

Supplement of

Brief communication: Evaluation of multiple density-dependent empirical snow conductivity relationships in East Antarctica

Minghu Ding et al.

Correspondence to: Minghu Ding (dingminghu@foxmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S4. The annual cycles of firn temperatures (black curves) and their sinusoidal best-fit (red curves) at the nominal depth of 0.1 m (a), 1 m (b), 3 m (c) and 10 m (d) for 2005—2014 at the Dome A station.

Figure S5. The annual cycles of firn temperatures (black curves) and their sinusoidal best-fit (red curves) at the nominal depth of 0.1 m (a),1 m (b), 3 m (c) and10 m (d) for 2005—2015 at the Eagle station.

18

Figure S6. The annual cycles of firn temperatures (black curves) and their sinusoidal best-fit (red curves) at the nominal depth of 0.1 m (a),1 m (b), 3 m (c) and10 m (d) for 2002—2007 at the LGB 69 station.

		,	•	•	,
Code	formula	density	temperature	description	reference
		(kg m-3)	(°C)		
Jor	$k = k_a + (7.75e^{-5}\rho/1000 + 1.105e^{-6}(\rho/1000)^2)(k_i - k_a)$	376-472 -7 to -17		Experimental	Jordan (1991)
				measurements	
Ca1	$k=0.024-1.23e^{-4}\rho+2.5e^{-6}\rho^2$	100-550	-3	3D images-based	Calonne et al., (2011)
				computations	
Ca2	See Eqn (5) in Calonne et al., (2019)	0–917	temperature	3D images-based	Calonne et al., (2019)
			dependent	computations	
Stu	$k = 10^{(2.650\rho - 1.652)}$	70-560	-1 to -77	needle probe	Sturm et al., (1997)
				measurements	
Yen	$k = 2.22362(\frac{\rho}{1000})^{1.885}$	80-600	-	Experimental	Yen (1981)
				measurements	
And		-	-	Experimental	Anderson (1976)
	$k = 0.021 + 2.5(\frac{\rho}{1000})^2$			measurements	
Van		-	0 to -30	Experimental	Van Dusen and
	$k=2.1e^{-2}+4.2e^{-4}\rho+2.2e^{-9}\rho^3$			measurements	Washburn (1929)
Sch	$\mathbf{k} = \mathbf{k}_i (\frac{\rho}{\rho_i})^{2-0.5\frac{\nu}{\rho_i}}$	-	-	Experimental	Schwander et al.,
				measurements	(1997)
Lan	$k = 10^{6.8\rho - 3.0}$	230 to 480	-4.4 to -19.5	Experimental	Lange (1985)
				measurements	

Table S1. Brief introductions of the density-dependent relationships used in this study

25 Table S2. Comparisons between density-dependent empirical conductivity and phase change

26	recovered (PCR) conductivity (W m ⁻	^{.1} K ⁻¹) at three depth	intervals, 0.1-1 m,	1-3 m and 3-10 m.
20		n jacunee uepui		1-5 m and 5-10 i

2	7
7	/

The three overall best relationships for different depths are shown in bold and italic.

		PCR	Yen	Cal	Jor	Stu	Lan	Van	Sch	Ca2	And
Dome A	0.1-1m	0.26	0.30	0.28	0.38	0.18	0.22	0.26	0.39	0.31	0.32
			(+15.	(+7.7%)	(+46.2%)	(-30.8%)	(-15.4%)	(0%)	(+50%)	(+19.2%)	(+23.1%)
			4%)								
	1-3 m	0.31	0.33	0.31	0.42	0.20	0.29	0.28	0.43	0.34	0.35
			(+6.5	(0%)	(+35.5%)	(-35.5%)	(-6.5%)	(-9.7%)	(+38.7%)	(+9.7%)	(+12.9%)
			%)								
	3-10 m	0.46	0.42	0.40	0.52	0.27	0.64	0.35	0.55	0.43	0.44
			(-8. 7	(-13.0%)	(+13.0%)	(-41.3%)	(+39.1%)	(-23.9%)	(+19.6%)	(-6.5%)	(-4.4%)
			%)								
Eagle	0.1-1m	0.39	0.42	0.40	0.52	0.27	0.64	0.35	0.55	0.45	0.44
			(+7.7	(+2.6%)	(+33.3%)	(-30.8%)	(64.1%)	(-10.3%)	(+41.0%)	(+15.4%)	(+12.8%)
			%)								
	1-3 m	0.54	0.51	0.48	0.62	0.36	1.24	0.42	0.67	0.49	0.54
			(-5.6	(-11.1%)	(+14.8%)	(-33.3%)	(+130%)	(-22.2%)	(+24.1%)	(-9.3%)	(0%)
			%)								
	3-10 m	0.73	0.62	0.60	0.76	0.49	2.90	0.52	0.82	0.65	0.66
			(-15.	(-17.8%)	(+4.1%)	(-32.9%)	(+297%)	(-28.8%)	(+12.3%)	(-11.0%)	(-9.6%)
			1%)								
LGB69	0.1-1m	1.02	0.47	0.44	0.58	0.32	0.91	0.39	0.62	0.42	0.49
			(-53.	(-56.9%)	(-43.1%)	(-68.6%)	(-10.8%)	(-61.8%)	(-39.2%)	(-58.8%)	(-52.0%)
			9%)								
	1-3 m	0.62	0.50	0.48	0.61	0.35	1.16	0.41	0.66	0.54	0.53
			(-19.	(-22.6%)	(-1.6%)	(-43.6%)	(87.1%)	(-33.9%)	(+6.5%)	(-12.9%)	(-14.5%)
			4%)								
	3-10 m	0.81	0.59	0.57	0.72	0.45	2.34	0.49	0.79	0.78	0.63
			(-27.	(-29.6%)	(-11.1%)	(-44.4%)	(+189%)	(-39.5%)	(-2.5%)	(-3.7%)	(-22.2%)
			2%)								