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Abstract. In this study, we compare eight recently developed
snow depth products over Arctic sea ice, which use satel-
lite observations, modeling, or a combination of satellite and
modeling approaches. These products are further compared
against various ground-truth observations, including those
from ice mass balance observations and airborne measure-
ments. Large mean snow depth discrepancies are observed
over the Atlantic and Canadian Arctic sectors. The differ-
ences between climatology and the snow products early in
winter could be in part a result of the delaying in Arctic
ice formation that reduces early snow accumulation, lead-
ing to shallower snowpacks at the start of the freeze-up sea-
son. These differences persist through spring despite over-
all more winter snow accumulation in the reanalysis-based
products than in the climatologies. Among the products eval-
uated, the University of Washington (UW) snow depth prod-
uct produces the deepest spring (March–April) snowpacks,
while the snow product from the Danish Meteorological In-
stitute (DMI) provides the shallowest spring snow depths.
Most snow products show significant correlation with snow

depths retrieved from Operational IceBridge (OIB) while
correlations are quite low against buoy measurements, with
no correlation and very low variability from University of
Bremen and DMI products. Inconsistencies in reconstructed
snow depth among the products, as well as differences be-
tween these products and in situ and airborne observations,
can be partially attributed to differences in effective footprint
and spatial–temporal coverage, as well as insufficient obser-
vations for validation/bias adjustments. Our results highlight
the need for more targeted Arctic surveys over different spa-
tial and temporal scales to allow for a more systematic com-
parison and fusion of airborne, in situ and remote sensing
observations.

1 Introduction

Snow on sea ice plays an important role in the Arctic cli-
mate system. Snow provides freshwater for melt pond devel-
opment and, when the melt ponds drain, freshwater to the
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upper ocean (Eicken et al., 2004). In winter, snow insulates
the underlying sea ice cover, reducing heat flux from the ice–
ocean interface to the atmosphere and slowing winter sea
ice growth (Sturm and Massom, 2017). Snow also strongly
reflects incoming solar radiation, impacting the surface en-
ergy balance and under-ice algae and phytoplankton growth
(Mundy et al., 2009). Furthermore, sea ice thickness cannot
be retrieved from either laser or radar satellite altimetry with-
out good knowledge of both the snow depth and snow density
(Giles et al., 2008; Kwok, 2010; Zygmuntowska et al., 2014).

Despite its recognized importance, snow depth and density
over the Arctic Ocean remain poorly known. Most of our un-
derstanding comes from measurements collected from Soviet
North Pole drifting stations and limited field campaigns. The
Warren et al. (1999) climatology and the recently updated
Shalina and Sandven (2018) climatology, hereafter W99 and
SS18, respectively, have provided a basic understanding of
the seasonally and spatially varying snow depth distribution
over Arctic sea ice. However, these data were collected from
stations between 1950 and 1991 and were largely confined
to multiyear ice (MYI) in the central Arctic. Hence, they are
not representative of the Arctic-wide snow cover characteris-
tics of recent years (Webster et al., 2014). Today, the Arctic
Ocean has transitioned from a regime dominated by thicker,
older MYI to one dominated by thinner and younger first-
year ice (FYI) (Maslanik et al., 2007, 2011). In addition, the
length of the ice-free season has increased (delayed freeze-up
and early melt onset/breakup), reducing the amount of time
over which snow can accumulate on the sea ice (Stroeve and
Notz, 2018). In response to this data gap, several groups are
working to produce updated assessments of snow on sea ice
using a variety of techniques.

From satellites, several studies have used passive mi-
crowave brightness temperatures to retrieve snow depth, on
FYI (Markus et al., 2011) and MYI (Rostosky et al., 2018;
Kilic et al., 2019; Braakmann-Folgmann and Donlon, 2019;
Winstrup et al., 2019). Other studies have modeled snow ac-
cumulation over sea ice using various atmospheric reanaly-
sis products as input (Blanchard-Wrigglesworth et al., 2018;
Petty et al., 2018; Liston et al., 2020; Tilling et al., 2020).
Some promise has also been shown in mapping snow depth
by combining satellite-derived radar freeboards from two
different radar altimeters (Lawrence et al., 2018; Guerreiro
et al., 2016) and from active–passive microwave satellite syn-
ergies (Xu et al., 2020). With the launch of ICESat-2, addi-
tional possibilities exist to combine radar and lidar altimeters
to directly retrieve snow depth (Kwok and Markus, 2018).
Such approaches are paving the way for proposed future
satellite missions (i.e., ESA’s CRISTAL, Kern et al., 2019).

In recognition of the numerous new snow data products
available, it is timely to provide an inter-comparison of these
products so that recommendations can be made to the sci-
ence community as to which data product best suits their
needs. Towards this end, we provide a comprehensive in-
tercomparison between eight new snow depth products and

evaluate them against various in situ observations and differ-
ent NASA Operation IceBridge (OIB) snow depth products.
Since these data sets do not have common spatiotemporal
resolutions, we limit our comparisons to monthly averages
between October–November (from now referred to as the au-
tumn period) and March–April (spring period) from 2000 to
2018 and also limit our region to the Arctic basin (i.e., we ex-
clude regions such as the Sea of Okhotsk, Bering Sea, Baffin
Bay and Davis Strait, and the East Greenland Sea).

The paper is organized as follows. The next section de-
scribes the details of each snow product, snow depth ob-
servations and climatology data used for comparison. Com-
parisons among snow products and between climatologies
are shown in Sect. 3. Section 4 discusses validation against
OIB and buoy measurements and representation issues. The
conclusion and further implications for snow are found in
Sect. 5.

2 Data and methods

In this section, we introduce (1) observational data sets of
snow depth used for validation/comparison, (2) climatolog-
ical snow depth products, (3) passive and active microwave
snow depth products, and (4) reconstructed snow depth es-
timates from models. The inter-comparison among all snow
products and comparison between these products and mea-
surements are based on their native spatial and temporal res-
olution. However, the spatial and temporal resolution varies
considerably between products. Details on resolution and
grids are provided in Table 1.

An additional comparison was made between OIB and
the different snow depth products at the coarsest spatial
(100× 100km) grid and temporal (monthly) resolution. Be-
low we briefly describe each data set. We refer the reader to
the references for each data product for more detailed infor-
mation on the individual algorithms.

2.1 Measurements used for comparison

2.1.1 In situ observations

Ice mass balance buoys (IMBs) are designed to provide snow
depth and ice thickness information and have generally been
deployed within undeformed MYI (Richter-Menge et al.,
2006). In this study, we use snow depth measurements from
IMBs deployed by US Army Cold Regions Research and En-
gineering Laboratory (CRREL). Each buoy is equipped with
acoustic sounders above and below the ice with an accuracy
5 mm for depth measurements (Richter-Menge et al., 2006).
Following Perovich et al. (2021), snow depth measurements
greater than 2 m or less than 0 m are removed. In total, 58
CRREL buoy tracks are used between 2010 and 2015 (avail-
able at: http://imb-crrel-dartmouth.org, last access: 13 Jan-
uary 2021). To align the IMB data with the daily and monthly
snow depth products, as well eliminate effects from missing
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Table 1. Summary of investigated snow reconstruction products.

Product Time span Temporal resolution Spatial grids Projection type Method type Reference

SnowModel-LG 1980–2018 All year (daily) 25× 25km EASE grid Reanalysis-based Liston et al. (2020),
Stroeve et al. (2020)

NESOSIM 2000–2017 August to April 100× 100km Polar stereographic grid Reanalysis-based Petty et al. (2018)
(daily)

CPOM 1991–2017 All year (daily) 10× 10km Polar stereographic grid Reanalysis-based Tilling et al. (2020)

UW 1980–2015 April 75× 75km Polar stereographic grid Reanalysis-based Blanchard-Wrigglesworth
(monthly) et al. (2018)

DuST 2003–2008, Every 2 months 1.5◦ long Up to 81.5◦ N Active satellite-based Lawrence et al. (2018)
2013–2018 (2013–2018) × 0.5◦ lat

and monthly
(2003–2008)

DESS 2011–2019 March 12.5× 12.5km Polar stereographic grid Active and passive Xu et al. (2020)
(monthly) (up to 87.5◦ N) satellite-based

PMW Bremen 2003–2018 March and April 25× 25km Polar stereographic grid Passive satellite-based Rostosky et al. (2018)
(daily)

PMW DMI 2013–2018 January to April 25× 25km EASE grid 2.0 Passive satellite-based Winstrup et al. (2019)
(daily)

measurements, we average the IMB data into monthly av-
erages after first creating daily averages from the 4-hourly
observations. See Table S1 in the Supplement for a listing of
buoys used, along with their dates/time periods of operation.

