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Abstract. Physically based snow models provide valuable
information on snow cover evolution and are therefore key
to provide water availability projections. Yet, uncertainties
related to snow modelling remain large as a result of differ-
ences in the representation of snow physics and meteorologi-
cal forcing. While many studies focus on evaluating these un-
certainties, no snow model comparison has been done in en-
vironments where sublimation is the main ablation process.
This study evaluates a case study in the semi-arid Andes of
Chile and aims to compare two snow models with different
complexities, SNOWPACK and SnowModel, at a local point
over one snow season and to evaluate their sensitivity rel-
ative to parameterisation and forcing. For that purpose, the
two models are forced with (i) the most ideal set of input
parameters, (ii) an ensemble of different physical parame-
terisations, and (iii) an ensemble of biased forcing. Results
indicate large uncertainties depending on forcing, the snow
roughness length z(, albedo parameterisation, and fresh snow
density parameterisation. The uncertainty caused by the forc-
ing is directly related to the bias chosen. Even though the
models show significant differences in their physical com-
plexity, the snow model choice is of least importance, as the
sensitivity of both models to the forcing data was on the same
order of magnitude and highly influenced by the precipitation
uncertainties. The sublimation ratio ranges are in agreement
for the two models: 36.4 % to 80.7 % for SnowModel and
36.3 % to 86.0% for SNOWPACK, and are related to the
albedo parameterisation and snow roughness length choice
for the two models.

1 Introduction

Snow models provide valuable information on snow cover
evolution and are therefore key to quantify runoff and pro-
vide accurate water availability projections. Several mod-
els, with different complexities in the representation of dif-
ferent snow processes, from empirical to physically based
approaches, have been developed to simulate snow depth
changes. Empirical approaches, such as degree-day models
(e.g. Braithwaite and Olesen, 1989; Hock, 2003) are based
on a simple statistical relationship to positive air tempera-
tures to simulate snow melt. Comparatively, physically based
approaches consider all energy flux exchanges at the snow
surface by solving the surface energy balance equation (Oke,
2002). The use of the energy balance equation, coupled with
snow models, enables a more complete understanding of
snow physical processes and are essential for understand-
ing the interaction between snow cover evolution and climate
change.

Physically based snow models have different complexi-
ties in their physical representations, from a single layer ap-
proach (e.g. Strasser and Marke, 2010) to more sophisticated
multi-layer detailed models representing the evolution of
snow microstructure and the layering of snow physical prop-
erties (e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012),
leading to a wide variety of snow models with a wide variety
of parameterisations. In a snow model intercomparison study,
Etchevers et al. (2004) highlighted the importance of param-
eterisation choice, especially regarding the net longwave and
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albedo characterisation. After comparing 33 snow models,
Rutter et al. (2009) concluded that no universal “best” model
exists and model performance mainly depends on the study
site. Furthermore, the Earth System Model — Snow Model
Intercomparison Project (ESM-SnowMIP) compared several
snow models to improve the models in the context of local-
and global-scale modelling (Krinner et al., 2018) and indi-
cated scientific and human errors in snow model intercom-
parisons (Menard et al., 2021), but the study sites did not
include semi-arid regions.

In addition to the development of new models, many stud-
ies have focused on model improvements offering differ-
ent parameterisations in a single model (e.g. Douville et al.,
1995; Dutra et al., 2010; Essery, 2015). In such frameworks,
many parameters need to be calibrated and are often dif-
ficult to be set according to local measurements, such as
the albedo and aerodynamic roughness length (Brock et al.,
2000, 2006). To address this issue, and to consider and quan-
tify parameter uncertainty propagation in simulated snow
depth changes, recent studies have started to use ensem-
ble approaches. Here, models are evaluated based on differ-
ent likely combinations of values of variables such as snow
albedo, snow compaction, fresh snow density, and liquid wa-
ter transport (e.g. Essery et al., 2013; Lafaysse et al., 2017;
Giinther et al., 2019).

In addition, forcing data uncertainty has a significant influ-
ence on the simulated snow depth changes (e.g. Magnusson
et al., 2015; Raleigh et al., 2015; Giinther et al., 2019) and
needs to be considered in model evaluations. While point-
scale simulations forced by direct observations generally re-
duce forcing uncertainties, measurement errors can be con-
siderable due to the complexity of both measuring certain pa-
rameters as well as maintaining measurement sites (e.g. for
precipitation (MacDonald and Pomeroy, 2007; Smith, 2007;
Wolff et al., 2015) and sensor inclination (Weiser et al., 2016)
or sensor failure). Methods such as stochastic perturbation
with random noise (e.g. Charrois et al., 2016) or following
a uniform or normally distributed bias with different magni-
tudes (e.g. Raleigh et al., 2015) can be used to build an en-
semble of meteorological forcing and explicitly simulate the
impact of forcing uncertainty on the simulated snow depth
(e.g. Charrois et al., 2016; Zolles et al., 2019; Giinther et al.,
2019).

Despite past efforts to improve snow models and quantify
uncertainty propagation, the uncertainties regarding snow
physics representation and meteorological forcing remain
(e.g. Essery et al., 2013; Raleigh et al., 2015; Giinther et al.,
2019), in particular in regions where sublimation is the main
ablation process, due to the lack of snow modelling studies
in semi-arid regions (Gascoin et al., 2013; Réveillet et al.,
2020; MacDonell et al., 2013a; Mengual Henriquez, 2017).

This study aims to evaluate two physical snow mod-
els with different complexities, considering parameterisation
and forcing uncertainties. We simulate snow depth changes
in the semi-arid Andes of Chile using data from an automated
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weather station. In this region, snow model uncertainty is a
key concern as snow melt is an essential water resource for
the population (Favier et al., 2009). Despite the importance
of snow as water resource, quantifying and understanding the
snow cover evolution remains limited and challenging due
to (i) high sublimation rates related to high levels of incom-
ing solar radiation, cold air temperatures, arid atmosphere,
and high wind speeds (e.g. MacDonell et al., 2013a; Réveil-
let et al., 2020) and (ii) shallow snow depths due to very
low precipitation amounts (Scaff et al., 2017; Réveillet et al.,
2020; Ayala et al., 2017). In previous studies, Gascoin et al.
(2013) assessed the effect of wind transport on snow cover in
the semi-arid Andes using numerical simulations with Snow-
Model (Liston and Elder, 2006b) and highlighted the signifi-
cant importance of blowing snow sublimation. They also ev-
idenced the difficulty of the model to capture the small-scale
snow depth spatial variability, which was partly related to
the lack of reliable input data such as precipitation. Réveillet
et al. (2020) indicated that ablation is dominated by sublima-
tion in the semi-arid Andes and that the sublimation ratio in-
creases with elevation. They also quantified a similar propor-
tion of sublimation ratio for two years with contrasting cli-
matic conditions (i.e. dry versus wet), but pointed out signifi-
cant uncertainties related to the forcing. The study performed
by Mengual Henriquez (2017) assessed the snow types in dif-
ferent Chilean regions with SNOWPACK (Bartelt and Lehn-
ing, 2002; Lehning et al., 2002a, b) and mainly found that
SNOWPACK is a powerful snow model, but an improvement
of the forcing data is needed to improve simulations. Despite
these previous studies, an accurate assessment of different
snow models’ sensitivity to parameterisation choice or input
forcing is currently missing, although it is expected to have a
large impact.

