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Abstract. Glacial lakes in the Hindu Kush–Karakoram–
Himalayas–Nyainqentanglha (HKKHN) region have grown
rapidly in number and area in past decades, and some dozens
have drained in catastrophic glacial lake outburst floods
(GLOFs). Estimating regional susceptibility of glacial lakes
has largely relied on qualitative assessments by experts, thus
motivating a more systematic and quantitative appraisal. Be-
fore the backdrop of current climate-change projections and
the potential of elevation-dependent warming, an objective
and regionally consistent assessment is urgently needed. We
use an inventory of 3390 moraine-dammed lakes and their
documented outburst history in the past four decades to test
whether elevation, lake area and its rate of change, glacier-
mass balance, and monsoonality are useful inputs to a proba-
bilistic classification model. We implement these candidate
predictors in four Bayesian multi-level logistic regression
models to estimate the posterior susceptibility to GLOFs. We
find that mostly larger lakes have been more prone to GLOFs
in the past four decades regardless of the elevation band in
which they occurred. We also find that including the regional
average glacier-mass balance improves the model classifica-
tion. In contrast, changes in lake area and monsoonality play
ambiguous roles. Our study provides first quantitative evi-
dence that GLOF susceptibility in the HKKHN scales with
lake area, though less so with its dynamics. Our probabilis-
tic prognoses offer improvement compared to a random clas-
sification based on average GLOF frequency. Yet they also
reveal some major uncertainties that have remained largely
unquantified previously and that challenge the applicability
of single models. Ensembles of multiple models could be a
viable alternative for more accurately classifying the suscep-
tibility of moraine-dammed lakes to GLOFs.

1 Introduction

Glacial lake outburst floods (GLOFs) involve the sudden
release and downstream propagation of water and sed-
iment from naturally impounded meltwater lakes (Costa
and Schuster, 1987; Emmer, 2017). About one third of
the 25 000 glacial lakes in the Hindu Kush–Karakoram–
Himalayas–Nyainqentanglha (HKKHN) region are dammed
by moraines, and some of these are potentially unstable (Ma-
harjan et al., 2018). Such impounded meltwater can over-
top or incise dams rapidly with catastrophic consequences
downstream (Costa and Schuster, 1987; Evans and Clague,
1994). High Mountain Asian countries are among the most
affected by these abrupt floods if considering both damage
and fatalities (Carrivick and Tweed, 2016). For example, in
June 2013, a GLOF from Chorabari Lake in the Indian state
of Uttarakhand caused > 6000 deaths in what is known as
the “Kedarnath disaster” (Allen et al., 2016). The peak dis-
charges of GLOFs can be orders of magnitude higher than
those of seasonal floods. GLOFs can move large amounts of
sediment, widen mountain channels, undermine hillslopes,
and thus increase the hazard to local communities (Cenderelli
and Wohl, 2003; Cook et al., 2018). Still, GLOFs in the
HKKHN are rare and have occurred at an unchanged rate of
about 1.3 per year in the past four decades (Veh et al., 2019).
Ice avalanches and glacier calving are the most frequently
reported triggers of GLOFs in the HKKHN (Richardson and
Reynolds, 2000; Rounce et al., 2016). Most dated outbursts
have occurred between June and October and might be linked
to high lake levels fed by monsoonal precipitation and sum-
mer ablation of glaciers (Richardson and Reynolds, 2000).
The Kedarnath GLOF is the only case attributed to a rain-on-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4146 M. Fischer et al.: Controls of outbursts of moraine-dammed lakes in the greater Himalayan region

snow event early in the monsoon season (Allen et al., 2016).
This particularly destructive GLOF underlines the need for
understanding better how and why meltwater lakes can be
susceptible to sudden outburst triggered by rainstorms, es-
pecially given projected impacts of atmospheric warming on
the high-mountain cryosphere.

Current scenarios entail that atmospheric warming may
change the susceptibility of HKKHN glacial lakes to sud-
den outburst floods: the IPCC’s (Intergovernmental Panel
on Climate Change) most recent projections attribute the
decay of low-lying glaciers and permafrost to increases in
lake number and area because of rising air temperatures,
more frequent rain-on-snow events at higher elevations, and
changes in precipitation seasonality (Hock et al., 2019). Air
surface temperature in the HKKHN rose by about 0.1 ◦C per
decade from 1901 to 2014 (Krishnan et al., 2019), likely
having reduced snowfall, altered permafrost distribution, and
accelerated glacier melt at lower elevations (Hock et al.,
2019). Ice loss in the Himalayas has significantly increased
in the past four decades, from−0.22± 0.13 mw.e.yr−1 (me-
tres of water equivalent per year) between 1975 and 2000
to −0.43± 0.14 m w.e.yr−1 between 2000 and 2016 (Mau-
rer et al., 2019). Parts of this meltwater have been trapped
in glacial lakes that have expanded by approximately 14 %
between 1990 and 2015 (Nie et al., 2017). King et al.
(2019) found that Himalayan glaciers terminating in lakes
had higher rates of mass loss since the 1970s than those not
in direct contact with a glacial lake. The notion of elevation-
dependent warming (EDW) posits that increases in air tem-
perature are most pronounced at higher elevations (Hock
et al., 2019; Pepin et al., 2015). EDW has affected cold tem-
perature metrics, including the number of frost days and min-
ima of near-surface air temperature in the HKKHN in the
past decades (Krishnan et al., 2019; Palazzi et al., 2017). Es-
sentially, all scenarios of atmospheric warming concern as-
pects of elevation, glacial lake size and dynamics, and local
climatic variability. Yet whether and how these aspects affect
GLOF hazards still awaits more quantitative support.

Previous work on GLOF susceptibility and hazard in the
region focused on identifying or classifying potentially un-
stable glacial lakes, including local case studies largely in-
formed by fieldwork, dam-breach models (Koike and Take-
naka, 2012; Somos-Valenzuela et al., 2012, 2014), and basin-
wide assessments (Bolch et al., 2011; Mool et al., 2011;
Rounce et al., 2016; Wang et al., 2011). GLOF hazard ap-
praisals for the entire HKKHN, however, remain rare (Veh
et al., 2020). Most basin-wide studies proposed qualitative
to semi-quantitative decision schemes using selective lists of
presumed GLOF predictors (Table 1; Rounce et al., 2016).
Yet researchers have used subjective rules to choose these
variables and associated thresholds, leading to diverging haz-
ard estimates (Rounce et al., 2016). Expert knowledge has
thus been essential in GLOF hazard appraisals despite an
increasing amount of freely available climatic, topographic,
and glaciological data. Statistical models can help to estimate

the occurrence probability of GLOFs and thus reduce the in-
herent subjective bias (Emmer and Vilímek, 2013). For ex-
ample, Wang et al. (2011) classified the outburst potential of
moraine-dammed lakes on the southeastern Tibetan Plateau
by applying a fuzzy consistent matrix method. They used as
inputs the size of the parent glacier, the distance and slope be-
tween lake and glacier snout, and the mean steepness of the
moraine dam and the glacier snout to come up with different
nominal hazard categories. This and many similar qualitative
ranking schemes are accessible to a broader audience and
policy makers but are difficult to compare, and they poten-
tially oversimplify uncertainties.