Snow buoys have been deployed by the Alfred Wegener
Institute (AWI) since 2010 (Nicolaus et al., 2017) and pro-
vide snow depth estimates from four separate snow depth
pingers. These are averaged together to provide one snow
depth value at each buoy location. Here, we use snow depths
from 28 AWI snow buoys between 2013–2017 (accessible at:
http://data.meereisportal.de, last access: 13 January 2021),
which are also listed in Table S1. Similar to the CREEL
buoys, the snow depths are first averaged into daily averages
before monthly averages are derived.

2.1.2 OIB airborne observations

Since 2009, NASA Operation IceBridge (OIB) has con-
ducted airborne profiling of Arctic sea ice every spring, gen-
erally across the western Arctic. Snow depth observations are
derived with an ultra-wideband quicklook snow radar (Paden
et al., 2014), capable of retrieving snow depth from the radar
echoes from both air–snow and snow–ice interfaces (Kurtz
and Farrell, 2011). Snow depth can then be retrieved through
retracking and compensation from the radar echogram. The
OIB campaigns provide unique large-scale and high-spatial-
resolution observations; however, the swath is limited due to
the airborne nature of the measurements. Furthermore, most
flight tracks cover a limited area from the north of Greenland
towards Alaska, and data cover only a limited time period,
namely March and April.

Several algorithms have been developed to derive snow
depth from this radar system (Kwok et al., 2017). While dif-

ferent algorithms show general agreement in regional snow
depth distributions, larger interannual variability is observed
among these algorithms than found in W99, and mean snow
depth differences result from different ways of detecting
the snow–air and snow–ice interfaces from the radar returns
(Kwok et al., 2017). Taking these differences into consider-
ation, we use four OIB snow depth products from the (1)
Sea Ice Freeboard, Snow Depth, and Thickness data quick-
look product (quicklook) available from NSIDC website and
examined in King et al. (2015) and Kwok et al. (2017); (2)
NASA Goddard Space Flight Center (GSFC) (Kurtz et al.,
2013, 2015); (3) Jet Propulsion Laboratory (JPL) (Kwok and
Maksym, 2014); and (4) snow radar layer detection (SRLD)
(Koenig et al., 2016). These four OIB products overlap only
in 2014 and 2015, and thus we limit our comparisons with
OIB-derived snow depths to those 2 years. Each OIB product
is first regridded to the 100×100km polar stereographic pro-
jection, and then all daily flight tracks are averaged together
to produce monthly mean OIB snow depths (March or April)
for each year. We also compare snow reconstructions on their
native spatiotemporal resolution with OIB measurements in
the Supplement.

2.2 Snow depth climatologies

In addition to the airborne and in situ snow measurements,
we use two types of conventional large-scale snow prod-
ucts that are often used in the derivation of sea ice thick-
ness from radar or laser altimetry (Ricker et al., 2014; Kwok
and Cunningham, 2008), the Warren et al. (1999) (W99) and
the Shalina and Sandven (2018) (SS18) climatologies. W99
provides distributions of snow depth and density for each cal-
endar month by assembling North Pole (NP) drifting station
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observations from the 1950s to 1990s. A two-dimensional
quadratic function is adopted to fit the measurements to the
Arctic basin. W99 also provides a climatology of snow wa-
ter equivalent (SWE) from January to December. This is de-
rived using snow depths and densities measured along snow
lines, and, if unavailable, Arctic-mean density for that month
is used. Like snow depth, a two-dimensional quadratic fit was
applied to the SWE data.
SS18 further combines NP data (as in W99) with addi-

tional snow data from the Soviet airborne expeditions (Sever)
obtained primarily during the 1960s to 1980s to produce
spring (March–April–May) snow depth fields. Since the air-
craft would land on level FYI, SS18 is not limited to MYI in
the central Arctic (as W99) but includes FYI in the Eurasian
seas as well (Shalina and Sandven, 2018). The spatial grid
spacing of the SS18 climatology is 100× 100km within the
Arctic basin.

2.3 Satellite- and model-based snow depth products

Eight snow depth data sets are included in this inter-
comparison study (Table 1). They mainly fall into two cat-
egories: (1) snow reconstruction using atmospheric reanal-
ysis data as input to a snow accumulation model together
with snow redistribution by sea ice drift; (2) snow depth
retrieved from satellite data, including passive-microwave-
based snow retrieval, blended satellite-derived radar sea ice
freeboards at two different frequencies, and active–passive
satellite (combining CryoSat-2 and SMOS) data synergy.
Here, snow depth is defined as the average thickness of snow
over the entire grid-cell area for eight products, not just over
the sea-ice-covered fraction.

The first category includes four different new products: the
distributed snow evolution model (SnowModel-LG) (Liston
et al., 2020; Stroeve et al., 2020), NASA Eulerian Snow on
Sea Ice Model (NESOSIM) (Petty et al., 2018), the Centre
for Polar Observation and Modelling (CPOM) model (Till-
ing et al., 2020), and the Lagrangian Ice Tracking System
for snowfall over sea ice from the University of Washing-
ton (UW) (Blanchard-Wrigglesworth et al., 2018). The sec-
ond category includes the following snow depth products:
the products from the University of Bremen (PMW Bremen)
(Rostosky et al., 2018) and the Danish Meteorological In-
stitute (PMW DMI) (Winstrup et al., 2019) rely on satellite
passive microwaves at multiple frequencies and polarizations
for their snow depth retrieval algorithms. The Dual-altimeter
Snow Thickness (DuST) product (Lawrence et al., 2018) is
derived from combining data from CryoSat-2 (Ku band) and
AltiKa (Ka band) satellite radar altimeters. The DuST prod-
uct also combines Envisat (radar altimeter: Ku band) and
ICESat (laser altimeter) data during their period of overlap.
Finally, Department of Earth System Science in Tsinghua
University (DESS) combines a Ku-band altimeter (CryoSat-
2) and L-band passive microwave radiometer (SMOS) to re-
trieve snow depth and sea ice thickness based on two physical

models (Xu et al., 2020). Each approach uses vastly differ-
ent methodologies and provides snow information at differ-
ent spatial and temporal resolutions.

2.3.1 Reanalysis-based snow depth reconstruction

SnowModel-LG

SnowModel-LG is a prognostic snow model originally devel-
oped for terrestrial snow applications, now adapted for snow
depth reconstruction over sea ice using Lagrangian ice par-
cel tracking (Liston et al., 2020). Physical snow processes
are included such as blowing snow redistribution and sub-
limation, density evolution, and snowpack metamorphosis.
SnowModel-LG is used in a Lagrangian framework to redis-
tribute snow around the Arctic basin as the sea ice moves.
Tracking begins on 1 August 1980, assuming snow-free ini-
tial conditions, and accumulates snow until 31 July of the
next year. On 31 July, any remaining snow that is isother-
mal and saturated with meltwater becomes superimposed
ice and is no longer identified as “snow”. SnowModel-LG
is the only data product that includes snow depth during
the melt season. The essential inputs to this data product
are atmospheric reanalysis estimates of precipitation, 2 m
air temperature, wind speed and direction, and weekly ice
motion vectors from NSIDC (Stroeve et al., 2020). Weekly
ice motion vectors are linearly interpolated to daily resolu-
tion. Outputs relevant to this study are the snow depth and
bulk snow density (Liston et al., 2020) and are provided
on a 25× 25km EASE grid. A recent study (Stroeve et al.,
2020) evaluated SnowModel-LG using NASA MERRA-2
(Gelaro et al., 2017) and ERA5 atmospheric reanalysis fields
(Hersbach and Dee, 2016) against several data sets includ-
ing OIB, IMBs, MagnaProbe and passive microwave esti-
mates. They found that the model captured observed spatial
and seasonal variability in snow depth accumulation, while
also showing statistically significant declines in snow depth
since 1980 during the cold season. The temporal resolution
of SnowModel-LG is daily between 1 August 1980 and 31
July 2018.

