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Abstract. As a consequence of a diminishing sea ice cover
in the Arctic, activity is on the rise. The position of the sea
ice edge, which is generally taken to define the extent of the
ice cover, changes in response to dynamic and thermody-
namic processes. Forecasts for sea ice expansion on synoptic
timescales due to an advancing ice edge will provide infor-
mation that can be of significance for open ocean operations
in polar regions. However, the value of this information de-
pends on the quality of the forecasts. Here, we present meth-
ods for examining the quality of forecasted sea ice expan-
sion on sub-seasonal timescales and the geographic location
where the largest expansions are expected from the forecast
results. The algorithm is simple to implement, and an exam-
ination of 2 years of model results and accompanying obser-
vations demonstrates the usefulness of the analysis.

1 Introduction

Due to climate change the sea ice extent is in decline in the
Arctic (Parkinson, 2014). This change has led to increased
activity in the region, and commercial shipping in open wa-
ters via Arctic sea routes will become increasingly economi-
cally viable in the 21st century (Aksenov et al., 2017). Thus,
data sets for monitoring and forecasting sea ice conditions
are receiving growing attention.

The past years have seen a flurry of activity related to as-
sessing the quality of sea ice data sets. Dukhovskoy et al.
(2015) presented a review and comparison of various tra-
ditional metrics for the assessments of the skill of sea ice
models. Goessling et al. (2016) introduced the integrated ice
edge error (IIEE), a quantity for describing mismatching sea
ice extents from two data sets to analyze the predictability of
the sea ice edge. Melsom et al. (2019) took advantage of the
IIEE in their examination of various metrics for the assess-

ment of the quality of forecasts for the sea ice edge position.
Methods for examining the quality of probabilistic results
for sea ice conditions have been introduced by Goessling
and Jung (2018) and Palerme et al. (2019). Recently, Cheng
et al. (2020) examined the accuracy of a visually estimated
ice concentration monitoring product.

The changing position of the sea ice edge is generally
not only shifted by dynamic advection but can be signifi-
cantly affected by the thermodynamics as well (Bitz et al.,
2005). Thus, the temporal displacement of the sea ice edge
will be affected by freezing along the perimeter of the sea
ice extent in winter and melting in summer. Hence, pattern-
recognition algorithms for displacements using maximum
cross-correlation (MCC) methods such as those introduced
by Leese et al. (1971) for wind vectors, and later for ocean
surface currents (Tokmakian et al., 1990) and sea ice vectors
(Lavergne et al., 2010), are not ideal for tracking displace-
ments of the sea ice edge.

Ebert and McBride (2000) examined the position error of
the contiguous rain area in weather forecasts. They deter-
mined the error vector from a total squared error minimiza-
tion method when shifting the forecasted rain region to match
the corresponding observations. Their preference of apply-
ing an error minimization algorithm rather than an MCC ap-
proach was motivated by the former having better represen-
tations of displacement of rainfall maxima. An object-based
approach with a focus on assessing the quality of forecasts
for highly localized and episodic phenomena was introduced
by Davis et al. (2006). Like in Ebert and McBride (2000),
their focus when evaluating displacement is on the objects’
centroid. Displacement of the perimeter of the contiguous
rain area was not addressed in either investigation.

We begin this study by presenting a new algorithm for
assessing the quality of representations of the sea ice edge
by comparing results for two different data sets. We exam-
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Figure 1. Binary fields with values of 1 (ice) and 0 (no ice/ocean)
are displayed by white and blue color shading, respectively. Light
shades of blue indicate regions with a non-overlapping ice cover, as
indicated by the color legend. The derived modeled and observed
ice edges LM and LO at t = t0+1t are drawn as red and black
curves, respectively. The corresponding ice edges that are taken to
represent the situation at t0 are drawn as light red and gray curves.
The full black circle indicates the position on the observed ice edge
at t0+1t which has the largest distance to the ice edge at t0 (the
full gray circle). The largest displacement of the model ice edge is
marked by full diamonds. The full red circle is the position along
the model ice edge at t = t0+1t closest to the full black circle,
while the full light red circle is the position of the observed ice
edge at t0 closest to the full red circle. All dashed lines represent
displacements as defined by Eq. (3). Open circles indicate a random
selection of displacement positions for the model results; see the
text for details.

ine displacements over time of the sea ice edge and com-
pare model results for displacement distances vs. observed
displacements. The method is described in Sect. 2 with an
idealized case study. In Sect. 3 we apply the algorithm to an-
alyze displacements of the sea ice edge in the Barents Sea.
Finally, we provide our concluding remarks in Sect. 4. Tech-
nical details and extensions are provided in two appendices.

