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Abstract. Negative glacier mass balances in most of Earth’s
glacierized regions contribute roughly one-quarter to cur-
rently observed rates of sea-level rise and have likely con-
tributed an even larger fraction during the 20th century. The
distant past and future of glaciers’ mass balances, and hence
their contribution to sea-level rise, can only be estimated
using numerical models. Since, independent of complexity,
models always rely on some form of parameterizations and
a choice of boundary conditions, a need for optimization
arises. In this work, a model for computing monthly mass
balances of glaciers on the global scale was forced with nine
different data sets of near-surface air temperature and pre-
cipitation anomalies, as well as with their mean and median,
leading to a total of 11 different forcing data sets. The goal
is to better constrain the glaciers’ 20th century sea-level bud-
get contribution and its uncertainty. Therefore, five global pa-
rameters of the model’s mass balance equations were varied
systematically, within physically plausible ranges, for each
forcing data set. We then identified optimal parameter com-
binations by cross-validating the model results against in situ
annual specific mass balance observations, using three crite-
ria: model bias, temporal correlation, and the ratio between
the observed and modeled temporal standard deviation of
specific mass balances. These criteria were chosen in order
not to trade lower error estimates by means of the root mean
squared error (RMSE) for an unrealistic interannual variabil-
ity. We find that the disagreement between the different opti-
mized model setups (i.e., ensemble members) is often larger
than the uncertainties obtained via the leave-one-glacier-out
cross-validation, particularly in times and places where few
or no validation data are available, such as the first half of
the 20th century. We show that the reason for this is that

in regions where mass balance observations are abundant,
the meteorological data are also better constrained, such that
the cross-validation procedure only partly captures the uncer-
tainty of the glacier model. For this reason, ensemble spread
is introduced as an additional estimate of reconstruction un-
certainty, increasing the total uncertainty compared to the
model uncertainty merely obtained by the cross-validation.
Our ensemble mean estimate indicates a sea-level contribu-
tion by global glaciers (outside of the ice sheets; including
the Greenland periphery but excluding the Antarctic periph-
ery) for 1901–2018 of 69.2± 24.3 mm sea-level equivalent
(SLE), or 0.59± 0.21 mm SLE yr−1. While our estimates lie
within the uncertainty range of most of the previously pub-
lished global estimates, they agree less with those derived
from GRACE data, which only cover the years 2002–2018.

1 Introduction

Glacier mass loss across most of the world constitutes a ma-
jor part of the contemporary and projected 21st century sea-
level rise (e.g., Slangen et al., 2017; Oppenheimer et al.,
2019). Moreover, glaciers are important freshwater reser-
voirs for some regions of the world, and the vanishing of
glaciers is thus likely to induce seasonal water scarcity in re-
gions depending on those reservoirs (Cruz et al., 2007; Huss
and Hock, 2018; Wijngaard et al., 2018; Kaser et al., 2010;
Small and Nicholls, 2003).

Changes in a glacier’s mass are often referred to in terms
of surface mass balance: the difference between snow/ice
accumulation and snow/ice loss (ablation) – mostly due to
melting – over the glacier’s surface. Dividing this value by
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the glacier’s surface area yields the specific mass balance,
which is an important variable in attempts to quantify glacier
mass changes. Specific mass balances are a function of mete-
orological conditions at glacier locations and glacier-specific
characteristics. The future evolution of the global glacier
mass is usually estimated using numerical models (Hock
et al., 2019; Marzeion et al., 2020). This is the case for the
last century or even more distant past as well (e.g., Goosse
et al., 2018; Parkes and Goosse, 2020), since satellites able to
observe the Earth’s surface only became available well into
the second half of the 20th century. Glaciers also lack com-
prehensive in situ mass balance measurements, at least before
1950, since they are mostly situated in remote locations (see
Figs. 2.6 and 2.7 in WGMS, 2020). It is therefore important
to assess and improve glacier mass balance models used to
reconstruct or project glacier mass evolution. An ensemble-
based, long-term reconstruction can add to our understand-
ing of the uncertainties in glacier modeling, which might
in turn enhance our ability to make more robust projections
of glacier mass change (Hock et al., 2019; Marzeion et al.,
2020). Marzeion et al. (2020) have shown that ca. 25 % of
global mass change uncertainty in 21st century projections of
a glacier model ensemble can be attributed to differences in
the output of climate models. About 50 % of the uncertainty
in 2020, declining to ca. 25 % in 2100, was attributed to
differences between individual glacier models. In this work
we show that differences in meteorological reanalysis data
add considerably to the uncertainty of an individual glacier
model’s reconstruction as well. The modeling approaches to
establishing global estimates for the glaciers’ mass balances
mostly make use of temperature-index melt models to rep-
resent the energy available for melting solid precipitation
(i.e., snow) and ice (e.g., Huss and Hock, 2015; Radić and
Hock, 2011; Hirabayashi et al., 2013). As a glacier’s mass
balance is interrelated with the glacier’s geometric and hyp-
sometric properties, some kind of length-area-volume scal-
ing relation is often incorporated to account for changes in
these properties in the models (Bahr et al., 2015) in order
to avoid the computational cost of modeling physical pro-
cesses involved in glacier dynamics. This is especially rele-
vant for an approach like ours, for which we need to run the
model many times. The model used in the work presented
here additionally includes a response time scale to account
for the glacier geometries’ response lagging climatic forc-
ing but lacks an explicit representation of ice dynamic pro-
cesses such as deformation, sliding, or calving/frontal abla-
tion (Marzeion et al., 2012).

Although there are approaches based on solving the energy
balance at the ice surface, these models usually either lack ice
dynamics or geometric scaling (Shannon et al., 2019), can
only be applied to a small number of glaciers and depend
on upscaling to obtain global numbers (Giesen and Oerle-
mans, 2013), or do not perform significantly better than a
similar model without energy balance implementation (Huss
and Hock, 2015). Another difficulty for models resolving the

energy balance is the introduction of additional parameters
that have to be constrained, which in turn adds complexity
to the model optimization. This indicates that implementing
ice dynamics and the energy balance simultaneously is a dif-
ficult task and therefore not yet done routinely but might still
have the potential to enhance the accuracy of glacier model-
ing. That is because such models would have the ability to
represent the physical mechanisms influencing a glacier in a
more detailed, and thus possibly more realistic, fashion.

As mentioned above, for computational limitations, mod-
els solving the full equations of motion and thermodynam-
ics individually for each glacier are generally not applied at
the global scale. However, the Open Global Glacier Model
(OGGM, Maussion et al., 2019) has been applied to com-
pute ice velocity and thickness for each glacier based on
a flow line approach but is not yet able to routinely re-
construct glacier changes for such long time periods as in
this work. The initialization of OGGM for times prior to
recorded glacier areas was also just recently explored (Eis
et al., 2019, 2021).

None of the models resolving the energy balance or explic-
itly calculating ice dynamics have been applied to globally
reconstruct the glacier mass change on a century timescale.
This implies that a comprehensive analysis determining
which modeling approach might be most appropriate is not
yet possible; at least not for all global glaciers and the whole
20th century. The need for a robust model evaluation, which
can also be used to better understand the glacier model con-
tribution to projection uncertainty (Marzeion et al., 2020), is
apparent.