NESOSIM

The NASA Eulerian Snow On Sea Ice Model (NESOSIM)
is a three-dimensional, two-layer (vertical), Eulerian snow
budget model (Petty et al., 2018). NESOSIM includes two
snow layers: old compacted snow and new fresh snow. Wind-
packing and snow loss to the leads are included and were
used to calibrate NESOSIM with historical snow depth and
density observations from the NP drifting station data. NE-
SOSIM was run using several atmospheric reanalyses, in-
cluding ERA-Interim (ERA-I) (Dee et al., 2011), JRA-55
(Ebita et al., 2011) and MERRA (Rienecker et al., 2011), and
a median of these daily reanalysis snowfall estimates is used
in this study. The model is also forced with near-surface wind
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fields from ERA-I, NSIDC Polar Pathfinder sea ice drift vec-
tors (Tschudi et al., 2019) and Bootstrap passive microwave
ice concentrations (Comiso, 2017). Snow accumulation is
initialized at the end of summer (default of 15 August) and
run until the following spring (1 May). To initialize snow
depth in mid-August, NESOSIM linearly scales the August
snow depth in the W99 climatology based on the ratio be-
tween duration of the summer melt season and the climato-
logical summer duration. The duration of the summer melt
season is defined based on ERA-I air temperatures, and cli-
matological summer melt duration is from Radionov et al.
(1997). Snow depth is further equally divided into the “old”
and “new” snow layers, with snow transferred from the new
to the old snow layer based on the wind conditions. Snow
is then accumulated and evolves dynamically with sea ice
motion through a divergence–convergence and an advection
term. Daily snow depth (mean depth over the sea ice frac-
tion) and snow density and snow volume (per unit grid cell)
are available from 15 August to 30 April for each year, at a
spatial grid spacing of 100×100km in a polar stereographic
projection. NESOSIM provides the effective snow depth of
the ice-covered fraction and the mean grid-cell snow depth.
In order to be consistent with snow depth estimates from the
other methods, we will use the latter in this study.

CPOM

The CPOM snow depth product (Tilling et al., 2020) is ini-
tialized on a Lagrangian grid with a spacing of 10 km run-
ning from 40◦ N to the pole. Snow accumulation begins on
15 August each year using the W99 August snow depth and
a fixed density of 350 kgm−3 on all ice-covered (sea ice con-
centration> 15 %) grid points. This initial snow layer is kept
separated from any accumulated snow after the model has
started running. The model then steps daily through the win-
ter, accumulating snow in SWE. Snow parcels are moved us-
ing NSIDC Polar Pathfinder ice motion data, and any parcels
moving outside the ice-covered region are removed. New
parcels covered by expansion of the ice-covered region be-
come active with no initial snow. Where the 2 m ERA-I air
temperature is above freezing point, the daily ERA-I SWE
of snowfall is added to the already accumulated column.
A fraction of the accumulated snow is removed when the
wind speed exceeds 5 ms−1 using a function proportional to
wind speed and lead fraction (see Schröder et al., 2019, Ta-
ble 1). Finally, the total column of accumulated SWE at each
Lagrangian point is converted to snow depth using a daily
snow density function constructed in a similar way to Kwok
and Cunningham (2008), which is added to the initial snow
layer (if present). The irregularly spaced snow data from the
Lagrangian grid are re-gridded onto a regular 10 km2 polar
stereographic projection using an averaging radius of 50 km
to give a snow depth map for each day of winter.

UW

The last reanalysis-based snow reconstruction is from the
University of Washington (UW). The algorithm accumulates
cold-season snowfall along sea ice drift trajectories using 12-
hourly snowfall from ERA-I, weekly NSIDC sea ice vec-
tors and weekly-averaged NOAA-NSIDC sea ice concentra-
tion (Meier et al., 2013). A Lagrangian Ice Tracking System
(LITS) (DeRepentigny et al., 2016) is used to backward track
each grid point from the first week of April to the last week of
the previous August (Blanchard-Wrigglesworth et al., 2018).
This tracking system has a claimed accuracy of ≈ 50 km af-
ter 6 months of tracking (DeRepentigny et al., 2016). Once
the 6-month trajectories are established for each ice parcel,
the algorithm accumulates weekly-averaged snowfall along
each parcel trajectory. A sea ice concentration correction is
further imposed every week (one time step). Specifically, if
the ice concentration drops below 15 %, the accumulation
stops and the trajectory is ended at the previous time step.
Only monthly snow depths in April are available for the pe-
riod from 1980 to 2015. Spatial grid spacing of the data set
is 75× 75km on a polar stereographic projection.

2.3.2 Satellite-based snow depth retrieval

DuST

Lawrence et al. (2018) derives snow depth by utilizing the
difference in freeboards retrieved from radar altimeter satel-
lites operating at different frequencies. Specifically, satel-
lite data from ESA’s CryoSat-2 (CS-2, Ku-band radar satel-
lite altimeter operational since 2010) and CNES/ISRO’s Al-
tiKa (Ka-band radar satellite altimeter, 2013–present) are
used. The deviation of each satellite’s return from its ex-
pected dominant scattering horizon (the snow surface for
the Ka band and the ice–snow interface for the Ku band) is
quantified using independent snow and ice freeboards from
OIB. Using a spatially variable correction function, AltiKa
and CS-2 freeboards are calibrated to the snow surface and
snow–ice interfaces, respectively, allowing snow depth to be
estimated as the difference between the two. A caveat to the
approach is that since OIB data are only available during
March and April and cover limited regions of the Arctic, the
calibration of the CS-2 and AltiKa freeboards with OIB may
not be valid during other months and/or regions. The same
methodology has also been applied to ICESat and Envisat
satellites, whose active periods overlap between 2003 and
2009, and these data are used to extend the snow depth prod-
uct further back in time. This Dual-altimeter Snow Thick-
ness (DuST) product produces (1) monthly snow depth maps
from October to April during the CS-2/AltiKa period (2013–
present) and (2) bimonthly (every 2 months) annual snow
depth maps (March–April or October–November) during the
ICESat–Envisat period (2003–2008). For both time periods,
the snow depth is gridded on a 1.5◦ longitude× 0.5◦ latitude
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grid. The data are limited to below 81.5◦ N due to the upper
latitude of AltiKa/Envisat.

PMW Bremen

The University of Bremen’s PMW snow depth product de-
scribed in Rostosky et al. (2018) on FYI is available dur-
ing the AMSR-E/2 period. The algorithm is adapted from
Markus and Cavalieri (1998), which was derived from a
series of passive microwave sensors, such as the Scan-
ning Multichannel Microwave Radiometer (SMMR) (from
1979), and continuing on through the Special Sensor Mi-
crowave/Imager (SSM/I) and SSM/I Sounder (SSMIS). The
latter algorithm computes the spectral gradient ratio between
18.7 and 37 GHz vertical polarization brightness tempera-
tures (Tbs) to generate 5 d averaged snow depth estimations
over FYI (Markus et al., 2011). This algorithm has limita-
tions for wet snow spring and multiyear ice (Comiso et al.,
2003) and large sensitivity to surface roughness (Stroeve
et al., 2006). Snow depths over smooth FYI were found to
be accurate in comparisons with OIB during 2009 and 2011
(RMSE < 0.06m over a shallow snow cover), while signif-
icant biases were found over rougher FYI or MYI (Brucker
and Markus, 2013).

Rostosky et al. (2018) further extends the approach of
Markus and Cavalieri (1998) to also include snow depth over
MYI using the lower frequencies of 6.9 GHz from the NASA
Advanced Microwave Scanning Radiometer for the Earth
Observing System (AMSR-E) and the JAXA Global Change
Observation Mission – Water (GCOM-W) AMSR2 instru-
ment. We refer to the resulting product as the PMW Bre-
men snow depth product. The gradient ratio between verti-
cal polarized brightness temperatures (Tbs) at 18.7 GHz and
6.9 GHz helps to mitigate the retrieval sensitivity problems
over MYI during March and April. Specifically, robust linear
regressions were derived based on fitting 5 year (2009, 2010,
2011, 2014, and 2015) of the NOAA Wavelet (WAV) Air-
borne Snow Radar-Snow Depth on Arctic Sea Ice Data Set
(Newman et al., 2014) and the polarized Tb gradient ratio.
Snow depths over different ice types were fitted separately,
using the Ocean and Sea Ice Satellite Application Facility
(OSI-SAF) sea ice type map to distinguish between FYI and
MYI. No evaluation/validation was performed in regions out-
side of OIB measurements. The spatial grid spacing is similar
to typical passive microwave measurements, at 25×25km in
the polar stereographic projection. Daily snow depth maps
for winter months from November to April since 2002 are
available. It should be noted that snow depth over MYI is
only available during March and April when the OIB data
were available to constrain the model. Snow depth uncer-
tainty is estimated to be between 0.1 and 6.0 cm over FYI
and between 3.4 and 9.4 cm over MYI.