One way to deal with these uncertainties in a more ob-
jective way involves a Bayesian approach. Here we used this
probabilistic reasoning with data-driven models. Specifically,
we tested how well some of the more widely adopted predic-
tors of GLOF susceptibility and hazard fare in a multi-level
logistic regression that is informed more by data rather than
by expert opinion. We checked how well this approach iden-
tifies glacial lakes in the HKKHN that had released GLOFs in
the past four decades. Our method estimates the probability
of correctly detecting historic GLOFs from a set of predictors
which act as proxies subsuming various physical processes
described as being relevant to GLOFs. Triggering mecha-
nisms of these GLOFs are rarely reported, however. Thus,
we discuss what more we can learn about how these historic
GLOFs were linked to readily available measures of topogra-
phy, monsoonality, and glaciological changes. Our model re-
sults provide a posterior probability of outburst conditioned
on detection, and this may be used as a relative metric of
GLOF release from a given lake. Therefore, our approach is
an alternative to a formal assessment of moraine-dam stabil-
ity, which is (geo-)technically feasible only at selected sites
and at scales much finer than our regional and decadal focus.

2 Study area, data, and methods

2.1 Study area and data

We studied glacial lakes of the Hindu Kush–Karakoram–
Himalayas–Nyainqentanglha (HKKHN) region that we de-
fined here as the Asian mountain ranges between 16 to
39◦ N and 61 to 105◦ E, i.e. from Afghanistan to Myan-
mar (Fig. 1; Bajracharya and Shrestha, 2011). Following the
outlines of glacier regions in High Mountain Asia used in
the Randolph Glacier Inventory version 6.0 (RGI Consor-
tium, 2017) and those defined by Brun et al. (2017), Veh
et al. (2020) subdivided our study area into seven moun-
tain ranges: the Hindu Kush, the Karakoram, the Western
Himalaya, the Central Himalaya, the Eastern Himalaya, the
Nyainqentanglha, and the Hengduan Shan. Meltwater from
the HKKHN’s extensive snow and ice cover, often referred
to as the “Third Pole”, feeds 10 major river systems to
provide water for some 1.3 billion people (Molden et al.,
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Table 1. Frequently used predictors of GLOF susceptibility and hazard in the HKKHN.

Predictor
groups

GLOF susceptibility and
hazard predictors

Tested in
this study

Reference

Lake
characteristics
and dynamics

Glacial lake elevation X Mergili and Schneider (2011)

Catchment area X Allen et al. (2019); GAPHAZ (2017)

Glacial lake area X Aggarwal et al. (2016); Allen et al. (2019); Bolch et al. (2011); GAPHAZ (2017); Ives
et al. (2010); Khadka et al. (2021); Mergili and Schneider (2011); Prakash and Nagara-
jan (2017); Wang et al. (2012); Worni et al. (2013)

Lake-area change (growth and
shrinkage, absolute change)

X Aggarwal et al. (2016); Bolch et al. (2011); Ives et al. (2010); Khadka et al. (2021);
Mergili and Schneider (2011); Prakash and Nagarajan (2017); Rounce et al. (2016);
Wang et al. (2012)

Potential
downstream
impact

Lake volume – Aggarwal et al. (2016); Bolch et al. (2011); GAPHAZ (2017); Kougkoulos et al. (2018);
Mergili and Schneider (2011)

Dam stability Moraine-wall steepness – Allen et al. (2019); Bolch et al. (2011); Dubey and Goyal (2020); GAPHAZ (2017);
Ives et al. (2010); Khadka et al. (2021); Prakash and Nagarajan (2017); Rounce et al.
(2016); Wang et al. (2011); Worni et al. (2013)

Width-to-height ratio – Aggarwal et al. (2016); Bolch et al. (2011); GAPHAZ (2017); Ives et al. (2010); Prakash
and Nagarajan (2017); Worni et al. (2013)

Lake freeboard – Bolch et al. (2011); GAPHAZ (2017); Kougkoulos et al. (2018); Mergili and Schneider
(2011); Prakash and Nagarajan (2017); Worni et al. (2013)

Existence of a buried ice core – Bolch et al. (2011); Dubey and Goyal (2020); GAPHAZ (2017); Ives et al. (2010);
Rounce et al. (2016)

Dam type X GAPHAZ (2017); Kougkoulos et al. (2018); Mergili and Schneider (2011); Wang et al.
(2011); Worni et al. (2013)

Moraine lithology – GAPHAZ (2017)

Potential
triggering
mechanisms
(geomorphic)

Seismic activity – GAPHAZ (2017); Ives et al. (2010); Kougkoulos et al. (2018); Mergili and Schneider
(2011); Prakash and Nagarajan (2017)

Distance from parent glacier
snout

– Aggarwal et al. (2016); Ives et al. (2010); Khadka et al. (2021); Kougkoulos et al.
(2018); Prakash and Nagarajan (2017); Wang et al. (2011, 2012); Worni et al. (2013)

Steepness parent glacier snout – Bolch et al. (2011); Ives et al. (2010); Kougkoulos et al. (2018); Prakash and Nagarajan
(2017); Wang et al. (2011)

Parent glacier calving potential
(width, crevasse density)

– GAPHAZ (2017); Ives et al. (2010); Mergili and Schneider (2011)

Regional or parent glacier-mass
balance

X Bolch et al. (2011); Ives et al. (2010)

Mass movements (traces, tra-
jectories, probabilities)

– Allen et al. (2019); Bolch et al. (2011); Dubey and Goyal (2020); GAPHAZ (2017);
Ives et al. (2010); Khadka et al. (2021); Mergili and Schneider (2011); Prakash and
Nagarajan (2017); Rounce et al. (2016); Worni et al. (2013)

Permafrost conditions – GAPHAZ, 2017

Upstream lake (with GLOF po-
tential)

– Dubey and Goyal (2020); GAPHAZ (2017); Khadka et al. (2021)

Potential
triggering
events
(climatic)

Annual mean temperature – GAPHAZ (2017); Liu et al. (2014); Wang et al. (2008)

Temperature seasonality – Ives et al. (2010); Kougkoulos et al. (2018)

Temperature extremes (inten-
sity, frequency)

– GAPHAZ (2017)

Annual precipitation – Wang et al. (2008, 2012)

Precipitation seasonality – Ives et al. (2010); Kougkoulos et al. (2018)

Precipitation extremes (inten-
sity, frequency)

– GAPHAZ (2017); Prakash and Nagarajan (2017)

Summer precipitation or proxy
of monsoonality

X Wang et al. (2008, 2012)
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Figure 1. Overview map of the HKKHN showing the distribution of moraine-dammed lakes in 1◦× 1◦ bins (blue bubbles scaled by area),
their elevation (expressed as quantiles coded by arrows; see inset for elevation distribution), and average monsoonality (colour coded; see
inset for monsoonality distribution), defined here as the fraction of total annual precipitation falling in the summer months. Orange and white
triangles indicate reported moraine-dam failures before and after 2005, respectively (Veh et al., 2019). Background hillshade is from the
GTOPO30 global 30 arcsec elevation dataset (https://doi.org/10.5066/F7DF6PQS).