Uncertainties of numerical models are mainly caused by
(i) uncertain boundary and initial conditions, (ii) approxima-
tions of the model’s equations, and (iii) lack of knowledge
about parameters involved in the model setup (Hourdin et al.,
2017). Therefore, optimization of parameters and/or input
data is a standard procedure in glacier modeling (Huss and
Hock, 2015; Radić and Hock, 2011; Marzeion et al., 2012).
Often, a single metric is chosen to be minimized (e.g., the
model’s RMSE with respect to observed in situ mass bal-
ances). Rye et al. (2012) suggested multi-objective optimiza-
tion for a (regional) glacier model, striving for Pareto op-
timality (Marler and Arora, 2004), to constrain parameters
more robustly.

Models of (parts of) the Earth system are typically evalu-
ated using observations and/or proxy data, usually with the
objective to minimize the model’s deviation from observa-
tions, e.g., by minimizing the RMSE (Gleckler et al., 2008;
Taylor, 2001). Although in the case of glaciers direct in situ
specific mass balance measurements are sparse and very het-
erogeneously distributed in space and time, they are essential
in assessing the uncertainty, i.e., validation, of mass balance
models. Nevertheless, other evaluation methods exist; for ex-
ample using a combination of satellite gravimetry, altimetry,
and glaciological measurement data (Huss and Hock, 2015).
Such combined calibration data usually are not available for
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individual glaciers and/or do not have the temporal resolution
required to assess the model’s ability to capture interannual
variability, making them impractical for our calibration and
validation approach.

To avoid a confusion of the terms optimization, calibra-
tion, and validation, we briefly state our notions of these. Val-
idation means calculating metrics that relate model outputs to
observed values in a certain variable and that quantify the es-
timated model uncertainty. Optimization refers to choosing
the best global parameter set with respect to the aims one
sets regarding the validation. With calibration, we mean the
deduction of glacier-specific model parameters from obser-
vational data.

In this work, we apply a multi-objective optimization, con-
cerning the five global parameters most relevant in the ap-
plied model, for each of nine meteorological forcing data
sets (see Table 1), their mean, and their median. The term
global parameter here refers to parameters that are used in the
model formulation (see Sect. 2.2.1) and not varied for each
glacier but applied globally. Since the model is able to hind-
cast glacier evolution, the aim of this work is to (i) optimize
the global model parameters in order to obtain model setups
that reproduce in situ mass balance observations as closely as
possible and (ii) to more robustly estimate model uncertainty,
taking into account ensemble spread at times and in regions
where observations are sparse. We use the model of Marzeion
et al. (2012) but introduce changes to the mass balance cal-
ibration routine (see Sect. 2.2.2). Additionally, we incorpo-
rate newer boundary and initial conditions as well as refer-
ence data, against which the model is validated. We show
that the ensemble approach to the reconstruction produces
more robust estimates of model uncertainty than taking into
account results from a leave-one-glacier-out cross-validation
(see Sect. 2.2.1 and green box in Fig. 1) alone.

2 Data and methods

In this section we introduce the data and the modeling as
well as the optimization chain we applied in this work. In or-
der to make the whole section more accessible to the reader,
we point to the flowchart (Fig. 1), which illustrates how the
individual steps described in the text are connected.

2.1 Data

2.1.1 Meteorological data

We conducted the search for an optimal parameter set for the
version 4.03 of the CRU TS data (corresponding to an update
of Marzeion et al., 2012) and additionally eight reanalysis
data sets, as well as the mean and the median of all the data
sets (see Table 1). The 5 of the 11 data sets not extending
back to 1901 (see Table 1) were filled with CRU TS 4.03
data, exclusively for the purpose of initialization of glacier
areas; the results are only shown (and evaluated) during time

periods for which we have forcing data from the respective
data set.

Anomalies of temperature and precipitation were calcu-
lated with respect to the 1961 to 1990 reference period used
in CRU CL 2.0. For those data sets not covering the period
1961 to 1991, these anomalies were obtained by calculating
the difference between the 1961 to 1990 and the 1981–2010
periods in the CRU TS 4.03 data set and subsequently sub-
tracting this value from the respective data set’s 1981–2010
mean.

2.1.2 Glacier data

The glacier model requires information about location, area,
terminus, and maximum elevation of each glacier at some
point in time within the modeled time interval (1901–2018),
which were taken from the most recent version of the Ran-
dolph Glacier Inventory (RGI v6.0, RGI, 2017). The RGI
relies mostly on Landsat and other satellite imagery. Dis-
tinction of individual glaciers within glacier complexes was
realized mostly by semi-automatic algorithms for detecting
watershed divides. It includes Greenland’s peripheral glacier
with a high connectivity level “CL2 (strongly connected)”
(RGI, 2017), which we exclude from the model results we
present. Note that we neglect missing or disappeared glaciers
that are not recorded in the RGI. This might lead to an un-
derestimation of global mass changes, especially in the early
20th century (Parkes and Marzeion, 2018). The majority of
recorded glacier areas date back to the years between 2000
and 2010, while there are a few early records between 1970
and 1980. The exact distribution is given in Fig. 2 of RGI
(2017).

To be able to cross-validate the modeled annual specific
mass balances, we use in situ (glaciological) observations of
glacier-wide annual specific glacier mass balances collected
by the World Glacier Monitoring Service (WGMS, 2018).
For the sake of simplicity and because observational errors
of in situ specific mass balance measurements are not al-
ways known, we ignore any uncertainties of these observa-
tions (Cogley, 2009) and treat them as the “true” annual spe-
cific mass balance of a glacier in the recorded year. As stated
in the introduction, our validation approach is based on a de-
composition of the RMSE into the three statistical measures:
temporal correlation, interannual variability ratio, and bias.
Due to the lack of a comprehensive data set for geodetic
measurements comparable to that of the WGMS for in situ
measurements, i.e., with the temporal and spatial resolution
necessary for the calculation of the first two aforementioned
metrics, it is unfortunately not yet possible to use those in the
validation framework we established. Since the calculation of
correlations and interannual variabilities requires a time se-
ries of data, we only take into account glaciers for which at
least 3 years of in situ mass balance were recorded. Those are
299 glaciers with a total of 5977 annual specific mass balance
measurements. Before 1950, only 110 annual records of 14
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Table 1. Resolution and time range of the meteorological data sets used as boundary conditions.

Label used in text Resolution Time range Publication
and figures (◦)

20CRV3 2× 2 1871–2014 Slivinski et al. (2019)

CFSR 0.5× 0.5 1979–2010 Saha et al. (2010)

CRU CL 2.0 10′× 10′ 1961–1991 New et al. (1999)
(climatology)

CRU TS 4.03 0.5× 0.5 1901–2018 Harris and Jones (2020),
Harris et al. (2014)

CERA20C 0.28× 0.28 1900–2010 Laloyaux et al. (2018)

ERA5 0.5× 0.5 1979–2018 Hersbach et al. (2020)

ERA20C 1.13× 1.13 1900–2010 Poli et al. (2016)

ERA-Interim ∼ 0.7× 0.7 1979–2018 Dee et al. (2011)

JRA55 1.25× 1.25 1958–2018 Kobayashi et al. (2015)

MERRA2 0.63× 0.63 1980–2018 Gelaro et al. (2017)

Figure 1. Flowchart depicting the modeling and optimization chain.
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glaciers are contained in this data set. Of those 14 glaciers,
12 are situated in Central Europe and Scandinavia and one in
Alaska and Iceland each (WGMS, 2020).