In this work, the sensitivity of SnowModel and SNOW-
PACK, the common snow models previously used in this re-
gion, is assessed based on parameterisation choices and forc-
ing uncertainty. First, the models are calibrated similarly to
allow later comparisons and a most ideal setup for both mod-
els is designed to acquire a precipitation data set that corrects
for the underestimation of precipitation. Second, both mod-
els are run with different combinations of parameterisations
to assess the uncertainty of parameterisations. Subsequently,
forcing uncertainty propagation in the snow model is consid-
ered by running the models with 1000 sets of perturbed forc-
ing. The combination of sensitivity analysis to model param-
eterisations and meteorological forcing allows for the evalu-
ation and comparison of the two models.

2 Study area and data
We assess the sensitivity of both models using data from an

automatic weather station (AWS) over the snow season of
2017. First, this study area and the meteorological observa-
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tions are described, followed by the data preprocessing pro-
cedure.

2.1 Study area

The study area is located in the La Laguna catchment in the
Chilean Coquimbo region, close to the Argentinian border
(Fig. 1a). To assess the sensitivity of the models to the rep-
resentation of snow physics and meteorological forcing, we
use data from the Tapado AWS, a permanent meteorolog-
ical tower since 2009 located close to the terminus of the
Tapado Glacier at 30° S, 69° W; 4306 ma.s.l. (Fig. 1c). The
site shows a complex topographic setting with average (max-
imum) wind speeds of 42ms™! (> 15ms~!) in 2017 and
little precipitation (< 200 mma~!) that falls as snow during
fewer than 10 events per year. Precipitation events mainly oc-
cur during the winter season (> 90 %) (Rabatel et al., 2011;
Réveillet et al., 2020). Therefore the area surrounding the
AWS is only covered with snow in austral winter. At this el-
evation, vegetation is extremely sparse.

2.2 Meteorological observations

The meteorological forcing data consisted of hourly mean
values of air temperature (TA), relative humidity (RH), in-
coming shortwave radiation (S ), incoming longwave radi-
ation (L), wind speed (WS), wind direction (WD), and
air pressure (PA) measured by the AWS (Figs. 1b, 2, Ta-
ble 1). Precipitation forcing (P) consisted of hourly data by a
Geonor rain gauge (Fig. 1b). This gauge is an unshielded, un-
heated weighing bucket precipitation gauge filled with anti-
freeze liquid and oil to prevent freezing and evaporation, re-
spectively. During the snow season, defined as the period
with snow on the ground (i.e. between 10 May and 6 Novem-
ber 2017), the station recorded meteorological observations
continuously except for the TA and RH, for which gaps have
been filled using three nearby AWSs (Fig. 1c, Sect. 2.3).
Hourly snow depth (SD), reflected shortwave radiation
(S4), and six-hourly means of snow water equivalent (SWE)
were also recorded at the station and used for model cali-
bration and evaluation. SWE was measured with a CS725
sensor by Campbell Scientific, which passively detects the
change in naturally emitted terrestrial gamma radiation from
the ground after it passes through snow cover. It provided
two independent SWE observations measuring both potas-
sium and thallium gamma rays (Wright, 2011). The un-
certainty given by the manufacturer is £15 mm from 0 to
300 mm and +£15 % from 300 to 600 mm, but differences of
up to 82 mm w.e. between potassium and thallium gamma ray
measurements at ~ 300 mm w.e. were measured. The manu-
facturer suggests that the output with the higher count is gen-
erally the most reliable, which were the potassium gamma
rays measurements (Kevin L. Randall, Campbell Scientific
Web Request (case:83574), personal communication, 2018).
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We display both data sets and estimate an uncertainty of
£25 mm for this data set.

2.3 Preprocessing of forcing data

The period between 5 May and 30 November 2017 has been
covered to model the snow evolution in the austral win-
ter, as this was a season where SWE data were available
to validate the models. Since continuous data are required
for both snow models, preprocessing was necessary to fill
the gaps in the TA and RH data sets (23 June, 11:00, to
31 October, 10:00 CLT, due to sensor failure) and to cor-
rect the wind-induced undercatch in the precipitation data.
Therefore, TA and RH data were interpolated based on lapse
rates from nearby AWSs (Agua Negra (4774 ma.s.l.), Llano
de las Liebres (3565 ma.s.l.), and La Laguna (3209 ma.s.l.;
Fig. 1¢).

For TA, a daily temperature lapse rate (Blandford et al.,
2008) was calculated using TA measured at La Laguna and
Paso Agua Negra AWSs (1565 m elevation difference) be-
tween 2014 and 2017. We fitted a sinusoidal trend over these
lapse rates for the four-year period and found daily lapse
rates with a maximum of —6.9 °Ckm™" in winter and a min-
imum of —8.0°Ckm™! in summer. These daily lapse rates
were subsequently applied to TA observations of Llano de las
Liebres AWS, which is the only AWS that covers the entire
period of missing data in 2017. For RH a similar approach
was applied using the lapse rate of the daily dew point tem-
perature between the Paso Agua Negra and La Laguna AWSs
and applying it to data measured at the Llano de las Liebres
AWS. Dew point temperature was converted to RH following
Liston and Elder (2006a). Evaluation of this lapse rate inter-
polation, based on 1638 overlapping observations at Tapado,
shows an uncertainty (i.e. RMSE) of 2.8 °C and 9.97 % for
TA and RH, respectively.

Since the precipitation observations were directly influ-
enced by wind, an undercatch in the precipitation gauge is
likely (e.g. MacDonald and Pomeroy, 2007; Smith, 2007;
Wolff et al., 2015). As there are different possibilities to cor-
rect for this, the assimilation and correction of precipitation
data are explained in Sect. 3.2.2.

3 Methods
3.1 Model descriptions
3.1.1 SNOWPACK

SNOWPACK was developed by the Swiss Federal Insti-
tute (SLF) for Snow and Avalanche Research (Bartelt and
Lehning, 2002; Lehning et al., 2002a, b). It is a one-
dimensional model, but can be implemented in the spatially
distributed, three-dimensional snow cover and Earth surface
model Alpine3D (Lehning et al., 2006). SNOWPACK in-
cludes the MeteolO preprocessing library for meteorological
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Figure 1. (a) Map of Chile with the Coquimbo Region (orange) and the study area location (red box). (b) Tapado AWS on 26 April 2018
showing the Geonor precipitation gauge (left), which is 10m from the central mast of the AWS (right). (¢) Map of the borders of the La
Laguna catchment (green) with the AWS locations (red points). Landsat 8 images of 29 August 2017 are used as the background and the

maps and photo were made by Annelies Voordendag.

data (Bavay and Egger, 2014), which was not used, as we im-
plemented a homogeneous preprocessing approach for both
models (see Sect. 2.3). SNOWPACK is a physically based
model that has the ability to simulate snow physical proper-
ties (e.g. snowpack temperature, layer thickness, snow mi-
crostructure, and density) and snow processes (e.g. refreez-
ing, sublimation, melt, and evaporation) for multiple layers,
which are merged if layers become too thin. Sublimation and
evaporation are calculated for the top element of the snow-
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pack and melt is simulated using a water transport bucket
scheme. In this bucket scheme, all the liquid water exceed-
ing a threshold water content is transported downward in the
snowpack or soil (Wever et al., 2014). An extensive descrip-
tion of the model can be found in Bartelt and Lehning (2002)
and Lehning et al. (2002a, b).
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Table 1. Available observations, sensor height from the ground, and the manufacturers and type of the corresponding sensor at Tapado AWS.

