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Abstract. The future of the Antarctic Ice Sheet in response
to climate warming is one of the largest sources of uncer-
tainty in estimates of future changes in global mean sea level
(1GMSL). Mass loss is currently concentrated in regions
of warm circumpolar deep water, but it is unclear how ice
shelves currently surrounded by relatively cold ocean waters
will respond to climatic changes in the future. Studies sug-
gest that warm water could flush the Filchner–Ronne (FR)
ice shelf cavity during the 21st century, but the inland ice
sheet response to a drastic increase in ice shelf melt rates is
poorly known. Here, we use an ice flow model and uncer-
tainty quantification approach to project the GMSL contri-
bution of the FR basin under RCP emissions scenarios, and
we assess the forward propagation and proportional contri-
bution of uncertainties in model parameters (related to ice
dynamics and atmospheric/oceanic forcing) on these projec-
tions. Our probabilistic projections, derived from an exten-
sive sample of the parameter space using a surrogate model,
reveal that the FR basin is unlikely to contribute positively
to sea level rise by the 23rd century. This is primarily due to
the mitigating effect of increased accumulation with warm-
ing, which is capable of suppressing ice loss associated with
ocean-driven increases in sub-shelf melt. Mass gain (nega-
tive 1GMSL) from the FR basin increases with warming,
but uncertainties in these projections also become larger. In
the highest emission scenario RCP8.5, 1GMSL is likely to
range from −103 to 26 mm, and this large spread can be ap-
portioned predominantly to uncertainties in parameters driv-
ing increases in precipitation (30 %) and sub-shelf melting
(44 %). There is potential, within the bounds of our input pa-
rameter space, for major collapse and retreat of ice streams
feeding the FR ice shelf, and a substantial positive contribu-

tion to GMSL (up to approx. 300 mm), but we consider such
a scenario to be very unlikely. Adopting uncertainty quantifi-
cation techniques in future studies will help to provide robust
estimates of potential sea level rise and further identify target
areas for constraining projections.

1 Introduction

Ice loss from the Antarctic Ice Sheet has accelerated in recent
decades (Rignot et al., 2019; Shepherd et al., 2018), and the
evolution of the ice sheet in response to future climate warm-
ing is one of the largest sources of uncertainty for global
mean sea level rise. Current projections suggest that the ice
sheet may contribute anywhere between −7.8 and 30 cm to
sea level rise by 2100 under Representative Concentration
Pathway (RCP) 8.5 scenario forcing (Seroussi et al., 2020).
This large spread of potential sea level rise is primarily due to
uncertainties in ocean-driven thinning of ice shelves, which
could initiate a positive feedback of rapid, unstable retreat
and ultimate collapse of the West Antarctic Ice Sheet (Feld-
mann and Levermann, 2015).

The Filchner–Ronne (FR) basin is a region of Antarctica
that has undergone little change in recent decades and hence
has not been the focus of substantial research compared to
regions of Antarctica that have already begun to contribute
more dramatically to sea level rise. However, the future of
this region in response to climate and ocean changes re-
mains highly uncertain. The Filchner–Ronne ice shelf (here-
after FRIS) is the second largest floating ice shelf in Antarc-
tica, spanning approximately 400× 103 km2 and terminat-
ing in the Weddell Sea (Fig. 1). Currently the ice shelf dis-
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Figure 1. Map of Filchner–Ronne region. Our model domain is outlined in red. Orange to red shows model-calculated ice speeds [myr−1]
initialized to observations using a model inversion withm= 3 and n= 3, over the grounded portion of the catchment. Blue to yellow shading
shows sub-shelf melt rates across the Filchner and Ronne ice shelves, using the ocean box melt parameterization with sample point estimates
for parameters from their probability distributions (see Appendix B). Light to dark blue shading shows sea floor depth from the IBCSO
dataset (Arndt et al., 2013). The inset map shows the full extent of our model domain (red) as well as the drainage basins (Jpp-K, J-Jpp) as
defined by Rignot et al. (2019) in white.

charges approximately 200 Gtyr−1 (Gardner et al., 2018) of
sea-level-relevant ice mass into the surrounding ocean. Ice
from the interior of the Antarctic Ice Sheet flows into the
FRIS primarily via 11 fast-flowing ice streams (Fig. 1). These
ice streams are marine-based; i.e. their bed topography rests
substantially below sea level, which has implications for ma-
rine ice sheet instability (Ross et al., 2012). Throughout this
paper we refer to the FR basin as the combined area of the
two major drainage basins (Jpp-K, J-Jpp) as defined by Rig-
not et al. (2019) that encompass a number of smaller ice
stream catchments that drain into the FRIS.

Current mass loss from the Antarctic Ice Sheet is con-
centrated in regions where warm circumpolar deep water
propagates on the continental shelf (e.g. Amundsen Sea Em-

bayment (ASE): Jacobs et al., 2011; Jenkins et al., 2010;
Schmidtko et al., 2014). Warm water in the ASE has been
linked to recent ice shelf thinning (Pritchard et al., 2012;
Paolo et al., 2015), grounding line retreat (Rignot et al.,
2014), and increased ice discharge (Mouginot et al., 2014;
Shepherd et al., 2018; Rignot et al., 2019). In contrast, wa-
ter entering the FRIS cavity is relatively cold (< 0 ◦C), high-
salinity shelf water, and as a result, sub-shelf melt rates are
an order of magnitude lower than those in the ASE. The FR
basin is also a region of Antarctica that has not undergone
significant change during the modern observational period.
Over the past 4 decades (1979–2017), the FR basin has re-
mained relatively stable (accumulation is balanced by dis-
charge) (Rignot et al., 2019), alongside a negligible change
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(1–3 cmyr−1) in surface elevation (Shepherd et al., 2019) and
no significant long-term speed-up of the major ice streams
(Gudmundsson and Jenkins, 2009; Gardner et al., 2018).

Recent work suggests that melt rates beneath the FRIS
could greatly increase in response to a tipping point in the
neighbouring Weddell Sea. Studies have now shown that 21st
century changes in atmospheric conditions and sea ice con-
centration could redirect relatively warm deep water beneath
the FRIS via the Filchner trough (Fig. 1: Hellmer et al.,
2012, 2017; Hazel and Stewart, 2020). This would cause the
FR cavity to switch from what is widely referred to as a
“cold state” to a “warm state”, similar to the ice shelf cav-
ities (e.g. Pine Island and Thwaites) in the ASE. Ultimately,
this warm water could be directed towards highly buttressed
regions of the ice shelf close to the grounding line (Reese
et al., 2018a) via deep cavity bathymetry (e.g. Foundation Ice
Stream: Rosier et al., 2018) and dramatically increase melt
rates under the FRIS. A loss of resistive stress at the ground-
ing line as a result of ocean-induced melt could force dy-
namic imbalance and grounding line retreat of the ice streams
feeding the FRIS.

Most previous studies have only assessed uncertainties in
sea level contribution, on an ice-sheet-wide scale, rather than
individual drainage basins (with the exception of Schlegel
et al., 2018). These Antarctic-wide ensemble simulations
also rely on coarse grid resolution to be computationally fea-
sible, and as a result they may not capture small-scale pro-
cesses or accurate grounding line migration relevant on re-
gional scales. Some studies have performed sensitivity ex-
periments on climate–ocean forcing on the FR basin (Corn-
ford et al., 2015; Wright et al., 2014), but we do not know of
an uncertainty quantification assessment of the FR region’s
potential contribution to sea level rise. A comprehensive un-
certainty analysis is needed to fully understand the future of
this region of Antarctica should it undergo an increase in sub-
shelf melting.

In this paper, we use an uncertainty quantification ap-
proach to assess the future of the FR basin to achieve three
aims: (1) estimate potential mass change from the FR basin
through to the year 2300, (2) quantify the uncertainty asso-
ciated with mass change projections, and (3) identify param-
eters in our model or forcing functions that account for the
majority of our projection uncertainty and should be prior-
ity areas for further research to constrain the spread of fu-
ture projections. To do this, we integrate an existing suite
of uncertainty quantification tools (UQLAB: Marelli and Su-
dret, 2014) for use with the state-of-the-art ice flow model
Úa (Gudmundsson, 2020). See Fig. 2 for a summary of the
method used in this paper. The paper is structured as fol-
lows: in the following (Sect. 2) we introduce the uncer-
tainty methodology used in this paper. In Sect. 3 we explain
the model set-up and input parameters that are propagated
through our forward model. Section 4 presents our proba-
bilistic projections and the results of our sensitivity analysis,
which are then discussed in Sect. 5.

2 Uncertainty quantification

Uncertainty quantification can be broadly defined as the sci-
ence of identifying sources of uncertainty and determining
their propagation through a model or real-world experiment
with the ultimate goal of quantifying, in probabilistic terms,
how likely an outcome or quantity of interest may be.

Early estimates of uncertainties in projections of future sea
level change from the Antarctic Ice Sheet were derived from
sensitivity studies that evaluated a small sample of a param-
eter space directly in individual ice sheet models (e.g. De-
Conto and Pollard, 2016; Winkelmann et al., 2012; Golledge
et al., 2015; Ritz et al., 2015). Model intercomparison ex-
periments have since been used to quantify uncertainties as-
sociated with differences in the implementation of physical
processes between models, beginning with idealized set-ups
(e.g. MISMIP and MISMIP+; Pattyn et al., 2012; Cornford
et al., 2015), and more recently on an ice sheet scale as
part of the ISMIP6 project (Seroussi et al., 2020). Recently,
the use of uncertainty quantification techniques has become
more common for estimating uncertainties in projections of,
for example, sea level rise, based on the current knowledge
of uncertainties associated with model parameters or forc-
ing functions (parametric uncertainty) (Edwards et al., 2019;
Schlegel et al., 2018, 2015; Bulthuis et al., 2019; Aschwan-
den et al., 2019; Nias et al., 2019; Wernecke et al., 2020).
This includes techniques that weight model parameters and
outputs according to some performance measures, to provide
a probabilistic assessment of sea level change (Pollard et al.,
2016; Ritz et al., 2015). Some of these studies have also
drawn upon statistical surrogate modelling techniques such
as Gaussian process emulators (Edwards et al., 2019; Pollard
et al., 2016; Wernecke et al., 2020) or polynomial chaos ex-
pansions (Bulthuis et al., 2019) to mimic the behaviour of an
ice sheet model and sample a much larger parameter space to
make predictions of Antarctic contribution to sea level rise.

In this study, we are using a probabilistic approach, in
which we are primarily interested in quantifying uncertain-
ties in the forward propagation of input uncertainties that re-
late to parameters in the model or in the functions used to
force climate warming, on a quantity of interest. We make
use of the MATLAB-based toolbox, UQLab, and the uncer-
tainty quantification framework of Sudret (2007), on which
the MATLAB-based toolbox is based (Marelli and Sudret,
2014). UQLab includes an extensive suite of tools encom-
passing all necessary aspects of uncertainty quantification.
Here, we summarize the approach and tools used in this
study (Fig. 2), and we refer the reader to the UQLAB docu-
mentation (https://www.uqlab.com/, last access: 29 Septem-
ber 2021, Marelli and Sudret, 2014) for further details.
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Figure 2. Workflow diagram summarizing the uncertainty quantification approach used in this study. We first identify uncertain input pa-
rameters and represent them in probabilistic framework. A training sample of 500 points is taken from this input parameter space and used
as input to an ensemble of simulations in our ice flow model, which we hereafter refer to as our “training ensemble”. Using this training
sample and the surrogate modelling capabilities in UQLAB we create a polynomial chaos expansion (PCE) that mimics the behaviour of our
ice flow model. This allows us to evaluate a much larger sample from our parameter space, and these surrogate models are used to derive
predictions and probability density functions for changes in global mean sea level (1GMSL). Finally, we use sensitivity analysis to identify
the proportional contribution of each input parameter on projection uncertainty.