PMW DMI

In Winstrup et al. (2019), snow depth is derived by a ran-
dom forest regression model based on passive microwave
Tbs from AMSR-E and AMSR2. The model was trained us-
ing a Round-Robin Data Package (Pedersen et al., 2018),
with OIB campaigns snow thicknesses provided by NSIDC
including IDCSI4 and quicklook products and collocated
brightness temperatures. Training was performed on two-
thirds of the data set, using OIB data from the period April
2009–March 2014, leaving the remaining OIB data (period:
March 2014–April 2015) for validation purposes. Specifi-
cally, multi-channel Tbs ranging from the C band (6.9 GHz)
to 89 GHz are included as predictors, at both vertical and
horizontal polarization. The random forest consists of 500
regression trees, each derived from bootstrapping the input
data and using a maximum limit of five predictors for each
leaf in the regression trees. The most important predictors,
as found by the algorithm, were the following channels:
18.7 GHz (27 %), 23.8 GHz (17 %) and 10.7 GHz (11 %), all
vertical polarizations. Derived snow depths were found to be
in good agreement with the OIB data retained for validation,
with an average error of 0.05 m and an accuracy of 78.7 %.
The passive microwave snow depth product from the Dan-
ish Meteorological Institute (PMW DMI) constructs spring-
time (March and April) daily snow depth between 2013 and
2018 at 25× 25km spatial grid spacing on the EASE-Grid
2.0 (Brodzik et al., 2012).

DESS

The Department of Earth System Science in Tsinghua Uni-
versity (DESS) algorithm retrieves both sea ice thickness and
snow depth simultaneously by using sea ice freeboard from
CS2 and the L band (1.4 GHz) Tbs from the Soil Moisture
and Ocean Salinity (SMOS) satellite (Xu et al., 2020). The
active periods of these two satellites are both from 2010 to
present. Specifically, this algorithm combines a hydrostatic
equilibrium model and improved L-band radiation model
(Xu et al., 2017). Sea ice freeboard is converted to sea ice
thickness based on hydrostatic equilibrium (Laxon et al.,
2003), using assumptions on snow, ice and water densities.
Tbs from SMOS can be used to retrieve thin sea ice thick-
ness (Kaleschke et al., 2012) and snow depth over thick ice
(Maaß et al., 2013(@). The L-band radiation model is fur-
ther improved by adding vertical structure of temperature
and salinity in sea ice and snow (Zhou et al., 2017). In or-
der to obtain the missing measurements resulting from lim-
ited upper latitude in the SMOS satellite, L-band Tbs span-
ning inclination angles from 0 to 40◦ and from 85 to 87.5◦ N
are approximated using Tbs of all frequencies in AMSR-E
and AMSR2 through a back-propagation machine-learning
process. By combining the two observational data sets, the
uncertainties in both sea ice thickness and snow depth are
largely reduced. Unlike optimal interpolation-based sea ice
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thickness synergy, as applied in Ricker et al. (2017), the un-
certainty in ice thickness is reduced through an explicitly re-
trieved snow depth.

Both sea ice thickness and snow depth are available in the
DESS product. Here we use the monthly snow depth maps
available for March of each year since 2011, which are pro-
vided at a spatial grid spacing of 12.5× 12.5km on a polar
stereographic projection.

3 Snow products inter-comparison

In this section, we carry out a systematic comparison of
the eight snow products, using the two climatological snow
data sets (W99 and SS18) as a reference for all comparisons
and analyses. Section 3.1 presents the results for mean snow
depth and its spatial distribution, Sect. 3.2 introduces the sea-
sonal cycle, and the long-term trend and interannual variabil-
ity is presented in Sect. 3.3. For the two products that model
an evolving snow density, we also intercompare these against
climatology (Sect. 3.4). While we focus on basin-wide es-
timates for the whole Arctic, we also explore consistency
and mean state of all products over three sub-regions: the
Canadian Arctic sector (CA) including the Canadian Arc-
tic Archipelago, the Atlantic (Atlantic), and the Pacific and
Central Arctic (Pacific) sectors (regions outlined in Fig. S1).
Over these regions, sea ice conditions vary considerably, with
mostly thick MYI within the CA and thinner FYI elsewhere.
The North Atlantic has generally more precipitation as a re-
sult of proximity to the North Atlantic storm tracks.

Given the relatively long time period and basin-scale cov-
erage provided by SnowModel-LG, this snow depth prod-
uct is used as the reference product when carrying out the
regional consistency checks. To align the temporal and spa-
tial resolution between all snow products, comparisons are
mainly carried out after year 2000 and focused on the early
and late winter months of October and/or November and
March and/or April. The products containing data for longer
time periods are further explored against climatologies, and
their long-term trends are assessed.

3.1 Mean state and distribution of snow depth

Mean snow depth, which is a direct indicator of total snow
volume over sea ice, is of fundamental importance for the
characterization of the Arctic hydrological cycle. Spatial
maps of monthly mean snow depth across all data products,
as well as the W99 and SS18 climatologies, are shown in
Figs. 2 and 3 in spring (autumn) months for the season of
2014–2015. Products are shown with their native resolution
and grids. The spatial patterns in all products are in broad
agreement that thicker snow occurs north of Greenland and
the CA sector and thinner snow in the seasonal ice zones
(i.e., Baffin Bay and marginal seas of the Eurasia continent).
Some products also show thicker snow in the East Green-

Figure 1. The common regions (yellow) of snow product inter-
comparison with (a) and without (b) DuST. Also shown are the re-
gions of interest in this study: Canadian Arctic (CA), North Atlantic
sector (Atlantic), and Pacific and Central Arctic (Pacific).

land Sea (NESOSIM in particular) and the Atlantic sector of
the Arctic. Despite some general agreements, mean spring
snowpack and regional discrepancies are evident in Fig. 2.
In particular, the thickest snow in late winter/early spring for
NESOSIM occurs in the East Greenland Sea, while in DESS
the deepest snow is concentrated in the Canadian Arctic.

During autumn, for the region north of Greenland and
Svalbard, SnowModel-LG runs forced with MERRA-2 show
a similar spatial pattern to other reanalysis-based modeling
systems (i.e., NESOSIM and CPOM) but shallower snow
than NESOSIM (Fig. 3). DuST also shows deep snowpacks
in this region (16.6 cm mean snow depth), though the spatial
coverage is more limited. Spring snow depth, ranging from
15.2 to 25.3 cm in the Arctic domain (Fig. 1), exhibits large
spatial variability among all products. Further, relatively
thick snowpacks in the North Atlantic sector are evident
in all reanalysis-based products except for CPOM. Deeper
snowpacks are expected in this region as it receives win-
ter precipitation from the North Atlantic storm tracks. The
discrepancies in spring among the reanalysis-based products
are the results of several aspects including initial snow as-
sumption, tracking numerical algorithm and reanalysis adop-
tion. For comparison, snow is also the deepest (over 35 cm)
to the north of Svalbard in both the W99 and SS18 clima-
tologies. NESOSIM further suggests thick snow over Davis
Strait, with spring averaged snow depths greater than 25 cm.
This is in stark contrast to the other data sets over the FYI
in that region and is likely unrealistic given this is a region
of first-year ice that does not usually freeze until December
and/or January, e.g., Stroeve et al. (2014), limiting the time
over which snow can accumulate on the ice.

The histogram of time-averaged snow depth in the differ-
ent products is shown in Fig. 4 for the period 2000 to 2018
during the spring and autumn periods, respectively. Out of
all the reanalysis-based data products, snow depth distribu-
tions in NESOSIM are shifted towards slightly deeper snow-
packs (8.4 cm) than those from SnowModel-LG (7.2 cm) and
CPOM (6.0 cm) during autumn, although the shapes of the
distributions are similar. The deepest snowpacks during Oc-
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Figure 2. Mean snow depth (units: m) in spring (March–April) 2014 for eight snow products, W99 and SS18.

Figure 3. Mean snow depth (units: m) in autumn (October–November) 2014 for four snow products and W99.