2 Methods

In order to illustrate the validation metrics that are introduced
in this section, a set of idealized ice edges is introduced, as
depicted in Fig. 1. The domain is divided into 1000× 500
square grid cells, and we set the length of the side of a grid
cell to 1. We denote the curve that separates regions with bi-
nary values 0 and 1 as an edge curve. Let LO(t) and LM(t)

denote observed and modeled edges, respectively, at time t .
Idealized examples with edges for LO and LM at two dif-
ferent times, t0 and t0+1t , are displayed. In the context of
forecasting, LM(t0) may be taken to represent the model ini-
tialization at t0, and LM(t0+1t) is then the forecast at a
temporal range of 1t . The other binary fields can represent
observations at the same times.

2.1 Validation metrics for ice edge displacement in one
data set

We aim at defining metrics that describe differences in max-
imum sea ice expansion from sea ice edge displacements be-
tween two data sets. In order to do so, we must first introduce
a quantity that properly measures the maximum displace-
ment in one data set. Here a definition is provided which is
a gridded, signed, one-sided variation of the Hausdorff dis-
tance (Dukhovskoy et al., 2015).

For the remainder of this investigation we will take the
binary fields to be representations of sea ice, with values as-
signed to 0 and 1 for conditions of no ice and ice, respec-
tively. We will here associate the presence of ice (value 1)
with sea ice concentration c exceeding cedge = 0.15. In a
gridded representation the ice edge can then be taken to be
constituted by the grid cells e = [i,j ] that meet the condition

c[i,j ] ≥ cedge ∧

min
(
c[i− 1,j ],c[i+ 1,j ],c[i,j − 1],c[i,j + 1]

)
< cedge, (1)

where ∧ is the logical AND operator. Denoting theN(t) grid
cells that satisfy this condition for time t by e(t)1 ,e

(t)
2 , . . .,e

(t)
N ,

the ice edge for time t is then the curve

L(t)=
{
e
(t)
1 ,e

(t)
2 , . . .,e

(t)
N(t)

}
. (2)

This follows the algorithm presented in Melsom et al. (2019).
Let L(t0) and L(t0+1t) denote the sea ice edges at times t0
and t0+1t , respectively. Furthermore, let d1tn be the dis-
placement distance between a grid cell e(t0+1t)n in L(t0+1t)
and curve L(t0), i.e.,

d1tn = snmin
∣∣∣∣∣∣e(t0+1t)n −L(t0)

∣∣∣∣∣∣ . (3)

Here, ||z|| is the Euclidean distance of z, and the minimum
is considered for the distances between grid cell e(t0+1t)n and
each of the grid cells belonging to L(t0). Furthermore, sn is
+1 or −1 when e(t0+1t)n is on the no ice or ice side of L(t0),
respectively, i.e.,

sn =


−1 if c

[
e
(t0+1t)
n

]
(t0)≥ cedge

+1 if c
[
e
(t0+1t)
n

]
(t0) < cedge

, (4)

where c[e(t0+1t)n ](t0) denotes the sea ice concentration at the
time t0.

Figure 1 shows an idealized example in which a modeled
sea ice edge and an observed sea ice edge are displaced.
Presently, we consider metrics for one product, and as an il-
lustrative example, we focus on the ice edges derived from
the model product (light red and red lines). The length of
dashed lines in Fig. 1 then corresponds to model displace-
ments min||e(t0+1t)n −L(t0)|| for selected cells e(t0+1t)n . We
introduce the maximum expansion displacement as

d1tmax =max
(
d1tn

)
, n= 1,2, . . .,N(t0+1t). (5)
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Note that the definition of the sign s in Eq. (3) has been
chosen so that Eq. (5) will return the largest positive value
among d1tn . If all values of d1tn are negative, the result is
the negative value distance with the lowest magnitude. The
definition of s was designed so that d1tmax will represent the
displacement of the largest sea ice advance from L(t0) to
L(t0+1t).

If we briefly introduce d−1tm as the shortest distance from a
grid cell em of L(t0) to the curve L(t0+1t), we note that the
Hausdorff distance dH between curves L(t0+1t) and L(t0)
is

dH =max
(∣∣d1tn ∣∣ , ∣∣d−1tm

∣∣) . (6)

Here, dH is symmetric with respect to the distance when
swapping the two compared data sets (usually an observed
and a modeled feature). The corresponding distance measure
introduced in Eq. (5), on the other hand, is asymmetric by
design: distances are computed from the grid cells of the up-
dated ice edge at t0+1t to the ice edge curve from the ini-
tialization at t0.