We can think of a physical model (M) as a map from an
input parameter space to an output quantity of interest, as

Y =M(X), (1)

where our uncertain input parameters are specified as a prob-
abilistic input model (X) with a joint probability distribution
function X ∼ fX(x), and Y is a list of model responses. Us-
ing this approach we are able to propagate the uncertainties
in the inputs X to the outputs Y . We can think of our ice flow
model in the same way, 1GMSL= Úa(X), where 1GMSL
is our model response or quantity of interest. In the following
sections we outline eight uncertain input parameters that are
represented in X. These relate to basal sliding and ice rhe-
ology (Sect. 3.2), surface accumulation (Sect. 3.3), and sub-
shelf melting (Sect. 3.4). Uncertainties in these input param-
eters are defined in a probabilistic way based on the available
information (Fig. 3). For parameters used to force sub-shelf
melt rates, we conducted a separate Bayesian analysis to de-
termine their input parameter probability distributions (see
Appendix B).

Quantifying the uncertainty in model outputs due to uncer-
tainty in input parameters or forcings may require a computa-
tionally unfeasibly large number of model evaluations. How-
ever if, for example, the model response varies slowly as the

values of some input parameters are changed, the relationship
between model inputs and model outputs may be approxi-
mated using a much simpler and computationally faster sur-
rogate model. The uncertainty estimation can then be done in
a much more computationally efficient way using the surro-
gate model.

Polynomial chaos expansion (PCE) is a surrogate mod-
elling technique that approximates the relationship between
input parameters and output response in an orthogonal poly-
nomial basis. Aside from the work of Bulthuis et al. (2019),
PCE surrogate modelling has not yet been used extensively
by the glaciological community as a computationally effi-
cient substitute for ice sheet models. The truncated PCE,
MPC(X), used to approximate the behaviour of our ice sheet
model M(X), takes the form

M(X)≈MPC(X)=
∑
α∈A

yα9α(X), (2)

where 9α(X) represents multivariate polynomials that are
orthonormal with respect to the joint input probability den-
sity function fX, A⊂ NM is a set of multi-indices of the
multivariate polynomials 9α , and yα represents the coeffi-
cients. Here, our PCEs are calculated using the least angle
regression (LAR) algorithm in UQLab (Blatman and Sudret,
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Figure 3. Probability distributions for uncertain parameters included in our analysis, grouped by ice dynamics (blue rectangle), atmospheric
forcing (green rectangle), and ocean forcing (orange rectangle). For each parameter, x axes show the parameter bounds, and red lines show
the probability distribution functions. Yellow circles show the sample point estimates for each of our parameters. The distributions of the
four ocean forcing parameters are outputs from our Bayesian analysis (Appendix B) in which we optimized the parameter distributions using
observations of melt rates beneath the Filchner–Ronne ice shelf.

2011; Marelli and Sudret, 2019) that solves a least-square
minimization problem. This algorithm iteratively moves re-
gressors from a candidate set to an active set, and at each
iteration a leave-one-out (LOO) cross-validation error is cal-
culated. After all iterations are complete, the best sparse can-
didate basis is that with the lowest leave-one-out error. This is
designed to reduce the potential for over-fitting and reduced
accuracy when making predictions outside of the training set.
This sparse PCE calculation in UQLab also uses the LOO
error for (1) adaptive calculation of the best polynomial de-
gree based on the experimental design and (2) adaptive q-
norm setup for the truncation scheme. For further details on
the PCE algorithm see Marelli and Sudret (2019). We also
outline details on how input uncertainties were propagated
through our model to create our PCE in Sect. 3.5.

Once the surrogate model has been created, the moments
of the PCE are encoded in its coefficients where the mean
(µPC) and variance (σ PC)2 are as follows

µPC
= E[MPC(X)] = y0, (3)

(σ PC)2 = E[(MPC(X)−µPC)2] =
∑
α∈A
α 6=0

y2
α. (4)

Our existing PCE surrogate models can additionally be
used in a sensitivity analysis to quantify the proportional
contribution of parametric uncertainty on projections of
1GMSL. This allows us to identify input parameters where

improved understanding is needed to constrain future projec-
tions. Here, we are using Sobol indices which are a variance-
based method where the model can be expanded into sum-
mands of increasing dimension, and total variance in model
output can be described as the sum of the variances of these
summands.

First-order indices (Si), often also referred to as “main ef-
fects”, are the individual effect of each input parameter (Xi)
on the variability in the model response (Y ), defined as

Si =
Var[E(Y |Xi)]

Var(Y )
. (5)

Total Sobol indices (STi ) are then the sum of all Sobol in-
dices for each input parameter and encompass the effects of
parameter interactions. Values for Sobol indices are between
0 and 1, where large values of Si indicate parameters that
strongly influence the projections of global mean sea level.
If Si ≈ STi , then it can be assumed that the effect of parame-
ter interactions is negligible.

These Sobol indices can be calculated analytically from
our existing PCEs, by expanding portions of the polyno-
mial that depend on each input variable to directly calculate
parameter variance using the PCE coefficients. Each of the
summands of the PCE can be expressed as

fv(xv)=
∑
α∈Av

yα9α(X). (6)
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Due to the orthonormality of the basis, the variance of our
truncated PCE reads as

Var[MPC(X)] =
∑
α∈A
α 6=0

y2
α, (7)

Var[fv(xv)] =
∑
α∈Av
α 6=0

y2
α. (8)

The first-order Sobol indices in Eq. (5) are then calculated
as the ratio between the two terms above.

3 Methods

3.1 Ice flow model

Here we use the vertically integrated ice flow model Úa
(Gudmundsson, 2020) to solve the ice dynamics equations
using the shallow-ice stream approximation (SSTREAM),
also commonly referred to as the shallow-shelf approx-
imation (SSA) and the “shelfy-stream” approximation.
(MacAyeal, 1989). Úa has been used in previous studies on
grounding line migration and ice shelf buttressing and col-
lapse (De Rydt et al., 2015; Reese et al., 2018b; Gudmunds-
son et al., 2012; Gudmundsson, 2013; Hill et al., 2018), and
model results have been submitted to a number of intercom-
parison experiments (Pattyn et al., 2008, 2012; Levermann
et al., 2020; Cornford et al., 2020).

Our model domain extends across the two major drainage
basins that feed into the FRIS (Fig. 1). Within this domain,
we generated a finite-element mesh (Fig. S1 in the Supple-
ment) with ∼ 92 000 nodes and ∼ 185 000 linear elements
using the Mesh2D Delaunay-based unstructured mesh gen-
erator (Engwirda, 2015). Element sizes were refined based
on effective strain rates and distance of the grounding line
and have a maximum size of 27 km, a median size of 2 km,
and a minimum size of 660 m. Within a 10 km distance of
the grounding line elements are 3 km and refined further to
900 m within a distance of 1.5 km. Outside of our uncer-
tainty analysis, we tested the sensitivity of our results to mesh
resolution by repeating our median and maximum 1GMSL
simulations under RCP8.5 forcing and dividing or multiply-
ing the aforementioned element sizes by 2. Our results are
largely insensitive to the mesh resolution, with a percentage
deviation in 1GMSL of only 3 % by 2300. Finally, we lin-
early interpolated ice surface, thickness, and bed topography
from BedMachine Antarctica v1 (Morlighem et al., 2020)
onto our model mesh. We initialize our model to match ob-
served velocities using an inverse approach (see Sect. 3.2 and
Appendix A).

During forward transient simulations, Úa allows for fully
implicit time integration, and the non-linear system is solved
using the Newton–Raphson method. Úa includes automated
time-dependent mesh refinement, allowing for high mesh
resolution around the grounding line as it migrates inland.

We also impose a minimum thickness constraint of 30 m us-
ing the active-set method to ensure that ice thicknesses re-
main positive. Throughout all simulations our calving front
remains fixed in its originally prescribed position. At the end
of each forward simulation we calculate the final change in
global mean sea level (1GMSL) as the ice volume above
flotation that will contribute to sea level change based on the
area of the ocean (Goelzer et al., 2020).

3.2 Basal sliding and ice rheology

There are two components of surface glacier velocities: inter-
nal deformation and basal sliding. Úa uses inverse methods
to optimize these velocity components based on observations
by estimating the ice rate factor (A) in Glen’s flow law and
basal slipperiness parameter (C) in the sliding law. This sec-
tion introduces uncertainties related to the exponents of the
flow law and basal sliding law, whereas details of the inverse
methodology are included in Appendix A.

Glen’s flow law (Glen, 1955) is used to relate strain rates
and stresses as a simple power relation

ε̇ij = Aτ
n−1
e τij , (9)

where ε̇ij are the elements of the strain rate tensor, τe is ef-
fective stress (second invariant of the deviatoric stress ten-
sor), τij are the elements of the deviatoric stress tensor, A
is the temperature-dependent rate factor, and n is the stress
exponent.

This stress exponent (n) controls the degree of non-
linearity of the flow law, and most ice flow modelling stud-
ies adopt n= 3, as it is considered applicable to a num-
ber of regimes (see review in Cuffey and Paterson, 2010).
However, experiments reaching high stresses (Kirby et al.,
1987; Goldsby and Kohlstedt, 2001; Treverrow et al., 2012),
or analysing borehole measurements and ice velocities (e.g.
Gillet-Chaulet et al., 2011; Cuffey and Kavanaugh, 2011;
Bons et al., 2018), have suggested that n > 3. It is also possi-
ble that at low stresses, the creep regime may become more
linear n < 3 (Jacka, 1984; Pettit and Waddington, 2003; Pet-
tit et al., 2011), which is supported by ice shelf spreading
rates n= 2–3 (Jezek et al., 1985; Thomas, 1973). While it
can be considered that n= 3 is appropriate in most dynam-
ical studies, the exact numerical value is not known and it
appears plausible that it can range between 2 and 4. To cap-
ture the uncertainty in the stress exponent, we take n ∈ [2,4]
and sample continuously from a uniform distribution within
this range (Fig. 3).

Basal sliding is considered the dominant component of
surface velocities in fast-flowing ice streams. The Weertman
sliding law is defined as

τb = C
−1/m
‖vb‖

1/m−1vb, (10)

where C is a basal slipperiness coefficient and vb the basal
sliding velocity. The Weertman sliding law typically cap-
tures hard-bed sliding, in which case m= n and is normally
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set equal to 3 (Cuffey and Paterson, 2010). However, using
different values for m alters the non-linearity of the sliding
law and can thus be used to capture different sliding pro-
cesses, i.e. viscous flow for m= 1 and plastic deformation
for m=∞. There are limited in situ observations of basal
conditions, and the value of m relies on numerical estimates
of basal sliding based on model fitting to observations.

A number of studies have tested different values of m to
fit observations of grounding line retreat or speed-up at Pine
Island Glacier (Gillet-Chaulet et al., 2016; Joughin et al.,
2010; De Rydt et al., 2021). These studies show that m= 3
can underestimate observations, and more plastic-like sliding
(m> 3) is needed in at least some parts of the catchment to
replicate observations (Joughin et al., 2010; De Rydt et al.,
2021). This uncertainty in the value of m can ultimately af-
fect projections of sea level rise (Ritz et al., 2015; Bulthuis
et al., 2019; Alevropoulos-Borrill et al., 2020) by altering the
length and time taken for perturbations (e.g. ice shelf thin-
ning or grounding line retreat) to propagate inland.