2.2 The global glacier mass balance model

2.2.1 Basic equations and parameters

In this section, those features of the mass balance model that
are relevant to the optimization procedure are described (see
grey box in Fig. 1). A more thorough description is given in
Marzeion et al. (2012).

The annual specific mass balance B(t) of each glacier is
computed as

B(t)=

[ 12∑
i=1

[
P solid
i (t)−µ∗ ·max

(
T terminus
i (t)

− Tmelt,0
)]]
−β∗, (1)

where B is the annual modeled mass balance for an individ-
ual glacier in year t , P solid

i is the amount of solid precipitation
in month i,µ∗ is a glacier-specific temperature sensitivity pa-
rameter, T terminus

i is the mean temperature in month i at the
glacier’s terminus elevation, Tmelt is a global threshold tem-
perature for snow and ice melt at the glacier surface, and β∗

is a calibration bias correction parameter. Terminus elevation
temperature is calculated as

T terminus
i (t)= T CRUclim

i + γtemp · (zterminus(t)

−zCRUclim)+ T
anom
i (t), (2)

where T CRUclim
i is the climatological temperature in month i

taken from the grid point of the CRU CL 2.0 data set (New
et al., 2002) closest to the respective glacier, γtemp is an em-
pirically derived temperature lapse rate, zterminus is the eleva-
tion of the glacier’s terminus, zCRUclim is the elevation of the
grid point in the CRU CL 2.0 data set, and T anom

i (t) is the
monthly temperature anomaly deduced from the forcing data
set. Values for µ∗ and β∗ can theoretically be obtained by
assuming an equilibrium state of the glacier in present-day
geometry during a 31-year period centered around year t∗

when annual specific mass balance measurements are avail-
able for that glacier. In contrast to the initial publication of
the model, we objectify the selection of t∗: while Marzeion
et al. (2012) argue that t∗ is a function of the regional cli-
matological history, it also depends on the glacier’s response
time scale, as discussed in Roe et al. (2021), for which there
is no reason to assume spatial coherence. This means that
we now do not spatially interpolate t∗ as in Marzeion et al.
(2012) but introduce it as an additional global parameter. In
the next section we elaborate further on this point.

The inference of the glacier-specific parameters (µ∗ and
β∗; see Sect. 2.2.2) is assessed in a leave-one-glacier-out
cross-validation procedure to determine the out-of-sample

uncertainty, which should theoretically be done every time
the model setup (i.e., parameter set and/or forcing data) is
changed. Leave-one-glacier-out cross-validation means we
run the model once for each validation glacier, which are
those with at least three recorded annual specific mass bal-
ances, treating the respective glacier as if we did not have
in situ mass balance measurements available (see green box
in Fig. 1). In other words, β(t∗) is spatially interpolated
in an inverse-distance-weighted manner from the 10 closest
glaciers for the computation of annual specific mass balances
of that glacier. The modeled annual specific mass balances of
the individual validation glaciers obtained like this are then
compared against the in situ measurements in the optimiza-
tion procedure (see Sect. 2.3 and blue box in Fig. 1). Hence,
we obtain an estimate of the model’s uncertainty attached to
the calibration procedure (see Sect. 2.2.2). While values for
µ∗ can be computed for each individual glacier based on t∗,
those for β∗ are spatially interpolated from the 10 closest val-
idation glaciers, using inverse-distance weighting. This will
certainly work better in regions with high measurement den-
sities and thus be a major part of our estimates’ inaccuracy
due to the previously mentioned heterogeneous distribution
of in situ mass balance measurements. Also, it is sensitive to
errors or biases in the in situ observations we use.

One global parameter (Tmelt) was introduced in Eq. (1),
but three additional ones are associated with the calculation
of the monthly solid precipitation P solid

i (t):

P solid
i (t)=

(
a ·PCRUclim

i +P anom
i (t)

)
·
(
1+ γprecip

·(zmean− zCRUclim)) · f
solid
i (t), (3)

where a is a precipitation correction factor, PCRUclim
i is the

monthly climatological precipitation sum taken from the grid
point of the CRU CL 2.0 data set closest to the respective
glacier in month i, P anom

i (t) is the monthly total precipitation
anomaly deduced from the forcing data set, γprecip is a global
precipitation lapse rate, zmean is the mean elevation of the
glacier, and f solid

i (t) is the fraction of solid precipitation:

f solid
i (t)=



1 if T terminus
i (t)≤ Tprec solid

0 if T zmax
i ≥ Tprec solid,

with T zmax
i (t)= T terminus

i (t)

+γtemp · (zmax− zterminus(t)) ,

1+ Tprec solid−T
terminus
i (t)

γtemp·(zmax−zterminus(t))
otherwise


, (4)

where Tprec solid is a global threshold temperature for solid
precipitation, and zmax is the maximum glacier elevation. The
amount of solid precipitation a glacier receives is hence es-
timated by applying an empirical negative temperature lapse
rate and a parameterized positive precipitation lapse rate. The
assumption of increasing precipitation with elevation might
not hold for some glaciers that are located on the downwind
side of a mountain or for ones with very high maximum el-
evations, but this should be accounted for by treating it as a
global parameter subject to optimization.
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The four global parameters (Tmelt, a, γprecip, and Tprec solid)
introduced in Eqs. (1)–(4) are at the core of the model’s mass
balance computations and hence subject to the optimization
presented here. Marzeion et al. (2012) used the CRU TS 3.0
data set to obtain T anom

i (t) and P anom
i (t). Here, we include

additional meteorological data sets as well as their mean and
median values in the optimization (see Sect. 2.1.1).

The monthly mass balances are subsequently translated
into volume, area, and length changes by geometric scal-
ing and relaxation (see grey box in Fig. 1). The geometric
scalings by means of a power law, reviewed in Bahr et al.
(2015), are currently the only option for estimating geometric
changes from mass changes without having to resolve actual
physical processes as in a flow line or higher-order model.
From the theory discussed in Bahr et al. (2015) it follows
that the exponent in these power law scalings is a constant
and the scale factor is a random variable. In the model, we
applied the constant exponents for mountain/valley glaciers
and ice caps given from that theory and scale factors empir-
ically derived in Bahr (1997) and Bahr et al. (1997). Since
there are uncertainties attached to the scale factor, we esti-
mate a 40 % error in the volume-area scaling and a 100 %
error in the volume-length scaling for the model’s error prop-
agation, as in Marzeion et al. (2012). Theoretically, the scale
factors could be treated as global parameters as well, but it
is not clear whether an optimization of those would benefit
the overall (global) model accuracy, while it would increase
the efforts in computation and evaluation. Concerning the re-
laxation, a response time scale of the volume-length change
is estimated by assuming that smaller glaciers and those with
higher mass turnover will react faster to volume changes (de-
tails in Marzeion et al., 2012).