The Cryosphere, 15, 345–367, 2021 https://doi.org/10.5194/tc-15-345-2021



L. Zhou et al.: Inter-comparison of snow depth over Arctic sea ice 353

tober and/or November are found in DuST, with a mode of
the distribution at about 16.6 cm. This is much larger than
other products and seems unlikely to be realistic early in the
snow accumulation season. During spring (Fig. 4b), PMW
DMI exhibits the overall smallest snow depth in late winter
(14.5 cm), while UW shows the largest snow depth (25.2 cm)
in the common region of the snow products. Conclusions
are similar if we omit DuST and extend the analysis up to
87.5◦ N. Doing so, the bimodal snow depth distribution in
autumn is more evident, suggesting more snow cover over
old sea ice north of 81.5◦ N. As expected, snow depths shift
to overall deeper snowpacks in spring, especially when in-
cluding the higher latitudes (Fig. 4c and d). The shallowest
spring snow in PMW DMI, with a mean snow depth< 15 cm,
and the thickest autumn snow in DuST are the two extremes
among current snow products.

Additionally, we examine snow depth over the three dif-
ferent sectors in spring 2015 (Fig. S1 in the Supplement).
The deepest snowpacks from reanalysis-based snow prod-
ucts mainly occur over the North Atlantic, while satellite-
based products indicate more snow accumulating over the
CA. Although this is only 1 year of comparison, it shows
that regional differences in snow accumulation can be quite
pronounced depending on the data set used.

Discrepancies between snow products and the climatolo-
gies both in spring (Fig. 5) and in autumn (Fig. S2) are ev-
ident. In autumn (Fig. S2), bimodal snow distributions are
noticeable both in SnowModel-LG and NESOSIM using the
data past 2000, with a large proportion of thin snow not seen
in theW99 climatology. By the end of winter, the differences
between all products and W99 are larger (Fig. 5) than in au-
tumn, with the minimum decreasing being 10 cm for UW and
the maximum being over 15 cm for PMW DMI in spring.
SnowModel-LG, DuST and DESS all have snow depths be-
low 10 cm in March and/or April. For reanalysis-based prod-
ucts, the snowpack is still significantly shallower against cli-
matologies in the 1980s (1990s in the case of CPOM) when
W99 is partly collected. In addition to mean snow depth,
the skewness of the snow distribution, especially in spring,
among all products is mainly positive as a result of the larger
presence of thin snow cover over FYI dominated in the cur-
rent era, while that of W99 is the opposite.

Apart from W99, the Shalina and Sandven (2018) clima-
tology provides additional snow depth information in the
marginal seas, especially over the Eurasian seas. Overall
SS18 has lower snow depths in the central Arctic compared
with W99. Figure 6 reveals that snow distribution in SS18
includes two modes – 18.1 and 32.2 cm – which correspond
to snow over FYI and MYI respectively. Generally, differ-
ences between the SS18 climatology and the various snow
products are similar to the comparison results with W99, but
SS18 tends to exhibit a similar bimodal distribution to that
seen in some of the snow products.

To summarize, there is general agreement among the prod-
ucts (except for UW) that there is a distinct difference in

snow depth on perennial and seasonal ice. It is worth not-
ing that this agreement is across the two distinctive meth-
ods for snow depth reconstruction, i.e., the reanalysis-based
numerical integration and satellite-based retrievals. This is
also reflected in both the basin-scale snow depth averages
and the spatial patterns. However, the areas where the thick-
est/thinnest snow depths are found tend to differ between the
two types of methods. The heavy snow in reanalysis-based
products falls primarily over the East Greenland Sea and At-
lantic sector as a result of frequent storm tracks over this area,
whereas from active or passive microwave satellite data the
thickest snow is detected over the Canadian Arctic sector due
to the different features of old vs. newly formed ice. Finally,
the intercomparison of the different snow products, and fur-
ther against two climatological data sets, reaches similar con-
clusions: (1) all snow products have similar structure such
that snow over perennial ice is thicker, but with quite large
regional differences in mean value; and (2) snow depths in
the products evaluated show less snow in recent years rela-
tive to the climatologies.

3.2 Seasonal cycle of snow depth

Time series (2000–2018) of monthly mean snow depths dur-
ing winter (September to April) averaged over regions up to
81.5◦ N are displayed in Fig. 7, whereas Fig. 8 shows the
seasonal mean and spread. TheW99 is included as reference
(see Fig. S3 for the results when the region is extended up to
87.5◦ N).

In NESOSIM, April snow depths are higher than in
SnowModel-LG (Fig. 7), especially after 2012. We further
see from Fig. 8 that the initial snow depth before autumn
is thinner in SnowModel-LG, but there is more wintertime
snow accumulation in SnowModel-LG than in NESOSIM.
Thicker autumn snow in NESOSIM is a result of using W99
for the initial conditions, while SnowModel-LG tracks the
snow through the summer melt season, removing any re-
maining snow at the end of summer when the snowpack
is saturated and isothermal (this then becomes decomposed
ice). The end result is that by the end of winter overall differ-
ences between the two products are less pronounced despite
large differences in total snow accumulated over winter.

Seasonal snow accumulation is also larger in SnowModel-
LG compared with CPOM. In contrast, the seasonal accu-
mulation in DuST and snow changes from March to April
in PMW Bremen are unexpectedly small, even negative,
while the PMW DMI shows similar seasonal changes to the
reanalysis-based products. Overall, the largest seasonal snow
accumulation occurs in W99, and the deepest snowpacks
are observed in March, the month when snow reaches its
maximum depth, whereas many of the other products reach
their maximum snow depths in April. However, based on
Sect. 3.1, compared with W99, all snow cover products in
early winter have thinner snowpacks than at the end of the
winter, which implies either that the intensity of snow ac-
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Figure 4. Snow distribution comparison within the common regions (in Fig. 1a) in all snow products during the period 2000–2018 (different
products cover different periods) with/without DuST included in October–November (a, c) and March–April (b, d).

Figure 5. Snow distribution comparison between W99 and snow products in spring (March and/or April).
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Figure 6. Snow distribution comparison between SS18 climatology and snow products.

Figure 7. Time series of average monthly snow depth in each snow product within the common regions since 2000. Only wintertime
(September to next April) is shown.

cumulation is weakening or that the snow accumulation pe-
riod has shortened. We further note that W99 accumulates
more snow during the early part of winter, and thus the sea-
sonal curves are flattened near spring. SnowModel-LG, NE-
SOSIM and CPOM on the other hand share similar seasonal
accumulation curves, with accumulation continuing to in-
crease through winter. This seasonal pattern of winter snow
accumulation finds support in a recent study by Kwok et al.
(2020) that found accumulation later in winter in 2018–2019.
This implies that there may be limited efficacy of the climato-
logical seasonal pattern of snow accumulation in the current
Arctic climate. As sea ice freeze-up continues to delay fur-

ther over the last 40 years, it is expected that the early snow
accumulation will continue to differ from that reflected in
W99.

3.3 Trend and interannual variability of snow depth

All reanalysis-based snow reconstructions, namely
SnowModel-LG, CPOM, NESOSIM and UW, have
consistent interannual variability in spring snow volume
from 2000 to present (see details in Table S2), with statisti-
cally significant (confidence level 99 %) correlations of the
interannual snow depth/volume between the data sets. DESS
also exhibits generally similar interannual variability to the
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Figure 8. Wintertime snow accumulation among eight products and W99 since 2000.

reanalysis-based products (R2
= 0.42 for SnowModel-LG,

0.68 for NESOSIM and 0.32 for CPOM), whereas PMW
Bremen and DuST do not.

While there is interannual variability in snow accumula-
tion, the variability is overall quite small, ranging from 2 cm
in November to about 2 to 3 cm in April. This also holds
for results as averaged up to 87.5◦ N (Fig. S3). The inter-
annual variability seen in the data products is about half of
that previously reported in W99, where interannual variabil-
ity was estimated to be about 4.3 cm in November and 6.1 cm
in April. It is important to note, however, the climatological
estimation of interannual variability in W99 includes snow
depth uncertainties and should be treated as an upper bound
for the inherent physical interannual variability. It should be
also noticed that DuST shows a significant positive snow
depth bias from the Envisat period to the CryoSat-2 period,
likely a result of using OIB to calibrate the snow depth es-
timates. This positive snow bias is missing in the passive-
microwave-based snow products (e.g., PMW Bremen) and is
not observed in DESS (time series in PMW DMI is too short
to be assessed).