While additional sliding laws have been proposed and are
now implemented within a number of existing ice flow mod-
els, in this study we use the Weertman sliding law, as it re-
mains the most common. This narrows the parameter space,
allowing us to fully integrate the influence of m on projec-
tions of future sea level rise into our uncertainty assessment
(by performing an inverse model run prior to each perturbed
run; see Sect. 3.5). This is an advancement over previous
Antarctic-wide studies, which given domain size have no
choice but to invert the model for a handful of different m
values prior to uncertainty propagation (e.g. Bulthuis et al.,
2019; Ritz et al., 2015). To capture uncertainty in m and
to sample from a range of possible methods of basal slip,
we take m ∈ [2,9] and sample from a uniform distribution
(Fig. 3).

3.3 Surface accumulation

To capture uncertainties in future climate forcing, we use
projections from four Representative Concentration Path-
ways (RCPs) presented in the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC). These
pathways capture plausible changes in anthropogenic green-
house gas emissions for the 21st and 22nd centuries. RCP2.6
is a strongly mitigated scenario, and multi-model mean es-
timates from the IPCC report (IPCC, 2014) project a global
temperature increase of less than 2 ◦C above pre-industrial
levels by 2100 and is the goal of the 2016 Paris Agree-
ment. Two intermediate scenarios (RCP4.5 and RCP6.0) rep-
resent global temperature increases of ∼ 2.5 and ∼ 3 ◦C with
reductions in emissions after 2040 and 2080, respectively
(IPCC, 2014). Finally, RCP8.5 projects a global temperature
increase of ∼ 4.5 ◦C by 2100 and is now often referred to as
an “extreme” or “worst-case” climate change scenario.

Global mean temperature changes (1Tg) from 1900 to
2300 relative to pre-industrial levels were obtained from

Figure 4. Changes in global mean temperatures (1Tg [◦C]) relative
to pre-industrial levels for four Representative Concentration Path-
ways (RCPs) 2.6 (blue), 4.5 (green), 6.0 (yellow), and 8.5 (pink).
Shading shows uncertainty regions between the 25th and 75th per-
centiles.

the atmosphere–ocean general circulation model emulator
MAGICC6.0 (http://live.magicc.org, last access: 29 Septem-
ber 2021: Meinshausen et al. (2011)). For each RCP scenario
we obtain 600 (historically constrained) model simulations
between 2000 and 2100 (see Meinshausen et al. (2009) for
details on the probabilistic set-up). We then use the ensem-
ble median and uncertainty bounds within a “very likely”
range between the 25th and 75th percentiles. To extend the
record to 2300, we use a single model realization, using the
default climate parameter settings used to produce the RCP
greenhouse gas concentrations for each RCP scenario (Mein-
shausen et al., 2009) and keep the upper and lower bounds
constant from 2100 to 2300 (Fig. 4). Uncertainty in projec-
tions from 2100 to 2300 may well be larger, but we choose
not to make an assumption on how errors will propagate up
to 2300. Global temperatures from MAGICC 6.0 were also
used in the Antarctic linear response model inter-comparison
(LARMIP-2) experiment (Levermann et al., 2020) and are
consistent with projections used in other Antarctic-wide sim-
ulations (Bulthuis et al., 2019; Golledge et al., 2015).

Following the work of a number of previous studies
(e.g. Pattyn, 2017; Bulthuis et al., 2019; DeConto and Pol-
lard, 2016; Garbe et al., 2020), global temperature changes
(1Tg) are used to force annual changes in surface mass bal-
ance through our forward-in-time simulations, by prescribing
changes in surface temperature (Tair) and precipitation (P ) as
follows:

Tair = T
air

obs− γ (s− sobs)+1Tg, (11)

P = Aobs× exp(p · (Tair− T
air

obs)), (12)

where T air
obs and Aobs are surface temperatures and accumula-

tion rates from RACMO2.3, respectively (Van Wessem et al.,
2014). Temperature changes through time are corrected for
changes in surface elevation (s) from initial observations
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(sobs), using a lapse rate of γ = 0.008 ◦Cm−1 (Pattyn, 2017;
DeConto and Pollard, 2016), and subsequently used to force
changes in precipitation using an expected percentage in-
crease in precipitation (p) per degree of warming (Aschwan-
den et al., 2019). This captures the rise in snowfall expected
with the increased moisture content of warmer air, suggested
by climate models (e.g. Palerme et al., 2017; Frieler et al.,
2015). Here, we do not implement a positive-degree-day sur-
face melt model. While it is possible that RCP8.5 forcing
in particular could cause enhanced surface melting in some
regions of Antarctica, due to the southern location of the
Filchner–Ronne ice shelf, surface melt and runoff are un-
likely to outweigh increases in snowfall in the high-warming
scenario (Kittel et al., 2021).

To capture further uncertainties associated with atmo-
spheric forcing, we introduce two uncertain parameters into
our analysis: (1) a scaling factor to select a temperature re-
alization between the 25th and 75th percentiles of the en-
semble median temperature for each RCP scenario (Fig. 4)
and (2) uncertainty in the expected changes in precipitation
across the Antarctic Ice Sheet with increased air tempera-
tures.

First, instead of only using the ensemble median change
in temperature for each RCP scenario, we capture the spread
within each forcing scenario by incorporating a temperature
scaling parameter (T ) as follows: 1Tg(n)=1T

median
g + T ·

T err
g , where for each RCP scenario 1T median

g is the median,
1T err

g is the distance either side of the median within the 25th
and 75th percentiles, and1Tg(n) is the resultant temperature
realization used to force both surface accumulation (P ) and
ocean temperature (see Sect. 3.4). We assume that there is de-
creasing likelihood of temperature profiles further away from
the median, and so we prescribe a Gaussian distribution for
T between −1 (25th percentile) and 1 (75th percentile) and
centred around 0 (median: Fig. 3).

Secondly, we capture uncertainty associated with precip-
itation by varying the amount by which precipitation in-
creases per degree of warming (p). While it is generally ac-
cepted that accumulation will increase with future warming,
the value of p remains uncertain. Snow accumulation could
prevent runaway ice discharge from the Antarctic Ice Sheet,
which means that parameterizations of precipitation increase
with warming have implications for accurate projections of
mass change across the ice sheet. Previous studies using ice
core records, historical global climate model (GCM) simu-
lations, and future GCM simulations as part of the CMIP5
ensemble have estimated anywhere between 3.7 %–9 % in-
crease in Antarctic accumulation per degree of warming
(Krinner et al., 2007, 2014; Gregory and Huybrechts, 2006;
Bengtsson et al., 2011; Ligtenberg et al., 2013; Frieler et al.,
2015; Palerme et al., 2017; Monaghan et al., 2008). To cap-
ture this range of possible values for (p), we sample from
p ∈ [4,8] and make no assumption of the distribution (like-
lihood) of the value of p within this range by sampling from

a uniform distribution (Fig. 3). While the lower bound of
this range sits below what is expected from the Clausius–
Clapeyron relationship, it is able to capture low rates of sur-
face mass balance that could occur with some (albeit limited)
increases in surface runoff and melt under RCP8.5 forcing.

3.4 Sub-shelf melt

Ice shelf thinning due to ocean-induced melt can reduce
buttressing forces on grounded ice and accelerate ice dis-
charge. Such feedbacks may already be taking place in parts
of West Antarctica. However, future changes in ocean con-
ditions remain uncertain, owing to poor understanding and
the challenges of modelling interactions between global at-
mospheric warming and ocean circulation and temperature
changes (Nakayama et al., 2019; Thoma et al., 2008). In par-
ticular, the likelihood that the Filchner–Ronne ice shelf cav-
ity will be flushed with modified warm deep water in the fu-
ture is unclear (Hellmer et al., 2012).

To parameterize basal melting beneath the ice shelf, we
use an implementation of the PICO ocean box model (Reese
et al., 2018a) for use in Úa, which we hereafter refer to
as the ocean box model. This provides a computationally
feasible alternative to fully coupled ice–ocean simulations
for large ensemble analysis, which is more physically based
than simple depth-dependent parameterizations (e.g. Favier
et al., 2014) and has been shown to provide similar results
to coupled simulations under future climate forcing scenar-
ios (Favier et al., 2019). The basic overturning circulation in
ice shelf cavities is captured using a series of ocean boxes,
calculated based on their distance from the grounding line.
The overturning flux q is then calculated as the density dif-
ference between the far-field (p0) and grounding line (p1)
water masses using a constant overturning strength param-
eter (c). The melt parameterization also includes a turbu-
lent heat exchange coefficient γ ∗T that controls the strength
of melt rates by varying the heat flux across the ice–ocean
boundary. For a detailed description of the physics of the
PICO box model, see Reese et al. (2018a). To calculate sub-
shelf melt rates, the box model requires inputs of sea-floor
temperature (Tocean) and salinity (S) on the continental shelf
to drive the ocean cavity circulation. We use S= 34.65 psu
and the initial observed ocean temperature for the Weddell
Sea T ocean

obs =−1.76 ◦C from Schmidtko et al. (2014), which
was proposed for use in PICO (Reese et al., 2018a). For
the FR basin we use five ocean boxes and only apply sub-
shelf melting to nodes that are fully afloat (no connecting
grounded nodes) to avoid overestimating grounding line re-
treat (Seroussi and Morlighem, 2018).

To force changes in sub-shelf melt rates using RCP
forcing, we update the far-field ocean temperature (Tocean)
through time with an ocean temperature anomaly:

Tocean = T
ocean
obs +1To. (13)
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It is often assumed that atmospheric temperature changes
1Tg can be translated to ocean temperature changes 1To
using some scaling factor (α) (Maris et al., 2014; Golledge
et al., 2015; Levermann et al., 2014, 2020). Here, we use the
linear scaling proposed in Levermann et al. (2020), which
additionally includes a time delay τ to capture the assumed
time lag between atmospheric and subsurface ocean warm-
ing.

1To = α ·1Tg(t − τ) (14)

To obtain suitable values for α and τ , Levermann et al.
(2020) used 600 atmospheric temperature realizations (also
from MAGICC6.0 simulations) and ocean temperatures from
19 CMIP5 models (Taylor et al., 2012) to derive the relation
between global surface temperatures and subsurface ocean
warming by computing the correlation coefficient (α) and
time delay between the signals (τ ). The values proposed are
consistent with α ≈ 0.25 used in a number of other Antarctic-
wide simulations (Bulthuis et al., 2019; Golledge et al., 2015;
Maris et al., 2014). However, given the spread of values de-
pending on the choice of CMIP5 model, no single value for
either α or τ can be chosen with confidence, and it is instead
appropriate to sample from parameter probability distribu-
tions.

We identify a further two uncertain parameters in the
ocean box model that additionally control the strength of sub-
shelf melt. These are the turbulent heat exchange coefficient
γ ∗T and the strength of the overturning circulation c. Values
for these parameters presented in Reese et al. (2018a) have
been optimized to present-day ocean temperatures and ob-
servations of melt rates for a circum-Antarctic set-up. While
upper and lower bounds for these parameters have also been
proposed (Reese et al., 2018a; Olbers and Hellmer, 2010),
little information exists on the likelihood of parameter val-
ues within these ranges, particularly for different regions of
Antarctica, with varying ocean conditions.

For the four parameters that control the sub-shelf melt
rates (α, τ , γ ∗T , and c), we decided to constrain their uncer-
tainty (probability distributions) using a Bayesian approach.
Using the a priori information on the distributions for α and
τ (Levermann et al., 2020) and possible upper and lower
bounds for γ ∗T and c from Reese et al. (2018a) and Olbers
and Hellmer (2010), alongside observed sub-shelf melt rates
from Moholdt et al. (2014), we derive optimized posterior
probability distributions for use as input to our uncertainty
propagation. The details of this are outlined in Appendix B,
and the resultant probability distribution functions for these
parameters are shown in Fig. 3.