For the various quantities we reference model results and
observations by superscripts M and O. For the set of binary
fields depicted in Fig. 1, we find that dM;1t

max = 113.2 (the dis-
tance between the red and light red diamonds in the figure),
while dO;1t

max = 97.9 (the distance between the black and gray
full circles).

The maximum distance in Eq. (5) provides a single mea-
sure to examine the ice edge displacement. However, it can
be more informative to analyze the whole distribution of the
displacements d1tn defined by Eq. (3) rather than their maxi-
mum only. This can be done by inspecting a histogram of the
displacements d1tn (Fig. 2). Another option is to present the
cumulative probability distribution of d1tn (Fig. 3).

To avoid inflating the sample size beyond its degrees of
freedom, displacement results can be subsampled at the spa-
tial decorrelation length along the ice edge. For the distribu-
tion of d1tn a proper decorrelation length can be computed
if the edge cells e(t0+1t)n are in sequence along L(t0+1t).
A detailed description for this procedure is given in Ap-
pendix A. In Sect. 3.3 we will present results for the time
series d1tmax(t) derived from subsampling based on decorrela-
tion.

2.2 Comparison of the displacements of modeled and
observed ice edges

In the previous section we focused on metrics which describe
the displacement of a single (modeled or observed) sea ice
edge. In this section we extend these to assess the differ-
ences in the displacements of the modeled vs. observed ice
edge. For this purpose, binary fields that are taken to repre-
sent observations, as well as model results, are analyzed, as
displayed in Fig. 1.

Figure 2. Histograms for the distribution of displacement distances
computed from Eq. (5) for the ice edges displayed in Fig. 1. The
mean displacement distances for model results and observations are
82 grids and 61 grids, respectively. The corresponding median val-
ues are 88 grids and 70 grids, respectively.

Figure 3. Cumulative distributions of the separation (ice edge dis-
placement) distances from t0 to t0+1t for model results (red curve)
and observations (black curve). Shown here are results for the ide-
alized example displayed in Fig. 1, with distances subsampled at
intervals of the decorrelation lengths, which are 42 and 38 grid cells
along the ice edge for the model results and observations, respec-
tively. The mean separation distance difference for the present sub-
sample of ice edge grid cells is the integral of the area between the
curves, here displayed by gray shading. In this case, the mean dif-
ference is 20.9 in grid cell units with larger displacement values in
model results than from observations.

We aim to compare model displacement distances with the
corresponding displacements from observational data. Here,
we discuss results for the idealized case depicted in Fig. 1.

In Fig. 2 the histograms for all displacements d1tn are
shown, with the histograms to the left and right represent-
ing model results and observations, respectively. The results
have been binned into categories that each span distances of
20 grid cell units. Displacement distances are not evenly dis-
tributed as they have about half of the distance values in one
of six categories. This specific category is shifted by one cat-
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egory from observations to model results, indicating an over-
prediction of the sea ice displacement.

Next, the cumulative distributions of displacement dis-
tances are displayed in Fig. 3. Here, the results were sub-
sampled by the decorrelation length along the edge curves
prior to the analysis. We find that the model displacements
are shifted approximately 20 grid units higher for the entire
distribution as the two curves are nearly parallel.

Hence, Figs. 2 and 3 both reflect the distributions’ near
uniform shift of 20 grid units and show that this shift is not
qualitatively impacted from subsampling at the decorrelation
length.

From the perspective of an observer, a useful attribute is
the quality of the forecasted maximum displacement of the
binary field over the forecast period. A simple metric which
provides this type of information is the difference in the max-
imum displacement as given by Eq. (5), i.e.,

1d1tmax = d
M;1t
max − d

O;1t
max , (7)

where dO;1t
max is computed from observed ice edges at t0 and

t0+1t (black and gray curves in Fig. 1, respectively), and
d

M;1t
max is computed from the corresponding model results.

For the results in the idealized example that was introduced
in Sect. 2.1, the model is overestimating the maximum dis-
placement by 1d1tmax = 15.3 grid cell units.

