ensemble
due to overconfidence, meaning that model parameter vari-
ability would become too low over time.

3.3.2 Application of the framework

The flowchart in Fig. 5 visualizes how the particle filter is im-
plemented in our modeling framework. Figure 6 sheds light
on how we perform the individual particle filter steps.

The temporal dynamics of the glacier mass balance state
can be described by the accumulation model in Eq. (5) com-
bined with the four different melt models in Egs. (7), (8),
(9), and (11). A priori, it is not known which model per-
forms best, and each model has a set of unknown parame-
ters. To take these two uncertainties into account, we aug-
ment the state vector by the model index m; € {1, 2, 3,4} and
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the model parameters 6;. In this way, a model weight and
the model parameter values are also estimated based on the
observations. Although the unknown parameters are differ-
ent for each model, we do not use an additional model index
for 0;. Instead, we ensure that for all particles, 0, ; is always
the parameter vector associated with model m; ;. This means
that, when following a given particle backwards in time, its
entire dynamics is governed by one single model only. In the
forward direction, a particle can “die off” and be replaced
by another particle with different model index. In this case,
both the model index m; ; and the entire past trajectory are
changed to the new model.

As the state has to provide all information that is needed
to predict the next observation, we also include the surface
albedo and the snow water equivalent on the ice in our state
vector. Hence, the state vector is defined as

Xy = (ml" 0[7 E[)’ Et = (beC(t9 Z)a (X(t, Z)’ SWC(I, Z)) (15)
Here, &, is called the physical state.
3.3.3 Predict step

During the predict step, the explicit temporal evolution of the
physical state &, involves the randomized error accounting
for uncertainties in the meteorological input (Sect. 2.2). Here,
we call these errors 7, and set an additional scalar subscript to
indicate that the errors are different for each meteorological
variable. We first predict csg (¢, 2), Tacc(f, 2), and swe(t, z).

cse(t, 2) = cste (Ps(2, 2), Nt,2, 0:) (16)

Tacc(a(t —1,2)) + Tyax (£, 2) + 111,
if Thnax (¢, 2) > 0 and

csie(f,7) < 0.00l mw.e.d™! (17

0, otherwise.

Tacc(t,2) =

swe(t,z) = max(swe(t — 1,2) —asf.(t — 1, 2),0)
+ cste (2, 2) (18)

Based on Eqs. (7), (8), (9), and (11), the predicted mass bal-
ance is then

bsic(t,2) =bstc(t — 1,2)
+ cste(t, 2)
—astc(T(t,2) + 01,3, Gpots 1, 2)
+ 01,4, @(Tace(t,2)), swe(t,z), my, 6;)
+ B, (19)

where the errors 3, are independent in time but partly per-
fectly correlated in space for reasons described in Sect. 2.2.
By introducing both the meteorological uncertainty » and the
parameter uncertainties, we shift the majority of the uncer-
tainty contained in §; to these variables. Since the remain-
ing uncertainty for 8; is small and hard to quantify, we set
B = 0 for simplicity. With this assumption, we neglect some
additional uncertainty contained in B;, being aware that this
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might lead to “jumps” in the temporal evolution of the model
performance. Finally, the observations y, depend only on the
cumulative mass balance at the elevation z of the camera as
specified in Eq. (1).

We use a total of Ny = 10000 particles and set the
weights at time #y (i.e., the time when the first camera ob-
servation is available) to 1/Nyy. Since at ¢y all models have
equal probabilities, Nio/4 particles are assigned to each of
the four models. The initial value of bgg (g, 7) is set to zero
for all particles, whereas a(f, z) is determined by the max-
imum air temperature since the last snowfall before 7y, and
swe(fo, z) depends on the cumulative mass balance before #.
Finally, the initial calibration parameter values 6y, ; of the
particles with model index j are obtained by drawing Monte
Carlo samples from a normal distribution fitted to the loga-
rithmized parameters of model j, as they were calibrated in
the past (see Sect. 3.2). Table 2 shows the means and standard
deviations for the input parameters of the three glaciers.

3.3.4 Update step

In the update step, all particles are then reweighted by mul-
tiplying the density of the observations y, given the state of
individual particles x, x with their respective weights at r — 1
and normalizing the weights to sum to unity (van Leeuwen
etal., 2019).

Py | X k)
(Wi—1,0 p(Y; | X20)

Wtk = wt—l,kZ (20)

In our case, y, = h(t,z), and p(y, | x; ) is the normal den-
sity with mean bgr.(f, 2)x/pbulk and standard deviation o,
evaluated at h(f,z). After updating the model predictions
with the observations, we are interested in (a) the poste-
rior model probabilities 7, ;, (b) the posterior distribution of
model parameters 6, and of course (c) the posterior distribu-
tion of the physical state given all observations y.;. These
quantities can be decomposed from the approximation with
weighted particles in Eq. (14). The posterior model probabil-
ity is given by

Niot

plmi=jlyr)~m = wdmg—j), 1)
k=1

where 7; ; is the approximation of the posterior model prob-
ability at time ¢ and model j. The posterior distribution of
the parameters of model j is approximated by

Niot

. Wt k .
PO | yrme =)%Y —8mi k= SOk —0)). (22)
k=1 ""1J

The posterior distribution of the physical state takes the
model uncertainty into account. It combines the posterior dis-
tributions under the different models j according to the law
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Table 2. Sample mean and standard deviations for the prior parameter distributions used on Glacier de la Plaine Morte, Findelgletscher, and
Rhonegletscher. For a definition of the listed parameters, refer to Egs. (7), (8), (9), and (12).