3.5 Propagating uncertainty

In this section we explain how uncertainties in the input pa-
rameters introduced in the previous sections are propagated
through our model to obtain projections of global mean sea
level (Fig. 2). We began by generating an experimental de-

sign (training set) for the surrogate model. An input param-
eter sample of 500 points was extracted from the parameter
space using Latin hypercube sampling. This sample was de-
termined to be sufficient in size such that the mean 1GMSL
had converged for each RCP surrogate model (see Fig. S3).
Using each training sample, we then evaluate the ice flow
model to generate model responses. For each sample point
we perform six model runs. First, we perform a model in-
version following the procedure outlined in Appendix A us-
ing the selected values for m and n. The resulting optimized
fields of C and A are then input into five forward-in-time
simulations, four based on different RCP scenarios and one
control run, all of which run from 2000 (nominal start year)
to 2300.

Experience has shown that our model (similar to others,
e.g. Bulthuis et al., 2019; Schlegel et al., 2018) undergoes
a period of model drift at the start of the simulation, char-
acterized by a slowdown and thickening of many of the ice
streams in our domain, amounting to between 80 and 100 mm
of negative contribution to1GMSL. We found model drift to
be similar between parameter sets, but it was affected by the
basal boundary conditions from our inversion. Hence, rather
than specify a single baseline for the entire experimental de-
sign, we perform a control simulation for each set of basal
boundary conditions. This control run uses selected values
of m and n and inverted fields of C and A but holds all
other input parameters fixed to their sample point estimates,
as well as using a constant temperature forcing. Each control
run is followed by four forward runs, one for each RCP forc-
ing scenario, in which surface accumulation and sub-shelf
melt rates are updated at annual intervals based on global
temperature changes (Fig. 4). The final calculated change in
global mean sea level for each RCP scenario is with respect
to the preceding control run (1GMSLrcp−1GMSLctrl). For
our 500-member training ensemble, we perform 500 model
inversions and 2500 forward simulations.

Model responses (1GMSL) and input parameter samples
X = xi, . . .,xN are used to train four surrogate models (one
for each RCP scenario). This is done using the Polynomial
Chaos module in UQLab (Marelli and Sudret, 2019) using
the LAR algorithm previously described in Sect. 2. We allow
the LAR algorithm to choose a PCE with a degree anywhere
between 3 and 15 and q-norm between 0.1 and 1. Predic-
tions (mean and variance) of 1GMSL are then directly ex-
tracted from each surrogate model. To estimate the accuracy
of our PCE predictions and and to calculate the quantiles of
our projections, we use bootstrap replications. We use 1000
replications (B) each with the same number of sample points
as the original experimental design (500) to create an addi-
tional set of B PCEs and associated responses. Quantiles (5th
and 95th) were extracted from the bootstrap evaluations (see
Fig. S2). To assess the performance of our surrogate model,
we generated an additional and independent validation sam-
ple of 20 sample points in the parameter space, evaluated for
each RCP scenario (total of 80 perturbed simulations). We
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Figure 5. Probability density (a) and cumulative probability den-
sity (b) for projections of change in global mean sea level
(1GMSL) in millimetres by the year 2300 under four RCP emis-
sions scenarios. Dashed lines show the 5th, 50th, and 95th per-
centiles for the highest emission scenario RCP8.5.

then calculate the root mean square error (RMSE) between
validation responses Yval to those calculated by each surro-
gate model (YPCE) using the same validation input parame-
ter sample Xval. Predictions made by the surrogate models
are close to the responses by our ice flow model and have a
maximum RMSE of 2.3 mm for our RCP8.5 surrogate model
(Fig. S2).

4 Results

4.1 Projections of sea level rise from FR basin

We begin by presenting probabilistic projections of global
mean sea level change from the Filchner–Ronne basin for
four RCP scenarios. These projections were derived from
surrogate models that were trained with our 500 member
training ensemble of forward-in-time ice flow model sim-
ulations. We then evaluated these surrogate models with a
1 000 000 point sample (generated using Latin hypercube
sampling) from our input parameter space to derive model

responses, and calculated probability distributions using ker-
nel density (Fig. 5).

Our projections indicate it is most likely that the FR
basin will undergo limited change or contribute negatively
to global mean sea level by the year 2300. Under the
lowest-warming scenario (RCP2.6: 0.77–1.7 ◦C), 1GMSL
is limited, ranging between −19.1 mm (5th percentile) and
9.57 mm (95th percentile: Table 1). The probability distri-
bution (Fig. 5) takes a near-to-normal shape, with a median
projection close to zero (−5.49 mm), but it has a weak pos-
itive skew of 0.16 (calculated using the moment coefficient
of skewness), with a tail extending towards a maximum sea
level contribution of∼ 50 mm. Projections of1GMSL under
the medium-warming scenarios RCP4.5 and 6.0 range from
−36.1 to 9.7 and −49.6 to 11.1 mm, respectively (Table 1).
These distributions are more positively skewed than RCP2.6
(skewness coefficients of 0.29 and 0.39, respectively), with
tails extending towards ∼ 100 mm of global sea level rise
(Fig. 5). Extreme warming leads to the greatest uncertainty in
projections, which range from−103 to 26 mm under RCP8.5
(Table 1). The median projection indicates a greater negative
contribution to sea level rise under higher warming. How-
ever, the probability distribution is asymmetric, with a long
tail (high positive skew= 0.77) that decreases exponentially
away from the median and reaches a maximum 1GMSL of
332 mm (Fig. 5). This long tail represents the potential for
low-probability but high-magnitude contributions to sea level
rise.

As our surrogate modelling is based around a single quan-
tity of interest (1GMSL at the year 2300) it does not al-
low us to evaluate temporal changes in ice loss directly. Fig-
ure 6 instead presents projections through time from our 500-
member training ensemble alongside the final1GMSL from
each surrogate model (PCE). We also generate two additional
surrogate models for each RCP scenario at the years 2100
and 2200 (Table 1) to evaluate projections at these time inter-
vals, and we identify the temporal importance of parameters
on projection uncertainty (see Sect. 4.2 and Fig. 7).

Both Table 1 and Fig. 6 show that the contribution to
1GMSL and associated uncertainties increase through time.
Within the next 100 years (up to 2100) we project little
change in ice mass from the FR basin. This constitutes a
small negative contribution to sea level rise of < 10 mm in
all warming scenarios (Table 1), with a maximum range of
−14.1 to 0.11 mm. By 2200 the spread of 1GMSL has di-
verged based on warming scenario, with little change un-
der limited forcing (RCP 2.6=−5.05) and a greater nega-
tive contribution under higher warming (−30.2 in RCP8.5).
Between 2200 and 2300 uncertainties increase dramatically
in all warming scenarios, particularly in RCP8.5. Box plots
in Fig. 6 show the projections generated from our surrogate
model in 2300 alongside our ice flow model training ensem-
ble. This shows that the probability distributions in the most
likely range between 5 %–95 % generated from our surrogate
models are largely similar to those found from our training
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Table 1. Contribution to global mean sea level (mm) at the years 2100, 2200, and 2300. The first number is the median projection, and values
in brackets are 5 %–95 % confidence intervals

2100 2200 2300

RCP2.6 −3.2(−6.4,0.113) −5.05(−13.2,3.86) −5.49(−19.1,9.57)
RCP4.5 −4.99(−8.96,−0.975) −11(−22.7,1.87) −15.1(−36.1,9.7)
RCP6.0 −5.41(−9.51,−1.3) −15.4(−29.7,0.204) −22.3(−49.6,11.1)
RCP8.5 −8.39(−14.1,−2.99) −30.2(−55.2,−3.42) −48(−103,26)

Figure 6. Projections of changes in global mean sea level (1GMSL) from 2000 and 2300 from our training ensemble of ice flow model
simulations. Dark shading is the interquartile range (IQR) defined between the 25th and 75th percentiles. Lighter shading shows the 5th–95th
percentiles. Box plots show the projections from the surrogate models (1GMSLPCE) for each RCP scenario at 2300. Extreme values are
located at 1.5 times the interquartile range away from the 25th and 75th percentiles. Values outside of these extreme bounds are considered
to be outliers.

ensemble in 2300. However, we note that the tails of these
distributions, in particular for RCP8.5, extend substantially
beyond the maximum 1GMSL shown from our training en-
semble alone (150 mm). While this is expected with more
extensive sampling of our parameter space, we test the feasi-
bility of 1GMSL= 332 mm by taking the parameter values
that led to this and re-evaluating the “true” ice flow model.
This gives a slightly lower value of 1GMSL= 250 mm but
one that is still considerably higher than in our original train-
ing ensemble despite its relatively large size (N = 500). This
demonstrates the benefits of our surrogate modelling ap-
proach, as it was able to capture the possibility of more
extreme sea level rise scenarios that were not exposed by
the original sample. Recalculating the surrogate model for
RCP8.5 including this “extreme” sample point reduces the
maximum contribution to sea level rise to 288 mm.

4.2 Parametric uncertainty

In this section we present the results of our sensitivity analy-
sis, in which we determine how uncertainties in our input pa-
rameters (parametric uncertainty) impact our projections of
1GMSL. To do this, first-order Sobol indices were decom-
posed from each of our PCE models (four RCP forcing sce-
narios) and for three time steps: 2100, 2200, and 2300, which
are presented in Fig. 7. We additionally assessed the individ-
ual parameter-to-projection relationship, by re-evaluating our
surrogate model for each parameter, while all other parame-
ters were held at their sample point estimates (see Fig. S4).

By 2300 (dark shaded bars in Fig. 7) uncertainties in our
four ocean forcing parameters collectively have the great-
est fractional contribution to the uncertainty in our projec-
tions of global mean sea level contribution. This ranges from
60 % in RCP8.5 to 75 % for RCP2.6. Projection uncertainty

https://doi.org/10.5194/tc-15-4675-2021 The Cryosphere, 15, 4675–4702, 2021



4686 E. A. Hill et al.: Filchner–Ronne sea level change

Figure 7. First-order Sobol indices, i.e. the fractional contribution of each input parameter on the uncertainty in our projections of 1GMSL,
for each RCP forcing scenario. Dark shading shows the Sobol indices for 1GMSL in 2300. Two lighter shading colours represent Sobol
indices at the years 2100 and 2200, to show the variability in parameter importance through time.

in all RCP scenarios is primarily driven by ocean tempera-
ture forcing and the value of α used to scale atmospheric to
ocean temperatures. Uncertainties attributed to α appear to
increase both with warming scenario and through time. In all
RCP scenarios, fractional uncertainty associated with α in-
creases from 2100 to 2300 (light shaded bars in Fig. 7), coin-
cident with an increase in the spread of1GMSL contribution
(Fig. 6). In 2100, α has a greater impact on projection un-
certainty in the lower-warming scenario. However, by 2300,
the fractional uncertainty is greatest in RCP8.5, accounting
for almost half of projection uncertainty (0.44) compared to
0.34 in RCP2.6. Re-evaluating the surrogate models vary-
ing only the value of α reveals a quadratic dependency of
1GMSL on the value of the scaling coefficient (Fig. S4),
which is consistent with the quadratic sensitivity of sub-shelf
melt rates to ocean temperature forcing observed for the FR
ice shelf cavity by Reese et al. (2018a). Under extreme warm-
ing (RCP8.5), this quadratic relation becomes stronger, and
variability in α alone can cause 1GMSL to range between
−86 and 73 mm by 2300. Under all RCP warming scenarios
the value of α contributes to a greater range of1GMSL than

any other parameter (Fig. S4) and encompasses almost all of
the 5 %–95 % spread of projections (Table 1).