Measurement Unit Height (m)  Brand/type Uncertainty given by manufacturer
Accumulated precipitation (P) mm 1.5 Geonor/T-200B 1000 mm 0.1 % full scale
Air pressure (PA) hPa 3.5 Vaisala/PTB110 +1.0hPa
Air temperature (TA) °C 3.5  Vaisala/HMP45C +0.3°Cat0°C
Incoming LW radiation (L ) Wm™2 3.5 Kipp and Zonen/CNR4 10 % (95 % confidence level)
Incoming SW radiation (S ) Wm™2 3.5 Kipp and Zonen/CNR4 5 % (95 % confidence level)
Outgoing LW radiation (L4) Wm—2 3.5 Kipp and Zonen/CNR4 10 % (95 % confidence level)
Reflected SW radiation (ST) Wm—2 3.5 Kipp and Zonen/CNR4 5 % (95 % confidence level)
Relative humidity (RH) % 3.5 Vaisala/HMP45C +2 % RH (0 to 90 % RH)
43 % RH (90 % to 100 % RH)
and £0.05 % RH/°C
Wind speed (WS) ms™~! 5.4 RM Young/5103 +0.3ms~!
Wind direction (WD) ° 54 RM Young/5103 +3°
Snow depth (SD) m 3.5 Campbell/SR50A +lcm
Water equivalent (SWE, thallium, T1) mm 3.5 Campbell/CS725 415 mm from 0 to 300 mm
+15 % from 300 to 600 mm
Water equivalent (SWE, potassium, K) mm 3.5 Campbell/CS725 £15 mm from 0 to 300 mm

+15 % from 300 to 600 mm

3.1.2 SnowModel

SnowModel is a spatially distributed snowpack evolution
modelling system composed of four submodels MicroMet,
EnBal, SnowPack, and SnowTran3D (Liston and Elder,
2006b). MicroMet is a preprocessing library for meteorolog-
ical data interpolation, which was not used in this study as
we focused on one location only while we implemented a
homogeneous preprocessing approach for both models (see
Sect. 2.3). EnBal calculates standard surface energy balance
exchanges (Liston and Hall, 1995). SnowModel’s SnowPack
subroutine is a single or multi-layer (max. six layers) snow-
pack evolution and runoff model that describes snowpack
changes in response to precipitation and melt fluxes defined
by MicroMet and EnBal (Liston and Hall, 1995; Liston and
Elder, 2006b). In SnowModel, the melted snow is redis-
tributed over the remaining snow depth up to a maximum
density threshold of 550 kg m—3. Any additional melt water
is added to the runoff. In this study the model was run with
the maximum of snow layers (i.e. six layers) to be compa-
rable with the multiple amount of layers in SNOWPACK.
Finally, the three-dimensional model SnowTran3D (Liston
and Sturm, 1998), which simulates snow erosion and deposi-
tion, is not activated in this study; this choice is discussed in
Sect. 5.2.

3.2 Model setup and sensitivity analysis

To assess the sensitivity of both models to parameterisa-
tion choice and input uncertainty, we applied a four-step ap-
proach. First, we set up both models similarly to allow later
comparisons (Sect. 3.2.1). Second, we designed the most
ideal setup for both models to acquire a precipitation data set
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that corrects for the underestimation of precipitation. Third,
we varied the parameterisation settings of each model to de-
termine the effect of parameterisation choice (Sect. 3.2.3).
Last, we implemented forcing biases (Sect. 3.2.4) to evalu-
ate the sensitivity of the models to the meteorological forc-
ing uncertainties. The combination of sensitivity analysis to
model parameterisations and meteorological forcing allowed
the evaluation and comparison of the two models (Sect. 3.3).

3.2.1 Parameter values used in both models

Initially, both models were set up using similar parameters
to facilitate intercomparison. These parameters were derived
from observations or previous studies (Table 2). For example,
the soil albedo was set to 0.15, as this is the observed sur-
face albedo when there is no snow cover. The observed daily
albedo is defined as the daily sum of the average hourly Sy
divided by the daily sum of average hourly S (Fig. 4e and f).
In the absence of roughness length measurements, the rough-
ness length of the bare soil is set to 0.020 m, corresponding to
the default roughness length of pebbles and rocks in Snow-
Model. As surface ground temperature measurements are not
available, we set it to —1 °C in both models, which is the de-
fault value in SnowModel and ensures that the fresh snow
does not immediately melt.

3.2.2 Idealised setup

Preliminary results showed simulated SWE and SD to be
more than 2 times lower than the observed SWE. This is
caused by an underestimation of the precipitation measure-
ments, as the AWS is placed in a concave area that collects
more snow than the Geonor precipitation gauge. This cor-
responds with research by Griinewald and Lehning (2014)

The Cryosphere, 15, 4241-4259, 2021
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Figure 2. Meteorological observations at Tapado with daily precipitation (P), average daily relative humidity (RH), air temperature (TA),
wind speed (WS), air pressure (PA), incoming shortwave radiation (S ), and incoming longwave radiation (L) from April to Decem-

ber 2017. Dotted lines indicate the TA and RH interpolations.

on the spatial variability of SD measurements. Therefore, to
correct the precipitation used as input for the models, an ide-
alised setup is designed, making use of all the data that the
models allow as forcing. Two approaches are designed to ad-
just the precipitation data set. First, it is chosen to assimi-
late a precipitation data set, which both models perform in
different ways. SNOWPACK assimilates the data if SD is
given as input. Reflected SW radiation is also given as in-
put to prevent inaccurate parameterisations of the albedo.
The precipitation data set is assimilated with the five pos-
sible fresh snow density parameterisations in SNOWPACK.
SnowModel allows the possibility to assimilate the precipita-
tion when SWE is given, but is not able to cope with reflected
SW radiation as input. Therefore, six ensembles are made out
of two albedo and three fresh snow density parameterisations

The Cryosphere, 15, 4241-4259, 2021

to find an assimilated precipitation data set. Second, the pre-
cipitation is reconstructed from the SWE observations, which
was computed using the cumulative positive SWE (potas-
sium) changes during precipitation events (detected by the
Geonor T-200B). The positive SWE changes beyond precip-
itation events are not accounted for, as they might originate
from deposition caused by snow drift and its inclusion would
have resulted in an overestimation in this data set. Hereafter
this precipitation data set is called PSWE.

Atmospheric stability and snow roughness length (zg) are
key parameters in semi-arid regions where sublimation is an
important process. As SnowModel only allows atmospheric
stability corrections based on the Richardson number, we
opted for this method and similar roughness lengths in both
models to assure intercomparability. The zo was set to both

https://doi.org/10.5194/tc-15-4241-2021
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Table 2. SNOWPACK and SnowModel parameter characteristics. The possible snow albedo parameterisations and fresh snow density models

are described in Sect. S1 in the Supplement.