Parameter  Unit Plaine Morte Findel Rhone

DDFje. mmw.e.K—1d~! 6.81+0.87 11.44+1.76 8.53+0.84

MF mmw.e. K—1d~! 2.55+0.95 1.77 4+ 0.05 1.79£0.02

ice mmw.e.m*d~ ! W-IK=1  0.009+£0.007  0.030+£0.006  0.014 +0.002
TF mmw.e. K~1d~! 2.85+0.21 430+1.52 3.80+1.09
SRF mid-iw-! 0.07 £0.03 0.17£0.22 0.08 £0.05

o Wm—2 —11422+177 —10630+£9.07 —112.64+3.13
] Wm2K"! 12.86 + 1.54 17.55 +3.00 14.58 +1.91
PICPscale 1.60 £ 0.20 1.434+0.20 1.56 +0.25

of total probability, in which we can insert Egs. (21) and (22):

4
PEN YLD =D pmi=j|yi)pE | yipomi = j)

NIOI.
Wy k .
Ty =8 mek — )8 — &)
=1 Tt

Jj=1
4
Jj=1
k=1

~

Wy k8 (§rk — &1)- (23)

As the observations only measure the mass change since the
installation of a camera, a difficulty occurs if several cameras
are installed on different days at different elevations of the
same glacier. We elaborate on the technical details for these
cases in Appendix A.

3.3.5 Resampling

During the resampling step, the updated weights are used
to choose a new set of Ny particles with equal weights.
To achieve equal weights, particles with low weights are re-
moved, whereas those with high weights are duplicated. Be-
cause there is no stochasticity in the evolution of m, though,
when the particle index k is fixed, for some models only a
few particles with the according model index survive after a
couple of iterations. If this occurs, the respective model has
little chance to become better represented at later time steps,
which is unfavorable, since the model might give better pre-
dictions on average.

To overcome this problem, we assign a minimum contribu-
tion to each model of the ensemble, regardless of the model’s
performance at a certain time step. To compensate for the
potentially too high resampling rate of a poor prediction, we
lower the weights of all particles of a model whose contri-
bution has been deliberately increased to match the chosen
minimum contribution. In turn, we increase the weights of
all other particles to compensate for their underrepresenta-
tion. This means that on average, the original weights per
model remain unchanged. For technical details of the resam-
pling procedure, see Appendix B.
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3.3.6 Parameter evolution

The dynamics of the augmented state is defined such that the
model index does not change over time. However, parameters
are evolved temporally such that after a long period without
observations, 6 is distributed according to the prior parameter
distribution.

01 =p0; +(1—p)po+&,, & ~N©O,(1-pHZo) (24)

Here, p( and X are the prior mean and the prior covariance
of @ at the starting time ty, which we determine from the
calibration procedure in Sect. 3.2, and p € [0; 1] is a memory
parameter that we choose to be 0.9. This step accounts for
the fact that parameters are not necessarily constant in time,
and it also ensures the reintroduction of parameter diversity
which is lost during the resampling step.

3.4 Validation scores

To validate the daily mass balance predictions made with the
particle filter, we use the CRPS (continuous ranked probabil-
ity score). The CRPS is designed to estimate the deviation
of a probabilistic forecast from an observation. It takes into
account both the deviation of the median forecast from the
actual observation (forecast reliability) and the spread of the
forecast distribution (forecast resolution). This means that a
forecast close to the observation median can still receive a
poor CRPS if the forecast distribution spread is high, and the
other way around. Lower values of the CRPS correspond to
better forecasts. The minimum value is zero, corresponding
to a perfect, deterministic forecast of the observation.
The CRPS is defined as (Hersbach, 2000)

00
CRPS = / [ Pe(bstc/ Poulk - Pw)

—00

— H (bste/ poulk - pw — h (2, 2))1Pdbse, (25)

where P¢(-) is the forecast mass balance cumulative probabil-
ity distribution, and H (-) is the Heaviside function. The usual
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choice for Pr is the weighted ensemble distribution of the
particles from the predict step, i.e., a discrete step function
with jumps of height w;_; ; at the positions H (bsic(?, 2)k),
where by (¢, 7)i are the prediction particles. Note that this
setting does not account for the observation error of h(t, z),
implying that the score is not “proper”; i.e., it does not al-
ways return the best value when the prediction distribution
is the true distribution (Ferro, 2017; Brehmer and Gneiting,
2019). To obtain a proper score, one can use the forecast of
the camera reading h(t, z), which is the Gaussian mixture
with weights w;_1 x, mean values H(bss(t,2)r), and com-
mon variance 03. Despite being proper, it still has some the-
oretical shortcomings (Ferro, 2017). Since for our data the
values of the two scores do not differ much, we use only the
proper score in all result figures but give also the value of the
common CRPS in square brackets in the text.