Of our two ocean box model parameters, overturning
strength (c) accounts for more projection uncertainty than
the turbulent heat exchange coefficient (γ ∗T ) in all warm-
ing scenarios. This is consistent with the theory that sub-
shelf melting at large and cold cavity ice shelves is predomi-
nantly driven by overturning strength (Reese et al., 2018a).
The fractional importance of c has the greatest variability
between forcing scenarios than any other parameter. Un-
like α, uncertainty associated with c decreases with warming,
from 0.32 in RCP2.6 to 0.1 for RCP8.5 (Fig. 7). The impor-
tance of the overturning strength, c, also increases with time,
which is most pronounced in lower-warming scenarios, e.g.
RCP2.6 where α and c are similar by 2300. This suggests
that with greater ocean warming (in RCP8.5) and a transi-
tion to warm cavity conditions uncertainties in temperature
(associated with the value of α) outweigh uncertainties in
sub-shelf melt rates driven by the overturning strength alone.
Conversely, in colder conditions (RCP2.6) variability in c has
a greater control on heat supply for sub-shelf melt. A simi-
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lar trend exists for uncertainties associated with γ ∗T : greater
importance for lower-warming scenarios and increasing im-
portance with time in all scenarios. However, in contrast to
c, there is a greater relative increase in the Sobol index for
the highest-warming scenario (RCP8.5) from 2100 to 2300;
the importance of γ ∗T doubled from 0.033 to 0.066 versus
only a 54 % increase in RCP2.6. This suggests that as the
FR ice shelf transitions to warm cavity conditions (∼ 2 ◦C in
RCP8.5) the heat exchange in the turbulent boundary layer
may become a more important driver of sub-shelf melt than
under colder conditions.

Atmospheric forcing parameters account for the second
largest proportion of uncertainty in 1GMSL by 2300. This
is primarily driven by variability in the percentage increase
in precipitation per degree of warming (p) and to a lesser
extent the temperature scaling parameter (T ). At all time in-
tervals (2100, 2200, 2300), projection uncertainty attributed
to p is largest based on warming scenario. Unlike α, Sobol
indices for p decrease through time, which is asynchronous
to increased uncertainty in 1GMSL contribution (Fig. 6). In
2100, p accounts for over half of projection uncertainty in
all scenarios (except RCP2.6), reaching a maximum of 0.62
in RCP8.5. p remains the dominant parameter in 2200 for
higher-warming scenarios, but for RCP2.6 the Sobol index
for p decreases to 0.26, less than both α and c. By 2300,
the fractional importance of p is < 0 3 and lower than α for
all four warming scenarios. Evaluating the surrogate model
(at the year 2300) for p only reveals a linear dependency on
the value of p, where, as expected, increases in precipita-
tion lead to a decrease in the contribution to GMSL, or in
this case a greater negative contribution to GMSL (Fig. S4).
In RCP8.5, p alone contributes between −8 and −80 mm
of 1GMSL (Fig. S4). This suggests that even with a lim-
ited (p= 4 %) increase in precipitation, and fixed melt rates,
the FR basin is unlikely to contribute positively to 1GMSL.
However, in RCP2.6, increased accumulation with p < 0.05
does not outweigh mass loss associated with sub-shelf melt-
ing and could lead to a small positive contribution to sea level
rise.

Finally, uncertainties in our ice dynamical parameters re-
lating to the non-linearity in the sliding (m) and flow (n) laws
used in our model have a limited contribution to uncertain-
ties in our projections of 1GMSL (Fig. 7). The combined
contribution of these parameters by 2300 under all warm-
ing scenarios (0.02 in RCP8.5) is an order of magnitude less
than uncertainties associated with atmospheric and oceanic
forcing (see Fig. S5 for Sobol indices for just m and n). Of
the two parameters, m accounts for the most uncertainty in
1GMSL, which is unsurprising given that basal sliding is
likely to be the dominant component of surface velocities
of the fast-flowing ice streams feeding the FR ice shelf. De-
spite low values of the Sobol indices, we note that uncer-
tainties in both m and n increase with time and the strength
of the temperature perturbation (Fig. S5). Increasing the val-
ues of m and n in isolation reduces the negative contribution

to 1GMSL, i.e. less mass gain (Fig. S4). In both cases, a
stronger non-linearity in the ice flow (n), or more plastic like
flow (m), allows for faster delivery of the ice to the grounding
line in response to a perturbation.

4.3 Partitioned mass change

Our Sobol indices reveal that the percentage change in pre-
cipitation and ocean temperature scaling are the main drivers
of uncertainty in changes in global mean sea level. To fur-
ther examine the relative importance of precipitation and sub-
shelf melt parameters on mass change in the FR basin, we
take our training ensemble and partition components of mass
balance (accumulation and discharge) using the input–output
method. We calculated the integrated input accumulation (P )
across the grounded area and the total integrated discharge
(D) output across the grounding line with respect to our con-
trol runs. These mass balance components, as well as total
mass change (M = P −D), are shown for the low-warming
(RCP2.6) and high-warming (RCP8.5) scenarios in Fig. 8)
and for intermediary scenarios in Fig. S6.

Mass change under the lowest-warming scenario (RCP2.6)
closely follows the temperature anomaly trend and appears
primarily driven by increases (and subsequent decreases) in
accumulation with warming. In the first 50 years, mass bal-
ance increases to 12.6 (6.56–18.6) Gtyr−1 (where values in
brackets here and in the remainder of this section are 5 %–
95 %). This is primarily due to an increase in accumulation
at a rate of 15.2 Gtyr−1 in 2050, which is offset by a limited
increase in discharge across the grounding line (2.5 Gtyr−1)
during this period. Between 2050 and 2100 accumulation re-
mains constant and discharge increases, which consequently
reduces the rate of total mass gain. Uncertainties associated
with accumulation are greater than those for discharge during
this period (Fig. 8c), which is consistent with the high con-
tribution of the percentage increase in precipitation to pro-
jection uncertainty in 2100 (Fig. 7). The rate of mass gain
continues to decrease after 2100, alongside a reduction in the
temperature perturbation in RCP2.6 and decelerating accu-
mulation. During this period, discharge across the grounding
line stabilizes at a median of 10 Gtyr−1, but the uncertainty
range increases dramatically to −8 to 26 Gtyr−1, which co-
incides with an increasing importance of parameters relating
to sub-shelf melt from 2200 to 2300 (Fig. 7). By 2300 this
drives the mass balance towards zero, at which accumulation
is approximately balanced by ice discharge.

Under RCP8.5 forcing the spread of mass change in
2300 is driven by anomalies in ice discharge. During the
first 150 years, surface accumulation steadily increases at
an average rate of 50 Gtyr−1, which is consistent with in-
creased temperature forcing of 6.4 ◦C. During this period,
increases in discharge lag that of accumulation, averaging
only 9.6 Gtyr−1, which can partly be explained by the pre-
scribed time delay between atmospheric and oceanic warm-
ing (τ : Eq. 14). Hence, it appears likely that total mass bal-
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Figure 8. Projected temperature changes and mass balance changes for RCP2.6 (a–d, blue lines) and RCP8.5 (e–h, red) between 2000
and 2300 from our training ensemble. Uncertainties are shown between 5 % and 95 % in light shading and between 33 % and 66 % in dark
shading. (a, e) Global temperature anomalies. (b, f) Change in the rate of total mass change (M) in Gtyr−1 calculated as P−D. (c, g) Change
in the rate of accumulation (P ) with respect to our control runs (Prcp−Pctrl), integrated over the grounded area in Gt yr−1. (d, h) Change in
the rate of ice discharge (D) calculated with respect to our control runs (Drcp−Dctrl), integrated across the grounding line in Gt yr−1.

ance will remain positive up to 2150, as no parameter combi-
nations (training ensemble members) are able to sufficiently
increase ice discharge above that of accumulation. Consistent
with other forcing scenarios, uncertainties in accumulation
are also greater than those associated with discharge, which
corresponds to greater projection uncertainty attributed to p
up to 2200 (Fig. 7).

After 2150, the rate of temperature increase is reduced,
which leads to a reduction in surface accumulation that
plateaus at ∼ 140 (86–202) Gtyr−1 between 2200 and 2300.
Despite a limited change in temperature (+1.6 ◦C) between
2150 and 2300 (relative to 2000 to 2150), discharge contin-
ues to increase linearly from 31 to 92 Gtyr−1. Simultane-
ously, uncertainties in discharge increase substantially and
span 0.05–0.76 mm yr−1 (5–95th percentiles) of sea level
equivalent volume in 2300. This suggests that the atmo-
spheric temperature anomaly itself becomes less important
than the amount by which atmospheric temperatures are
scaled to ocean warming, i.e. the value of α, where variability
in α alone accounts for most of the range of sea level contri-
bution (Fig. 7 and Fig. S4). Indeed, the spread of total mass
change (M) closely follows the uncertainties in ice discharge,
where it is possible, albeit unlikely, that certain combinations
of parameters (within the 5–95th percentiles) allow for mass
imbalance (P <D) and a positive contribution to sea level.

Variability in ice discharge alone also reveals the spread
of potential positive contribution to sea level rise that would
have occurred in our simulations if surface accumulation had
remained unchanged. To explore this, we rerun our median
simulation under RCP8.5 forcing using the same parameter
values, but we keep surface mass balance fixed at its ini-
tial value. This reveals that increases in sub-shelf melt alone
would contribute 84 mm of global mean sea level rise (as op-
posed to −50 mm), and highlights the important and com-
pensating effect accumulation has on the sign of our sea level
projections.

4.4 Grounded ice loss

In this section we explore the changes in grounded area
throughout our simulations to see how our projections of
mass change correspond to the retreat of the grounding line.
Figure 9 presents changes in grounded area with respect to
the control runs (Fig. 9a) and grounding line positions from
members of our training ensemble closest to our 5 %, 50 %,
and 95 % percentile projections of 1GMSL from our sur-
rogate models (Fig. 9b) for RCP8.5, while additional RCP
scenarios are shown in Figs. S7–S9.

Despite the negative contribution to 1GMSL likely un-
der all warming scenarios (50th percentiles: Table 1), our re-
sults show that these median projections correspond to sim-
ulations that all experience a reduction in grounded area

The Cryosphere, 15, 4675–4702, 2021 https://doi.org/10.5194/tc-15-4675-2021



E. A. Hill et al.: Filchner–Ronne sea level change 4689

Figure 9. Changes in grounded area and grounding line position for RCP8.5. Panel (a) shows change in grounded area (1GA calculated
as GArcp−GActrl) in ×104 km2. Coloured lines represent the 5th, 50th, and 95th percentiles of the projections of 1GMSL rather than the
percentiles of the change in grounded area itself. However, they are generally close to the grounded area results. Panel (b) shows the FR basin
and bed elevation in metres above (green to brown) and below (light to dark blue) sea level. Coloured lines show grounding line positions
from our training ensemble that lie closest to our percentiles (5 %, 50 %, and 95 %) from our surrogate model projections, with respect to
control runs (dashed grey lines). Two additional grounding line positions are shown; the maximum 1GMSL from our training ensemble
(orange) and the maximum 1GMSL from our surrogate model (magenta), which we evaluated separately to our initial training ensemble of
simulations.

by 2300 (Fig. 9 and Figs. S7–S9). In all scenarios there is
limited grounding line retreat in the next 100 years (up to
2100), amounting to only −716 km2 (−4800 to 2050 km2:
5 %–95 %) change in grounded area in RCP8.5. After 2150,
grounded area decreases more rapidly, and the spread of
change in grounded area increases within each forcing sce-
nario. This coincides with the timing of a reduction in the
rate of accumulation and increases in the rate of grounded
ice discharge (Fig. 8). This is particularly the case in RCP8.5
(Fig. 9), where more substantial ungrounding coincides with
a sharp increase in uncertainty in ice discharge in 2200 and

the increasing importance of sub-shelf parameters on projec-
tion uncertainty (Fig. 7). This indicates that parameters con-
trolling melt rates are responsible for the spread of grounded
ice loss via variations in sub-shelf melt applied close to the
grounding line. Ultimately this drives the long positive tail of
projections of sea level rise contribution (1GMSL: Fig. 5).