SnowModel

SNOWPACK
Soil albedo 0.15 (calibrated)
Max/min snow albedo None
Atmospheric stability correction model  Richardson number
Roughness length (soil) 0.02m
Roughness length (snow) 0.001 m and 0.01 m
Surface ground temperature -1°C
Thermal conductivity Default
Wind erosion/snow transport by wind Off
Maximum number of snow layers Unlimited

Fresh snow density parameterisations
Albedo parameterisations

Simulated ablation processes

Water transport in snowpack

Five options

Six options, four used
Sublimation, runoff, evaporation
Bucket scheme (default)

0.15 (calibrated)

0.6/0.9 (calibrated)
Richardson number (default)
0.02 m (default)

0.001 and 0.01 m

—1°C (default)

Multilayer subroutine

Off

Six layers

One default option and two from SNOWPACK
Two options

Sublimation, runoff

Default

0.001 and 0.01 m. The former, 0.001 m, is based on an ear-
lier sensitivity study (Réveillet et al., 2020) and unpublished
eddy covariance measurements (MacDonell et al., 2013a);
0.01 m is based on literature (e.g Brock et al., 2006; Cuf-
fey and Paterson, 2010). The first and second approach of
the idealised setup are both tested with zp of 0.001 m and
0.01 mm; thus, the idealised setup in total consists of four
cases for each five (SNOWPACK) or six (SnowModel) sim-
ulations.

This idealised case therefore corresponds to simulations
using the best possible combination of input data. As such
observations are not always available or used to evaluate
models, the idealised simulations are not used for the sen-
sitivity study and model comparisons, which are based on
optimal simulations (i.e. without assimilating precipitation
and albedo; see Sect. 3.2.3). The simulated SWE and SD are
compared to the observed SWE and SD and the assimilated
precipitation data sets are shown in Fig. 3. Due to complex-
ities with the assimilated precipitation data and the need for
SWE as validation data, the precipitation data set (Pcor) that
is used in the further study is based on a wind correction by
Wolff et al. (2015) (see Sect. 4.1).

3.2.3 Sensitivity analysis of variable parameterisations

To assess the impact of the parameterisations on the snow-
pack simulation, an ensemble approach based on different
combinations of albedo and snow density parameterisations
and zo was used (e.g. Essery et al., 2013; Lafaysse et al.,
2017, and Sect. 3.2.2). The choice to limit the sensitivity tests
to these three parameters is discussed in Sect. 5.2.

For SNOWPACK, 40 runs were performed over the 2017
season based on four different albedo, five fresh snow density
parameterisations, and two different zo values. Each of the
albedo parameterisations is based on empirical relations de-
rived from continuous observations at Weissfluhjoch (Lehn-
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ing et al., 2002a) or on grain size (Schmucki et al., 2014),
while the fresh snow parameterisations are empirical formu-
las depending on the TA, RH, WS, and surface temperature.
More details are found in Sect. S1 in the Supplement and
references therein.

For SnowModel, an ensemble of 12 simulations was run,
considering two albedo, three snow density parameterisa-
tions, and two different zg. The albedo parameterisations
range between 0.6 and 0.9 depending on (i) TA solely (more
details in Liston and Hall, 1995; Liston and Elder, 2006b; and
in Sect. S1 in the Supplement) or (ii) on TA and time (Strack
et al., 2004, and Sect. S1). SnowModel’s default fresh snow
density parameterisation depends on the wet bulb tempera-
ture, but we included two fresh snow density parameterisa-
tions from SNOWPACK depending on TA, RH, WS, and sur-
face temperature to test the model more extensively. In these
additional parameterisations, we preserved the SnowModel
defaults for minimum (50 kg m~3) and maximum fresh snow
density (158.5kgm™3).

Each of the ensemble simulations was forced by the ob-
servations (TA, RH, PA, WS, WD, §, and L ) as described
in Sect. 2.3 and the P, acquired after the idealised setup
(Sect. 3.2.2). The simulations are evaluated by comparing
the model output of SD, SWE, and albedo with the corre-
sponding observations. Based on this evaluation, the simu-
lation with the lowest RMSE and highest R> between the
observed and modelled albedo is chosen as the reference for
the forcing sensitivity analysis discussed in Sect. 3.2.4.

3.2.4 Forcing uncertainty estimation

To assess the model sensitivity to meteorological measure-
ment uncertainties, a bias has been applied to the meteorolog-
ical forcing presented in Sect. 2.3 to generate an ensemble of
1000 forcing files. Raleigh et al. (2015) have shown that the
model outputs are more sensitive to forcing biases than ran-
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Table 3. Forcing data for the snow models with the corresponding uncertainty o used in the ensemble simulation. The ranges of PA, TA, S,
L, RH, and WS are ranges as used by Raleigh et al. (2015). The WD range is according to the uncertainty given by the manufacturer and

the Pcor range is described in Sect. 3.2.4.

Forcing Distribution ~ Range Unit
Accumulated precipitation (Pecor) Uniform [—100,4100] mma~!
Air pressure (PA) Normal [—100, +100] Pa

Air temperature (TA) Normal [—3.0,+3.0] °C
Incoming longwave radiation (L ¢) Normal [—25, +25] Wm—2
Incoming shortwave radiation (S i) Normal [—100, +100] Wm—2
Relative humidity (RH) Normal [—0.25,40.25] %
Wind speed (WS) Normal [—3,+3] ms~!
Wind direction (WD) Normal [—3,+3] °

dom errors. Therefore, all input variables except Por were
modified by adding hourly biases with a normal distribution
N(u =0, 02) with o being the uncertainty range taken from
Raleigh et al. (2015) and reported in Table 3. The biases have
been kept within their corresponding range (Table 3) by as-
suming that 99.7 % of the bias, thus 3o, is within this range.
This positive component of the range is divided by three and
multiplied with a normally distributed random number and
added to the observed forcing. We have chosen 1000 runs
as a compromise between computational effort and a reliable
confidence interval.

The distribution of the precipitation uncertainty is cho-
sen to be uniform, as the observed precipitation was low
(i.e. 180.7mmw.e. at the end of the season) and the dif-
ferences between the assimilated precipitation (SnowModel)
and PSWE cover approximately 200 mm w.e. (Sect. 4.1).

Subsequently, based on the perturbed input data, 2000
snow model simulations are performed: 1000 with mete-
orological biases and 1000 with combined meteorologi-
cal/precipitation biases. This setup was chosen to enable the
differentiation between meteorological and precipitation un-
certainties, which would be difficult in a combined approach
where precipitation uncertainty would dominate.

3.3 Model evaluation

Model evaluation consists of comparing the model output of
SD, SWE, and albedo with the corresponding observations.
For the idealised case this consists of evaluating the RMSE
and R? between the modelled and the observed SD to acquire
precipitation data that approach the correct mass balance. For
the parameterisation uncertainty, this consists of evaluating
the RMSE and R? between the modelled and the observed
albedo to select the best reference for each model (i.e. 40 for
SNOWPACK and 12 for SnowModel). In this case, it is cho-
sen to only compare between modelled and observed albedo,
as this ensures the best possible net shortwave radiation term
in the energy balance equation. The forcing uncertainty is
evaluated by comparing the differences of end of snow sea-
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son. Last, the differences in ablation processes of the param-
eterisations are shown.

4 Results
4.1 Idealised simulations

The assimilated precipitation data sets markedly differ be-
tween SNOWPACK and SnowModel (blue lines, Fig. 3e and
f). For clarity Fig. 3 only shows the results of the idealised
simulations for the zq value of 1 cm; the results for zg of 1 cm
and 1 mm are displayed in Sect. S2. For SNOWPACK, 8 out
of 10 runs with zg = 1 cm crashed, thus only two simulations
are shown. The reason for these crashes has not been further
investigated.