A similar quantity that provides local information is the
local difference in displacement of the model ice edge in
proximity of the maximum displacement found in the ob-
servations. Let eO;(t0+1t)

0 be the position in LO(t0+1t) to
which the maximum edge displacement is found in the obser-
vations. Then, determine εM;(t0+1t)

0 , the model edge grid cell
positioned closest to eO;(t0+1t)

0 at the same time. In Fig. 1, the
positions eO;(t0+1t)

0 and εM;(t0+1t)
0 are indicated by the full

black and full red circles, respectively. Following Eq. (3) the
corresponding local edge displacement in the model results
is

δ
M;1t
0 = smin

∣∣∣∣∣∣εM;(t0+1t)
0 −LM(t0)

∣∣∣∣∣∣ . (8)

For the idealized example, we find that δM;1t
0 = 83.9. The

local difference in displacement between model and obser-
vations, with reference to the position eO(t0+1t)

0 , becomes

1δ1tmax = δ
M;1t
0 − dO;1t

max . (9)

We recall from Sect. 2.1 that dO;1t
max = 97.9, so, for the ideal-

ized example, we have 1δ1tmax =−14, i.e., a local underesti-
mation of the displacement in the model results.

One aspect which is not disclosed by the metrics intro-
duced thus far is to what degree forecasts manage to repro-
duce the geographical location of the observed maximum
displacements. In order to examine such a relation, we first
compute the decorrelation length of displacements given by

Eq. (3). If we denote this grid distance by1n, we restrict the
analysis of grid cells and corresponding displacements to{
. . .,εM

0−21n,ε
M
0−1n,ε

M
0+1n,ε

M
0+21n, . . .

}
(t0+1t), (10){

. . ., δ
M;1t
0−21n,δ

M;1t
0−1n, δ

M;1t
0+1n,δ

M;1t
0+21n, . . .

}
, (11)

respectively, limited by the first and last cells along the
curve LM(t0+1t). Next, we construct bins analogous to
the method used for producing rank histograms (Talagrand
diagrams) for ensemble forecasts (Hamill, 2001; Talagrand
et al., 1997; Anderson, 1996): first, distances listed in
Eq. (11) are sorted by increasing values, and then bins are
introduced for values smaller than the minimum distance,
for the intervals between the sorted distances, and for val-
ues larger than the maximum distance. The bin placement of
δ

M;1t
0 then gives the rank of this displacement. With a perfect

model, the maximum of δM;1t will occur at the geographi-
cal position corresponding to the maximum displacement in
the observations (dO;1t

max ). This will place δM;1t
0 in the highest

(rightmost) bin. A flat histogram indicates a model with no
skill, since each bin is equiprobable for random draws.

In the present idealized example we find that1n= 42, and
the rank of δM;1t

0 in the 24 resulting bins is 9. When multiple
forecasts are examined, the decorrelation length will gener-
ally change, as will the length of the edges. Thus, we ran-
domly subsample a fixed number of intervals from Eq. (11)
so that the number of bins is equal across different cases and
results can be aggregated.

For the idealized example, a set of nine randomly sub-
sampled edge positions from those given by Eq. (10) for the
model results at t = t0+1t is displayed by open circles in
Fig. 1. For this particular case, in the range from 1 to 10 the
rank of the displacement δM;1t

0 is 3. So, in this idealized, syn-
thetic example, the model exhibits a poor positioning of the
maximum observed displacement.

3 Application of the new validation method

3.1 Description of sea ice data sets

To illustrate the methodology introduced in Sect. 2, we exam-
ine model results from a coupled ocean–sea ice model and
compare them with relevant observational data. The model
results are taken from the SVIM hindcast archive (SVIM,
2015). For the present illustrative purpose we limit the analy-
sis to the 2-year period from 1 January 2000 to 31 December
2001. Results are available as daily means on the model con-
figuration’s native 4 km stereographic grid projection (Lien
et al., 2013).

The ocean module of the coupled model used for the
regional simulation is the Regional Ocean Modeling Sys-
tem (ROMS), described in Haidvogel et al. (2008) and
references therein. The sea ice module was developed by
Budgell (2005). The ice model dynamics are based on
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Figure 4. Map of the full SVIM simulation domain. The Barents
Sea analysis region in the present study is shown as a highlighted
region where a sample sea ice concentration distribution is depicted.
The 40◦ E meridian which will subsequently be used for dividing
the domain into two parts is displayed by the red curve. The shading
of ice concentration values is given in the label bar, where c is the
sea ice concentration fraction. This sample shows the model results
for 15 April 2000 with the horizontal resolution from the SVIM
experiment. See the text for details about the SVIM archive.

the elastic–viscous–plastic (EVP) rheology following Hunke
and Dukowicz (1997) and Hunke (2001), and the ice thermo-
dynamics are based on Mellor and Kantha (1989) and Hakki-
nen and Mellor (1992).

The model results for sea ice concentration are somewhat
noisy on the grid cell scale owing to the dispersiveness of the
numerical scheme. In some regions, the grid cells that con-
stitute the ice edge as defined by Eq. (1) can then appear as
a mesh-like collection of cells. In order to reduce the impact
of this issue, we applied the second order checkerboard sup-
pression algorithm (Li et al., 2001) to the model results be-
fore conducting the present analysis. The sea ice concentra-
tions from observations do not suffer from this type of noise;
thus such an algorithm was not applied to the observational
data set.