While median projections for all RCP scenarios experi-
ence a loss of grounded area by 2300, in the lower-warming
scenarios (RCP2.6 and RCP4.5) this is relatively limited
(< 800 km2), with the exception of some retreat of the Möller
and Institute ice streams (Figs. S7–S9). This suggests that
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these ice streams are prone to some ungrounding even with
limited increases in sub-shelf melting. The likelihood of re-
treat and complete collapse of these ice streams increases
dramatically with warming (RCP6.0 and 8.5). In RCP8.5 per-
turbations become large enough for possible (but less likely)
retreat of additional regions, in particular the Rutford and
Evans ice streams draining into the western part of the Ronne
Ice Shelf and some retreat of ice streams feeding the Filch-
ner Ice Shelf (Fig. 9). Our separate additional simulation that
validated the upper end of sea level projections from our sur-
rogate model (1GMSL= 250 mm) shows that there is poten-
tial within our parameter space (beyond our initial ensemble)
for the grounding line to retreat much further inland (Fig. 9).
This is characterized by runaway retreat of Möller and In-
stitute ice streams, likely due to being topographically un-
confined and rested upon a retrograde bed below sea level
(Fig. 9). This suggests that increases in sub-shelf melt with
climate warming have the potential to reduce ice shelf but-
tressing and force substantial grounded ice loss.

5 Discussion

Here, we have used an uncertainty quantification approach to
assess the spread of future changes in global mean sea level
(1GMSL) contribution from the Filchner–Ronne region of
Antarctica under different RCP emissions scenarios. We have
taken a large and extensive sample of parameter space using
a novel surrogate modelling approach, and our results show
it is highly likely that, within the bounds of our input pa-
rameter space, 1GMSL from the FR basin will be negative.
Under RCP2.6 forcing, during which atmospheric tempera-
tures increase by 2 ◦C (Fig. 4: in line with the targets of the
Paris agreement), this region is likely to remain close to bal-
ance (accumulation ≈ discharge) and contribute to −19.1 to
9.57 mm (5 %–95 %) of sea level rise by 2300. Under higher-
warming scenarios, projections of sea level rise become in-
creasingly negative, but the uncertainties in these projections
also increase dramatically. In the highest-warming scenario
(RCP8.5), the FR basin could contribute anywhere between
−103 and 26 mm (5 %–95 %) to global mean sea level. Our
projections are predominantly negative due the mitigating ef-
fect of increased accumulation with warming on sub-shelf-
melt-driven increases in ice discharge.

Increases in precipitation across the Antarctic Ice Sheet
are known to have an important mitigating effect on the con-
tribution to global sea level rise (Medley and Thomas, 2019;
Winkelmann et al., 2012). Unlike other parts of West Antarc-
tica, the Weddell Sea showed a strong accumulation trend
during the 20th century (Medley and Thomas, 2019) and
limited change in dynamic ice discharge towards the end
of the century (Rignot et al., 2019). Our simulations show
that continued increases in accumulation during the 21st cen-
tury, driven by warming, can outweigh slow increases in ice
discharge associated with sub-shelf melting (Fig. 8). This

may be enough to stabilize some of the major ice streams,
in particular Institute and Möller (see 50 % line in Fig. 9).
In most cases, mass gain continues through to 2300, de-
spite increases in the rate of ice discharge and slowdown
in the accumulation trend, both of which are not enough to
switch to mass loss/positive 1GMSL by 2300. We contin-
ued our median RCP8.5 simulation for a further 200 years
with forcing held at 2300, and we found that total mass bal-
ance (accumulation − discharge) remained positive (mass
gain) by 2500. These findings are consistent with previous
regional modelling studies which showed that when apply-
ing either both accumulation and sub-shelf melt anomalies
through time (Wright et al., 2014; Cornford et al., 2015) or
a step function in accumulation alongside sub-shelf melt-
ing (Schlegel et al., 2018) it is possible for accumulation
to suppress the effects of increased sub-shelf melt. This is
in contrast to Antarctic-wide simulations that do not impose
changes in surface accumulation through time (Ritz et al.,
2015; Levermann et al., 2020) and hence project greater ice
loss and sea level rise contribution from this region. Overall,
our results demonstrate that the FR basin is particularly sen-
sitive to future accumulation changes, which are capable of
stabilizing this region in response to climate warming.

Despite the important role that precipitation plays in sup-
pressing ice loss from the FR basin, our sensitivity analy-
sis reveals that the percentage increase in precipitation per
degree of warming p is the second largest contributor (ap-
prox. 30 % in RCP8.5) to uncertainties in our projections.
Hence, we can identify the representation of accumulation
changes with warming in ice sheet models as a target area
for further research, in order to better constrain projections
of sea level contribution. However, modelling future precip-
itation trends is challenging and CMIP5 models themselves
show large temporal and spatial variability in projected pre-
cipitation trends with warming (Tang et al., 2018; Palerme
et al., 2017; Rodehacke et al., 2020). Despite this, it has
been assumed that there is a general correlation between pre-
cipitation and temperature anomalies. As a result, tempera-
ture scaling of precipitation (as used in this study) is a com-
mon approach in ice sheet modelling, most of which uses
a Clausius–Clapeyron relation, equivalent to a 5 % spatially
uniform increase in precipitation (Golledge et al., 2015; Gre-
gory and Huybrechts, 2006; Garbe et al., 2020; DeConto and
Pollard, 2016). But, as we have shown here, small variations
in p can have a large effect on the spread of1GMSL projec-
tions, and better constraints on the value of p are needed.

Sampling from an uncertainty distribution for p has been
valuable to capture the spread of future accumulation change
predicted in a warming climate; however, one caveat to this
is the use of uniform priors. In the absence of additional con-
straints, we cannot make a more informed choice on the un-
certainty distribution of p, but it is possible that this leads
to a greater spread, or skewed distribution of accumulation
changes, with respect to those predicted by CMIP GCMs.
Validating these parameterizations to climate model predic-

The Cryosphere, 15, 4675–4702, 2021 https://doi.org/10.5194/tc-15-4675-2021



E. A. Hill et al.: Filchner–Ronne sea level change 4691

tions should be the focus of future work. Recent work by
Rodehacke et al. (2020) has made improvements towards
Antarctic estimates for p and found that the assumed corre-
lation/or lack thereof between temperature and precipitation
anomalies has strong regional differences, which may invali-
date the use of a spatially invariant value for p. Instead they
propose spatially variable values of p across the Antarctic
Ice Sheet. Over the FRIS, they showed p= 4 %–6 %, which
is consistent with values used in this study, but may reach
up to 10 % in inland regions of the FR basin (Rodehacke
et al., 2020). Thus, using a spatially invariant value for p
may lead to under- or overestimates of precipitation across
the catchment. This is even more important when conducting
Antarctic-wide simulations, and future studies should move
towards using a spatially variable value for p, or ultimately
conduct coupled atmosphere–ocean–ice sheet simulations.

Our probabilistic projections have shown that a negative
1GMSL is most likely from the FR basin. Nonetheless, un-
certainties associated with our input parameters reveal that it
is also possible within our parameter space for the FR basin
to contribute positively to sea level rise. This occurs predom-
inantly under RCP8.5 forcing, where the long tail of the pro-
jections in Fig. 5 reflects these more “extreme” (maximum
of 332 mm by 2300) yet unlikely contributions to 1GMSL.
Hence, it is possible for sub-shelf melt to increase enough
to outweigh 21st century accumulation, by forcing substan-
tial increases in ice discharge (Fig. 8) and un-grounding
of the ice streams feeding the FRIS (Fig. 9). These high-
magnitude contributions to sea level rise are characterized
by the rapid retreat of the lightly grounded Möller and In-
stitute ice streams, which, once initiated, continues unabated
across the Robin subglacial basin throughout our simulations
(maximum GMSL simulation: Fig. 9). Additional retreat oc-
curs predominantly in the ice streams feeding the Ronne ice
shelf (Evans and Rutford ice streams and Carlson Inlet), sug-
gesting that these regions are likely to be the dominant con-
tributors to future sea level rise. There is also some potential
for un-grounding in the ice streams feeding the Filchner ice
shelf, but this is less than elsewhere in the region (Fig. 9).
Retreat of the grounding line in our simulations is consistent
with the magnitude and spatial pattern of retreat simulated
in other studies in response to increased ocean-driven melt
rates, with comparable projections of sea level rise contri-
bution (approx 150–160 mm) to the high end of our results
(up to 300 mm) (Schlegel et al., 2018; Wright et al., 2014;
Cornford et al., 2015).

Greater variability in ice discharge from the 22nd century
onwards (Fig. 8) coincides with an increase in the spread of
our projections, suggesting that sub-shelf melt could strongly
influence the region’s potential contribution to sea level rise.
Indeed, our sensitivity analysis clearly reveals that ocean
forcing parameters are the dominant component of uncer-
tainties in our projections of sea level contribution from the
FR basin (Fig. 7). This sensitivity corroborates the well-
established theory that ocean forcing and the impact it has

on sub-shelf melt rates are a dominant, yet uncertain, driver
of Antarctic Ice Sheet mass loss (Seroussi et al., 2019, 2020;
Cornford et al., 2015; Bulthuis et al., 2019). Of our ocean
forcing parameters, the magnitude by which global atmo-
spheric temperature anomalies are scaled to ocean tempera-
ture changes α appears highly uncertain, amounting to 44 %
of projection uncertainty in RCP8.5 (Fig. 7). This is consis-
tent with the high sensitivity to the value of α across the en-
tire Antarctic Ice Sheet (Bulthuis et al., 2019). Going for-
ward, given the impact of a linear scaling and the value of α
on projection uncertainty, it may be more suitable to instead
force ocean temperature changes with the results of CMIP
ocean models directly (e.g. the approach used in ISMIP6 pro-
posed by Jourdain et al., 2020). In addition to uncertainties
in ocean temperature forcing, it remains challenging to ac-
curately represent ice shelf melt rates, and their sensitivity to
temperature changes, in ice sheet models. While melt param-
eterizations such as the PICO box model (Reese et al., 2018a)
are a substantial advancement in our ability to efficiently
apply sub-shelf melting in a physically plausible way, they
remain a simplification of observed melt rate patterns, and
those simulated by ocean models. Hence, it is possible we
do not capture the same spatial distribution or magnitude of
melt in highly buttressed regions of the ice shelf as shown in
observations, which could ultimately impact the (in)stability
of the grounding line.