4 Results and discussion
4.1 Mass balance observations

Figure 7 shows the observed cumulative mass balance at the
individual cameras, an example of meteorological conditions
at station FIN 1 (providing the longest time series), daily
mass balance rates at FIN 1, and four example camera im-
ages.

Considering all stations, we have observed ice melt rates
of up to 0.12 mw.e.d"! and a cumulative mass balance of
about —5.5mwe.e. in 81d close to the terminus of Findel-
gletscher (FIN 1). Different camera stations reveal differ-
ent melt rates and total ablation, which generally depend on
the station’s elevation. However, stations at different eleva-
tions can have similar melt rates as well. For example, sta-
tion RHO 4 at 2589 ma.s.1. experienced an average melt rate
of —0.047 mw.e.d™!, while the average melt rate at FIN 2
(3015ma.s.l.) was —0.043mw.e.d~! during the same pe-
riod (we count only days with net ablation). Further, sta-
tion PLM 1 had the lowest average melt rate despite not be-
ing at the highest elevation. This might be due to the me-
teorological conditions, such as the formation of local cold
air pools, and the so-called “Massenerhebung effect” (Barry,
1992). The latter describes the tendency of higher tempera-
tures to occur at the same elevation in the inner Alps as on
their outer margins. For all stations, average melt rates dur-
ing July and August are similar (0.07340.012mw.e.d™!
in July vs. 0.0624+0.011 mw.e.d~! in August) and 0.02-
0.03mw.e.d”! lower (i.e., 0.044+0.014mw.e.d”!) in
September. On Glacier de la Plaine Morte, the difference is
most pronounced with a drop of 0.06 mw.e.d~! between Au-
gust and September. Again, this is probably caused by local
effects. On average, the difference between minimum and
maximum melt measured at different stations on a particu-
lar day was 0.035mw.e.d™!. Over the observational period,
this difference ranged from 0.005 to 0.081 mw.e.d™!. The
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highest difference (0.081 mw.e.d™!) occurred on 1 Septem-
ber 2019 in connection with the passage of a convergence
line and cold front (German Meteorological Service, 2019):
while Glacier de la Plaine Morte was already under the influ-
ence of cooler weather, Findelgletscher and Rhonegletscher
experienced another melt-intensive day. The variability at in-
dividual stations, measured as standard deviation of a 14d
running mean, was generally low during July and August
(0.016mw.e.d!) and increased at the beginning of Septem-
ber (0.026 mw.e.d™!). We attribute this increase to the onset
of intermittent snowfalls at individual sites.

As shown by the pictures from station FIN 1 (Fig. 7d),
summer 2019 is characterized by a variety of events, ranging
from very hot, melt-intensive days to snowfalls at high eleva-
tions. The time series of normalized mean daily temperature
and shortwave radiation at station FIN 1 (Fig. 7b) illustrate
that two heat waves occurred at the end of June and end of
July 2019. The total amount of water released by snowmelt
and ice melt on Swiss glaciers during these heat waves was
0.8 km? (Swiss Academy of Sciences, 2019), which approxi-
mately equals the annual amount of drinking water consumed
in the country. These extreme phases are also mirrored in the
melt observed at our stations (Fig. 7): for FIN 1, daily melt
rates peaked between 0.09 and 0.12 mw.e.d ™. For days with
a range-normalized temperature exceeding 0.8 (9d in total,
Fig. 7b), the average melt rate is 0.1 mw.e.d~! at that sta-
tion. During these nine days, modeled, glacier-wide melt in-
dicates the release of 6 x 10° m? of water. Another phase with
very high melt occurred at the end of August 2019. Here,
normalized temperature and radiation are average (mean val-
ues of 0.6 and 0.5, respectively). The exact causes for this
strong melt event are unclear, and we speculate that it might
be related (at least in part) to rain events that were not cap-
tured by the meteorological input despite being visible in our
camera images between 28 and 31 August 2019. Summer
melt phases were also interrupted by two snowfalls of dif-
ferent strengths: small amounts from 15 July 2019 (image 2
of Fig. 7d) and larger amounts, summing up to 0.25 m snow
height in total, in early September (image 4 of Fig. 7).

4.2 Particle filter mass balance validation

Besides the direct observations presented above (Sect. 4.1),
our framework enables predictions of daily mass balance.
In this section, these predictions are (i) validated against
reference forecasts (Sect. 4.2.1), (ii) cross-validated against
test subsets of observations (Sect. 4.2.2), and (iii) compared
against glacier-wide mass balances reported by GLAMOS
(Sect. 4.2.3).
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Figure 7. (a) Cumulative mass balance at individual camera stations during summer 2019. The circled numbers refer to the pictures shown
in panel (d). (b) Normalized mean temperature Tiean and shortwave radiation G (left axis) normalized to their respective ranges, as well
as precipitation (right axis) for station FIN 1. (¢) Daily mass balance rate observed at FIN 1. (d) Sample images as captured by the camera
at FIN 1: (1) camera right after setup, (2) glacier after light snowfall, (3) picture from the day with the highest melt (0.12mw.e.), and

(4) snowfall event hampering the stake readout.