Initial values for the area of each individual glacier at the
start of the model run (e.g., beginning of the 20th century) are
found using an iterative approach that minimizes the differ-
ence in area between modeled glacier and the RGI record in
the year of the respective observation (see grey box in Fig. 1).
If this iterative procedure is not successful, the glacier is
not included in the reconstruction. For these glaciers, a sim-
ple upscaling is applied in the computation of regional and
global results. The optimized CRU TS 4.03 model setup was
able to initialize glaciers accounting for 98 % of the glacier
area recorded in the RGI. This value is roughly the same
for the optimized model setups that performed well accord-
ing to our validation procedure, although it is slightly lower
for those forced with the mean/median of the meteorologi-
cal data ensemble (see Table 2). A failure of the initialization
for an individual glacier might occur when, for example, the
calibration (see Sect. 2.2.2 and grey box in Fig. 1) results in
a very high temperature sensitivity for that glacier. The iter-
ative search of an initial area might then not be able to cap-
ture the very large starting area necessary for the implicated
strong mass change. The largest fractions of area not success-
fully modeled with the optimized CRU TS 4.03 model setup

are located in the Greenland periphery (ca. 9 %) and Russian
Arctic (ca. 5 %).

Note that since the CRU CL 2.0 data set used to obtain
PCRUclim
i and T CRUclim

i does not cover Antarctica, we do
not consider glaciers in the periphery of Antarctica and Sub-
antarctic glaciers here (labeled region 19 in RGI, 2017).

2.2.2 Mass balance calibration

As explained above, we treat the parameter t∗ as a global
one, as opposed to a glacier-specific estimation in Marzeion
et al. (2012). In order to illustrate the reasoning, we need to
discuss the mass balance calibration for an individual glacier
in the model in more detail (see grey box in Fig. 1). The cal-
ibration is based on the idea of inferring a glacier’s temper-
ature sensitivity µ∗ by finding a climatological time period
in the forcing data set (centered around t∗) which would re-
sult in a zero specific annual mass balance of the glacier in
present-day geometry. Thus, for each center year t̃ of a 31-
year period, we can calculate µ(t̃) by requiring

B
(
t̃
)
=

12∑
i=1

[
P solid
i,clim

(
t̃
)
−µ

(
t̃
)
·max

(
T terminus
i,clim

(
t̃
)

− Tmelt,0
)]
= 0, (5)

where P solid
i,clim(t̃) and T terminus

i,clim (t̃) are climatological averages
of P solid

i (t̃) and T terminus
i (t̃). Note that the calculation is

based on a smaller number of years when t̃ < 1916 or t̃ >
2003. For each of the 299 glaciers that have at least 3 years
of in situ mass balance observations, we calculate the mod-
eled annual specific mass balance (based on Eq. 1) for each
t̃ . Then, the associated calibration bias of an individual vali-
dation glacier is calculated as

BM−BO = β(t̃), (6)

where BM is the mean modeled specific annual mass balance
of the validation glacier, with µ∗ equal to µ(t̃) in Eq. (1),
for the years of available mass balance measurements, and
BO is the mean observed mass balance. Hence, a negative
(positive) β(t̃)means that the glacier with its present-day ge-
ometry would have presumably gained (lost) mass during the
climate period around t̃ , applying the inferred µ(t̃). Accord-
ingly, the glacier would be too (in)sensitive to changes in the
forcing, and the application of β(t̃) is required to balance this
in Eq. (1). The general problem here is to infer t∗ for glaciers
without available annual in situ mass balance measurements.
Marzeion et al. (2012) chose t∗ to be that t̃ , for which
|β(t̃)| was minimal; µ∗ was then calculated from Eq. (5) ap-
plied to t∗, and β∗ taken as β(t∗). For glaciers without in
situ observations of mass balances, t∗ and β∗ were interpo-
lated from the 10 closest glaciers with observations, using
an inverse-distance weighting. Using this method, Marzeion
et al. (2012) were able to identify a suitable parameter set in
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Table 2. Values of the performance measures for each tested data set, applying the best-scored parameter set. Values behind coefficients in
brackets display non-weighted averages (see text). For the mean and median model output, the score with/without CERA20C is displayed.
The total number of cross-validated glaciers used for the respective data set is n. AM is the percentage of glacier area (as recorded in the
RGI) covered by the glaciers the model was able to initialize. The last five columns contain the selected global parameters (see Eqs. 1–5).

Bias R SR RMSE score n AM t∗ Tm. Tp. s. γp. a

(mm w.e. yr−1) (mm w.e. yr−1) (%) (◦C) (◦C) (% (100 m)−1)

20CRV3 14.1 (57.4) 0.61 (0.56) −0.02 (−0.13) 978.0 (816.9) 2.30 295 86.6 1978 2 2 1 2.5
CERA20C 79.0 (30.9) 0.56 (0.52) 0.07 (0.13) 747.1 (715.3) 1.38 274 83.9 1902 2 0 4 3
CFSR 0.0 (−15.1) 0.60 (0.56) 0.13 (0.03) 804.2 (740.9) 2.13 276 93.4 1917 1 4 3 2
CRU TS 4.03 0.6 (11.5) 0.63 (0.59) 0.01 (−0.05) 739.6 (695.9) 2.62 298 97.8 1917 0 4 4 3
ERA−Interim 1.7 (14.7) 0.64 (0.61) 0.02 (−0.02) 715.1 (674.0) 2.70 297 97.6 1907 0 4 3 3
ERA5 0.0 (10.4) 0.67 (0.64) 0.02 (−0.04) 714.0 (680.5) 2.96 299 97.8 1919 0 4 5 2.5
ERA20C 4.6 (−38.9) 0.58 (0.54) 0.05 (0.03) 791.0 (735.8) 2.04 281 97.2 1902 0 4 1 3
JRA55 −2.0 (18.7) 0.64 (0.60) 0.00 (−0.03) 701.1 (670.5) 2.66 298 98.6 1915 −1 4 5 3
MERRA2 0.2 (14.8) 0.64 (0.60) 0.01 (−0.04) 719.7 (685.4) 2.72 299 97.5 1908 0 4 1 3
Mean in. 9.1 (−13.6) 0.66 (0.63) 0.13 (0.07) 767.5 (714.5) 2.59 299 93.3 1901 1 4 3 3
Median in. 16.3 (−5.5) 0.66 (0.62) 0.02 (−0.03) 725.9 (679.7) 2.75 299 93.8 1901 1 4 1 3
Mean out. 3.9 (23.7) 0.68 (0.65) −0.06 (−0.14) 704.1 (651.7) 2.84/2.90 – – – – – – –
Median out. 18.3 (26.3) 0.67 (0.64) −0.06 (−0.13) 680.1 (640.2) 2.67/2.77 – – – – – – –

the leave-one-glacier-out cross-validation procedure that did
not show a large bias against in situ measurements, applying
CRU TS 3.0 as atmospheric boundary conditions, a previ-
ous version of the RGI, and other mass balance validation
data. However, this is not generally the case for the data sets
applied here, and there is a conceptual shortcoming in the
spatial interpolation of t∗, which we will illustrate for one
exemplary model setup.

Figure 2a shows the global average of β(t̃), weighted by
the length of each glacier’s in situ mass balance measurement
time series (henceforth, all mentioned averages over differ-
ent validation glaciers imply such a weighting), using CRU
TS 4.03 as boundary condition, applying the optimal param-
eter set (see Sect. 2.3).