Alongside the mitigating effect of accumulation, using a
linear scaling of ocean temperatures, and a simple melt pa-
rameterization, may both be responsible for our simulations
not projecting a substantial increase in sub-shelf melt or con-
tribution to global mean sea level rise. Crucially, it appears
that we are not capturing the regime shift from “cold” to
“warm” cavity conditions as seen in ocean model results
(Hellmer et al., 2012, 2017; Hazel and Stewart, 2020). Sim-
ulations by Hellmer et al. (2012) showed relatively warm
ocean waters could flush the ice shelf cavity and increase
the area-integrated (fixed ice shelf extent) basal mass loss
from 80 to 1600 Gtyr−1 by the year 2100. By comparison,
basal mass loss during our RCP8.5 training ensemble of sim-
ulations (integrated over the initial ice shelf area) reached a
maximum of only 1200 Gtyr−1 some 200 years later (2300).
Beyond our training ensemble of 500 simulations, we may
start to capture the same magnitude of basal mass loss, which
is reflected in the long tail of positive contribution to sea level
rise in RCP8.5 projections. However, the key difference is
that melt rates increase at a slow and steady rate over the
150-year period and do not impose a rapid switch from cold
to warm conditions which may be possible with a sudden
flushing of warm water into the ice shelf cavity. Addition-
ally, our Bayesian-analysis-derived probability distributions
for ocean forcing parameters, while potentially generating
more realistic melt rates, may have reduced the probability of
sampling high-melt-rate distributions sufficient to impose a
regime shift that may have occurred with wider sampling. To
fully capture such a regime shift, and the effects this would
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have on ice shelf thinning, loss of buttressing, and increases
in ice sheet discharge, it is necessary to run fully coupled
ice–ocean model simulations. Recent work performing cou-
pled simulations in the FR region (Naughten et al., 2021)
found that ice shelf melt rates are unlikely to increase over
the next century, and thus the region will have a limited con-
tribution to sea level rise until ocean temperatures increase
substantially (+7 ◦C). While more coupled modelling stud-
ies emerge, they are currently only computationally feasible
for regional configurations and have yet to be accomplished
on an ice sheet scale. In the meantime, melt parameteriza-
tions will remain important for future ice sheet simulations,
and so work should still focus on improving their ability to
capture the physical behaviour of ocean models, as well as
the choice of ocean temperature forcing used to perturb those
melt rates.

In contrast to atmospheric and oceanic forcing parame-
ters, those related to ice flow dynamics in our model ap-
pear to play a less important role in uncertainties in pro-
jections of 1GMSL. Consistent with other studies (Ritz
et al., 2015; Bulthuis et al., 2019; Gillet-Chaulet et al.,
2011; Alevropoulos-Borrill et al., 2020), we have shown that
stronger non-linearity in our basal sliding and ice flow laws
(increasing values ofm and n) reduces the response time to a
temperature perturbation, allowing for faster delivery of ice
to the grounding line and a greater contribution to sea level
rise. By varying the value of m in the Weertman sliding law,
we have captured a large range of amounts of basal sliding,
and this has been fully integrated into our uncertainty anal-
ysis. However, this may not have captured the full spread
of basal sliding possible under different sliding laws and/or
spatially variable fields of m. Different sliding laws (e.g.
Budd sliding) may allow for even faster delivery of ice to
the grounding line and thus greater contributions to sea level
rise (Schlegel et al., 2018; Brondex et al., 2019). We are also
not accounting for any transient variability in our basal slip-
periness and ice rheology fields, which is not yet captured in
most ice flow models but may additionally increase sea level
rise. Progress is being made towards assessing the sensitivity
of sea level projections to the choice of sliding law (Bron-
dex et al., 2017, 2019; Cornford et al., 2020). Future work
will benefit from choosing the form of the sliding law (Ritz
et al., 2015; Gillet-Chaulet et al., 2016) and/or determining
spatially variable values form (De Rydt et al., 2021; Joughin
et al., 2010) that best replicate regional observations of ice
loss. This will help to constrain uncertainties associated with
the prescription of basal sliding, but this remains an active
area of research.

The surrogate modelling approach used in this study has
been a powerful tool for exploring the future behaviour of
the FR basin of Antarctica. We have shown that by exten-
sively sampling the parameter space and efficiently propa-
gating this through our surrogate models, we get a greater
spread of results, and thus insights into the future of the re-
gion, than we would have from our already large ensemble.

Overall, our results have shown that regional increases in ac-
cumulation assumed with warming are likely to have an im-
portant stabilizing effect on the ice loss from the FR basin
under scenarios of future climate change. There is still some
potential for a positive contribution to global mean sea level
rise under high-sub-shelf-melt scenarios. This means that the
sign of 1GMSL projections from the FR basin cannot be
fully constrained. Parameters driving both accumulation and
sub-shelf melting are highly uncertain, and we identify them
as priority areas for research, where more accurate parame-
terizations will help to constrain future projections, not only
from the FR basin but also the entire Antarctic Ice Sheet. Fu-
ture coupled atmospheric–ocean–ice sheet simulations will
help to more accurately capture feedbacks between the at-
mosphere and ocean on the evolution of the ice sheet, but re-
main computationally challenging on a pan-Antarctic scale.
In addition to coupled simulations, it is important to con-
sider a number of additional processes that have not been
captured in our ice flow model simulations. These include
iceberg calving and the retreat of the ice front; evolution of
damage of the ice shelf, which is becoming of emerging in-
terest in the ice sheet modelling community; and the potential
for hydrofracture-driven ice shelf collapse under increased
surface melt. All of these processes remain highly uncertain,
largely due to the challenges of implementation in ice sheet
models, but equally have important implications for ice loss
and the contribution to global sea level rise, and future work
to incorporate these into similar studies is necessary. Future
studies would also benefit from calibrating ice sheet models
with observations in order to reduce uncertainties and con-
strain future projections by narrowing the parameter space
for future simulations based on their fit to observations (Wer-
necke et al., 2020; Ritz et al., 2015; DeConto and Pollard,
2016; Reese et al., 2020) . As the number and time span
of observations increases, we will be able to better initial-
ize our ice sheet models to present-day conditions prior to
future simulations. Overall, employing uncertainty quantifi-
cation techniques in future studies will help to provide more
robust estimates of potential sea level rise and identify prior-
ity areas for better constraining these projections.

6 Conclusions

This study set out to implement an uncertainty quantification
framework (UQLAB) for use alongside the ice flow model
Úa and use this to quantify uncertainties in projections of
mass loss from the Filchner–Ronne region of Antarctica. We
used a novel surrogate modelling approach to extensively
sample an input parameter space to determine the forward
propagation of uncertainties. Our probabilistic projections
indicate that this region may not undergo dramatic ice loss
under climate warming scenarios and instead have a negative
contribution to global mean sea level rise. This is primarily
due to the effects of increased accumulation assumed with
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greater moisture content in a warmer climate that is capable
of suppressing mass loss attributed to ocean-driven increases
in sub-shelf melt rates. Despite this, we find that there is the
potential, albeit highly unlikely, within the bounds of our in-
put parameter space, for a substantial positive contribution
to global mean sea level. In these high-mass-loss scenarios,
sub-shelf melting increases enough to outweigh accumula-
tion and force major retreat of some of the ice streams flow-
ing into the FRIS. Uncertainties associated with parameters
driving accumulation and sub-shelf melt account for most of
the spread of future changes in global mean sea level, and
we highlight these as priority areas for constraining projec-
tions of ice loss. Future work would benefit from employing
uncertainty quantification techniques similar to those used in
this study, to fully assess the spread of future projections of
sea level rise, not only from the FR basin but also across the
entire ice sheet.
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Appendix A: Model inversion for basal slipperiness C

and ice rheology A parameters

To estimate the rate factor (A) and basal slipperiness coef-
ficient (C) for each of our randomly sampled combinations
ofm and n, we use the inverse capabilities of Úa to minimize
the misfit between observed (uobs) and modelled (umod) ve-
locities. Observed velocities are MEaSUREs InSAR-based
Antarctica ice velocities (Version 2) from 1996 to 2016 and
with a spatial resolution of 450 m (Rignot et al., 2011; Moug-
inot et al., 2012). Ice velocities were linearly interpolated
onto our model mesh. Úa uses a standard inverse method-
ology in which a cost function J , which is the sum of a mis-
fit (I ) and regularization (R) term, is minimized. The gra-
dients of J with respect to A and C are determined in a
computationally efficient way using the adjoint method and
Tikhonov-type regularization. The misfit (I ) and regulariza-
tion (R) terms are defined as

I =
1

2A

∫
(umod− uobs)

2/ε2
obsdA, (A1)

R =
1

2A

∫ (
γ 2

s
(
∇log10(p/p̂)

)2
+ γ 2

a
(
∇log10(p/p̂)

)2)dA, (A2)

where A=
∫

dA is the area of the model domain, εobs repre-
sents measurement errors, and p̂ represents the a prior values
for model parameters (Â and Ĉ). Tikhonov regularization pa-
rameters γs and γa control the slope and amplitude of the gra-
dients in A and C. Optimum values were determined using
L-curve analysis and are equal to γs = 10000 and γa = 1 for
all results presented. The inversions are run for the number
of iterations needed for the cost function to converge. The
number of iterations needed can vary depending on the val-
ues of m and n. Instead of using a fixed number of iterations,
each inversion was terminated when the norm of the function
gradient |∇f (x)| becomes sufficiently small. We tested sev-
eral values for |∇f (x)| and found 10−4 was sufficient and
that values any smaller did not substantially improve the cost
function or substantially affect the transient behaviour in a
forward-in-time model run.

Prior to our uncertainty quantification routine (see
Sect. 3.5) we generated a 75-member “library” of inver-
sions for every half integer between 2 and 9 for m and be-
tween 2 and 4 for n. For these 75 inversions we defined
prior values as follows: Â= ε/τn with ε= 10−4 yr−1 and
τe= 80 kPa, which for n= 3 gives Â≈ 2× 10−9 kPa−3 yr−1

equivalent to an ice temperature of approx. −25 ◦C using an
Arrhenius temperature relation (Cuffey and Paterson, 2010).
Ĉ = ub/τ

m
b with ub= 10 myr−1 and τb= 80 kPa. This li-

brary of inversions was designed to make it computationally
feasible to incorporate a model inversion before every for-
ward model run into our uncertainty analysis. For each of
our randomly sampled values of m and n, we select the clos-
est inversion from our library as the a priori values for A and
C. These priors provide a good initial estimate of the spatial
fields of A and C, which means the subsequent inversions

need far fewer iterations to converge. After each inversion
we advected C beneath the ice shelf to avoid a sharp gra-
dient in C downstream of the grounding line in the case of
glacier advance. We note that the model-calculated veloci-
ties for each model inversion will vary slightly based on the
value of m and n used and the resultant fields of A and C.
However, we find all training ensemble members (N = 500)
to provide an optimal fit to observations and that the mis-
fit between observed and modelled velocities varies by only
1 myr−1, which is small with respect to measurement errors.

Appendix B: Bayesian optimization of ocean box model
parameters

The majority of our parameters (Fig. 3) are reasonably well
constrained; i.e. there is good a priori information on their
probable distributions. However, some parameters used to
force future simulations of sea level rise from Antarctica are
less well known, which could lead to wide and potentially
unrealistic estimates of future sea level rise. When prior in-
formation on parameter values is poor, it is best to take a
non-parametric approach, in which the probability distribu-
tions are constructed based on observations. This can be done
using Bayes’ theorem:

π(θ |Y )= `(θ;Y )π(θ), (B1)

where the posterior probability distribution of θ (a hyperpa-
rameter) given Y observations is equal to the likelihood (`)
of θ given Y multiplied by the prior probability distribution
π(θ). We conduct this analysis on the four “hyperparame-
ters” used in the box model. These are the time delay (τ ) and
scaling coefficient (α) used to force changes in ocean tem-
perature through time (Eq. 14) and two physical parameters
that additionally control sub-shelf melt: the turbulent heat
exchange coefficient γ ∗T and the strength of the overturning
circulation c (see Reese et al., 2018a; Olbers and Hellmer,
2010). While some information exists on all these parame-
ters, their bounds and distributions are not well known. The
primary aim is not to find single point estimates for these
parameters but to obtain an optimal range of parameter val-
ues that fit model-predicted melt rates to observations. These
posterior distributions are then used as input to our uncer-
tainty analysis (see Fig. 3). We conduct this Bayesian opti-
mization using the tools in UQLab, including specifying a
prior input model, surrogate models, and the Bayesian inver-
sion itself (Marelli and Sudret, 2014).