4.2.1 Validation against reference forecasts

We consider two types of reference forecasts: first, a forecast
with (i) mean glacier-wide melt parameters as obtained from
past calibration (Sect. 3.2) and (ii) the precipitation correc-
tion factor prepg,j. constrained by the 2019 GLAMOS win-
ter mass balance; and second, a forecast with a partially in-
formed model including the same constraint for prcp,,,;. but
also a tuning of the melt parameters to reproduce one further
intermediate point measurement. The latter measurement is
the cumulative mass balance between September 2018 and
2019 at the mass balance stake closest to each camera (loca-
tions in Fig. 1). Since there are up to four stake readings per
glacier, we calculate single parameter sets tuned to reproduce
all possible combinations of stake readings per glacier. This
results in 19 CRPS values in total, for which we calculate
the median. We also distinguish between the case in which
the uncertainties in the meteorological inputs are taken into
account and the case in which they are not.

Finally, we calculate the CRPS for the two reference fore-
casts by inserting two different values into the CRPS equa-
tion: (a) the mass balance of each day separately and (b) the
cumulative mass balance. Note that for the particle filter,
there is no need to make this distinction. Indeed, the daily
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deviation from a mass balance observation also equals the
deviation from the cumulative observation. Figure 8 shows
the results of the validation.

For the particle filter, daily and cumulative melt ob-
servations are generally reproduced well, with an average
CRPS of 0.012 [0.012] m (proper CRPS outside and stan-
dard CRPS inside the square brackets). At the end of the
assimilation period, Rhonegletscher has an average CRPS
of 0.017 m, which is almost double the CRPS for Findel-
gletscher (CRPS =0.01 m) and Glacier de la Plaine Morte
(CRPS =0.008 m). The high value of Rhonegletscher is re-
lated to the switch-on of cameras RHO 1 and RHO 3. In-
deed, the glacier also has CRPS &~ 0.01 m before that. Poor
predictive performances also occur after snowfalls, proba-
bly related to the uncertainties by which the mass balance
stake can be read during these times. We run experiments in
which the particle filter is limited to using mean parameters
and/or single models instead of parameter distributions and
the model ensemble. In the experiments, the resulting aver-
age CRPS values are higher than the average CRPS obtained
with the ensemble and time-variant parameters. The lowest
single values occur for specific combinations when running
the particle filter with the BraithwaiteModel and Oerlemans-
Model and flexible parameters on Glacier de la Plaine Morte.

The Cryosphere, 15, 5017-5040, 2021
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Figure 8. Median CRPS values over “n” validation cases for different forecasts. The following symbols are used: § =mean parameters
from past calibration; 6,5 = parameters calibrated on different combinations of mass balance stake observations close to the cameras;
8pf = parameters found with the particle filter. Cases accounting for (red dots and analyses with *“x,”) and neglecting (blue dots) the uncer-
tainty in the meteorological variables are distinguished, and “cum” and “day” indicate the errors in the cumulative and daily mass balance
predictions, respectively. For the particle filter (highlighted in green), the label “cum/day” indicates that the two errors coincide, and “j”
indicates cases where the particle filter was run with only one model.

Note that if no probabilistic temperature and precipitation daily estimates for the results’ uncertainties without need for
lapse rate is used, the resulting CRPS values from the ex- further calculations. Indeed, this information can be essen-
periments with mean parameters and/or only one model are tial, especially for the operational application of our frame-
even higher than the highest CRPS obtained using the ensem- work.

ble and time-variant parameters. The experiments thus show
that it is beneficial to include all four models and parameter
uncertainty into the particle filter.

Comparing the CRPS of the particle filter with the ref-
erence forecasts, the performance closest to the particle fil-

4.2.2 Cross-validation

A different approach for validating the particle filter is to only

ter is delivered by the forecast produced with mean melt use subsets of the available camera observations as input and
parameters and no uncertainty in the meteorological input to evaluate the predicted mass balances at the remaining lo-
(mean CRPS = 0.013 [0.015] m). When the CRPS is calcu- cations (cross-validation). We do so by splitting the avail-
lated from the cumulative mass balance produced with mean able observations into training and test subsets of cameras,
melt parameters, the CRPS increases to 0.333 [0.243]m on i.e., by keeping the time series of a given station together
average. This is because the mean parameters do not adapt to (as opposed to splitting individual time series). Our test sets
the meteorological conditions over time, and in this case, the always contains one time series; 1.e., we perform a leave-ope-
cumulative mass balance can temporarily be under- or over- out cross-validation. Figure 9 shows the temporal evolution
estimated or even diverge completely over time. Somewhat of the CRPS at the test locations, i.e., at the stations not used
counterintuitively but for the same reason, the CRPS is sim- by the particle ﬁlter, .

ilar when parameters have been tuned to match nearby stake We ﬁn‘_j that, in general, the cumplatwe mass balance at the
readings. For the cumulative deviation, we find CRPS = 0.25 test locations follows the cumulative observation curve well