As averaged over the common regions of all data sets, no
significant trend is observed in most snow products except
DuST since 2000. However, regionally the reanalysis-based
snow products exhibit regions of statistically significant pos-
itive and negative snow depth trends over a longer time
period. For example, positive snow depth trends are found
north of Greenland and the Canadian Arctic Archipelago
from 1991 to 2015 (common period) (Fig. 9). These pos-
itive trends may be a result of more autumn precipitation

(Serreze et al., 2012) or changes in the proportion of MYI
vs. FYI in the region. On the other hand, snow depth trends
in spring are mostly negative within the rest of the Arctic
basin and statistically significant for SnowModel-LG in FYI
regions and for CPOM in the Barents Sea. In autumn, the re-
gions with statistically significant negative snow depth trends
in SnowModel-LG are larger, which is likely a result of de-
lays in freeze-up (Markus et al., 2009; Stroeve and Notz,
2018). CPOM also shows negative trends in these regions
but not as large as those from SnowModel-LG. April and
November mean snow depth trends from SnowModel-LG as
computed over the entire Arctic basin are −0.5 and −0.9 cm
per decade, respectively, although some regions show larger
trends. In CPOM, a basin-mean significantly negative trend
(−0.47 cmdecade−1) is only found in November.

Finally, we synthesize long-term changes in snow depth
in relationship to the climatology products. As mentioned in
Sect. 3.1, the minimum and maximum differences of mean
snow depth in March and/or April between products in the
current years and climatology are 10 and 15 cm respectively
over the last 40 years; thus the inter-decadal snow depth
changes would be in the range of−0.25 and−0.375 cmyr−1.
These estimates span the value of −0.29 cmyr−1 in Webster
et al. (2014). However, one should keep in mind that there
are large uncertainties in the snow climatology data sets, and
the interannual variability is larger than in the snow products.
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Figure 9. Trend of snow depth (units: cmyr−1) for SnowModel-LG, CPOM and UW in spring (April) (a–c) and autumn (November) (d, e)
during the period from 1991 to 2015. Areas with significant trends are shown as dotted areas (confidence level 95 %).

3.4 Snow density comparison

Apart from snow depth, we further investigate snow den-
sity in the two products that provide snow density estimates:
SnowModel-LG and NESOSIM. Since the W99 climatol-
ogy contains both snow depth and SWE, we can compare
against theW99 snow densities. Snow density inW99 is lim-
ited to the Arctic basin. SnowModel-LG suggests that snow
is denser than in NESOSIM in both November and April,
as shown in Fig. 10. Considering that the snow depth in
SnowModel-LG is thinner than NESOSIM, we find that the
two models provide a broadly equivalent SWE (not shown).
Snow over the Atlantic sector, especially within the East
Greenland Sea, is the densest in SnowModel-LG, with mean
density values above 370 kgm−3 in November and April. In
contrast, NESOSIM has mostly smaller snow densities and
considerably less spatial variability. For W99, the snow is
denser over the Atlantic sector in November, while in April
the denser snow is over the Pacific sector.

Time series of wintertime mean snow density within
the Arctic basin in SnowModel-LG, NESOSIM and W99
are summarized in Fig. 11. Both SnowModel-LG and NE-
SOSIM show an increase in snow density into the win-
ter, which is consistent with W99. However, snow density
in SnowModel-LG is consistently higher than that of NE-
SOSIM, with more pronounced differences at the end of win-

ter;W99 falls between the two estimates at 320 kgm−3. Sea-
sonally, SnowModel-LG densities increase more from Octo-
ber to April than in NESOSIM and W99. Neither the NE-
SOSIM nor SnowModel-LG densities suggest any long-term
changes in snow density, yet SnowModel-LG shows consid-
erable interannual variability of spring and winter snow den-
sity, which is not present in NESOSIM or W99.

4 Comparison of snow depth products against
observations

In this section, we compare the snow depth products against
the observational data sets. Since snow depth data from OIB
play an important role in the development of some of the
snow products, the comparison and validation potentially
suffer from the problem of data dependency. This applies to
both reanalysis-based snow reconstructions and the satellite-
retrieved snow depth fields. Buoy-based comparisons are free
from the data dependency problem, yet the limited local spa-
tial coverage of buoys hinders direct comparisons with the
products in study, which are all on much coarser spatial
scales (> 10 km). Therefore, after the intercomparisons we
discuss the complexities in validating different snow prod-
ucts and observations with in situ and airborne measurements
in Sect. 4.3.
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Figure 10. Mean snow density (units: kgm−3) according to SnowModel-LG, NESOSIM andW99 in November (a–c) and the next April (d–
f) since 2000.

Figure 11. Time series of mean snow density (units: kgm−3) within Arctic basin (common region in Fig. 1) comparison in SnowModel-LG,
NESOSIM and W99 since 2000.

4.1 Comparison against OIB

We assess the snow products against four different OIB snow
depth products. We first compare OIB and snow products af-
ter gridding both to a common 100× 100km grid and by
evaluating the monthly averages in 2014 and 2015. Results
are shown in Fig. 12 and Table 2. Taking the quicklook prod-
uct as an example, there are on average 1300 OIB 40 m mean

measurement samples per grid cell. It should be noted that
snow depths from DuST, PMW Bremen and DMI are directly
fitted against OIB snow depths, and as a result, these data
show significantly correlations (over 0.36 for PMW DMI)
with OIB as shown in Table 2. Therefore, we do not consider
this a suitable validation (or comparison) for these products.
For the PMW DMI product, however, OIB data from the pe-
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riod from March 2014–2015 were not used during model de-
velopment, and hence we have more confidence in the high
correlation observed. Except for NESOSIM and UW, the
other reanalysis-based products are also to some extent in-
directly tuned by OIB snow depths in some years. Overall,
all products show reasonably high correlations with the dif-
ferent OIB snow estimates except for UW, which only shows
a slight correlation with some versions of the OIB data.

It should be noted that OIB snow depth is itself a de-
rived product, and thus caution is warranted when interpret-
ing the results of the comparison with snow products. In fact,
a strong dependence of our validation results on the specific
OIB data product is evident by the different linear fitting
slopes shown in Fig. 12, as well as the R2 values, RMSE
and normalized RMSE (NRMSE: RMSE/(max−min)) in
Table 2. The fit is best for the PMW Bremen and PMW
DMI data, followed by the CPOM and DESS products,
though this depends on the choice of OIB data set used
for evaluation. For example, CPOM performs best against
SRLD (R2

= 0.61) and worst against GSFC (R2
= 0.43);

DESS also performs best against SRLD (R2
= 0.59) but

worst against quicklook (R2
= 0.26). SnowModel-LG and

NESOSIM have similar R2 ranging from a low R2 of 0.27
and 0.29, respectively, against the quicklook product to a
high of 0.47 (SnowModel-LG vs. SRLD) and 0.39 (NE-
SOSIM vs. GSFC). The UW snow product, on the other
hand, performs poorly against all OIB snow depth estimates
(maximum R2 of 0.31 with SRLD). Among all non-directly
OIB-fitted snow products (SnowModel-LG, CPOM, DESS,
UW and NESOSIM), RMSE in CPOM is the lowest, while in
DESS the RMSE is over 10 cm. The distribution/variability
in UW is narrow compared with other products related to the
lack of spatial variability of snow depth across the basin.

In order to avoid biases introduced by temporal and spa-
tial averaging and interpolation during the validation, we also
carry out the comparison for each of the data products on
their native grids and native temporal resolution (Fig. S4).
In contrast to the coarser-resolution comparisons shown in
Fig. 12 and Table 2, more outliers, lower R2 values and
larger RMSEs are evident in these native-spatial–temporal-
resolution comparisons. The comparison results still depend
on the choice of OIB data product, and in some instances
the statistical correlation improves. There is still no signif-
icant correlation between UW snow depths and those from
OIB, but the overall RMSE is the lowest recorded at less
than 4.0 cm. PMW DMI has the lowest NRMSE, followed
closely by all other snow products, with the largest NRMSE
in DESS. All snow products except NESOSIM and UW
show higher R2 under spatial coarser resolution compared
to Fig. 12, Fig. S4 and Table S3. The comparisons between
monthly and daily scale estimates suggests that temporal res-
olution has little influence on OIB comparisons, since there
are only small changes in R2 and RMSE, without significant
differences. However, spatial resolution does impact the sta-
tistical fits, which is related to the lack of representation be-

tween OIB and these products at the coarse scale of 100 km
(discussed further in Sect. 4.3).