We compare model results with observations from the
Arctic Ocean Sea Ice Concentration Charts Svalbard which
is a multi-sensor data set that uses data from synthetic aper-
ture radar (SAR) instruments as its primary source of infor-
mation (WMO, 2017). This observational data set will be re-
ferred to as the ice chart data hereafter.

The ice chart data cover the northern Nordic Seas, the Bar-
ents Sea and adjacent ocean regions. The ice chart data devi-
ate from a passive microwave product in this region, partic-
ularly in the final months of the melting season (e.g., Sect. 6
in Melsom et al., 2019). Hence the sea ice edge observations
are estimated with an uncertainty that is not known.

The ice chart data are available on a stereographic grid
projection with a resolution of 1 km. Data availability is re-
stricted to working days. During a regular week, we then
have 4 d with 24 h displacement results. The data set is also

Figure 5. Sample scene displaying the changes in model sea ice
extent from 23 October 2001 (day 1) to 24 October 2001 (day 2).
The black line indicates the maximum displacement distance (d1tmax,
given by Eq. 5) with the original algorithm, while the red line shows
the result when grid cells along the open boundaries and coastlines
are included ( ˜L(t0) from Eq. B7). The color coding is given by the
label bar, and note that only the northern part of the Barents Sea
analysis region is displayed.

slightly reduced due to holidays, and a total of 354 d with
24 h ice edge displacement results were available from the
present 2-year period.

The present study will be restricted to results and data for
the Barents Sea. The SVIM simulation domain is displayed
in Fig. 4, in which the Barents Sea analysis region is high-
lighted. Ice chart results are integrated into the SVIM domain
using a mass-conserving Riemann integral approach. All grid
cells inside the Barents Sea region which lack proper values
(usually due to the presence of land) in at least one of the data
sets are masked prior to the analysis. The analysis region is
then composed of 80 399 wet grid cells, which represent an
area of 1.29× 106 km2.

3.2 Open boundaries and coasts

For some cases, the algorithm described in Sect. 2.1 does not
describe properly the true displacement. This particularly af-
fects the maximum value as defined by Eq. (5). We illustrate
this issue with a case study displayed in Fig. 5, showing the
24 h change in the ice edge position from 23 to 24 October
2001. In this case the ice edge was displaced into the valida-
tion domain across an open boundary to the north. The gen-
eral algorithm in Sect. 2.1 mismatches the ice edge grid cell
(since ice beyond the open boundary is unseen) and leads to
an unrealistic maximum ice edge displacement of 285 km, as
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Figure 6. Histograms for the distribution of daily maximum dis-
placement distances 1d1tmax, defined by Eq. (5). Horizontal bars
pointing left and right correspond to results from SVIM model sim-
ulation and ice chart data, respectively. Light colored bars display
results from the original algorithm in Sect. 2.1, while bars with reg-
ular colors (labeled “OB&C restricted”) result after the extension in
Appendix B for open boundaries and coastlines is applied. Results
from 354 d of 24 h edge displacements have been analyzed, see the
text for further details.

given by the thick black line close to the subdomain’s north
border in the figure.

In order to address this issue, a modification of the algo-
rithm was implemented in which ocean open boundaries are
considered as continuations of the ice edge. The modified
algorithm is described in full detail in Appendix B. For the
case illustrated in Fig. 5, the maximum ice edge displacement
calculated with the modified algorithm becomes 79 km. This
displacement is indicated by the red line in the eastern part
of the validation domain.

It must be noted that if the ice is advected into the domain,
the distances associated with such a displacement will be un-
derestimated since the real position of the ice edge outside
of the analysis domain at t0 is unknown. Another situation
in which unrealistic representations for displacements may
arise is when ice freezes along the coast, for example, due
to colder air in the vicinity of continents, possibly in com-
bination with less salty water masses close to the coastline.
This issue is treated analogously to advection across an open
boundary by considering coastlines as continuations of the
ice edge (see Appendix B for details).

3.3 Validation results

We first examine the distribution of daily maximum ice edge
displacements. From Fig. 4 we note that this examination
will be performed for a domain in which advection of sea
ice across the open boundaries is relevant, as well as freez-
ing along coastlines of the continent and archipelagos. To
address this issue, the analysis based on the algorithms in
Sect. 2 will be extended following the outline in Sect. 3.2
and detailed in Appendix B.