[0.251] mw.e. when considering meteorological uncertainty, but not as closely as when the test location’s data are assimi-
and CRPS =0.294 [0.28] mw.e. when not doing so. Com- lated with the particle filter. This shows the benefit of having

pared to both the particle filter prediction and the prediction several cameras per glacier mounted at different elevations.

with mean melt parameters, the CRPS of daily mass balances For Findelgletscher, we find 8.8 % average deviatign (median
produced without considering meteorological uncertainty is ~ CRPS of 0.071 and 0.108 mw.e. for the two stations) when
slightly higher (median CRPS: 0.023 [0.025] mw.e.). comparing the cumulative mass balance curve with the par-

In general and for the individual glaciers, the particle fil- t@cle filter prediction.. For.Rhonegletscher, the average dev.ia-
ter improves the CRPS of the reference forecasts by 95 % to tion at the test locations is 9.0 % average deviation (median
96 %. For the daily forecasts, the performance of the particle CRPS 0.14, 0. 1.487 0.067, and 0.178 mw.e. depending on the
filter is only partly better, with improvements in CRPS be- stat}on). The hlgh?St CRPS values for Rhone stem from the
tween 8 % and 48 %. Along with the performance, a further period after the middle of August when two additional cam-

important advantage of the particle filter is that it provides eras were set up, but the values still outperform the reference
forecasts of Sect. 4.2.1.
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Figure 9. Temporal evolution of the CRPS as determined in a leave-one-out cross-validation procedure on Rhonegletscher and Findel-
gletscher. “TRAIN” and “TEST” stand for the stations assimilated by the particle filter and the station used for the validation, respectively.

The temporal pattern evident in Fig. 9 includes an increas-
ing CRPS through time but at different rates depending on
the cross-validation subset. The individual pattern originates
from (1) a stations’ representativity for the given elevation
band it is located in, (2) the combination of stations in the
cross-validation subsets, and (3) cumulative error character-
istics, since we observe cumulative mass balance over time.
Station RHO 3, for example, can generally be modeled with
lower errors compared to other stations. We speculate this
being related to its location, which is in a relatively flat area
with little crevasses. The other stations are instead either in
the vicinity of crevasses (RHO 4) or influenced by shadows
from the surrounding terrain, dark glacier surface, or steep
ice (RHO 1 and RHO 2). RHO 1 and RHO 2 also show that
even neighboring stations can exhibit different melt. This af-
fects the results of the cross-validation whenever one of these
two stations is excluded from the training dataset.

The above results show the ability of the particle filter
to also predict melt at locations without observations, albeit
with a lower performance when compared to the situation in
which all observations are assimilated. The results also show
that even with an augmented particle filter, it is demanding
to find a unique, glacier-wide parameter set that correctly re-
produces the mass balance at all locations.

4.2.3 Comparison to GLAMOS glacier-wide mass
balances

We compare our assimilated model ensemble predictions to
the glacier-wide annual mass balance reported by GLAMOS
at the autumn field date of the mass budget year 2019. We
do so by running the model from the field campaign date in
autumn 2018. Figure 10 illustrates the different model and
parameter settings used during the simulation.

During the period preceding the installation of our cam-
eras, we calculate mass balance with the parameters cali-
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Table 3. Mass balances calculated with the particle filter between
the autumn field dates of 2018 and 2019 against the values reported
by GLAMOS. See text for the difference of particle filtering with
and without pre-selection. Uncertainty values are given as standard
deviations.

Glacier  Particle filter Particle filter GLAMOS
(no pre-selection)  (pre-selection) (mw.e.)
(mw.e.) (mw.e.)

PLM —1.74+£0.29 —1.79£0.38 —1.77+£0.09

FIN —0.04+£0.76 —0.48+£0.27 —0.24+0.16

RHO —0.09+0.90 —0.84+0.28 —0.77+0.20

brated in Sect. 3.2. This results in about 45 distinct model
runs, which we call “free model runs”. We use this first pe-
riod to provide initial conditions for the particle filter period,
which lasts from the first camera setup on a respective glacier
either until cameras are retrieved or until the autumn field
date is reached (whatever comes first). To achieve a connec-
tion between the free model run and the period during which
the particle filter is used, we sample 10000 times from the
initial conditions at the first camera setup date. We refer to
this procedure as “particle filtering without pre-selection (of
initial conditions)”. Not all free model runs have to be used,
though: they can also be pre-selected based on the cumula-
tive mass balance observed at the stakes closest to the camera
stations. For this case, we select model runs that reproduce
these observations within an estimated reading uncertainty
of £ 0.05 mw.e. (“particle filtering with pre-selection”). The
cumulative mass balances calculated with these two proce-
dures are compared to the GLAMOS analyses in Table 3.
For particle filtering without pre-selection of initial
conditions, the difference from the GLAMOS analyses
is 0.67mw.e. for Rhonegletscher, 0.2mw.e. for Findel-
gletscher, and 0.05mw.e. for Plaine Morte. With pre-
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Figure 10. Schematic model and parameter settings on Rhonegletscher during the mass budget year 2019. After an initial phase with
parameters from past calibration, the precipitation correction factor prcpgc,e is tuned to match the winter mass balance. When the first
camera is set up, we sample the existing model runs 10000 times to be able to couple the free model runs with the 10 000 particles during

the particle filter period (not all are drawn for readability).