2014). There, glaciers have had an overall negative mass
balance historically and lost 150± 110 kgm−2 yr−1 on av-
erage from 2006 to 2015, though with balanced trends in
the Karakoram (Bolch et al., 2019; Hock et al., 2019). Since
the 1970s, some Karakoram glaciers also accelerated in flow,
whereas glaciers stalled elsewhere in the HKKHN (Dehecq
et al., 2019). In the RCP8.5 scenario the HKKHN glaciers
could lose 64± 5 % of their total mass by 2100 compared
to estimated glacier volumes for the interval 1995 to 2015
(Kraaijenbrink et al., 2017). How much of this melting of
glaciers is due to EDW remains under debate (Palazzi et al.,
2017; Rangwala and Miller, 2012; Tudoroiu et al., 2016).
Snowfall at lower elevations is also likely to decrease (Hock
et al., 2019; Terzago et al., 2014), judging from snowfall and
glacier-mass balances of past decades (Kapnick et al., 2014;
King et al., 2019). Monsoon precipitation is likely to become
more episodic and intensive (Palazzi et al., 2013).

Guided by these projections, we selected several widely
used glacial lake susceptibility predictors (Table 2).

We used lake elevation z (ma.s.l.) as a proxy for the
standard lapse rate of tropospheric air temperature (Rol-
land, 2003; Yang and Smith, 1985). This elevation-dependent
thermal gradient is also a major control on the distribution
of alpine permafrost (Etzelmüller and Frauenfelder, 2009)
and precipitation. Mean annual rainfall along the Himalayan
front can exceed 4000 mm at elevations some 4000 m high,
where ∼ 25 % of all glacial lakes occur (Fig. 1; Bookhagen
and Burbank, 2010). Lake elevation should also represent
first-order topographic effects of EDW. For example, the sta-

bility of low-lying moraine dams may be compromised by
the loss of permafrost and commensurate increases in per-
meability in the moraine barrier and adjacent valley slopes
(Haeberli et al., 2017).

Glacial lake area A (m2) and its rate of change 1A (net
change) and A∗ (relative change, %) are other common pre-
dictors of susceptibility and hazard in GLOF studies (Allen
et al., 2019; Bolch et al., 2011; Prakash and Nagarajan, 2017;
see Table 1 for full list of references) that we considered
here. Due to a general lack of available bathymetric data
on a regional scale, a number of studies used the frequently
observed phenomenon that lake area scales with lake vol-
ume and depth (Huggel et al., 2002; Iribarren Anacona et al.,
2014). Growing lake depths increase the hydrostatic pressure
acting on moraine dams, thus raising the potential of fail-
ure (Iribarren Anacona et al., 2014; Rounce et al., 2016). In
the past decades, lake areas have grown largest in the Cen-
tral Himalayas (+23 % in 1990–2015; Nie et al., 2017) and
Nyainqentanglha Mountains but lowest in the northwestern
Himalayas (Chen et al., 2021; Nie et al., 2017), and many
studies have emphasised the role of growing lakes on GLOF
susceptibility (e.g. GAPHAZ, 2017; Prakash and Nagarajan,
2017; Rounce et al., 2016). Many previous GLOF assessment
schemes included lake area or lake-area growth as a proxy for
the volume of water that could be potentially released by an
outburst and thus the resulting downstream hazard (e.g. Allen
et al., 2019; Bolch et al., 2011). However, a number of studies
also stress that lake area and its growth define the exposure to
external and internal triggers of moraine dam breach: larger
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Table 2. Details on tested predictors and our reasoning for selection based on their commonly reported physical links to GLOF susceptibility.

GLOF susceptibility
predictor

Symbol Unit Data source Selection reasoning

Glacial lake elevation z ma.s.l. SRTM DEM – strong link between elevation and temperature at high al-
titudes (standard lapse rate of tropospheric air temperature)
→ elevation dependence of permafrost and precipitation
patterns

Catchment area C m2 SRTM DEM – potential for surface runoff into lake from precipitation
and snow melt

Glacial lake area A m2 SRTM DEM – proxy for lake volume and depth and thus hydrostatic
pressure acting on moraine dam

Lake-area change 1A Net change – Wang et al. (2020) – increasing lake area commonly reported as scaling with
increasing lake depth
→ potentially increased hydrostatic pressure acting on the
moraine dam
– increased proximity to steep valley slopes
→ increased potential of mass movements entering the lake

A∗ Relative change
(between)

%

A∗a (1990–2005)
A∗b (2005–2018)
A∗c (1990–2018)

Glacier-mass balance r Glacier-mass balance
region

– Brun et al. (2017) – proxy for direct or surface runoff glacier meltwater input,
calving potential of parent glacier front, and permafrost dis-
tribution in lake surroundings
– link between regional glacier-mass balance and synoptic
regime (winter westerlies vs. monsoon dominated)

1mr Average glacier-mass
balance

mw.e.yr−1

Monsoonality
(annual proportion of
summer precipitation)

M % (mm) CHELSA
(Karger et al.,
2017)

– high-intensity precipitation events during monsoon season
potentially leading to increased surface runoff into glacial
lakes (cloudburst event)
– seasonal increases in lake levels and, hence, lake depths
increasing hydrostatic pressure acting on moraine dam
– link between regional glacier-mass balance and synoptic
regime (winter westerlies vs. monsoon dominated)

and growing lakes offer more area for impacts from mass
flows such as avalanches, rockfalls, and landslides originat-
ing from adjacent valley slopes (GAPHAZ, 2017; Haeberli
et al., 2017; Prakash and Nagarajan, 2017; Rounce et al.,
2016). Some authors also link growing lake areas to an in-
crease in hydrostatic pressure acting on its moraine dam, thus
making the latter more susceptible to sudden failure (Iribar-
ren Anacona et al., 2014; Mergili and Schneider, 2011).

We also tested the impact of upstream catchment area C
(m2) on GLOF susceptibility. A larger upstream catchment
area has been associated with an increased susceptibility
to GLOFs as runoff from intense precipitation, as well as
glacier and snow melt, can lead to sudden increases in lake
volume (Allen et al., 2019; GAPHAZ, 2017). We find that
catchment area C correlates with lake area A (Pearson’s
ρ= 0.45). We thus preferred C over A in two of our mod-
els as C is invariant at the timescale of our study, and we use
these two models to explicitly test whether runoff by glacier
melt or monsoonal precipitation had an effect on GLOFs in
our study area.