Assimilation of SD in SNOWPACK results in SWE that
approximates the PSWE (Fig. 3), leading to assimilated pre-
cipitation amounts of 2.55 to 3.02 times the observed pre-
cipitation and a good correspondence with the observed SD
(i.e. RMSE between 9.2 and 11.5cm and R? between 0.90
and 0.93, calculated with the observed and simulated SD;
Fig. 3a).

Assimilation of SWE in SnowModel only adjusts the pre-
cipitation between 22 and 27 June and between 7 and 12 Au-
gust. The amount of precipitation is not adjusted at the be-
ginning of the season; thus, the assimilated data by Snow-
Model still lead to an underestimation of the SD and SWE
(Fig. 3b and d). The missing adjustment of the SWE is prob-
ably caused by SnowModel taking a maximum of 99 SWE
observations; the observations do not exactly align with the
precipitation events, which leads to correction factors of one
(i.e. no change) to the precipitation data. The assimilated
precipitation is approx. 1.6 times larger than the observed
precipitation and the agreement between modelled and ob-
served SD is better for SNOWPACK than for SnowModel
(i.e. RMSE between 7.1 and 17.1 cm and R? between 0.19
and 0.90 calculated with the observed and simulated SD;
Fig. 3b).
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Figure 3. (a, b) SD, (¢, d) SWE, and (e, f) the cumulative assimilated precipitation for the simulations with SNOWPACK (a, ¢, e) and
SnowModel (b, d, f) and observations (black). The different input variables are given in the legend. The solid (dotted) line in (c¢) and
(d) indicates the more (less) reliable SWE measurement from potassium (thallium) rays (see Sect. 2.3) and the dotted line in (e) and (f) is
Pcor. The models have assimilated the observed precipitation (black) to the output (red/blue) given in (e) and (f). Only one red and one blue
line is shown for SNOWPACK as the other eight simulations crashed. The simulations for zy = 1 mm are found in Sect. S2.

Both models overestimate the SWE between mid-July and
September when PSWE was given as input (red lines in
Fig. 3c and d). This is likely caused by an overestimation
of the PSWE at the end of June. Only small amounts of pre-
cipitation are observed at the precipitation gauge, but the ob-
served SWE distinctly increases probably due to snow drift,
as strong winds were also observed. A similar thing occurs
at the end of September. The models markedly increase the
amount of precipitation (between 97 and 137 mm w.e.) in the
assimilation runs, but only small amounts of precipitation
and strong winds were observed. This is related to a strong
melt in September, not simulated by the model, along with
models trying to get the SWE and SD to the observational
levels. The strong melt in September is caused by a sudden
decrease of the albedo (observations in Fig. 4e and f), as it
is likely that the snow got covered with dust after some days
with strong wind at the end of September, but the simula-
tions overestimate the melt caused by this albedo decrease.
Likewise, high wind speeds and a strong decrease of SWE
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and SD are observed mid-July, which is likely due to snow
erosion that is not considered in our simulations. The overes-
timation of and the need for SWE as validation data are indi-
cations that the PSWE is not a valid precipitation data set for
our simulations, but it is also unfeasible to select one of the
assimilated precipitation sets by SNOWPACK as the amount
of precipitation markedly increases at the end of September
and we want to use SD as validation data.

Therefore, three different precipitation corrections de-
pending on WS (Smith, 2007; MacDonald and Pomeroy,
2007) or on TA and WS (Wolff et al., 2015) were applied
to the observed precipitation (see Sect. S3). Equation (12)
from Wolff et al. (2015) with WS corrected to gauge height
using a logarithmic wind profile (e.g. Lehning et al., 2002a)
and a zg of 0.01 m is used as precipitation data (Por) in the
further study, as this correction approaches the PSWE and
shows an increase in precipitation of 2.35 times the observed
precipitation at the end of the season.
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4.2 Sensitivity analysis of parameterisations

Evaluation of simulated SD and SWE based on various pa-
rameterisations shows that both models are in good agree-
ment with observations (Fig. 4), although they overestimate
SWE at the beginning of the season (May/June). The correc-
tion of the precipitation with the equation from Wolff et al.
(2015) overestimates the precipitation in this period and also
leads to an overestimation in the simulations.

For SNOWPACK, the spread of the simulated SD from the
40 different parameterisations (20 simulations for zp = 1 mm
and 20 for zo = 1 cm) is the largest at the end of the snow
season (i.e. October) (Fig. 4a). The date of snow-free sur-
face is the earliest at 8 October and exceeds the simulated
period (i.e. after 30 November), depending on parameterisa-
tion choice, and covers the observed date of snow removal
(i.e. 16 October). The different SNOWPACK parameterisa-
tions (equations in Sect. S1) show a mean SD difference of
32 cm (which corresponds to 28.9 % of the total SD) between
the minimum and maximum simulated SD (Fig. 4a), with a
maximum of 127 cm observed at 27 June. For the SWE, this
corresponds to a mean difference of 98.3 mm w.e. (i.e. 28.2 %
of the total SWE) (Fig. 4c). The large modelled SD spread in
May and June can be explained by the different density pa-
rameterisation choices as it is not apparent in the SWE sim-
ulations (Fig. 4a and c). The rapid decrease (3—8 cm d=1) of
snow depth until July, caused by compaction of the snow-
pack, is simulated by the majority of fresh snow density pa-
rameterisations, while only one fresh snow density parame-
terisation models a more moderate compaction (i.e. the bold
red line has a moderate slope, compared to the light red lines
in Fig. 4a, until July). From July onward, the measured snow
depth decreases 10 centimetres per 25 d, which is only sim-
ulated by the fresh density parameterisation that simulated
moderate compaction before July. Snow density measure-
ments were unavailable in 2017 and the observed snow den-
sity in Fig. 4g is calculated with SWE/SD. The observed
snow density is only shown until the end of August, as the
calculation led to unrealistic decreasing snow densities after
August. This is likely caused by higher readings at the SD
sensor than at the SWE sensor, as those sensors were placed
on different sides of the meteorological tower or to a bias of
the SWE sensor in the ablation season as explained by Smith
et al. (2017).

The albedo evaluation (Fig. 4e) and corresponding statis-
tics (Sect. S4) highlight one parameterisation choice that out-
performs all other parameterisations (i.e. RMSE of 0.09 (-)
and R? of 0.86 calculated with the observed and simulated
albedo) in terms of snow compaction after snowfall events,
end of snow season, and albedo evolution (Fig. 4e). There-
fore this simulation with a zg of 1cm is selected as the ref-
erence simulation (represented in bold lines in Fig. 4) for the
forcing uncertainty simulations.

For SnowModel, the largest SD spread of the 12 ensem-
bles (six for every zo; equations in Sect. S1) occurs at the
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end of the simulated snow season (i.e. August, September,
and October) with complete snow removal between 21 Oc-
tober and 12 November (i.e. 22d) (Fig. 4b). The mean SD
difference between the parameterisations is 20 cm (i.e. 18 %
of the total SD), with a maximum of 152 cm at the first snow-
fall event (12 May), while for SWE the mean difference is
57mm (i.e. 19.2 % of the total SWE) with a maximum of
317 mmw.e. at 12 August (Fig. 4d).

Quantitative analysis (Sect. S4) shows best performance
scores for the time-evolution albedo approach in combination
with the reference snow density parameterisation and a zo of
1 cm (RMSE of 0.150 (-) and R? of 0.600). Therefore, these
are used as the reference simulation (bold line in Fig. 4).