selection, in contrast, the absolute difference changes
by —0.07, —0.24, and +0.02mw.e., respectively. Conse-
quently, including the stake mass balance readings improves
the match to the GLAMOS analyses for Rhonegletscher
and Plaine Morte, while it has only little effect for Findel-
gletscher. A reason for this can be either that the mass bal-
ance stakes are not at the observation locations or that the
mass balance gradients of the pre-selected runs are unfavor-
able. Overall, the differences from the GLAMOS analyses
can be explained by (1) the difference in the approaches used
to calculate glacier-wide mass balances from point observa-
tions, (2) the use of only 1-4 point observations located in
the ablation zone and covering < 30 % of the glacier eleva-
tion range, compared to the complete network of 5—14 stakes
over the entire elevation range used in the GLAMOS anal-
yses, (3) the lack of representativeness of the camera obser-
vations for the accumulation zone of the glaciers, i.e., biased
vertical mass balance gradients, (4) the lack of representa-
tion of individual winter accumulation measurements in our
glacier model, or (5) a problem with representing the mass
balance of the glacier with only one parameter set. Also note
that 91 %—99 % of the total uncertainty for the model runs
with data assimilation stem from the period before the par-
ticle filter can be initialized, i.e., before the installation of
the first camera station. Figure C1 in the Appendix shows
the evolution of the mass balance state over the assimilation
period by the example of Findelgletscher.

The Cryosphere, 15, 5017-5040, 2021

4.3 Individual model performance

We analyze model performance by considering the temporal
evolution of the model probabilities 77, ; and model particle
numbers N; ; for the four melt models over time at individual
glaciers. High model performance is indicated by high prob-
abilities and large particle numbers over long time periods.

Figure 11 shows the model performance of all four melt
models and at all three glaciers.

In general, we find that the model probabilities are sen-
sitive to the ensemble input, such as the parameter priors,
and the prescribed meteorological uncertainty. This is an in-
dication of the ensemble choosing the model combination
that best reproduces the observations at any time. Note that
none of the models is removed from the ensemble in the re-
sampling step even when the model performs poorly. During
the assimilation period, indeed, models can recover and can
show good performances at a later stage (see, for example,
the HockModel for Rhonegletscher or the PellicciottiModel
for Findelgletscher). This shows the utility of the resampling
procedure introduced in Sect. 3.3.5.

During the assimilation period of an individual glacier, of-
ten one model dominates the ensemble for a given amount of
time (“model dominance” being the case in which the model
probability is > 0.5). Model dominance, and especially fast
switches between dominant models, can be indicative of a
mode collapse, resulting from either an overconfident like-
lihood or prior, or both, operating in an M-open framework
(Bernardo and Smith, 2009), i.e., the case in which the “true”
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Figure 11. Temporal evolution of model probabilities (solid lines) and model particles (stacked bars) for the three modeled glaciers. The fast
switch in model probabilities occurring for Findelgletscher between 07 and 8 August 2019 is further depicted in Fig. 12.

model is not a choice amongst the available models. In our
case, we believe that the ensemble prior might be overconfi-
dent on average since we have chosen the observational error
conservatively; i.e., we have chosen the largest errors emerg-
ing in the round-robin experiment (Sect. 2.1.2). This would
lead to a model preferably obtaining high weights, which had
already dominated on the previous days. However, when the
likelihood is overconfident or there is strong evidence that a
previously well-performing model now performs worse, the
filter might switch back and forth between individual mod-
els that best describe the observations. We accept this model
dominance and the fast switching as a sign that the overall en-
semble performance is improved. Averaged over all glacier
and time steps, the PellicciottiModel has the highest model
probability (0.39), while the BraithwaiteModel has an aver-
age model probability of 0.24, the OerlemansModel of 0.23,
and the HockModel of 0.14. The relatively high probabilities
assigned to the PellicciottiModel can have various reasons,
and we suspect that two are of particular importance in our
case: first, the calibration might have led to a broad prior
parameter distribution, allowing for the model to adapt to
various combinations of meteorological input and observed
melt. Second, using the actual solar radiation G instead of the
potential irradiation I,r might provide a further advantage
since this accounts for partly cloudy conditions and diffuse
radiation, which the potential irradiation is not able to cover.
The fact that the second highest probability is assigned to the
OerlemansModel (which uses G as well), supports this pos-
sible explanation.