Similar to changes in lake area, glacier dynamics are fre-
quently mentioned though rarely incorporated quantitatively
in susceptibility appraisals (Bolch et al., 2011; Ives et al.,
2010). This motivated us to consider the average changes
in regional glacier-mass balances between 2000 and 2016

1m (mwater equivalentyr−1) from Brun et al. (2017). These
readily available data on regional glacier-mass balances are
proxies for other, less accessible physical controls on GLOF
susceptibility such as glacial meltwater input, either directly
from the parent glacier or from glaciers upstream, as well as
permafrost decay in slopes fringing the lake (see Table 2 for
full list).

Meteorological drivers entered previous qualitative GLOF
hazard appraisals mostly as (the probability of) extreme mon-
soonal precipitation events: the Kedarnath GLOF disaster,
for example, was triggered by intense surface runoff (Huggel
et al., 2004; Prakash and Nagarajan, 2017). Heavy rainfall
may also trigger landslides or debris flows from adjacent hill-
slopes followed by displacement waves that overtop moraine
dams (Huggel et al., 2004; Prakash and Nagarajan, 2017).
Elevated lake levels during the monsoon season also raise
the hydrostatic pressure acting on moraine dams (Richard-
son and Reynolds, 2000). Furthermore, different precipita-
tion regimes and climatic preconditions may also influence
moraine-dam failure mechanics (Wang et al., 2012). Intense
precipitation occurs in our study region largely during the
summer monsoon, so we derived a synoptic measure of mon-
soonality M (%). We define monsoonality M in terms of the
annual proportion of summer, i.e. the warmest quarter, pre-
cipitation, which is highest in the southeast HKKHN, where
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it is linked to monsoonal low-pressure systems (Krishnan
et al., 2019).

We extracted information on these characteristics for
glacial lakes recorded in two inventories. First, we used the
ICIMOD database of 25 614 lakes manually mapped from
Landsat imagery acquired in 2005± 2 years (Maharjan et al.,
2018), from which we extracted 7284 lakes dammed by
moraines (classes m(l), m(e), and m(o) in Maharjan et al.,
2018). Second, we identified from an independent regional
GLOF inventory (Veh et al. 2019) 31 lakes that had at least
one outburst between 1981 and 2017 and that are listed in
the ICIMOD inventory. The triggering mechanism of these
studied GLOFs is reported in only seven cases, four of which
are attributed to ice avalanches entering the lake (e.g. Tam
Pokhari, Nepal, and Kongyangmi La Tsho, India; Ives et al.,
2010; Nie et al., 2018). Other triggers of the GLOFs studied
here include piping (Yindapu Co, China; Nie et al., 2018) and
the collapse of an ice-cored moraine (Luggye Tsho, Bhutan;
Fujita et al., 2008). We focused on lakes > 10 000 m2 to en-
sure comparability between the two inventories, thus acquir-
ing a final sample size of 3390 lakes. Given the sparse net-
work of weather stations in the HKKHN, we computed the
monsoonality averaged for each lake from the 1 km resolu-
tion CHELSA bioclimatic variables (Karger et al., 2017).
These variables are correlated with elevation because of the
same underlying interpolation technique, so we limited our
models to those with poorly correlated predictors. This meant
omitting other predictors such as mean annual temperature,
annual precipitation totals, and annual temperature and pre-
cipitation variability. We extracted topographic data from
the void-free 30 m resolution SRTM (Shuttle Radar Topo-
graphic Mission of 2000) digital elevation model (DEM) and
use approximate lake-area changes for two intervals (1990
to 2005 and 2005 to 2018) by Wang et al. (2020). We dis-
carded newer, higher-resolved DEMs to minimise data gaps
and artefacts. Overall, we considered six topographic, synop-
tic, and glaciological predictors (Fig. 2, Table 2).

2.2 Bayesian multi-level logistic regression

We used logistic regression to learn the probability of
whether a given lake in the HKKHN had a reported
GLOF in the past four decades. This method was pioneered
for moraine-dammed lakes in British Columbia, Canada
(McKillop and Clague, 2007). Logistic regression estimates
a binary outcome y from the optimal linear combination
of p weighted predictors x={x1, . . .,xp}. The probability
y = PGLOF that lake i had released a GLOF is expressed as
follows:

yi ∼ Bernoulli(µi), (1)
µi = S(α0+β1xi,1+β2xi,2+ . . .+βpxi,p), (2)

where

S(x)=
1

1+ exp(−x)
. (3)

Here α0 is the intercept, and β = {β1, . . .,β
T
p } are the p pre-

dictor weights (Gelman and Hill, 2007). The logit function
S−1(x) describes the odds on a logarithmic scale (the log-
odds ratio) such that a unit increase in predictor xm raises the
log-odds ratio by an amount of βm, with all other predictors
fixed. We used standardised data to ensure that the weights
measure the relative contributions of their predictors to the
classification, whereas the intercept expresses the base case
for average predictor values.

Our strategy was to explore commonly reported predic-
tors of GLOF susceptibility and dam stability as candidate
predictors (Fig. 2, Tables 1 and 2). We further acknowledged
that data on moraine-dammed lakes in the HKKHN are struc-
tured, reflecting, for example, the variance in topography and
synoptic regime such as the summer monsoon in the east-
ern HKKHN and westerlies in the western HKKHN. Dif-
ferent data sources, collection methods, and resolutions also
add structure. This structure is routinely acknowledged, often
raised as a caveat, but rarely treated in GLOF studies. Ignor-
ing such structure can lead to incorrect inference by bloat-
ing the statistical significance of irrelevant or inappropriate
model parameter estimates (Austin et al., 2003). To explicitly
address this issue, we chose a multi-level logistic regression
as a compromise between a single pooled model and individ-
ual models for each group in the data (Fig. 3; Gelman and
Hill, 2007; Shor et al., 2007).

We recast Eq. (2) using a group index j :

µi = S(αj +β1xi,1+β2xi,2+ . . .+βpxi,p), (4)
αj ∼N(µασα), (5)

where µα is the mean, and σα is the standard deviation of
the group-level intercepts αj that are learned from all data
and inform each other via the model hierarchy. We used a
Bayesian framework (Kruschke and Liddell, 2018) by com-
bining the likelihood of observing the data with prior knowl-
edge from previous GLOF studies (Fischer et al., 2020). The
small number of reported GLOFs introduces strong imbal-
ance to our data given that some regions, and hence lev-
els, had few or no reported GLOFs. Although this would be
problematic in most other modelling approaches, Bayesian
multi-level models are well suited for this kind of imbal-
anced training data (Gelman and Hill, 2007; Shor et al., 2007;
Stegmueller, 2013).

We used the statistical programming language R with the
package brms, which estimates joint posterior distributions
using a Hamiltonian Monte Carlo algorithm and a No-U-
Turn Sampler (NUTS; Bürkner, 2017). We ran four chains
of 1500 samples after 500 warm-up runs each and checked
for numerical divergences or other pathological issues. We
only considered models with all values of R̂ < 1.01 – a mea-
sure of numerical convergence of sampling chains – to avoid
unbiased posterior distributions (Nalborczyk et al., 2019).

Unless stated otherwise, we used a weakly informative
half Student’s t distribution with three degrees of freedom
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Figure 2. Data sources and workflow; EDW= elevation-dependent warming.