In Fig. 6 results from the 354 d with 24 h maximum dis-
placements from both data sets are displayed. We note that
about two thirds of the maximum displacements in model
results are in the range of 10–30 km. The corresponding dis-
tribution of results from the ice chart data has two maxima:
one for the range of 20–40 km which accounts for nearly half
of the cases and a secondary maximum for short (0–10 km)
maximum displacements. The medians of the daily maxi-
mum displacement distances are 23 and 32 km for the SVIM
results and the ice chart data, respectively. We also note that
the distribution frequencies for the 2-year period change only
moderately when the adjustments for open ocean boundaries
and coastlines that were described in Sect. 3.2 are included
in the analysis.

A conclusion that can be drawn from these results is that
the largest expansions of sea ice extent in the model (SVIM)
are underestimated when compared with observations (ice
chart data). This is generally the case as the SVIM median
is in the range of 20–30 km, while the median of the ice chart
data is in the range of 30–40 km. The underestimation is also
seen for extreme cases as the frequency of maximum expan-
sion exceeding 60 km is about 5 times as high for the ice
chart data.

In order to examine the degree to which SVIM results
reproduce the geographical location of the observed maxi-
mum displacement, we apply the ranking method described
in Sect. 2.2. We consider a fixed number of 10 bins for
the present investigation. Hence, for each set of 24 h re-
sults for displacement distances, nine values are randomly
selected from the displacements in Eq. (11). The requirement
of at least nine additional ice edge positions separated by the
decorrelation length scale restricts the cases that can be con-
sidered in this analysis: from the full set of 354 cases with
24 h displacement results, only 235 cases could then be kept
in the analysis of ranked displacements as these cases met
the requirement of at least 10 statistically independent dis-
placement distances. The size of the set of independent val-
ues is restricted by the temporally varying degrees of free-
dom, as given by the ice edge length and the decorrelation
length scale.

The resulting frequency distribution for each of the 10
ranks is displayed as gray vertical bars in Fig. 7a with rank
values from 0 to 9. The highest rank (9) results when the
model displacement close to the site with maximum displace-
ment in the observations (the reference displacement, δM;1t

0 )
is larger than all displacements from the nine subsampled ice
edge positions. The next rank (8) corresponds to cases when
one and only one of the subsampled positions has a larger
displacement than the reference displacement, and so on. In
other words, high ranks indicate situations in which the po-
sition of the maximum displacement is described with a rel-
atively high quality.

The histogram in Fig. 7a has nearly twice as many entries
in ranks 5–9 than ranks 0–4. This mode for higher ranks in-
dicate some skill for SVIM in detecting the location of the
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Figure 7. Rank histogram for model results for the local ice edge displacement corresponding to the position of the maximum observed
displacement. (a) Sets of nine alternative model displacements were derived for each of 235 d with 24 h displacements results. The nine
displacement values were ordered from lowest to highest, and the local displacement was given a rank from the slot in which this value
belonged; see the text for details. The blue curve shows the average local model displacement distances for results belonging to each of the
ranks, with negative numbers corresponding to local sea ice retreat in the model results. The average maximum observed displacement is
39 km. (b) Results obtained for a subdivision as indicated by the red line in Fig. 4. Here, sets of seven alternative displacements results were
derived for each subdomain. Then, results were available for 179 and 224 d for the western and eastern subdomains, respectively. The average
maximum observed displacements are 36 km in both subdomains. The use of gray shading and line colors for the subdomains are indicated
by the inset label. The y axes in (a) and (b) have been specified so that the black horizontal 0-axis lines for the right-side axes correspond to
the frequency level of a flat distribution of frequencies (left-side y axes).

maximum displacements in the observations. The average
rank in the present analysis is 5.48. For a random distribu-
tion of 235 integer numbers in the range of 0–9 percentiles
0.5 and 99.5 of the average rank are 4.02 and 4.98, respec-
tively. Thus, the analysis reveals that while the model results
are far from perfect, the average rank of 5.48 is significantly
higher than results from random spatial distributions of ice
edge displacements. We have also applied the more tradi-
tional χ2 test for rank flatness (Wilks, 2019) and find that for
the present histogram we have χ2

= 52. This value is nearly
twice the magnitude of χ2

crit when this is set to reject the null
hypothesis of a flat distribution at an α level of 0.001.

We supplement this analysis by dividing the region into
two subdomains separated by the 40◦ E meridian, as indi-
cated by the red line in Fig. 4. In order to retain the majority
of the days in the analysis, the number of randomly chosen
displacements was reduced to seven values. This was due to
the reduced degrees of freedom when the same decorrelation
length scale was applied in smaller domains with shorter ice
edges.