Comparison of the SNOWPACK and SnowModel output
shows similar SD variations attributed to snow density pa-
rameterisations that simulate low density snowfall with no-
table subsequent compaction (Fig. 3g and h). In reality, this
happens at Tapado until June, followed by a different regime
with denser fresh snow and less compaction. The biggest dif-
ference between the models, however, is the result of the
albedo parameterisations. Where SnowModel relies on two
albedo models based on TA and albedo ranges, SNOWPACK
relies on empirical relations calibrated with measurements in
Switzerland and not adapted to the arid Tapado climate. Nev-
ertheless, the albedo of the reference run of SNOWPACK
performs well in a semi-arid area. Last, the simulations by
SnowModel all approximate the end of snow season within a
period of 22 d, whereas the simulations at the end of season
noticeably diverge for SNOWPACK. This is likely caused
by TA being above the freezing point at the end of October,
resulting in a fast melt simulated for all ensembles by Snow-
Model.

4.3 Sensitivity analysis of forcing data
4.3.1 Excluding precipitation uncertainty

The biased forcing excluding precipitation uncertainty
shows a similar sensitivity for SNOWPACK and Snow-
Model (Fig. 5a and c¢) with mean SD/SWE biases of
52cm/163 mmw.e. for SNOWPACK and 47 cm/172 mm
w.e. for SnowModel. The simulations with SnowModel show
more uncertainty in the melting period (e.g. in October), but
otherwise the simulations mainly overlap. The forcing uncer-
tainty results in complete snow removal simulations ranging
from 27 August to 28 November (i.e. 93 d) for SNOWPACK
and 30 August to 25 November (i.e. 87 d) for SnowModel.
The reference simulations of both models are located in the
middle of the spread of simulations, which is coherent with
the normal distribution of the biases applied to the forcing.
The biggest differences between the models are found in the
way SD has been simulated. The reference run and the 1000
simulations with biased forcing show marked settling rates
throughout the season with SnowModel, whereas the settling
is more moderate for SNOWPACK. This depends on the cho-
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Figure 4. (a, b) SD, (¢, d) SWE, (e, f) albedo, and (g, h) snow density simulations (coloured) of the ensemble approaches for SNOWPACK
(red), SnowModel (blue), and observations (black). The bold coloured lines show the reference simulations chosen as the most optimal pa-
rameterisation set according to the measured albedo. The solid (dotted) line in (¢) and (d) indicates the more (less) reliable SWE measurement

from potassium (thallium) rays.

sen snow density parameterisation and is discussed further in
Sect. 5.

4.3.2 Including precipitation uncertainty

The forcing perturbations including precipitation uncertainty
shows that precipitation uncertainty has a large impact
on SD and SWE ensemble spread (Fig. 5b and d). Av-
eraged over the season this results in SD/SWE biases of
75 cm/257 mm w.e. and 70 cm/262 mm w.e. for SNOWPACK
and SnowModel, respectively. Along with the similar aver-
age spread over the entire season observed for both models,
the range of the simulated days of snow-free surface is also
similar; for SnowModel this date ranges between 20 August
and 29 November (i.e. 101 d) and the range is similar but a bit
later in the season for SNOWPACK (i.e. between 29 August
and early December). Again, the main differences are found
in the settling of the snowpack (see Sect. 5).

4.4 TImpacts of the model choice and parameterisations
on sublimation

Ablation rates (Fig. 6) show that sublimation is the dominant
mode of mass loss in both models until September (i.e. cold
period), followed by melt from September to the end of the
season (i.e. end of November, and called the melting period).
Note that for SNOWPACK, the first day of snow-free sur-
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face of the reference run is 11 October and for SnowModel
is 27 October.

For SNOWPACK, the spread of the averaged sublimation
rates corresponding to the ensemble runs from the first day
of snow to 20 September have a minimum of 1.41 and a
maximum of 2.96 mm w.e.d~! (Fig. 6a). During the cold pe-
riod, when no melt occurs, the sublimation amounts mainly
depend on the zp, with sublimation rates ranging between
1.40 and 3.18 mm w.e.d~ !, but this is mainly clustered ac-
cording to the implemented zp. At the end of the season, the
total sublimation ranges between 153 and 364 mm w.e. (cor-
responding to 36.2 % to 86.0 % of the total ablation, again
strongly depending on the zp). During the melting period, the
ensemble runs show a large spread of melt rates ranging be-
tween 0.97 to 17.7mmw.e.d~!. The total amount of runoff
is between 28.9 and 236 mm w.e. for SNOWPACK, and this
model also simulates evaporation, which contributes between
2.5 % and 10.2 % of total ablation (Fig. 6a).

For SnowModel, sublimation differences between the pa-
rameterisations are similar (Fig. 6b) with average sublima-
tion rates from the first day of snow to 20 September rang-
ing between 1.27 and 2.79 mmw.e.d~!. At the end of the
winter season the sublimation totals range between 154 and
342 mm w.e. (which corresponds to 36.4 % to 80.7 % of the
total ablation). The runoff is between 81.7 and 269 mm w.e.
A closer analysis of Fig. 6b shows that SnowModel’s output
clusters into four groups, where the grouping is determined

The Cryosphere, 15, 4241-4259, 2021



4252

Exclludinyg prgcipi;atiop unpertajnty

A. Voordendag et al.: Snow model comparison to simulate snow depth evolution and sublimation

With precipitation qncerjtaintly

150

(a) |

®) |

SWE (mm w.e.)

0 — L 1 I
Apr May Jun Jul Aug Sep Oct Nov
SNOWPACK

SnowModel

Apr May Jun Jul Aug Sep Oct Nov
Observation

Figure 5. Observed (black) and simulated (colour) SD and SWE by SNOWPACK and SnowModel forced by the 1000 ensembles of meteo-
rological data. The reference run (see Sect. 3.2.3) of both models is the bold coloured curve. The shaded area corresponds to the 1000 runs of
(a, b) snow depth and SWE (¢, d) of SNOWPACK (red) and SnowModel (blue) for the run with biased forcing. Panels (a)—(c) exclude pre-
cipitation uncertainties and (b)—(d) include precipitation uncertainties.The solid (dotted) line in (c¢) and (d) indicates the more (less) reliable

SWE measurement from potassium (thallium) rays.

by the albedo parameterisation and zo with limited influence
of fresh snow density parameterisations. The two lower clus-
ters are linked to the zg value of 1 mm. The differences be-
tween clusters for different zo values increase as the differ-
ence in albedo between the parameterisations increase at the
end of June.

While the ensemble parameterisation simulations do not
lead to significant differences in the modelled end date of the
snow season (i.e. difference of 22 d), the albedo parameteri-
sation and z( value directly impact the proportion of sublima-
tion versus melt to the total ablation (Fig. 6b and d). During
the cold period, simulations considering the lowest albedo
and zo of 1cm (the reference simulation) lead to a higher
sublimation rate (Fig. 6b). Indeed, a lower albedo increases
the energy absorbed by the snowpack, and as the temperature
is below the freezing point, this energy leads to an increase in
the sublimation. A higher z( enhances this process even more
as this leads to a more negative latent heat flux. Second, the
increase of net shortwave radiation also affects the physical
properties of the snowpack resulting in an increase of com-
paction (Fig. 4b and h). The snow density of the snowpack
is therefore higher, which directly affects the thermal con-
ductivity of the upper snow layers (Yen, 1981). Surface tem-
perature variation is directly linked to the latent heat flux and
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therefore to sublimation, explaining the different sublimation
ratios simulated depending on the albedo parameterisations
and zg values.