Figure 2b shows that the distribution of t∗ estimated di-
rectly is bi-modal, with frequent values either at the begin-
ning or at the end of the considered period, but the spa-
tial interpolation leads to a more even distribution. This in
turn means that, generally speaking, the spatial interpolation
moves t∗ towards the middle of the considered time period,
thereby increasing the value of β∗ for glaciers with an early
t∗ and decreasing it for those with a late t∗. Figure 2b also
shows that there are more validation glaciers with t∗ at the
beginning of the 20th century than at the end of the 20th cen-
tury or the beginning of the 21st century.

Furthermore, those glaciers with a directly estimated in-
dividual t∗ at the beginning of the 20th century tend to
have a positive β∗, implying that even with present-day ge-
ometry, those glaciers would have lost mass under climatic
conditions of the early 20th century applying µ(t∗). The
zero crossing of the global average β(t̃) is thus found at a
period when positively and negatively biased glaciers cancel
each other out. Since moving the median of t∗ towards the
middle of the of the modeled period generally goes along
with an increase in the globally averaged calibration bias

Figure 2. (a) Average calibration bias β as a function of the
center year of a climatological window around t̃ for validation
glaciers showing the lowest calibration bias around the center years
t∗ ≤ 1920 (red, n= 132) and ≥ 1998 (blue, n= 72) as well as
the weighted average of all validation glaciers (black, n= 298).
(b) Distributions of t∗ directly estimated from Eqs. (5) and (6)
(green) and spatially interpolated as in Marzeion et al. (2012, light
green). Values in both panels are derived from the cross-validation
procedure (see Sect. 2.2.2 and 2.3) with the optimized CRU TS 4.03
model setup.

β(t∗), using the spatial interpolation of t∗ tends to lead to a
positively biased model setup, which then becomes apparent
in the leave-one-glacier-out cross-validation. That is because
there are more validation glaciers with an early than late in-
dividual t∗, as stated above.

In order to avoid this effect and taking into account that
neighboring glaciers will have different response times, such
that even if they experience a very similar evolution of cli-
mate anomalies we cannot expect a close spatial coherence
of t∗, we do not spatially interpolate t∗ as was done by
Marzeion et al. (2012) but treat it as a fifth global param-
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eter instead. Note that µ∗ is still a glacier-specific parame-
ter following Eq. (5) and that β(t∗) is still interpolated from
the 10 closest glaciers in an inverse-distance-weighted man-
ner. Although retaining the interpolation of β(t∗) seems to
contradict the argument about regional climatology made
above, it is the only way to handle the calibration bias for
glaciers without validation data, and we expect biases caused
by this approach on the scale of an individual glacier to can-
cel out globally. Ultimately, the leave-one-glacier-out cross-
validation will reveal any potential new model errors intro-
duced through this change.

At this point we recapitulate the reasoning behind our
changes to the calibration procedure compared to previous
studies that applied the same model, since it is an impor-
tant point of this work: in contrast to Marzeion et al. (2012),
we do not rely on the assumption of a steady state for every
single glacier using present-day geometry and climate con-
ditions during a glacier-specific period around t∗ but rather
on a global mean steady state of glaciers in their present-day
geometry with climate conditions during a (globally equal)
period around t∗. This means that while some glaciers with
present-day geometry would gain mass when exposed to the
climate around the global t∗, others would lose mass. Fig-
ure 2a shows the mean bias of glaciers for which glacier-
specific values of t∗ can directly be obtained based on in situ
observations – once for glaciers with t∗ before 1920 and once
with t∗ after 1998. It can be seen that the (global) calibration
bias (β(t̃)) is a function of the center year of the climatology
(t̃) we assume glaciers (with present-day geometry) to be in
equilibrium with globally. For a glacier with an early indi-
vidual t∗, the calibration bias will be increasingly positive as
we depart from the climatology of its t∗ to warmer climate
periods (i.e., later t̃). This is because µ will be underesti-
mated using a warmer climate for calibration (see Eq. 5). If
there are glaciers with early and late individual t∗ in close
proximity of each other, the β(t̃) we interpolate to a glacier
with early individual t∗ will often be too low, while it will be
too high on glaciers with a late individual t∗. Because there
are more glaciers with an early individual t∗ (before 1920)
than a late t∗ (after 1998; see Fig. 2b), moving the globally
applied t∗ to a warmer climate period then results in an over-
all positive bias in the global cross-validation result. Inter-
polating t∗ has a similar effect. Overall, the cross-validation
shows that this method is able to yield unbiased model setups
(see Sect. 3.1.1), disregarding possible biases in the valida-
tion data.

2.3 Parameter optimization strategy

For the identification of an optimal parameter set, we applied
a brute-force approach (see blue box in Fig. 1). This means
that we varied each parameter other than t∗ (see above) us-
ing the following ranges, which are similar to those used in
Marzeion et al. (2012):

– threshold temperature for snow/ice melt (Tmelt) (◦C):
{−2, −1, 0, 1, 2};

– threshold temperature for solid phase precipitation
(Tprec. solid) (◦C): {−1, 0, 1, 2, 3, 4};

– precipitation lapse rate (γprecip) (% (100 m)−1): {0, 1, 2,
3, 4, 5};

– precipitation correction factor (a): {1, 1.5, 2, 2.5, 3}.

We did so for each meteorological data set and performed
a leave-one-glacier-out cross-validation for each of the 900
parameter combinations possible within these ranges. This
resulted in 9900 validation runs (900 times 11 forcing data
sets), which we used to identify parameter sets that yield
a zero crossing of the global average β(t̃) in a first step.
For all forcing data sets except 20CRV3, those zero cross-
ings were found with t̃ < 1920 (applying 20CRV3, some
were found in 1962 and 1976). We then performed addi-
tional cross-validations with the 20 best-performing param-
eter sets yielding a zero crossing of the global average β(t̃)
to fine-tune t∗, applying the range 1901 to 1920, except for
20CRV3 where we applied the ranges 1909–1918, 1960–
1964, and 1974–1978. Hence, we performed 400 (4400) ad-
ditional cross-validation runs per data set (in total).

From those cross-validations, three characteristic statisti-
cal measures of model performance were computed: model
bias (i.e., mean model error) with respect to observations, the
temporal correlation with observations, and the ratio of stan-
dard deviations of interannual variability between modeled
and observed mass balances. We do not include the mean
squared error (MSE) as a performance measure, since it is
simply a (weighted) combination of the three performance
measures:

MSE= σ 2
M+ σ

2
O− 2σMσOR+

(
M −O

)2
, (7)

where σM is the standard deviation of modeled mass bal-
ances, σO is the standard deviation of observed mass bal-
ances,R is the Pearson correlation coefficient,M is the mean
of modeled mass balances, and O is the mean of observed
mass balances (thus, the last term corresponds to the squared
bias).

From Eq. (7) it can be inferred that a minimum MSE oc-
curs for a model setup in which the standard deviation ratio
equals the correlation coefficient. Hence, in a model setup
that is not perfectly (positively) correlated with the observa-
tions (i.e., 0<R < 1), a more realistic standard deviation ra-
tio (e.g., 1≥ σM

σO
>R) will result in a higher MSE. However,

a correlation coefficient equal to 1 is generally not achievable
in models such as the one used in this work. Consequently,
minimizing the MSE will lead to preference of parameter sets
that underestimate variance. This is problematic, since a cor-
rect representation of variance is indicative of correct model
sensitivity to changes in the forcing. For example, it is possi-
ble to imagine to apply a model setup that yields a low bias
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and good correlation but largely underestimates the interan-
nual variation of mass balances. It is therefore beneficial to
not only minimize the MSE but rather to minimize the three
statistical coefficients it comprises individually, in order to
not trade a realistic model sensitivity for a smaller MSE.