The results for the eastern and western Barents Sea sub-
domains are displayed in Fig. 7b. Contrasts between the fre-
quency distributions between panels (a) and (b) arise for sev-
eral reasons. First, the domain split leads to a set of two
time series of maximum displacements in which the max-
ima from the full domain will be distributed between the two
subdomain time series, and new maxima are introduced for
the alternative subdomain. Next, the separation line between
the two subdomains is manifested in the analysis as a new,
shared open boundary. Hence, the shapes of the subdomain

distributions may to some degree deviate from the full do-
main distribution. Note that the distribution peak at ranks 4–
5 for the full domain disappears when considering the rank
frequencies for the two subdomains.

The average ranks of the model displacements correspond-
ing to the largest observed displacements are 3.95 and 4.13
in the western and eastern subdomains, respectively, whereas
the ranges spanned between percentiles 0.5 and 99.5 for
random distributions are [3.06,3.94] and [3.11,3.89] for
the western (179 d) and eastern (224 d) subdomains, respec-
tively.

4 Concluding remarks

In this study we present a new algorithm for the examina-
tion of the displacement of the edge (or the front) of a binary
field. The algorithm computes different attributes of the ice
edge displacement, such as the maximum and the distribution
of the distances. Then, different methodologies for compar-
ing these attributes are introduced. The method introduced
enables the assessment of the forecast quality for the dis-
placement of the ice edge and expands on existing validation
metrics such as, for example, the integrated ice edge error
(Goessling et al., 2016) and the various ice edge metrics con-
sidered by Melsom et al. (2019): the methods presented here
provide summary statistics for the quality of model results
for ice edge displacements in the presence of an expanding
sea ice cover, as exemplified by Figs. 6 and 7, that are not
provided with existing metrics. Such quality assessments are
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of high relevance for planned or ongoing site-specific activi-
ties in regions which can potentially become ice infested.

The present study has been framed in the context of results
for displacements of the sea ice edge. Thus, the investigation
in Sect. 3 was based on data for the sea ice edge from satellite
observations and simulation results from a coupled ocean–
sea ice model. However, the algorithm that was introduced
in Sect. 2 can be applied to the displacement of the perime-
ter of any physical variable or feature that can be represented
by a spatially continuous binary field. Stratiform precipita-
tion is an example of another physical variable for which the
method presented here could be suitable.

Note that we have used the term displacement rather than
advection. The reason for this is that displacements need not
be purely of an advective nature. In the case of sea ice, the
displacement of the initial edge will generally be affected by
freezing or melting along the perimeter of the sea ice extent.
Analogously, displacement of the area affected by stratiform
precipitation can be affected by new condensation or partial
depletion of the cloud.

As demonstrated in the example depicted in Fig. 5, the
original algorithm described in Sect. 2.1 and 2.2 can some-
times mismatch ice edge grid cells and hence diagnose un-
realistic displacements, which may yield misleading results.
Here, we have amended situations in which the sea ice en-
ters a limited area domain across an open boundary and situ-
ations when freezing takes place next to a physical bound-
ary (the coast). Modifications of the algorithm which in-
clude distances from ice edges to coasts and open boundaries
are described in Sect. 3.2 and detailed in Appendix B. This
approach eliminates unphysical edge displacement distance
values, as shown by the case illustrated in Fig. 5.

However, there may be other issues that can distort results
that are produced by the analysis presented here. One exam-
ple is cases when features are seen to arise seemingly spon-
taneously from one time of analysis to another: the algorithm
in Sect. 2 can, for example, if applied to precipitation data,
give rise to unrealistic results for displacements when con-
vective precipitation cells develop.

Results from the algorithms that are introduced in the
present study give valuable information regarding the chang-
ing extent of sea ice and how well the displacements of the
observed and modeled sea ice edges agree. These algorithms
have proven to provide simple yet robust and informative as-
sessments for the quality of ice edge forecasts both with re-
spect to the largest displacements from one time to another
and with respect to the reproduction of the geographical po-
sition where the largest displacement occurs.
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Appendix A: Decorrelation length of displacements

Assume that we have a set of N edge grid cells en (i.e., sat-
isfying Eq. 1) that form a curve,

L= {e1,e2, . . .,eN }, (A1)

where L is continuous in the sense that grid cells en and en+1
are neighbors. Furthermore, associate displacement distances
dn to each en as defined in Sect. 2.1. Then, the spatial auto-
correlation of displacements can be estimated using a sample
Pearson correlation coefficient approach:

r(η)=

N−η∑
n=1

[(
dn− dn

)(
dn+η− dn+η

)]/
[
N−η∑
n=1

(
dn− dn

)2N−η∑
n=1

(
dn+η− dn+η

)2]1/2

. (A2)