Given the potential data dependency problem and the sen-
sitivity to the specific OIB data set, it is not possible to
conclude which snow product performs best. Snow products
that have been produced through tuning with OIB data show
higher R2 and smaller RMSEs. The PMW DMI product per-
forms best, despite not being tuned with OIB data for the
time period to which it is compared. The outlier is the UW
product. In summary, there is a need for a consensus as to
which OIB data products are the most accurate and also for
further independent observations to compare against the var-
ious pan-Arctic snow products currently available to the sci-
ence community.

4.2 Comparison with buoy data

We further explore how well the snow products represent
the mean state of small-scale snow depth on Arctic sea ice
by comparing against CRREL IMBs and AWI snow buoys.
As discussed in Sect. 2.1.1, 86 buoy tracks (58 tracks are
from CRREL and 28 tracks are from AWI) were processed
from 2000 to 2017 (Table S1). Scatterplots in Fig. 13 be-
tween monthly mean (March and April) buoy snow depths
and those from the various products are based on their na-
tive spatial resolution. DuST is excluded due to a lack of
buoy samples in its more limited spatial coverage. Despite
some statistically significant correlations, the correlations are
all very low, with slopes close to 0. The highest correlation
among the products is 0.16 for DESS. The PMW Bremen and
PMW DMI products show essentially no variability/spread
compared to the buoy data.

Next, we focus on temporal evolution as we do not ex-
pect the local-scale point measurements of the IMBs and
snow buoys to match with the coarse spatial scale of the
data products. We compare snow depth differences in the
products along the buoys’ drifting tracks against the accom-
panied snow accumulation measured by buoys during win-
ter (Fig. S5). Specifically, the three daily-resolution prod-
ucts (SnowModel-LG, NESOSIM and CPOM) are inter-
polated onto daily geolocations of the buoys. Only buoys
with valid measurements from October until the follow-
ing February are considered. Snow accumulation is then
calculated by subtracting the mean snow depth within the
first 7 d and that in the last 7 d. None of these products
show significant correlation with buoy accumulation because
several outliers weaken the overall correlation. Based on
Stroeve et al. (2020), good correlations are witnessed be-
tween SnowModel-LG and buoy data using the buoy location
in each integration step. Therefore, the lack of correlation we
observe may be due to large discrepancies in trajectories de-
termined from the ice drift products and from buoys, espe-
cially after a long-term integration.

In general, the comparison with snow depth measure-
ments from buoys highlights two important limitations of
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Figure 12. March and April comparison (only April in UW and March in DESS) between four monthly OIB products (quicklook in blue,
GSFC in green, JPL in red and SRLD in purple) and all snow products monthly on a 100 km grid for the period of 2014 and 2015. Lines are
best linear fits. Numbers in left corners indicate the valid count in the linear fitting.

Table 2. R2 (in bold), RMSE (left in bracket, units: cm) and NRMSE (right in bracket) of various average monthly snow depth products in
comparison with four OIB snow depth products, using a 100× 100km monthly comparison.

OIB product SnowModel-LG NESOSIM CPOM UW DuST DESS PMW Bremen PMW DMI

Quicklook 0.27 (9.5,0.23) 0.29 (10.0,0.22) 0.54 (6.2,0.15) 0.00 (3.1,0.15) 0.36 (4.6,0.14) 0.26 (14.0,0.41) 0.59 (4.4,0.11) 0.54 (4.4,0.10)
GSFC 0.30 (9.5,0.23) 0.39 (9.0,0.21) 0.43 (7.4,0.19) 0.10 (3.6,0.13) 0.30 (5.2,0.14) 0.48 (12.4,0.34) 0.56 (4.8,0.11) 0.37 (5.4,0.13)
JPL 0.41 (8.7,0.15) 0.38 (9.0,0.15) 0.59 (6.2,0.13) 0.17 (3.5,0.10) 0.35 (5.0,0.13) 0.51 (12.2,0.35) 0.70 (4.0,0.09) 0.52 (4.8,0.08)
SRLD 0.47 (8.4,0.10) 0.38 (9.1,0.10) 0.61 (6.1,0.10) 0.31 (3.2,0.06) 0.21 (5.6,0.11) 0.59 (11.1,0.23) 0.63 (4.4,0.08) 0.43 (5.2,0.06)

these sorts of comparisons. First, pronounced representation
issues are present when comparing point measurements to
coarse-resolution products despite buoys being intentionally
deployed to represent the adjacent areas and despite the fact
that they potentially traverse large geospatial ranges. Second,
sea ice drift is a major factor in determining the uncertainty
of snow depth estimations during the numerical integration
of reanalysis-based approaches.

4.3 Study of representation issues

Comparison and validation of snow depth products with ob-
servations of vastly different spatial resolutions and cover-
age are complex. For OIB, although the ground tracks cover
large regions, the aggregate footprint size is small. For ex-
ample, an average of 1300 OIB samples are used to compute
the 100× 100km cell-mean snow depth and the aggregate
area is about 0.6 km2, which is 0.006 % of the 100 km cell.
The same spatial aliasing situation has long existed in sea
ice thickness (Geiger et al., 2015), where the different instru-
ment footprint sizes bring about artificial modes in thickness
distribution. However, here the spatial coverage of OIB mit-

igates this problem, by introducing large-scale variability in
computing the cell-mean values of snow depth. For compari-
son, buoy measurements are the extreme case of limited rep-
resentation for products with coarse resolution. Although the
absolute error for each buoy measurement is low, the practice
of using it for validation purposes should be scrutinized.

In order to study the effect of limited spatial coverage on
validation, we utilized an OIB data set to simulate various
spatial grid spacings of products that can be used for snow
depth validation, including the extreme case of point mea-
surements (e.g., buoys). Specifically, we divide OIB scans
into segments of about 37.5 km, which is the typical resolu-
tion of the snow products evaluated in the study. The mean
snow depths from all OIB measurements within each seg-
ment are computed and treated as the true snow depth (here-
inafter referred to as Hs), which is then used as the snow
depth measurement to be validated. Re-sampling, that is mul-
tiple selections from samples, of the OIB measurement in
each segment is carried out, in order to simulate the vari-
ous observations with limited coverage. By studying the be-
haviors of fitting snow depth (Hs) values to samples, we ob-
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Figure 13. Comparison of average March and/or April snow depth in snow products in native spatial resolution versus the AWI (red dots)
and IMBs (black dots) buoys. All significant correlation (R2) values are given in blue.

serve the change in the slopes and qualities of the statistical
fits. Three sampling strategies are designed: (I) random re-
sampling, for which 40 OIB samples are randomly chosen
within the segment region and used to compute the mean Hs;
(II) segment-based re-sampling, for which a local OIB seg-
ment track with 40 consecutive samples is chosen and used to
compute mean Hs; and (III) single sample, for which a sin-
gle OIB Hs measurement is chosen to represent the locally
measured snow depth. Strategy III essentially mimics a buoy
observation in 1 d within typical passive microwave satellite
spatial resolution (i.e., limited spatial coverage). Specifically,
in order to further increase the validity of strategy III for
mimicking buoy measurements, we make sure that the thick-
ness of the random single sample in strategy III is within 1
standard deviation of the mode of the OIB ice thickness dis-
tribution.

Figure 14a shows the snow depth distribution from strat-
egy I (red lines) and strategy II (blue lines) for an exam-
ple segment, in order to demonstrate the simulation strate-
gies. A typical case of the fitting in strategy III is shown
in Fig. 14b, with each dot representing a local region of
37.5 km. After extracting and averaging the sample in dif-
ferent strategies, snow distribution is much narrower in strat-
egy I and II than in the original measurements, especially in
random re-sampling. Using Monte Carlo simulations with re-
sampling, we compute the distribution of fitting slopes for the
three strategies, shown in Fig. 14c. In strategy I (random re-
sampling), due to the small number of OIB samples chosen
(40 samples), the slopes of the linear fitting lines are lower

than 1 (around 0.91). This indicates that even if there is over-
all good coverage of the measurements, the limited footprint
still causes the fitting lines to flatten. If we limit the measure-
ment of Hs to a local segment (40 consecutive samples: strat-
egy II), the slopes drop to about 0.73, which indicates that the
limited representation of the local segment to regional varia-
tions further affects the validations. This is also in direct con-
trast with strategy I. When we further limit the comparison to
a single OIB sample (strategy III), the slopes further decrease
to around 0.24. It is important to note that, although the fitted
lines are very flat (an example in Fig. 14b), the fittings are all
statistically significant.