All three performance measures were calculated for each
validated glacier and then averaged over all these glaciers,
weighted by the number of available mass balance observa-
tions per glacier. This was done for every cross-validation
run in order to be able to identify the overall best-performing
model setups.

Standard deviation ratios were brought to represent the de-
viation from an optimum value (i.e., one) by

SR=
σM

σO
− 1. (8)

To determine for each meteorological data set a model pa-
rameter set that, on average, shows the highest skill to rep-
resent the behavior of observed glaciers, we normalize the
performance measures introduced above such that the indi-
vidual scores s range from 0 for the worst to 1 for the best
validation result by the following equations:

si,bias =
max(|bias|)− |biasi |

max(|bias|)−min(|bias|)
,

si,SR =
max(|SR|)− |SRi |

max(|SR|)−min(|SR|)
,

si,R =
Ri −min(R)

max(R)−min(R)
, (9)

where i is the individual model setup the score is calcu-
lated for. These scores were then added up to identify the
optimal model setup as the one with the maximum overall
score. If a model setup obtained the single best result for
all three performance measures individually, it would thus
yield a score of three. Note that the three (or potentially
other) performance measures might be weighted differently,
based on the objective of the model application. However,
as shown below, we do not find substantial trade-offs be-
tween the three performance measures, such that any poten-
tial weighting would have a very limited influence on the re-
sults.

3 Results

3.1 Cross-validation and uncertainty assessment

3.1.1 Performance measures

Table 2 shows the values obtained for performance measures
and optimal global parameters. We differentiate between the
mean and median of the forcing data input used as individ-
ual boundary conditions (mean/median input) and the mean
and median of the ensemble output values (mean/median

output). For more than half of the optimized model setups,
the global mean bias of the optimal parameter set is smaller
than 10 mm w.e. yr−1, and the correlation is larger than 0.6,
while the amplitude of the interannual variability is esti-
mated correctly within a small range (ca. 5 %). RMSEs lie
roughly between 700 and 800 mm w.e. yr−1 for most opti-
mized model setups. Only 20CRV3 shows a significantly
higher RMSE, caused by some large outliers. Note that the
number of glaciers that cannot be initialized also depends
on the meteorological data set used as boundary condition.
CERA20C, e.g., not only performs the worst (obtaining an
overall score of 1.38 using the optimal parameter set) but
leads to only 274 of 299 validation glaciers being initialized
in the cross-validation and 180 481 of the 211 838 glaciers in
the global reconstruction run, representing 84 % of today’s
global glacier area outside Antarctica. In contrast, the best-
performing model setup that covers the whole model period
(CRU TS 4.03) is able to initialize 298 validation glaciers and
200 443 glaciers in the global reconstruction run, represent-
ing ca. 98 % of the global glacier area. Following our scoring
system, we find that the statistically best performing single
data set covering the whole model period is CRU TS 4.03,
and the overall best-performing data set, but only covering
1979–2018, is ERA5. Our best estimate for the whole model
period is the mean model output.

Independent of the time period considered, the mean out-
put of the ensemble shows the best performance, exceeding
not only the best individual ensemble member, but also the
result obtained by the mean and median input. The statis-
tically best performing individual ensemble members vary
with the time periods that are covered by the meteorological
data sets. For example, during the period 1958–2018, JRA55
leads to the best performance; from 1979 onward, it is ERA5.
Table 2 also shows that the performance measures attain bet-
ter values if the averages are weighted by the length of the
observation time series than with the non-weighted average,
illustrating the need for long-term observations for reliable
model validation.

In order to assess the consistency of cross-validation
results among the ensemble members, two-sample
Kolmogorov–Smirnov tests for the similarity of distri-
butions were conducted for all 55 possible unique pairs
of the 11 optimized model setups. This was done for
modeled annual specific mass balance and model deviation
distributions. Model deviation here refers to the differences
between each modeled and observed annual specific mass
balance value in the cross-validation procedure; its average
thus corresponds to the average of the bias weighted by the
number of available mass balance observations per valida-
tion glacier. The confidence level we require for rejecting
the similarity of distributions is at 95 %. Regarding the
distributions of modeled mass balances, only 10 (18 %) of
the tested pairs are not significantly different – all involving
the six best-scored model setups (see Table 2). Model
deviation distribution pairs do not significantly differ in
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27 (49 %) cases, of which only 1 (2 %) involved 20CRV3,
CERA20C, or ERA20C. We conducted Welch’s t test for
the similarity of means in the same manner. Here, only
the three lowest-scored model setups’ means of modeled
mass balances are significantly distinguishable from other
ensemble members. Concerning the mean model deviation,
only that of CERA20C significantly differs from the others.
Hence, the similarity tests indicate that the results of model
setups with higher scores (see Table 2) tend to be more
consistent among each other and to differ from lower-scored
ones statistically. Model deviation distributions significantly
different from those of other ensemble members are to a
large degree produced by low-scored model setups, while
the mean is only significantly different for CERA20C. The
significantly high bias and low score of CERA20C indicate
particular issues with this forcing data set and lead us to
exclude it from the following ensemble calculations. In the
subsequent section we will explore where these issues stem
from. In doing so, we try to explain why the temporal and
spatial constraints of the validation data hinder us to make
assertions over which individual model setup is the most
reliable one over the whole temporal and spatial model
domain.

3.1.2 Spread of the ensemble inconsistent with model
uncertainty from cross-validation

The leave-one-glacier-out cross-validation procedure applied
here is designed to estimate the uncertainty of model results
for glaciers that have no in situ mass balance observations
and for times where there are no in situ observations. There-
fore, in principle, the results of the individual ensemble mem-
bers should agree within their corresponding uncertainty esti-
mates. However, there is a strong spatial bias in in situ mass
balance observations towards certain RGI regions – mostly
locations where also the past state of the atmosphere is well
constrained, since both atmospheric and glaciological obser-
vations are denser in easily accessible regions. The majority
of glaciers, though, are situated in remote locations where
observations of the state of the atmosphere were very sparse,
particularly in the first half of the 20th century. Thus, the
cross-validation is biased towards times and places where the
state of the atmosphere, i.e., the boundary conditions of the
glacier model, can be assumed to be exceptionally well con-
strained.

Figure 3 shows that 66 % of the validation data originate
from only four RGI regions: Western Canada and US, Scan-
dinavia, Central Europe, and Central Asia. Panel (b) shows
the fraction of mean annual ensemble variance of global mass
change rates in the modeled period attributable to each RGI
region. Most of the ensemble spread is due to disagreement
in sparsely observed regions that contain much glacier ice.
Of the mean annual global ensemble spread, nearly 60 % can
be attributed to the disagreement in estimates for the regions
of Alaska, Arctic Canada (North), and the Greenland periph-

ery. The value for the Greenland periphery increases from
21 % to 36 % if we included CERA20C in the calculation.
This indicates that peripheral glaciers in Greenland are re-
sponsible for a considerable amount of the ensemble spread
as well as for most of the large divergence of CERA20C from
the other ensemble members. The only region that shows a
large spread among ensemble members but does not contain
as much glacier ice as the previously mentioned ones is the
Southern Andes.