Table 3. Prior distributions for group- and population-level effects.

Level Model coefficient Probability density function

Group-level effects Standard deviation σ of group model variables σα ∼ HalfStudentT(3,10)

Population-level effects Intercept αj ∼ Cauchy(0,2.5)
Weight of predictors with weak prior knowledge βp ∼ Cauchy(0,2.5)
Weight of predictor lake area βA βA ∼ Normal(1,2)

Figure 3. Schematic comparison of global vs. multi-level logistic
regression models.

and a scale parameter of 10 for the standard deviations of
group-level effects (Table 3; Bürkner, 2017; Gelman, 2006).
At the population level, we chose weakly informative pri-
ors for the intercept and coefficients for which we had no
other prior knowledge. We encoded this lack of knowledge
with a prior Cauchy distribution centred at zero and with
a scale of 2.5, following the recommendation of Gelman
et al. (2008). Rapidly growing moraine-dammed lakes are
a widely used predictor of high GLOF susceptibility (e.g.
GAPHAZ, 2017; Prakash and Nagarajan, 2017; Rounce et
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al., 2016). We encoded this notion in a prior Gaussian dis-
tribution with 1 unit mean and standard deviation, hence
shifting more probability mass towards positive regression
weights without excluding the possibility of negative weight
estimates (Table 3).

We estimated the predictive performance of all models
with leave-one-out (LOO) cross-validation as part of the
brms package (Bürkner, 2017). LOO values like the expected
log predictive density (ELPD) summarise the predictive error
of Bayesian models similar to the Akaike information cri-
terion or related metrics of model selection (Vehtari et al.,
2017). They are based on the log-likelihood of the posterior
simulations of parameter values (Vehtari et al., 2017).

3 Results

3.1 Elevation-dependent warming model

Our first model addresses the notion of elevation-dependent
warming (EDW) by considering lake elevation as a group-
ing structure in the data. The model further assumes that the
GLOF history of a given lake is a function of its area A and
net change 1A. This dependence differs by up to a constant,
i.e. the varying model intercept, across elevation bands z
that we define here in five quantile grouping levels (Fig. 1).
The model intercept may vary across these elevation bands,
whereas lake area (in 2005) and its net change remain fixed
predictors. In essence, this varying-intercept model acknowl-
edges that glacial lakes in the same elevation band may have
had a common baseline susceptibility to GLOFs in the past
four decades. The indicator variable 1A records whether a
given lake had a net growth or shrinkage between 1990 and
2018:

µi = S(αz+βAAi +β1A1Ai), (6)
αz ∼N(µzσz), (7)

where index z identifies the elevation band.
We obtain posterior estimates of βA= 0.79+0.27/−0.27 and

β1A= 0.48+0.73/−0.72 (95 % highest density interval, HDI)
which indicate that larger lakes are more likely classified as
having had a GLOF, whereas net growth or shrinkage has
ambivalent weight as its HDI includes zero (Figs. 4 and 5, Ta-
ble 4). On the population level, the low spread of intercepts
(σz= 0.29+0.68/−0.28) estimated for each of the five eleva-
tion bands shows that elevation effects modulate the pooled
model only minutely. These posterior effects are positive for
the lower elevation bands but negative for the higher eleva-
tion bands. Thus, the mean posterior probability of a GLOF
history, PGLOF, under this model increases slightly for lakes
in lower elevations and with a larger surface area in 2005.
We also observe that PGLOF is less than 0.5 regardless of re-
ported lake elevation and that the associated uncertainties are
higher for larger lakes.

3.2 Forecasting model

Our second model refines our approach by including only
relative changes in lake area before the reported GLOFs hap-
pened. We can use this model to fore- or hindcast historic
GLOFs in our inventory. Here we use lake area A (in 2005)
and its relative change A∗a from 1990 to 2005 as predictors
of 11 GLOFs that occurred between 2005 and 2018 across
the five elevation bands. We assume that larger and deeper
lakes are more robust to relative size changes and thus also
include a multiplicative interaction term between lake area
and its change:

µi = S
(
αz+βAAi +βA∗aA

∗a
i +βA×A∗aAi ·A

∗a
i

)
. (8)

We find that lake area has a credible positive posterior
weight of βA= 0.86+0.44/−0.43; hence greater lakes are more
likely to have had a GLOF between 2005 and 2018. The
weight of relative lake-area change in the 15 years before is
ambiguous (βA∗a =−0.04+0.76/−0.67) and so is the interac-
tion (βA·A∗a =−0.16+0.41/−0.51). On average, however, rel-
ative increases in lake area between 1990 and 2005 slightly
decrease PGLOF. Unlike in the elevation-dependent warming
model, the effects of elevation bands are less clear, while the
uncertainties are more pronounced and highest for larger and
shrinking lakes (Figs. 4 and 6).

3.3 Glacier-mass balance model

Besides elevation, our third model considers the average his-
toric glacier-mass balances across the HKKHN. The model
assumes that mean ice losses 1m add a distinctly regional
structure to the susceptibility to GLOFs in the past four
decades given that accelerated glacier melt may raise GLOF
potential (Emmer, 2017; Richardson and Reynolds, 2000).
We use our seven study area regions as group levels r and
their average glacier-mass balance, derived from Brun et al.
(2017), as a group-level predictor 1mr. Our pooled predic-
tors are the relative change in lake area A∗b from 2005 to
2018 (to ensure a comparable time interval) and the catch-
ment area C upstream of each lake. We replace lake area by
its upstream catchment area, which is less prone to change
but well correlated to lake area.

µi = S
(
αz+αr+βA∗bA

∗b
i +βCCi

)
, (9)

αr ∼N(µr+ γr1mrσr). (10)

This model returns a positive weight for catchment area
(βC = 0.85+0.50/−0.50) and a negative weight for relative
lake-area changes (βA∗b =−0.69+0.64/−0.61), whereas the
effect of the mean glacier-mass balance remains inconclu-
sive (γr=−2.98+4.87/−6.70). On the basis of higher standard
deviations, we learn that effects of glaciological regions vary
more than those of elevation bands (σr= 0.81+1.60/−0.78 and
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Figure 4. Posterior pooled and group-level intercepts for the four models considered. EDW= elevation-dependent warming. See Fig. 1 for a
summary of the quantiles of elevation and monsoonality. Horizontal black lines delimit 95 % HDI, and red circles indicate posterior medians.
Vertical continuous (dashed) grey lines are posterior means (95 % HDI) of the pooled intercept of each model. Intercepts are standardised
and thus refer to lakes with average predictor values.

σz= 0.48+1.19/−0.47). When training this model on a sub-
set of glacial lakes with documented GLOFs that happened
after 2000 (i.e. including only those in the interval covered
by glacier-mass balance data), posterior estimates of σr in-
crease to 1.11+1.77/−1.03, further underlining our result that
glacier-mass balance credibly affects PGLOF. This is also re-
flected in the posterior distributions across the glacier-mass
balance regions (Fig. 4), as well as the calculated group-level
effects. This model has the highest values of PGLOF for av-
erage lakes (i.e. all average predictor values combined) in
the Nyainqentanglha Mountains and the Eastern Himalaya
(Fig. 4). In contrast to the forecasting model, we observe that
increases in lake area now credibly depress PGLOF (Fig. 7).