This result agrees with the buoy validation results in
Sect. 4.2, where the fitted slope between snow products and
buoy data (Fig. 13) is considerably flatter when compared
with the results involving OIB observations, as a result of
both large aggregate footprint and wider spatial coverage of
OIB. Yet, the study with OIB data suggests that the product
validation with buoy data should yield statistically signifi-
cant correlations. This result also indicates that when tun-
ing the prognostic/statistical models against airborne or in
situ measurements for reconstructing snow, the uncertainty
concerning limited representation should be addressed in or-
der to avoid over-fitting. The systematic study of uncertainty
quantification for limited representation is beyond the scope
of this paper and planned as future work.
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Figure 14. The study with OIB on the effects of sampling strategy for observations. Snow distribution within typical region (a) under different
sampling method embedded with schematic on different strategies deployment: original OIB measurements (black), 40 consecutive OIB re-
sampling (strategy II: blue) and 40 random OIB re-sampling (strategy I: red). Mean snow depth is shown by dashed lines. Typical fitting
(b) between cell mean and a single sample snow depth for all regions, with fitting line in purple. Overall distribution of slopes (c) in three
re-sampling strategies, fitting between OIB cell mean and 40 random OIB samples (strategy I), between OIB cell mean and 40 consecutive
samples (strategy II), and between OIB cell mean and single sample within 1σ of the mode of the ice thickness (strategy III: black).

5 Summary and outlook

This paper offers a detailed assessment of current snow prod-
ucts over sea ice. Although general consistency in snow
structure is witnessed among the products in terms of deeper
snow over perennial ice, regionally large spatial and temporal
discrepancies do occur. Further, the magnitude of seasonal
snow accumulation differs, as do long-term trends. Among
the products evaluated, UW and PMW DMI provide the up-
per and lower extremes of snow volume/depth at the end of
the freezing season. Wintertime snow accumulation is over-
all less than in the W99 climatology and is postponed to-
wards springtime in the reanalysis-based products. On the
other hand, the satellite-derived DuST product does not ex-
hibit a distinct wintertime snow accumulation. Interannual
variability of precipitation in the majority of reanalysis-based
products was found to be consistent (Barrett et al., 2020),
and thus we may have expected the reanalysis-based snow
depth to share similar interannual variability in snow depth.
However, different methods for accumulating the precipita-
tion in the reanalysis, as well as how that precipitation is re-

distributed within the Arctic basin under ice motion, leads
to pronounced differences among the reanalysis-based prod-
ucts. The March and/or April interannual variability for all
snow products was about half that previously estimated by
W99 (3.0 cm vs. 6.1 cm). Furthermore, none of the current
snow products display a trend in overall snow depth since
2000, although they all suggest significantly thinner snow in
spring than found in the climatologies. Over a longer time
period, however, several of the reanalysis-based snow prod-
ucts do show statistically significant trends towards thinner
snow.

We further compared each product against OIB and buoy
observations. All snow reconstructions demonstrate signif-
icant correlation with OIB observations, except for UW,
which only shows a slight correlation with some versions of
the OIB data. Correlations are lower when compared against
buoy measurements (no significant correlation in PMW Bre-
men and PMW DMI), with the highest correlation of 0.4
in DESS. We suggest that poor correlations are at least in
part caused by representation issues when trying to validate
coarse observations against finer-resolution measurements.
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More effort is required to simulate how snow accumulates lo-
cally since currently no product has the ability to model snow
depth at local spatial scales, as captured by observational
platforms such as buoys. For the reanalysis-based products,
improvement in the ice drifting algorithm and snow redis-
tribution parameterization may result in more accurate rep-
resentation of snow distribution. Based on the results, we
pick SnowModel-LG, NESOSIM, CPOM and DESS as the
products with the highest consistency. While we cannot reach
conclusive results on which snow product best represents the
true snow depth, we emphasize the importance of further co-
ordinated intercomparisons and call for community effort to
collect more independent observations for snow over sea ice.

Despite its importance for polar climate studies and sea
ice altimetry, the snow cover on sea ice remains a scarcely
observed parameter. Airborne surveys such as OIB provide
a good trade-off between spatial resolution and coverage,
yielding one of the richest snow depth observations for the
polar regions. Although it is a derived product, OIB snow
depth has become a major reference for model tuning, as well
as the benchmark for many snow depth reconstruction prod-
ucts. Therefore, although the comparisons with OIB snow
depth differ among the products (Sect. 4.1), there remain in-
herent limitations regarding data dependency. Given the sta-
tus quo of limited snow depth products as reference data sets,
more independent observations are required. The problems
associated with validation and data dependency would be
avoided by using separate training and testing data sets (such
as subsets of OIB snow depth data) for the model tuning of
snow reconstructions.

Due to the resolution differences of the various snow
depth products, spatial and temporal representation issues
need to be explored further to facilitate detailed compari-
son and validation. This is especially true when validating
coarse-spatial-resolution data with local snow depth mea-
surements such as buoy or a single OIB sample (Sect. 4).
In order to address these issues, the multi-scale characteris-
tics of the snow should be studied in a systematic manner,
including (1) its distribution and interaction with sea ice (Xu
et al., 2020) and (2) the scaling properties for a wide range
of measurement footprints, including in situ measurements
with snow probes and snow stakes (footprint < 0.1 m2), air-
borne measurements (≈ 100 m2), and typical satellite passive
microwave imagers (100–1000 km2). Uncertainty quantifica-
tion can then be carried out and incorporated in the devel-
opment of new snow remote sensing techniques, as well as
product intercomparison and validations.

With climate change and Arctic warming, the snow cover
on sea ice has undergone drastic changes. A longer melting
season, later freeze-up and shrinking of the perennial sea ice
cover have resulted in an overall thinning of the snow cover
(Sect. 3.1). However, the polar hydrological processes have
become more pronounced with warming, with stronger and
more frequent polar storms inducing more snowfall (Webster
et al., 2019). In addition to these competing factors influenc-

ing the total amount of snow on Arctic sea ice, the snow
stratigraphy and potential changes are a challenge for both
remote sensing and modeling of the snow cover. With the
combined factors of more snowfall and thinner sea ice, the re-
sulting snow–ice formation causes changes in the thermody-
namic and radiometric properties of the snow cover, as wit-
nessed in N-ICE2015 (Gallet et al., 2017; Merkouriadi et al.,
2017). In addition, the repeated intrusions of warm air causes
snow stratigraphy changes and even thawing–refreezing cy-
cles, bringing challenges to both airborne and satellite remote
sensing of the sea ice and snow cover. Furthermore, the long-
term increase in Arctic precipitation is projected to continue
in the future decades, with potential transition in the phase of
precipitation (Bintanja and Selten, 2014). The complex pro-
cesses involving snow stratigraphy pose further challenges
for the modeling of active/passive radiometry of snow and
sea ice, as well as that of prognostic modeling of snow over
sea ice.

Current and future in situ and satellite campaigns con-
tribute to an ever-growing and enriching catalogue for
snow and sea ice observations. In situ campaigns, such
as MOSAiC, provide annual, process-level studies of the
atmosphere–ice–ocean coupled system for the Arctic. Novel
satellite campaigns such as the multi-frequency radar altime-
ter CRISTAL (Kern et al., 2020) will provide unique capa-
bilities for snow depth measurement and sea ice altimetry.
The abundance of the methodologies and techniques that are
investigated in this study shows that there is general con-
sistency among the products derived by both numerical and
satellite-based approaches, and snow on Arctic sea ice is sig-
nificantly thinner against observations from the last century.
However, some spatial–temporal differences among these
products call for more attention for more independent snow
observations as well as modeling improvements.

Data availability. CRREL and AWI buoy data can be down-
loaded from the website http://imb-crrel-dartmouth.org/
(last access: 13 January 2021, Perovich et al., 2021) and
https://doi.org/10.1594/PANGAEA.875638 (Nicolaus et al.,
2017). IceBridge data were provided by Alek Petty. NESOSIM
data are available from https://neptune.gsfc.nasa.gov/csb/index.
php?section=516 (last access: 13 January 2021, Petty et al.,
2018, https://doi.org/10.5194/gmd-11-4577-2018), UW data are
available from http://www.atmos.washington.edu/~ed/data/snow
(last access: 13 January 2021, Blanchard-Wrigglesworth et al.,
2018, https://doi.org/10.1002/2017JC013364), and DuST data are
available from http://www.cpom.ucl.ac.uk/DuST (last access: 13
January 2021, Lawrence et al., 2018, https://doi.org/10.5194/tc-12-
3551-2018).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-15-345-2021-supplement.
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