In Fig. 4a, the issue of temporally biased validation data
(all are from the second half of the 20th century or the begin-
ning of the 21st) can be recognized. Mean mass loss rates cal-
culated with forcing data sets that have complete data cover-
age over the whole model period for the four previously men-
tioned well-observed regions are shown. Comparing results
for the four best-observed regions to global results (Fig. 4b),
it can be seen that the disagreement on the global scale is
larger than in the well-observed regions and that the global
reconstruction forced by CERA20C is far off the three other
ensemble members, while it is not so in the well-observed
regions. This behavior can be explained by the much more
pronounced warming of glacier locations at the global scale
in CERA20C until ca. 1960 (Fig. 4d): during the calibration,
lower temperatures at t∗ will lead to higher temperature sen-
sitivities (see Eq. 5). Similarly, the greater increase in tem-
perature will result in higher mass loss rates.

Concerning these issues with CERA20C, it is striking that
in spite of its large positive specific mass balance bias in the
cross-validation, global mass change estimates obtained with
it are much larger than those of the other ensemble members.
This underlines the fact that even though the cross-validation
is crucial in the optimization process, we cannot entirely rely
on it for assessing global and long-term reconstruction per-
formance of individual model setups. Therefore, because, as
stated in the previous section, the best-performing data sets
do produce statistically quite similar results for the validation
glaciers, we will only use estimates based on the ensemble –
i.e., not individual members – in the following. We exclude
the results of model runs forced with the mean and median
input from our ensemble calculations in order not to bias
them towards the central value and also because they contain
the problematic values of the CERA20C data. If a full ensem-
ble approach as done in this study is not feasible (e.g., due
to computational constraints) we still recommend to use a
mean/median input data set as the meteorological forcing for
reconstructions outside the spatial and temporal domain of
validation data, since a single best-performing data set can-
not be identified conclusively.

In both the well-observed regions (Fig. 4a) and the global
scale (Fig. 4b), the different model setups disagree more
strongly in the first half of the 20th century, reflecting that
uncertainty in the atmospheric conditions during that time is
also greater. All in all, we find that the ensemble spread tends
to be larger than uncertainty estimates obtained via the cross-
validation and that this is caused by the majority of glacier
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Figure 3. (a) Number of specific annual mass balance observations available for calibration and validation in each RGI region. (b) Fraction
of ensemble variance of global mean mass change rate (1M/1t) in the modeled period (1901–2018) attributable to each RGI region. In
brackets is the number of glaciers used for calibration and validation in each region.

Figure 4. Mass loss rate estimates for meteorological forcing data sets with whole 20th century coverage: (a) averaged over well-observed
regions (Western Canada and US, Scandinavia, Central Europe, and Central Asia) and (b) globally. Average temperature anomalies at glacier
tongue locations in (c) well-observed regions and (d) globally, weighted by glacier area. In all graphs, 31-year moving averages are shown
for clarity.
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observations coming from places and times where the uncer-
tainty of the state of the atmosphere is smaller than what can
typically be expected in glacierized regions. Furthermore, we
assume that the individual glaciers’ error estimates are uncor-
related with each other and random, i.e., independent, as we
do not have direct model error estimates for every glacier and
can thus not account for correlations of individual glaciers’
errors. However, the ensemble approach allows us to explore
if, and to which degree, the cross-validation underestimates
the true uncertainty of the reconstruction.

3.1.3 Combining model and ensemble uncertainty

To account for both the model error, as calculated in the
cross-validation procedure, and the ensemble spread, the to-
tal uncertainty of the ensemble average is calculated as fol-
lows. First, we calculate the model error of the ensemble av-
erage solely determined by the means of the RMSEs obtained
from the leave-one-glacier out cross-validation:

εmodel(t)=

√
n∑
i

εi(t)2

n
, (10)

where εi(t) is the model uncertainty computed in the cross-
validation procedure for an individual ensemble member i
for year t . Then we add the ensemble spread as a further un-
certainty measure to the model error of the ensemble average:

εensemble(t)=
√
εmodel(t)2+ σ(t)2, (11)

where σ(t) is the ensemble standard deviation in year t . Here,
we treat the individual model setups’ errors, obtained from
the cross-validation procedure, to be independent from each
other and the model error of the ensemble average to be in-
dependent from the ensemble spread. This might lead to an
underestimation of total uncertainty, since there might be cor-
relations of the individual sources of uncertainty for which
we cannot account. Because we model more than 200 000
glaciers and assume their errors to be independent as well,
thereby assuming that their errors partly cancel each other
out, the true uncertainty is probably higher than our estimate.
However, we do account for interannual covariances of the
ensemble when estimating the uncertainty of mean values
over periods longer than 1 year.

Figure 5 shows the temporal evolution of total uncer-
tainty (εensemble) as well as the aggregated model uncertainty
(εmodel) and ensemble spread (σensemble) of the ensemble
mean mass change rate estimate. The total uncertainty of the
ensemble mean estimate is high in earlier years, with a sharp
decrease after the first 20 years. This is due to the decrease in
the high model error of the ensemble average, especially dur-
ing the first decade of the 20th century, which is produced by
very high mass losses of a few glaciers in some model setups
during that period. The ensemble spread is also greater dur-
ing the first half of the 20th century compared to later years,

Figure 5. Five-year moving average of the temporal evolution of
model uncertainty metrics for annual global mass change rates.
εensemble is the total uncertainty, i.e., combined model uncertainty
(εmodel) and ensemble spread (σensemble; see Eq. 11).

which can be attributed to less agreement between meteoro-
logical data sets in earlier years. Note that the further back in
time we go, the fewer meteorological data sets are available,
since not all reanalysis products provide data for the whole
period.

3.2 Global glacier mass change

In the following we present our modeled estimates of global
glacier mass change. Note that we express those in units of
sea-level contribution. This means positive values indicate
a contribution to sea-level rise and thus a mass loss of the
glaciers.

Figure 6 shows the temporally accumulated mass change
estimates, relative to 1980 (the year from which onward
all meteorological data sets have data coverage), and their
uncertainties. Figure 6a shows the estimates for each in-
dividual ensemble member as well as their model un-
certainties εmodel. Especially in the first half of the 20th
century, ensemble members diverge, with CRU TS 4.03
showing the lowest and ERA20C, next to CERA20C, the
highest mass loss during that period. The ensemble aver-
age mass change estimate over the whole model period is
69.2± 24.3 mm SLE, which translates to an average mass
change rate of 0.59± 0.21 mm SLE yr−1 and a mass loss of
roughly 18 % relative to 1901.

Table 3 displays the regional and global mass loss rates
for different reference periods. Mass change rate estimates
for more recent periods are increasing across most regions,
reaching 0.90± 0.12 mm SLE yr−1 accumulated globally in
the most recent period (2006–2018). The only time and re-
gion for which an increase in glacier mass is estimated are
the Southern Andes during 1901–1990, although with a rela-
tively high uncertainty due to ensemble spread (see Fig. 3).