3.4 Monsoonality model

Our last model explores a synoptic influence on GLOF sus-
ceptibility by grouping the data by the summer proportion
of mean annual precipitation and thus by approximate mon-
soonal contribution. We defined five monsoonality levels
based on quantiles of the annual proportions of summer pre-
cipitation (Fig. 1). We use relative lake-area change A∗c be-
tween 1990 and 2018 and catchment area C as population-
level predictors, as well as the additional grouping by re-
gional glacier-mass balance:

µi = S
(
αM + αr+βA∗cA

∗c
i +βCCi

)
, (11)

αM ∼N(µMσM), (12)
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Figure 5. Elevation-dependent warming model: posterior probabilities PGLOF as a function of standardised lake area A (in 2005) and
the sign of standardised lake-area change 1A (i.e. net growth or shrinkage), grouped by quantiles of elevation (defined in Fig. 1; lowest:
2470–4600 ma.s.l.; low: 4600–4970 ma.s.l.; medium: 4970–5180 ma.s.l.; high: 5180–5440 ma.s.l.; highest: 5440–6030 ma.s.l.). Black dots
are lake data with (PGLOF = 1) or without (PGLOF = 0) reported GLOF records. Thick coloured lines are mean fits, and colour shades
encompass the associated 95 % HDIs.

Table 4. Summary of the results of our four models. CI= credible interval.

Model Model parameter Estimate Estimation Lower 95 % CI Upper 95 % CI
error boundary boundary

Elevation-dependent
warming model

αz −5.22 0.36 −5.96 −4.56
βA 0.79 0.14 0.52 1.06
β1A(1990 to 2018) 0.49 0.38 −0.28 1.24
σz 0.28 0.27 0.01 0.99

Forecasting model αz −6.23 0.54 −7.39 −5.26
βA 0.87 0.22 0.44 1.31
βA∗a (1990 to 2005) −0.04 0.38 −0.71 0.73
βA·A∗a −0.16 0.24 −0.67 0.26
σz 0.43 0.41 0.01 1.49

Glacier-mass
balance model

αz,r −7.31 1.26 −10.15 −5.19
βA∗b (2005 to 2018) −0.69 0.32 −1.31 −0.06
βC 0.85 0.26 0.35 1.36
γr −2.90 2.80 −9.27 1.80
σz 0.47 0.44 0.01 1.61
σr 0.83 0.66 0.03 2.47

Monsoonality
model

αM,r −6.14 0.70 −7.70 −4.91
βA∗c (1990 to 2018) −0.63 0.31 −1.23 −0.02
βC 0.82 0.24 0.34 1.28
σM 0.40 0.42 0.01 1.49
σr 0.78 0.62 0.03 2.31

where index M identifies the monsoonality group. We find
that larger catchment areas (βC = 0.82+0.46/−0.48) and lakes
with relative shrinkage (βA∗c =−0.63+0.59/−0.59) credibly
raise PGLOF (Figs. 4 and 8). Higher standard deviations
show that regional effects vary more for the mean glacial-
mass balance than for monsoonality (σr= 0.79+1.59/−0.76
and σM = 0.40+1.04/−0.39), although both hardly change the
pooled model trend.

3.5 Model performance and validation

We estimate the performance of our models in terms of the
posterior improvement of our prior chance of finding a lake
with known outburst in the past four decades in our inven-
tory by pure chance. We compare the posterior predictive
mean PGLOF with a mean prior probability that we estimate
from the ∼ 1 % proportion of lakes with known GLOFs in
our training data. We measure what we have learned from
each model in terms of the log-odds ratio that readily trans-
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Figure 6. Forecasting model: posterior probabilities PGLOF as a function of standardised lake area A (in 2005) and standardised lake-area
changeA∗a between 1990 and 2005, grouped by quantiles of elevation (defined in Fig. 1; lowest: 2470–4600 ma.s.l.; low: 4600–4970 ma.s.l.;
medium: 4970–5180 ma.s.l.; high: 5180–5440 ma.s.l.; highest: 5440–6030 ma.s.l.). Black dots are lake data with (PGLOF = 1) or without
(PGLOF = 0) reported GLOF records for the interval 2005 to 2018. Thick coloured lines are mean fits, and colour shades encompass the
associated 95 % HDIs.

Figure 7. Glacier-mass balance model: posterior probabilities PGLOF as a function of standardised catchment area C and standardised lake-
area change A∗b between 2005 and 2018, grouped by regions of average glacier-mass balance (see Fig. 1). Black dots are lake data with
(PGLOF = 1) or without (PGLOF = 0) reported GLOF records for the interval 2005 to 2018. Thick coloured lines are mean fits, and colour
shades encompass the associated 95 % HDIs.

lates into probabilities using Eq. (3). A positive log-odds ra-
tio means that we obtain a higher posterior probability of at-
tributing a historic GLOF to a given lake compared to a ran-
dom draw. Negative log-odd ratios indicate lakes for which
the posterior probability of a reported GLOF is lower than
the prior probability. Based on this metric, all models have
higher true positive rates than true negative rates. For a prior
probability informed by the historic frequency of GLOFs, the
models have at least about 80 % true positives and at least
70 % true negatives on average (Fig. 9, Table 5).

The values of the LOO cross-validation of the predictive
capabilities show that the EDW model formally has the least
favourable, i.e. higher, values for both LOO metrics (Ta-
ble 5). This is potentially due to the different true positive
counts in the training datasets. However, the range of esti-
mated ELPD values between the remaining three models is
small (1ELPD= 1.9).

4 Discussion

4.1 Topographic and climatic predictors of GLOFs

We used Bayesian multi-level logistic regression to test
whether several widely advocated predictors of GLOF sus-
ceptibility and glacial lake stability are credible predictors
of at least one outburst in the past four decades. All four
models that we considered identify lake area and catchment
area as predictors with weights that credibly differ from zero
with 95 % probability. Our model results quantitatively sup-
port qualitative notions of several basin-wide studies in the
HKKHN (e.g. Ives et al., 2010; Khadka et al., 2021; Prakash
and Nagarajan, 2017) and elsewhere (McKillop and Clague,
2007), which proposed that larger moraine-dammed lakes
have a higher potential for releasing GLOFs.

We also found that changes in lake area have partly in-
conclusive influences in the models. Two exceptions are the
negative weight of lake-area changes βA∗b and βA∗c in the
glacier-mass balance model and in the monsoonality model
regardless of the differing intervals that these changes were
determined for (Table 4). While this result formally indicates
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Figure 8. Monsoonality model: posterior probabilities PGLOF as a function of standardised catchment area C and standardised lake-area
change A∗c between 1990 and 2018, grouped by quantiles of the annual proportion of precipitation falling during summer (defined in
Fig. 1). Black dots are lake data with (PGLOF = 1) or without (PGLOF = 0) reported GLOF records for the interval 1990 to 2018. Thick
coloured lines are mean fits, and colour shades encompass the associated 95 % HDIs.