In contrast to SnowModel, the albedo parameterisation in
SNOWPACK does not affect the sublimation but noticeably
influences the melting rate (Fig. 6¢), which can be attributed
to the more complex characteristics of this model. SNOW-
PACK allows refreezing and evaporation of melting snow
within the snowpack, which can lead to a longer melt season,
whereas calculated evaporation leads to a lower amount of
runoff from melt. Also, SNOWPACK considers a more com-
plex representation of snow physics, such as the grain size
and microstructure, which directly impacts the albedo and
can help to explain the wide diversity of melt simulations.

5 Discussion
5.1 Model sensitivity and comparison

Our results show the importance of model parameterisations
and model forcing over the snow model choice, despite the
limited model options chosen for the ensemble approach, and
the large differences in the two model complexities chosen
in this study. This conclusion, found here in an arid envi-
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Figure 6. Cumulative sublimation (a, b) and runoff from melt (¢, d) simulated by SNOWPACK (red) and SnowModel (blue). For SNOW-
PACK, the cumulative evaporation from melt is shown (purple lines in (a). Results for all the ensembles of parameterisations are shown and

the bold lines correspond to the reference simulations of each model.

ronment, is in agreement with the studies performed in other
alpine areas (Etchevers et al., 2004; Glinther et al., 2019).
The representation of turbulent fluxes is an important vari-
able to consider to simulate sublimation and in snow models
this is commonly based on the bulk method; the Richard-
son number is often used, together with the Monin—Obukhov
similarity theory, to evaluate the atmosphere stability (e.g.
Liston and Hall, 1995; Vionnet et al., 2012). Here, only the
Richardson number is used as both models offered this option
and the uncertainty associated to the turbulent fluxes param-
eterisation is only considered by implementing two different
zo values, while it can have major implications in surface en-
ergy balance modelling (e.g. Dadic et al., 2013; Conway and
Cullen, 2013; Litt et al., 2017; Réveillet et al., 2020). While
the stability function cannot be compared between the two
models chosen in this study, the sensitivity of SNOWPACK
to the six possibilities available in the current version is low
(i.e. max SD bias of a few centimetres; results not shown).
In a study over Brewster Glacier in New Zealand, Conway
and Cullen (2013) pointed out the importance of the stability
functions to properly simulate the heat fluxes with low wind
speed and large temperature gradients and also that the mod-
elled latent heat fluxes were unaffected by the choice of ex-
change coefficient parameterisation. The present study takes
place in a dry and windy environment without a large tem-
perature gradient and this helps to explain the small differ-
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ences observed related to the different atmospheric stability
functions. The turbulent fluxes parameterisation is sensitive
to the zp value and observations, such as eddy covariance
measurements, are essential to accurately parameterise the
turbulent fluxes (e.g. Conway and Cullen, 2013; Litt et al.,
2017; Réveillet et al., 2018).

Due to the absence of such measurements, the variability
of this value over time (e.g. MacDonell et al., 2013b; Pellic-
ciotti et al., 2005; Nicholson et al., 2016) and due to other
values in the literature at other locations showing a wide va-
riety (two orders of magnitude) of snow roughness length
(Gromke et al., 2011; Poggi, 1977; Bintanja and Broeke,
1995; Andreas et al., 2005), it was decided to use two differ-
ent values for zp (1 mm and 1 cm). Similar sensitivity ranges
for SNOWPACK and SnowModel were found (e.g. Fig. 4),
along with similar sublimation rates, but this directly de-
pended on the value for z. For both models, a zg of 1 cm led
to better simulations (Figs. 3, 4), but as applied more often,
this can also be seen as optimising parameter (e.g. Stigter
et al., 2018). In future work, the zg can be evaluated with
eddy covariance measurements.

The biggest differences between the models are found as
the snow settles and therefore depends on the snow den-
sity parameterisation. The challenge in this study was that
the snow settling showed two distinct regimes. From May
to mid-June, high compaction rates were found, whereas the
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compaction afterwards was more moderate. SNOWPACK
is able to model both moderate and high compaction, de-
pending on the parameterisation chosen, but the mode of
compaction remains the same over the season. SnowModel
simulates high compaction rates for all parameterisations,
which is correct for the start of the season but an overes-
timation after mid-June. These compaction rates implicate
changes in the thermal conductivity of the snowpack and
thus changes in the melting. The different snow density pa-
rameterisations in SNOWPACK are still being developed and
improved (e.g. Keenan et al., 2021), but an improvement of
snow density parameterisations in semi-arid regions shows
a demand for snow density measurements, as deriving den-
sity from SWE/SD measurements is biased over direct den-
sity observations using manual measurements (Smith et al.,
2017).

Subsequently, the albedo parameterisation appears to be
an important parameter to be properly assessed (Figs. 4, 6),
as also reported by the studies performed in alpine regions
(Etchevers et al., 2004; Zolles et al., 2019). This can be sur-
prising at first glance as in the semi-arid Andes the ablation is
mainly driven by the sublimation and the albedo parameter-
isation is generally crucial to accurately simulate the melt.
However, according to the results presented here, the two
models agree with the larger sensitivity to the albedo param-
eterisation. The impact of parameterisation choice differs for
the two models as the uncertainty is directly related to the
difference in snow physical representation and the character-
istics of the models. Indeed, the range of the ensemble ap-
proach simulated by SNOWPACK is higher than that simu-
lated by SnowModel, which is directly related to both higher
number of parameterisation possibilities for SNOWPACK
and more complex physical representation of the processes.

Likewise, results presented here show that the main sensi-
tivity remains in the forcing uncertainty, in agreement with
previous studies (Magnusson et al., 2015; Giinther et al.,
2019; Raleigh et al., 2015; Schlogl et al., 2016). For instance,
Magnusson et al. (2015) found that the models of different
complexity (temperature-index models versus physical mod-
els) show similar ability to reproduce daily observed snow-
pack runoff, and concluded that forcing uncertainties are
the greatest factor affecting model performance, rather than
model parameterisations. However, as mentioned by Raleigh
et al. (2015), simulated SD and SWE are critically sensitive
to the relative magnitude of errors in forcing. Raleigh et al.
(2015) and Schlogl et al. (2016) also mentioned that precip-
itation bias (or correction of the undercatch of the precipita-
tion gauge) was the most important factor, in agreement with
the findings of our study.

Finally, Rutter et al. (2009) pointed out that no universal
“best” model exists and model performance directly depends
on calibration of the models to the specific study site. Here,
similar conclusions can be drawn for both alpine and semi-
arid environments, namely that the choice of model structure
and parameterisations, along with a specific calibration of the
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parameterisations for the study site, has a major impact on
the performance.