B1 Priors

Prior probability distributions of our four parameters take
into account any available information on their values before
our Bayesian calculation. For the scaling coefficient (α) and
time delay τ we used the values presented in Levermann et al.
(2020) (see outline in Section 3.4) as the a priori information
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on the probability distributions of these parameters (Fig. B1).
While some ranges for the heat exchange coefficient (γ ∗T ) and
overturning strength (c) have been proposed (Reese et al.,
2018a; Olbers and Hellmer, 2010), their probability distribu-
tions are unknown. Therefore, we use non-informative pri-
ors; i.e. we do not prescribe any prior information about these
parameters and use a uniform distribution within the bounds
c ∈ [0.1,9]Svm3 kg−1 and γ ∗T ∈ [5× 10−6,1× 10−4

]ms−1

given by Reese et al. (2018a) Olbers and Hellmer (2010) (see
Fig. B1). However, we do know that these parameters are re-
lated, and certain combinations mean that the physics in the
box model no longer hold Reese et al. (2018a). To specify
the dependence between values of γ ∗T and c and ensure that
values outside of these bounds are not sampled, we prescribe
a Gaussian copula with a correlation of p = 0.9. To test the
sensitivity of our posterior distributions to our specification
of the priors, we repeated the analysis for several prior distri-
butions, with or without copulas, and found our results were
largely insensitive to our priors (Fig. B1).

B2 Surrogate modelling

Rather than use a single area-integrated value of sub-shelf
melt, and to preserve some of the spatial distribution of melt
rates across the shelf, we chose to tune our parameters to ob-
servations, using average melt rates within each melt box. As
Bayesian analysis requires a large number of iterations to set-
tle on a posterior distribution, we first construct five surrogate
models to emulate calculated melt rates in each ocean box.
For this we use the same method as our surrogate modelling
for changes in global mean sea level (see Sect. 2). We sam-
ple 2000 points from our prior probability distributions using
Latin hypercube sampling and use these to directly evaluate
sub-shelf melt rates in the box model. Each simulation is run
in a diagnostic mode for our nominal start year of 2000, using
observations of topography. We assessed the performance of
our surrogate models by taking a separate validation sample
from the parameter space, and we found a good fit between
true and surrogate modelled melt rates (Fig. S10).

B3 Bayesian inversion

To derive posterior distributions for our hyperparameters in
Eq. (B1), we require three things: (1) prior probability dis-
tributions, (2) observations of ice shelf melt rates, and (3) a
likelihood function that specifies the likelihood of parameter
probability distributions given observed and modelled melt
rates and associated errors. Prior probability distributions
have been outlined above and are shown in Fig. B1. Sec-
ondly, we take observations of sub-shelf melt rates from Mo-
holdt et al. (2014) and average these within each of our five
ocean boxes across the Filchner–Ronne ice shelf (Fig. B2).
We then assume that average melt rates within each box are
independent (uncorrelated) of one another and use a log like-
lihood function defined in the common format as

Figure B1. Results from our Bayesian analysis. Solid pink line
shows priors using uniform bounds for γ ∗

T
and c and prior knowl-

edge from the LARMIP-2 distributions for τ and α (pink bars).
Solid blue lines show the resultant posterior distributions using the
pink lined priors. We performed a number of additional sensitiv-
ity experiments in which we varied either the prior distributions
(dashed grey line) or the likelihood function (solid grey line). The
lines shown are the resultant posterior distributions. These show that
our results are largely insensitive to our choice of priors (except in
the case of uniform priors for τ and α, which given the information
we have are unsuitable) or the likelihood function used. Pink circles
show the values proposed for γ ∗

T
and c by Reese et al. (2018a) for

circum-Antarctic simulations using the PICO box model. Point esti-
mates from our posterior probability distributions show our c value
is close, while values of γ ∗

T
appear likely to be lower than the value

in PICO.

`(θ,Y )=−
1
2

log |6| −
1
2

∑
i

(yi − f (xi))
2

ε2
i

, (B2)

where i is the box number, y represents observed melt rates,
f (x) represents modelled melt rates from the surrogate mod-
els, and ε is the discrepancy term for the melt of each box.
Errors associated with model physics are difficult to quantify,
so we instead incorporate errors from both measurements
σ 2

obs (Moholdt et al., 2014) and the surrogate models σ 2
pce.

We then weight this error term (w) with the normalized box
area with respect to the total ice shelf area.

εi = wi

√
σ 2

obs(i)+ σ
2
pce(i) (B3)

We performed a number of sensitivity experiments in
which we varied the specification of the discrepancy term in
the log likelihood function and found that our posterior dis-
tributions are similar, regardless of the choice of discrepancy
(see Fig. B1).
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Observations for the ocean box closest to the calving front
showed high average melt rates (0.5 myr−1), which are not
related to the overturning circulation in the cavity but instead
seasonal warm surface water intrusions, and will not be repli-
cated by the box model. We therefore choose to replace this
with the box average melt from an initial run (using default
parameters from Reese et al. (2018a) in Table B1) and reduce
the weighting so that it is largely excluded from the analysis.
As most ice shelf melt takes place close to the grounding
line, far-field melt rates are less important for the total mass
balance of the shelf.

We specify our priors, likelihood function, and observed
melt rates in the Bayesian inference module in UQLab
(Wagner et al., 2019). The posterior probability distributions
(π(θ |Y )) for our hyperparameters (θ ) are then estimated us-
ing Monte Carlo Markov chains (MCMCs). We use 1000 in-
dependent parallel chains (or sometimes referred to as walk-
ers that move randomly around the parameter space), the
starting points of which are randomly sampled initial esti-
mates for θ from our prior probability distributions (π(θ)).
Then an initial step is made from the current position, and the
posterior probability distribution at that point (which is the
product of the likelihood and prior probability; see Eq. B1)
is accepted or rejected using an adaptive metropolis Hast-
ings algorithm (Haario et al., 2001). This is based on whether
they are in the right direction from the last sampled point,
using an acceptance probability, and then the posterior distri-
bution is updated along the way using the information accu-
mulated so far. This process is repeated for 10000 steps for
each Markov chain, by which time the posterior distributions
have converged. For more details on MCMC and the adaptive
metropolis Hastings algorithm, see the UQLab Bayesian In-
ference Manual (Wagner et al., 2019). We estimate whether
the chains have converged on the same sample point using
a multivariate potential scale reduction factor (MPSRF: see
Brooks and Gelman, 1998 and Wagner et al., 2019), which
should approach 1 if the chains have reached the target poste-
rior distribution. Our final value for MPSRF is 1.01. Finally,
it is necessary to post-process the posterior distributions to
remove the burn-in steps, which are the steps taken prior to
converging on the target posterior distribution. After 2000
steps the posterior distributions have converged (Fig. S11) so
we remove 40 % of the posterior sample.

B4 Posterior distributions

Our posterior probability distributions for all four parameters
in the ocean box model are shown in Fig. B1 and are input to
our uncertainty propagation (Fig. 3). These show the distri-
bution of possible values for these parameters that can lead to
melt rates closer to observations than non-informative priors.
Posterior distributions for τ and α remain close to their priors
(Levermann et al., 2020). There is a decreasing likelihood of
the delay between increases in atmospheric and ocean tem-
peratures from τ ≈ 10 to 100. The scaling coefficient is cen-

Table B1. Comparison between the forcing temperature and inte-
grated basal mass balance across the total ice shelf for prior and
posterior parameter values. In the prior case we use the parameter
values for γ ∗

T
and c proposed in Reese et al. (2018a) and use mean

point estimates from our prior distributions for τ and α. Our poste-
rior case uses point estimates for all parameters from our posterior
distributions.

Point estimates Prior Posterior

τ 12 11
α 0.23 0.24
γ ∗
T

2× 10−5 0.62× 10−5

c 1× 106 1.2× 106

To (◦C) −1.66 −1.64
BMB (myr−1) −0.087 −0.133

tred around 0.24, which is consistent with the scaling factor
found to provide a good fit to CMIP5 model data (Taylor
et al., 2012; Golledge et al., 2015). We note that the range
for α is similar to that proposed by Bulthuis et al. (2019) of
0.1 and 0.8, but in this case the posterior distributions are not
uniform. In contrast, distributions for γ ∗T and c have shifted
significantly from their prior distributions and in both cases
favour values towards the lower end of prior ranges. Our pa-
rameter point estimate for c (1.2 Svm3 kg−1) is close to the
value proposed in Reese et al. (2018a), while γ ∗T is lower, but
the probability density function still extends to the value in
Reese et al. (2018a) (Fig. B1).

To examine the performance of our Bayesian inversion,
we compare the total area-integrated basal mass balance
i.e. mean specific basal mass balance (see Table B1), and
spatially averaged melt rates within each box (Fig. B2a), for
both our prior and posterior sample point estimates. Using a
priori information (values from priors for τ and α and pro-
posed values for γ ∗T and c from Reese et al., 2018a) yields an
area-integrated basal mass balance (BMB) of −0.09 myr−1.
This remains less than half of the BMB from observations
−0.26 myr−1. Using the updated parameter point estimates
has brought the BMB closer to observations (−0.13 myr−1),
primarily by improving the mean melt rates in boxes 2 and
3 to within the error of observations (Fig. B2a). Addition-
ally, we take our model optimized velocities (using an inver-
sion withm= 3 and n= 3) and calculate sub-shelf melt rates
from ice flux divergence assuming steady-state conditions,
i.e. negligible surface mass balance and no surface thinning
or thickening. In this case, BMB is−0.15 myr−1, which sug-
gests that our point parameter estimates are producing near-
steady-state melt rates (−0.13 myr−1).

We re-evaluate the surrogate model for the entire prior and
posterior sample sets to examine the distribution of melt rates
in each ocean box. Figure B2b shows the range of initial melt
rates (at start year 2000) close to the grounding line (Box 1)
that would have occurred in our uncertainty propagation if
we had chosen to use non-informative priors, particularly
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Figure B2. (a) Observed and modelled mean melt rates (µmelt) for
each box in box model melt parameterization. Observations and
standard deviations from Moholdt et al. (2014) are shown in green.
Pink and blue lines use sample point estimates from Table B1 to
compare prior and posterior box melt rates. Prior melt rates (pink)
use the same parameters for γ ∗

T
and c from Reese et al. (2018a) and

use mean sample point estimates from our priors for τ and α. The
posterior melt rates (blue) use sample point estimates from all pa-
rameters from our final posterior distributions. (b) shows the prob-
ability distributions of melt rates in Box 1 (closest to the grounding
line) using the entire sample set for both priors and posterior. Note
the tight distribution around observations (green) for the posterior
sample.

uniform distributions for γ ∗T and c. Given the prior informa-
tion we have on sub-shelf melt rates (Moholdt et al., 2014),
this range of melt rates suggests we would have been sam-
pling unlikely regions of the parameter space. Our Bayesian
analysis has successfully tightened the posterior distribution
of melt rates, where 5 %–95 % fall within the standard devia-
tion of observations. We can now be confident that our initial
melt rates under the ice shelf at the beginning of our forward
simulations is reasonable with respect to observations. We
note that our approach estimates these distributions at a sin-
gle snapshot in time and does not take into account variations

in these parameters that may occur under future warming,
e.g. an increase in the strength of the overturning circulation
in ice shelf cavities with warmer ocean temperatures.
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