Figure 9. Average posterior log-odds ratios for true positives (TP) (true negatives, TN), i.e. lakes with (without) a GLOF in the period
1981–2018 (a and e) and 2005–2018 (b–d and f–h) on the x axis for the four different models. The log-odds ratios describe here the ratio of
the mean posterior over the mean prior probability of classifying a given lake as having had a GLOF. We estimate the mean prior probability
from the relative frequency of GLOFs in the datasets. EDW= elevation-dependent warming model.

that shrinking lakes are more likely to be classified as hav-
ing had a historic GLOF, the period over which these lake-
area changes are valid (2005 to 2018) overlaps with the tim-
ing of 11 recorded GLOFs (Eq. 9). In other words, the lake
shrinkage could be a direct consequence of these GLOFs
instead of vice versa. Nonetheless, our results indicate that
lake-area changes, either absolute or directional, are some-
what inconclusive in informing us whether a given lake has
a recent GLOF history. One advantage of our Bayesian ap-
proach is that we can express the role of lake-area changes
in GLOF susceptibility by choosing different highest den-
sity intervals. For example, if we adopted a narrower, say
80 % HDI for 1A, we could be 80 % certain that net lake-
area growth increased PGLOF under the elevation-dependent

warming model (Eq. 6). However, in the forecasting model,
in which we tested whether differing data observation pe-
riods have any credible effects, the influence of lake-area
change remains negligible even for < 50 % HDIs. We thus
conclude that relative lake-area change before outburst is an
inconclusive predictor. This result contradicts the assump-
tions made in many previous studies that argued that rapidly
growing lakes are the most prone to sudden outburst (GAP-
HAZ, 2017; Iribarren Anacona et al., 2014; Ives et al., 2010;
Mergili and Schneider, 2011; Prakash and Nagarajan, 2017;
Rounce et al., 2016).

The role of elevation in GLOF predictions is also less pro-
nounced than that of lake or catchment area, at least at a
group level. The weights of the elevation-dependent warm-
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Table 5. Overview of model validation measures for the predictive capabilities of our models. LOOIC= leave-one-out cross-validation
information criterion.

Model Prior vs. posterior knowledge LOO cross-validation metrics

% true positives/
% true negatives
correctly identified

% false positives/
% false negatives
incorrectly identified

ELPD LOOIC

Elevation-dependent warming model 79 %/74 % 21 %/26 % −144.2 288.3
Forecasting model 82 %/75 % 18 %/25 % −66.5 132.9
Glacier-mass balance model 91 %/73 % 9 %/27 % −64.6 129.1
Monsoonality model 82 %/72 % 18 %/28 % −65.6 131.2

ing model indicate that lower (higher) lakes are slightly
more (less) likely to have had a historic GLOF (Fig. 4) but
hardly warrant any better model performance compared to
the pooled (or elevation-independent) model. In the forecast-
ing model, however, the contributions of lake elevation to
PGLOF are devoid of any systematic pattern and likely reflect
several, potentially combined drivers (Fig. 4). This model
was trained on fewer GLOFs, and the imbalance in the data
introduces more uncertainties in terms of broad 95 % HDIs.
Clearly, the role of elevation may need more future inves-
tigation. In terms of elevation bands, it hardly seems to aid
GLOF detection with the models used here. Similarly, Em-
mer et al. (2016) reported that lake elevation was hardly af-
fecting GLOF hazard in the Cordillera Blanca, Peru.

Judging from the regionally averaged glacier-mass bal-
ances, our models predict the highest GLOF probabili-
ties in the Nyainqentanglha Mountains and the Eastern Hi-
malaya, which have had the highest historic GLOF counts
(Fig. 1). The timing and seasonality of snowfall affect how
glaciers respond to rising air temperatures. Observed fre-
quencies and predicted probabilities of historic GLOFs are
lowest for several glaciers with positive mass balance in the
Karakoram and Western Himalaya (Figs. 1 and 10). Most
moraine-dammed lakes in the HKKHN, however, are fed by
glaciers with negative mass balances that likely help to ele-
vate GLOF potential through increased meltwater input and
glacier-tongue calving rates (Emmer, 2017; Richardson and
Reynolds, 2000). This is also supported by the findings of
King et al. (2019), which imply that higher rates of mass loss
of lake-terminating glaciers since the 1970s might have also
led to increased meltwater input into lakes adjacent to their
termini. More than 70 % of all lakes that burst out in the past
four decades were in contact with their parent glaciers (Veh
et al., 2019). However, systematically recorded time series
of glacier fronts are even harder to come by when compared
to systematic measurements of changes in glacial-lake areas.
Given that the regional glacier-mass balance is linked to syn-
optic precipitation patterns (Kapnick et al., 2014; King et al.,
2019; Krishnan et al., 2019), our glacier-mass balance model
highlights that the regional ice loss outweighs the role of
monsoonality in terms of higher changes to the group-level

intercepts for comparable mean PGLOF and associated uncer-
tainties (Figs. 4, 7 and 8).

Our results offer insights into the links between historic
GLOFs and the synoptic precipitation patterns. Richard-
son and Reynolds (2000) presumed that seasonal floods and
GLOFs are both caused by high monsoonal precipitation and
summer ablation. In contrast, our results indicate that the
fraction of summer precipitation changes the predictive prob-
abilities of historic GLOFs only marginally, at least at the
group level, so that deviations from a pooled model for the
HKKHN are minute when compared to the spread of pos-
terior group-level intercepts in the other models (Fig. 4). In
essence, our results underline the need for exploring more
the interactions of both precipitation and temperature as po-
tential GLOF triggers. It may well be that seasonal tim-
ing of heavy precipitation events and type (rain or snow)
at a given lake may be more meaningful to GLOF suscep-
tibility than annual totals or averages. Whether our finding
that glacier-mass balances driven by superimposed synop-
tic regimes credibly influence regional GLOF susceptibility
in the HKKHN is applicable to other regions, for example
the Cordillera Blanca in the South American Andes (Emmer
et al., 2016; Emmer and Vilímek, 2014; Iturrizaga, 2011),
also needs further investigation.