5.2 Limitations of the study and further work

The sensitivity study of the two models to the forcing is done
by adding a bias to the meteorological variables with ranges
derived from the literature. It was also possible to add ran-
dom noise to the data, but this does not necessarily preserve
the physical consistency and would lead to low sensitivity
of the models (results not shown), as random noise coun-
terbalances each other, which has also been investigated by
Raleigh et al. (2015). It would also have been possible to ap-
ply a random perturbation (e.g. Charrois et al., 2016) using a
first-order auto-regressive model (Deodatis and Shinozuka,
1988). However, the forcing bias does not affect the con-
clusion of the relative comparison of the two models, which
only requires the exact same forcing as input to be relevant.
For the same reason, the choice of method applied for the
forcing correction (i.e. for precipitation) and reconstruction
(i.e. for the TA and RH) would not affect the conclusions of
the model comparison. However, due to the precipitation un-
certainty related to measurements errors and also because the
sensor locations may not be representative of the area, dif-
ferent ways to correct the precipitation data were proposed.
Giinther et al. (2019) and Griinewald and Lehning (2014) al-
ready outlined that the snow cover is spatially heterogeneous
even at very small scales due to topographic and microcli-
matic effects on accumulation, redistribution, and ablation
processes, introducing an uncertainty in validation data. We
also show that in any case, due to (i) the question of the sen-
sor location representativity of the area, (ii) the precipitation
undercatch because of the wind, and (iii) the high sensitivity
of models to precipitation uncertainty, this study highlights
the complexity and necessity of accurately measuring pre-
cipitation. Additionally, possible corrections depend on the
availability of observations, but this study was restricted to
not using SWE and SD as forcing, as these parameters were
needed as validation data. Therefore, we chose a precipita-
tion correction that overestimates snowfall at the start of the
season, but does not capture the increase of SD and SWE in
mid-June, resulting in a good agreement between simulated
and observed SWE from the beginning of July (e.g. Fig. 4).

The ensemble approach with different parameterisations
is built considering limited parameterisation options, con-
trary to other studies where a large number of physical op-
tions are considered (e.g. Essery et al., 2013; Lafaysse et al.,
2017; Zolles et al., 2019). In our case, choosing snow mod-
els with different physical complexities limits the number of
calibration possibilities, as the parameterisation of the same
variables are chosen for the comparison. Thus, some param-
eterisations, such as the choice of atmospheric stability cor-
rection only available in SNOWPACK, were excluded and
this model is calibrated following the same options found in
SnowModel (Sect. 3.2.1).
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Testing different albedo parameterisations is chosen as
(i) different options are possible in both models and (ii) previ-
ous studies concluded that the largest absolute uncertainties
originate from the shortwave radiation and the albedo param-
eterisations (e.g. Zolles et al., 2019). The sensitivity test to
different fresh snow density parameterisations was also cho-
sen as previous studies identified this parameterisation as a
significant uncertainty in model calibration (e.g. Essery et al.,
2013). Finally, energy balance models are known to be sensi-
tive to zo, especially in cold and dry regions where sublima-
tion is the main ablation process (e.g. Réveillet et al., 2020).
However, due to this important sensitivity and the absence of
measurements to properly calibrate this value, two values for
zo were implemented, but this still might underestimate the
possible range of zo values.

Otherwise, despite the choice of limiting the parameterisa-
tion options, SNOWPACK’’s sensitivity to model parameteri-
sations is evaluated based on 40 simulations, whereas Snow-
Model’s evaluation is based on only 12 simulations. How-
ever, the difference of the number of simulations does not
impact the conclusion, as the width of the spread of different
parameterisations was not quantitatively assessed.

Among the possible settings of the model, the snow trans-
port option has not been activated, while the option is avail-
able in both models. However, due to the strong wind speed
characteristics of the study area (Gascoin et al., 2013, and
Fig. 2), snow transport is expected to be considerable. Yet,
snow transport estimation remains out of the scope of this
study, which was focused on energy balance comparisons
mainly to assess differences in sublimation rates. Also, in
a study performed in the Pascua-Lama catchment, a region
to the north of Tapado AWS, Gascoin et al. (2013) high-
lighted that the inclusion of SnowTran3D does not change
the fact that the model is unable to capture the small-scale
snow depth spatial variability (as captured by in situ snow
depth sensors). Finally, snow transport in SNOWPACK can
only be simulated in the three-dimensional domain with SD
as forcing, which then could not be used as validation data.
However, due to the importance and complexity of modelling
snow transport, properly assessing its impact could be as-
sessed in future work.

6 Conclusions

Snow models are key to quantifying runoff and providing ac-
curate water availability projections. The aim of this study
was to compare two snow models, SNOWPACK and Snow-
Model, and evaluate their sensitivity relative to parameteri-
sation and forcing. The two models were run over the 2017
snow season, at local point, and forced with (i) the most ideal
set of input parameters, (ii) an ensemble of different physical
parameterisations, and (iii) an ensemble of biased forcing.
The most ideal set of input parameters consisted of ob-
served forcing and the validation parameters (SD and S

https://doi.org/10.5194/tc-15-4241-2021

4255

for SNOWPACK; SWE for SnowModel) given as input.
Hence, the models were able to assimilate the forced precip-
itation to correct for undercatch in the precipitation gauge.
SNOWPACK is able to approach the observation very well
(i.e. min. RMSE of 9.2 cm, max. R? of 0.93, calculated with
the observed and simulated SD), but SnowModel only ad-
justs the precipitation at two precipitation events, still lead-
ing to undercatch. The final correction of the precipitation
data was done with an equation based on TA and WS, as it
was unwanted to adjust the precipitation with SNOWPACK’s
assimilated data, as these assimilated data are built from data
that were required for model evaluation. The parameterisa-
tion simulations were done considering different parameteri-
sations of the albedo and the fresh snow density and different
values for z. The results indicated a significant difference re-
lated mainly to the parameterisation choice of the albedo and
z0. However, the impact of the albedo affects the two models
differently. For SnowModel, the albedo parameterisation has
a significant impact on the simulated sublimation during the
cold period while SNOWPACK simulates similar sublima-
tion rates for all the possible parameterisations. The choice
of albedo parameterisation in SNOWPACK has direct conse-
quences on melt at the end of the season. The model differ-
ences are mainly related to the model characteristics (e.g. the
consideration of the water evaporation and refreezing into the
snowpack) and the more complex representation of the snow
physics in SNOWPACK. However, the models are both sen-
sitive to the chosen zp, leading to sublimation rates ranging
from 36 % up to 86 % of total ablation.

In addition, the results presented in this study highlight a
larger uncertainty depending on the model parameterisation
(despite the limited number of options chosen) than between
the two models (despite the significant differences in their
physical complexity).

Otherwise, for both models, results show high levels of
uncertainty related to forcings, which is directly related to
the bias chosen, but the spread of the uncertainty for both
models is approximately the same. SNOWPACK and Snow-
Model are highly influenced by precipitation uncertainties.
Both models show similar levels of uncertainty in modelling
the end of the season.

Our study covers the winter season of 2017, and our con-
clusions on model sensitivity to various parameterisations are
specific to that period. In further studies, simulations could
be performed over a larger time period and at distinct places
to complement our results. Furthermore, additional models
could be used, in particular snow models with similar phys-
ical complexity. Such work would provide additional infor-
mation of the parameterisation sensitivity by allowing a com-
parison based on a larger choice of possible parameterisa-
tions.

Data availability. SnowModel can be accessed by contacting the
administrator, Glen E. Liston. SNOWPACK is an Open Source
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model and can be accessed at https://gitlabext.wsl.ch/snow-
models/snowpack (last access: 31 August 2021). Parts of
the data used in this paper (AWS data) can be accessed at
http://www.ceazamet.cl/index.php?e_cod=TPF&pag=mod_estacion
(last access: 31 August 2021, CEAZAmet, 2021). For any other
access to the data presented in this study, please contact the authors.
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