In terms of the temporal evolution, the model dominance
for Rhonegletscher and Glacier de la Plaine Morte is deter-
mined already within the first few days and changes only
a little after that. Changes in model dominance can be ob-
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served for Rhonegletscher and Findelgletscher, instead. In
the case of Rhonegletscher, for example, the model domi-
nance switches from the PellicciottiModel to the Oerlemans-
Model and later to the HockModel. For Findelgletscher, how-
ever, there is a transition from the OerlemansModel to the
PellicciottiModel. This transition is particularly noticeable
between 7 and 8 August 2019 (Fig. 12). The causes for it are
not entirely clear, and we speculate that it might be related
to the precipitation event starting on 6 August. Perhaps sur-
prisingly, the model dominance seems to be little influenced
by snowfall events (e.g., from 9 to 17 September on Findel-
gletscher or from 5 September to 11 September on Rhone-
gletscher), even if surface albedo is taken into account very
differently by the individual models.

Figure 13 shows the evolution of the distribution of indi-
vidual model parameters during the assimilation period. The
example refers to Findelgletscher.

Three phases of quick parameter changes can be observed.
First, the parameters change rapidly on the first days of the
assimilation period. This means that the prior parameter dis-
tributions do not match the exact parameter distributions
needed to model the mass balance at the camera locations.
This is due to both the calibration time span (seasonal cal-
ibration vs. daily application) and the low sample size of
the calibrated parameters. A second rapid change can be ob-
served after the second camera has been switched on, i.e.,
on 24 July 2019. Here, an adjustment in the parameters is
needed in order to accommodate the mass balance at both
stations equally well. The third rapid change starts when ab-
lation at station FIN 1 is highest but when radiation and tem-
perature are not at their maximum. Here, the change might be
due to the model being forced to yield high ablation rates de-
spite only moderate meteorological forcing. This shows the
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Figure 13. Temporal evolution of the various model parameters for Findelgletscher. Shown are the sample means (lines) and the standard
deviations (bands). Note that for the OerlemansModel, parameter c( is adjusted to fit on the same scale as c;.

advantage of employing the model ensemble as opposed to,
for example, a single model with deterministic parameters:
the ensemble also reproduces system states which cannot be
explained by the uncertain meteorological input.

The Cryosphere, 15, 5017-5040, 2021

5 Conclusions

In this study, we mounted seven cameras on three Swiss
glaciers, delivering 352 point mass balance observations
throughout summer 2019. At the camera locations, we ob-
served daily melt rates of up to 0.12mw.e.d~! and cumula-
tive melt of up to ~ 5Smw.e. in 81 d. To calculate near-real-
time mass balances, we used an ensemble of three TI mod-
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els, a simplified energy balance model, and meteorological
model input. The camera observations were assimilated into
the model ensemble by using a specifically developed parti-
cle filtering scheme. The particular focus was put on deliver-
ing a stable ensemble capable of reproducing glacier mass
balance throughout the summer. Variability in the model
parameters, as well as particle filter stability, was consid-
ered. For the former, a prior parameter distribution obtained
from calibration against past seasonal glaciological mass bal-
ances was used as input to an augmented particle filter ca-
pable of estimating parameters while assimilating observa-
tions. For the latter, the particle filter was designed such that
models with temporarily poor performance can recover at a
later stage. For the mass budget year 2019, we calculate cu-
mulative mass balances of —1.79 mw.e., —0.48 mw.e., and
—0.84 mw.e. for Glacier de la Plaine Morte, Findelgletscher,
and Rhonegletscher, respectively.

The mass balances given by the particle filter were closer
to the cumulative observations (CRPS =0.012 mw.e.) than
two reference forecasts which either assumed no measure-
ments to be available or only used one intermediate set of
stake readings. Measured with the CRPS for cumulative mass
balances, the particle filter improves the performance of ref-
erence forecasts by 95 % to 96 %. As a further advantage, the
particle filter delivers direct uncertainty estimates. A leave-
one-out cross-validation procedure showed that the cumula-
tive mass balance predicted with the particle filter is within
9 % of the observations at any location. In an analysis of the
individual model performance, we found that our technique
to prevent models from being removed from the ensemble is
useful since models can recover at a later stage. In terms of
model ensemble, the TI model by Pellicciotti et al. (2005)
obtained the highest average model probability (0.39). None
of the four models has an average probability < 10 %, and
even if individual models can temporarily perform poorly,
our technique preventing models from being removed from
the ensemble completely allows them to recover at a later
stage. Fast temporal switches between model probabilities
are attributed to overconfident likelihood or prior distribu-
tions, or both. As a future venture, we envision an extension
of the particle filter in which glacier mass balances and model
parameters are further constrained by remotely sensed obser-
vations of albedo and snow lines. These measurements are
indirect but have the potential to (1) complement the cam-
era observations extensively and to (2) overcome the limited
knowledge about the spatial and temporal extrapolation of
glacier mass balances and model parameters.