4.2 Model assessment

We consider our quantitative and data-driven approach as
complementary to existing qualitative and basin-wide GLOF
hazard appraisals. Our models cannot replace field observa-
tions that deliver local details on GLOF-disposing factors
such as moraine or adjacent rock-slope stability, presence of
ice cores, glacier calving rates, or surges. Our selection of
predictors is a compromise between widely used predictors
of GLOF susceptibility and hazard and their availability as
data covering the entire HKKHN. To this end, we used lake
(or catchment) area and lake-area changes as predictors, as
well as elevation, regional glacier-mass balance, and mon-
soonality as group levels of past GLOF activity of several
thousand moraine-dammed lakes in the HKKHN. Among the
many possible combinations of predictors and group levels
we focused on those few combinations with minimal corre-
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Figure 10. Mean posterior probabilities of HKKHN glacial lakes for having had a GLOF history (PGLOF) in the past four decades as
estimated in the (a) elevation-dependent warming model, (b) forecasting model, (c) glacier-mass balance model, and (d) monsoonality
model. Size and colours of bubbles are scaled by posterior probabilities.

lation among the input variables. We minimised the poten-
tial for misclassification by using a purely remote-sensing-
based inventory of GLOFs, which reduces reporting bias for
GLOFs too small to be noticed or happening in unpopulated
areas: more destructive GLOFs are recorded more often than
smaller GLOFs in remote areas (Veh et al., 2018, 2019).
We are thus confident that we trained our models on lakes
with a confirmed GLOF history at the expense of discard-
ing known outbursts predating the onset of Landsat satel-
lite coverage in 1981. We acknowledge that climate prod-
ucts such as precipitation can have large biases because of
orographic effects or climate circulation patterns and inter-
polation using topography (Karger et al., 2017; Mukul et al.,
2017). Cross-validation of CHELSA precipitation estimates
with station data has a global mean coefficient of determi-
nation R2 of 0.77, with regional variations between 0.53
and 0.90 (Karger et al., 2017). By accounting for orographic

wind effects, CHELSA products outperform previous global
datasets such as the WorldClim (Hijmans et al., 2005), es-
pecially in the rugged HKKHN topography. We stress that
we therefore used all climatic data as aggregated group-level
variables to avoid spurious model results. At the level of in-
dividual lakes, we thus resorted only to size, elevation, and
upstream catchment area as more robust predictors.

Due to strong imbalance in our training data, we opted
for a prior vs. posterior log-odd comparison instead of com-
monly applied receiver operating characteristics (ROCs) in
estimating the predictive capabilities of our models (Saito
and Rehmsmeier, 2015). In our models, only a few posterior
estimates of PGLOF are > 0.5, and they thus offer very con-
servative estimates of a GLOF history (Fig. 10). All mod-
els have wide 95 % HDIs that attest to a high level of un-
certainty. This observation may be sobering but nevertheless
documents objectively the minimum amount of accuracy that
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these simple models afford for objectively detecting historic
outbursts.

The low fraction of lakes with a GLOF history (∼ 1 %)
curtails a traditional logistic regression model and favours
instead a Bayesian multi-level approach that can handle im-
balanced training data and collinear predictors (Gelman and
Hill, 2007; Hille Ris Lambers et al., 2006; Shor et al., 2007).
We prefer the straight-forward interpretation of posterior re-
gression weights to random forest classifiers, neural net-
works, or support vector machines (Caniani et al., 2008;
Falah et al., 2019; Kalantar et al., 2018; Taalab et al., 2018).
While these methods may perform better, they disclose lit-
tle about the relationship between model inputs and outputs
(Blöthe et al., 2019; Dinov, 2018); much of their higher accu-
racy is also linked to the overwhelming number of true nega-
tives. Yet so far, multi-criteria decision analysis or decision-
making trees have been the method of choice in GLOF haz-
ard assessments, both in High Mountain Asia (Bolch et al.,
2011; Prakash and Nagarajan, 2017; Rounce et al., 2016;
Wang et al., 2012) and elsewhere (Emmer et al., 2016; Em-
mer and Vilímek, 2014; Huggel et al., 2002; Kougkoulos
et al., 2018). While these methods strongly rely on expert
judgement (Allen et al., 2019), a Bayesian logistic regres-
sion encodes any prior knowledge or constraints explicitly
and reproducibly as probability distributions. Still, inconsid-
erate or inappropriate prior choices can introduce bias (Van
Dongen, 2006; Kruschke and Liddell, 2018). Therefore, we
carefully considered our choice of weakly informative priors
for predictors with limited prior knowledge, following the
guidelines concerning regression models by Gelman (2006)
and Gelman et al. (2008). We also cross-checked our results
when applying varying prior choices and found negligible
differences in the resulting posterior distributions.

To summarise, our simple classification models hardly
support the notion that elevation or changes in lake area are
straightforward predictors of a GLOF history, at least for
the moraine-dammed lakes that we studied in the HKKHN.
Lake size and regional differences in glacier-mass balance
are items that future studies of GLOF susceptibility may wish
to consider further. The performance of these models is mod-
erate to good if compared to a random classification, yet it is
associated with high uncertainties in terms of wide highest
density intervals. We underline that these uncertainties have
rarely been addressed, let alone quantified, in previous work.
One way forward may be to create ensembles of such mod-
els to improve their predictive capability instead of relying
on any single model.

5 Conclusions

We quantitatively investigated the susceptibility of moraine-
dammed lakes to GLOFs in major mountain regions of
High Asia. We used a systematically compiled and com-
prehensive inventory of moraine-dammed lakes with docu-

mented GLOFs in the past four decades to test how eleva-
tion, lake area and its rate of change, glacier-mass balance,
and monsoonality perform as predictors and group levels in
a Bayesian multi-level logistic regression. Our results show
that larger lakes in larger catchments have been more prone
to sudden outburst floods, as have those lakes in regions with
pronounced negative glacier-mass balance. While elevation-
dependent warming (EDW) may control a number of pro-
cesses conducive to GLOFs, grouping our classification by
elevation bands adds little to a pooled model for the en-
tire HKKHN. Historic changes in lake area, both in absolute
and relative values, have an ambiguous role in these models.
We observed that shrinking lakes favour the classification as
GLOF-prone, although this may arise from overlapping mea-
surement intervals such that the reduction in lake size arises
from outburst rather than vice versa. In any case, the widely
adapted notion that (rapid) lake growth may be a predictor of
impending outburst remains poorly supported by our model
results. Our Bayesian approach allows explicit probabilistic
prognoses of the role of these widely cited controls on GLOF
susceptibility but also attests to previously hardly quantified
uncertainties, especially for the larger lakes in our study area.
While individual models offer some improvement with re-
spect to a random classification based on average GLOF fre-
quency, we recommend considering ensemble models for ob-
taining more accurate and flexible predictions of outbursts
from moraine-dammed lakes.

Code and data availability. This study is based on freely available
data. Shuttle Radar Topography Mission (SRTM) data are available
from the US Geological Survey (https://earthexplorer.usgs.gov/, last
access: 6 August 2021). We derived climatic variables from the
CHELSA Bioclim dataset (https://chelsa-climate.org/bioclim/, last
access: 6 August 2021) described by Karger et al. (2017) and re-
gional glacier-mass balances from Brun et al. (2017). We extracted
glacial lake information from inventories published by Maharjan
et al. (2018), Veh et al. (2019), and Wang et al. (2020). We processed
our data with free R statistical software (https://cran.r-project.org/,
last access: 6 August 2021), including the brms package by Bürkner
(2017) (https://CRAN.R-project.org/package=brms, last access: 6
August 2021). The model code to this article by Fischer et al.
(2020) is published in a GitHub repository and is available online at
https://doi.org/10.5281/zenodo.4161577 (Fischer et al., 2020).
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