We have r(0)= 1 and we define the decorrelation length
of the displacements, 1n, as

1n=min
∀η
(η|r(η) < 1/e), (A3)

where e is Euler’s number. If, for a given time, the ice edge is
discontinuous, each continuous curve segment is treated sep-
arately, and the weighted mean value of the results for 1n
from each segment is used. In that case, weights are applied
according to the number of edge grid cells in each curve seg-
ment.
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Appendix B: Open boundaries and coasts

As discussed by Melsom et al. (2019), open boundaries and
coastlines can potentially have significant impacts on the re-
sults for the metrics for the position of the sea ice edge.
Here, we introduce a method which will give more physi-
cally meaningful results if ice either freezes near a coastline
or enters into a domain across an open boundary. Moreover,
the method affects the results modestly or not at all for an
edge that is displaced inside of the domain.

First, set the open boundary grid lines to

LOB(t0)= {e1OB ,e2OB , . . .,eNOB},

c[enOB ](t0) < cedge, (B1)

where enOB is any ocean grid cell along the boundary of the
domain which was on the open ocean side of the ice edge at
t = t0. Then L(t0) in Eq. (3) can be replaced by

L̃(t0)= L(t0)∪L
OB(t0), (B2)

and for the corresponding distances we introduce the notation
d̃ , so Eq. (3) becomes

d̃n
1t
=min

∣∣∣∣∣∣e(t0+1t)n − L̃(t0)

∣∣∣∣∣∣ , (B3)

where e(t0+1t)n is a grid cell on L(t0+1t), as before. The
set of grid cells e(t0+1t)n is not affected, so the number of
displacement distances considered in Eq. (5), N(t0+1t), is
unchanged. Note that here, the additional curve LOB is only
added to L(t0). Otherwise, if it was also added to L(t0+1t),
the trivial score from perfect matching segments of edge
curves would significantly impact the results as they are, for
example, displayed in Figs. 2 and 3.

A sample grid cell to which the displacement distance is
significantly affected by this modification is displayed as en3
in Fig. B1. It must be noted that if the ice is imported into the
domain, the distances d̃ associated with such a displacement
will be underestimated since the real position of the ice edge
outside of the analysis domain at t0 is unknown. Moreover,
for regular displacement of ice inside the domain, results will
be affected slightly when occurring in the vicinity of the open
boundary (e.g., en2 in Fig. B1).

Similarly, there can be cases where freezing of ice occurs
along the coastline, for example, as an effect of colder air in
the vicinity of continents or less salty water masses close to
the coastline. This is another case where the algorithm above
can yield grossly exaggerated displacement distances. Again,
the problem can be alleviated by including additional grid
lines.

Set the coastal grid lines as

LC(t0)= {e1C ,e2C , . . .,eNC} , c[enC ](t0) < cedge, (B4)

where enC is any ocean grid cell along the coastline which
was ice free or had a sea ice concentration below cedge at

Figure B1. Binary fields with values of 1 (ice) and 0 (no ice/ocean)
are displayed by white and blue color shading, respectively. Land
is indicated as a black region. Light shades of blue indicate regions
with a non-overlapping ice cover, as indicated by the color legend.
Open boundary grid cells are depicted as gray lines. Ice edges for t0
and t0+1t are drawn as light red and red lines, respectively. Dashed
black lines show the edge displacements as defined in Sect. 2.1 for
a selection of labeled ice edge grid cells from t0+1t , marked by
white circles. Full black lines display the displacements d̃ that result
from the modifications described in Appendix B; see Eq. (B8). For
the set of grid cells that are highlighted here, only en1 is unaffected
by the modified definitions.

t = t0. Then L(t0) can be replaced by

L(t0)= L(t0)∪L
C(t0). (B5)

Here, Eq. (3) will be replaced by

dn
1t
=min

∣∣∣∣∣∣e(t0+1t)n −L(t0)

∣∣∣∣∣∣ , (B6)

and the computation of the displacement distance to grid cell
en4 in Fig. B1 is severely affected.

For a regional model, the typical situation is that there are
both open boundaries and coastlines. In that case, we may
combine the above modifications of the algorithm by adopt-
ing

L̃(t0)= L(t0)∪L
OB(t0)∪L

C(t0), (B7)

and Eq. (3) can be written

d̃n
1t
=min

∣∣∣∣∣∣e(t0+1t)n − L̃(t0)

∣∣∣∣∣∣ . (B8)
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