Appendix A: Handling of multiple cameras

Assume that camera i is installed at elevation z; on day #;_1,
where 1) <11 < ... (to be coherent with earlier notation
that the first camera is installed at time #y). From time ¢;_
onwards, we include by (¢;—1,z;) in the state vector as a

https://doi.org/10.5194/tc-15-5017-2021

5035

component which remains constant. Then the observations
at time ¢ > t;_; are functions of the state at time ¢:

bstc(t,2i) — bsre(ti—1, 2;)
Pbulk

h(t,z;) = +e(,zi). (A1)
The true value of by (t;—1,z;) is unknown, and the uncer-
tainty is represented by the values bgfc k (#;—1, z;) of the par-
ticles. Thus at time ¢, the contribution from the observation
h(t, z;) to the weight of particle k is proportional to

exp (_ (h(t,2i) — (bste,k (t, 2i) — bste k (ti—1, 2i)) / Poulk - Pw)2> (A2)

2
20

Although bfc x (fi—1, z;) never changes during the propaga-
tion step, it will change in the resampling steps. Thus the un-
certainty about by (t;_1, z;) will decrease as time proceeds.
This is presumably not realistic, but the effect of small errors
in the baseline also diminishes as time proceeds.

Appendix B: Resampling procedure

The technical details of the resampling procedure in
Sect. 3.3.5 are the following: if, after prediction and update,
Ny, j denotes the number of particles with model index j,
we prevent models from not being resampled by choosing
a minimum model contribution ¢ < % to the ensemble. This
ensures that the resampling step preserves a minimum parti-
cle number N, ; > ¢ Nio representing model j. For our ap-
plication, we choose ¢ = 0.1. If the posterior probability of
model j (Eq. 21) is smaller than the minimum contribution
¢, an unweighted sample that represents 7, ; correctly must
have less than ¢ Ny particles with model index j. To ensure
our minimum contribution condition though, we generate a
weighted sample (X, x, W, x) such that each model index j
appears at least ¢ Ny times, and the weights are as close to
uniform as possible. We select the particles X, in a two-
step resampling procedure: first, the number »; ; of parti-
cles with model index j is chosen to be N; j = ¢ Niot + Ly, j,
where L, ; are excess frequencies. We obtain these frequen-
cies by sampling a total of Ny (1 —4¢) model indices from
{1,2,3,4} with weights proportional to how much a model
probability exceeds the chosen minimum contribution, i.e.,
max(0, 77, ; — ¢). In a second step, we draw for each model
a resample of size N, ; with weights w, ¢ /7, ; from the par-
ticles with model index j. The combined set of the Ny re-
sampled particles gives the new filter particles X, .
However, introducing a restriction on the minimum num-
ber of particles per model can lead to biased estimates as poor
models with probability 7; ; < ¢ are overrepresented in the
ensemble. To compensate for poor models occurring too of-
ten among the resampled particles (and the other models not
often enough), the following weight has to be given to X, :

T, j

Byg = 2L if iy g = . (B1)

t,j
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These weights sum to unity and preserve the original weights
w; k on average. Since they can become very small though,
we work with the logarithm of the weights to avoid numerical
underflow. It should be noted that we insert w;_1 x for w;_1
in Egs. (14) and (20). In order to see that the weights we
choose for X;  are correct, we denote the number of times the
particle x; x is selected in the resampling procedure by M,, k-
This means that the resampling gives x; x the random weight
M; i

o which is then multiplied by the additional weight W, k.

Hence, x; i receives the total weight

. My
W) = Wik Nz X (B2)
(8]

If m; y = j, it holds that

E(w, ;| Ny.j) = Wk E(M; 1 /Niot | N1.j)
Ty, j wt,th,j

= — =Wk, (B3)
Nt,j T[t’j !

i.e., on average the new weights w; , are equal to the original

weights.

Appendix C: Temporal evolution of the mass balance
state with the example of Findelgletscher
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Figure C1. Temporal evolution of the ensemble mass balance state at stations FIN 1 and FIN 2. In the top two panels, the evolution of the
mean and standard deviation of the filter (black lines and yellow shaded area) around the centered observations (blue lines and blue shaded
area) is shown. In the bottom panel the mean deviation of the filter from the observations at both stations is shown.
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Code and data availability. The camera observations are avail-
able under the following DOI: https://doi.org/10.3929/ethz-
b-000508515 (Landmann, 2021). The meteorological data
can be obtained as a paid service from https://www.
meteoschweiz.admin.ch/home/klima/schweizer-klima-im-detail/

racumliche-klimaanalysen.html ~ (last  access: 28  Octo-
ber 2021), and the glacier outlines and mass balances are
available free of charge from the GLAMOS web site at
https://doi.glamos.ch/data/inventory/inventory_sgi2010_r2010.zip
(last access: 28 October 2021) and https://doi.glamos.ch/data/
massbalance/massbalance_observation_elevationbins.csv (last
access: 28 October 2021). The code used to produce results and
figures can be obtained from the authors upon request.

Video supplement. Time lapse videos of all camera observa-
tions used in this study are available as videos under the
following DOIs: PLM 1: https://doi.org/10.5446/48826 (Land-
mann, 2020a); FIN 1: https://doi.org/10.5446/48824 (Land-
mann, 2020b); FIN 2: https://doi.org/10.5446/48825 (Land-
mann, 2020c); RHO 1: https://doi.org/10.5446/48820 (Landmann,
2020d); RHO 2: https://doi.org/10.5446/48821 (Landmann, 2020e);
RHO 3: https://doi.org/10.5446/48822 (Landmann, 2020f); RHO 4:
https://doi.org/10.5446/48823 (Landmann, 2020g).
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