To explore the period of decelerated mass loss between
roughly 1940 and 1980 visible in Fig. 7, the periods 1901
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Figure 6. (a) Estimates of temporally accumulated global mean sea-level rise (GMSLR) contribution relative to 1980 for all forcing data
sets. Shaded areas are model uncertainties calculated for individual model setups. (b) Ensemble mean output estimate. Shaded areas are the
mean model uncertainty (grey, εmodel; see Eq. 10) and total ensemble uncertainty (blue, εensemble; see Eq. 11), which are shown at the 90 %
confidence level. Results of the CERA20C forcing are excluded from the ensemble mean (see Sect. 3.1.1).

to 1940 and 1941 to 1980 are shown in Table 3. For most
regions, the mass change rate estimates are substantially
smaller in the latter period; only New Zealand exhibits a
significantly larger mass loss. Regarding the global estimate,
most of the mass loss deceleration took place in the Green-
land periphery and the North American continent (i.e., RGI
regions 1 to 5). Thus, after increasing mass loss rates until
around 1930 (see Fig. 7), glaciers started to lose less mass
until around 1980, possibly caused by atmospheric cool-
ing induced by increasing aerosol concentrations (Ohmura,
2006; Ohmura et al., 2007; Wild, 2012). From then on, the
glaciers’ contribution to sea-level rise accelerated again un-
til the end of the modeled period (2018). Figure 8 shows the
drivers of this behavior: the global ensemble mean tempera-
ture (lower panel) and precipitation anomalies as well as total
amount of solid precipitation (upper panel; see Eqs. 3 and 4;
all weighted by glacier area). From ca. 1980 on, heat avail-
able for ice and snowmelt, i.e., the temperature anomaly, in-
creased monotonously. While precipitation at the glacier lo-
cations tended to increase over time, the amount of solid pre-
cipitation at glacier locations decreased from roughly 1980
on – implying that not only ablation increased, but also ac-
cumulation decreased. In contrast to that, the increase in to-
tal precipitation between ca. 1930 to 1950 was accompanied

by a similar increase in solid precipitation, indicating that
the warm anomaly at the same period was too weak to re-
duce accumulation as much. In order to get an impression
of the relative importance of precipitation and temperature
anomalies, we ran the model with the optimized median in-
put model setup – once holding total precipitation constant
at the climatology around t∗ and once holding temperature
constant in the same way (Fig. A1). Initialization and cal-
ibration were done with the full forcing in order to enable
meaningful comparisons with the regular model run. Holding
the temperature constant resulted in a 65 % lower mass loss,
while the constant lower precipitation increased mass loss by
only 5 %. This indicates that the temperature increase plays
a much larger role for glacier mass change than increased
precipitation. This is expected, because increased tempera-
tures do, as mentioned above, not only increase the melt of a
glacier’s ice mass, but also decrease the amount of solid pre-
cipitation it receives. The finding that precipitation changes
play a minor role in glacier mass change is consistent with
the literature (Van de Wal and Wild, 2001; Leclercq et al.,
2011). Moreover, the interannual variability is larger with
varying temperatures compared to only varying precipitation
(see Fig. A1).
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Figure 7. (a) Annual glacier mass change rates expressed in GMSLR contribution rate for all forcing data sets. (b) Mean of ensemble output
mass change rates. A 5-year moving average is shown for clarity. Shaded areas are the mean model uncertainty (grey, εmodel; see Eq. 10) and
total ensemble uncertainty (blue, εensemble; see Eq. 11), which are shown at the 90 % confidence level. Results of the CERA20C forcing are
excluded from the ensemble mean (see Sect. 3.1.1). Note the different vertical scales of the panels.

Figure 8. (a) Global mean annual precipitation anomaly relative to 1961–1990 and amount of solid precipitation. (b) Global mean annual
temperature anomaly relative to 1961–1990. The shadings show±1σ , i.e., standard deviation among meteorological forcing data sets. Values
in both panels are 31-year moving averages of the ensemble mean at glacier tongue locations and weighted by glacier area, except for the
graph of solid precipitation, which is based on the mean forcing input data. Since scales of computed solid precipitation might vary between
ensemble members depending on model parameters (see Eqs. 3 and 4), the computation of an average, especially with a temporally varying
number of ensemble members, is less meaningful. Values of the CERA20C forcing are excluded from the ensemble mean (see Sect. 3.1.1).
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Table 3. Ensemble mean regional mass change rate estimates (in mm SLE yr−1) for 18 primary RGI regions over different time periods.
Results of the CERA20C forcing are excluded from the ensemble mean (see Sect. 3.1.1). Values in brackets for the Southern Andes exclude
20CRV3 results (see Sect. 4).

1901–1940 1941–1980 1901–1990 1971–2018 1993–2018 2006–2018

1 Alaska 0.08± 0.17 0.05± 0.03 0.06± 0.07 0.09± 0.03 0.13± 0.04 0.14± 0.04

2 Western Canada and US 0.07± 0.10 0.02± 0.01 0.04± 0.05 0.0017± 0.006 0.020± 0.006 0.023± 0.003

3 Arctic Canada (North) 0.10± 0.10 0.06± 0.04 0.08± 0.05 0.09± 0.02 0.13± 0.02 0.18± 0.03

4 Arctic Canada (South) 0.08± 0.10 0.03± 0.03 0.06± 0.04 0.036± 0.008 0.05± 0.01 0.07± 0.02

5 Greenland periphery 0.17± 0.13 0.05± 0.06 0.10± 0.08 0.07± 0.04 0.12± 0.05 0.15± 0.08

6 Iceland 0.01± 0.01 0.012± 0.006 0.010± 0.008 0.012± 0.002 0.020± 0.002 0.023± 0.004

7 Svalbard 0.05± 0.02 0.03± 0.01 0.04± 0.01 0.06± 0.01 0.08± 0.01 0.09± 0.02

8 Scandinavia 0.003± 0.002 0.0026± 0.0009 0.003± 0.001 0.0024± 0.0007 0.0044± 0.0009 0.0057± 0.0007

9 Russian Arctic 0.06± 0.10 0.05± 0.01 0.05± 0.05 0.06± 0.01 0.07± 0.01 0.09± 0.02

10 North Asia 0.002± 0.002 0.0004± 0.0003 0.002± 0.001 0.0016± 0.0004 0.0025± 0.0005 0.030± 0.004

11 Central Europe 0.001± 0.002 0.001± 0.002 0.002± 0.001 0.004± 0.002 0.006± 0.002 0.006± 0.001

12 Caucasus and Middle East 0.002± 0.002 0.0001± 0.0004 0.001± 0.001 0.0008± 0.0003 0.0016± 0.0006 0.0021± 0.0005

13 Central Asia 0.06± 0.04 0.05± 0.01 0.05± 0.02 0.049± 0.006 0.052± 0.005 0.057± 0.007

14 South Asia (West) 0.04± 0.02 0.04± 0.01 0.04± 0.01 0.034± 0.005 0.034± 0.006 0.04± 0.01

15 South Asia (East) 0.02± 0.02 0.02± 0.01 0.02± 0.01 0.015± 0.005 0.017± 0.003 0.018± 0.005

16 Low Latitudes 0.01± 0.01 0.006± 0.007 0.007± 0.008 0.003± 0.003 0.004± 0.002 0.004± 0.002

17 Southern Andes −0.03± 0.10 −0.01± 0.07 −0.01± 0.08 0.01± 0.04 0.01± 0.03 0.01± 0.02
(0.007± 0.002) (−0.002± 0.002) (0.004± 0.001) (0.009± 0.001) (0.016± 0.002) (0.022± 0.003)

18 New Zealand 0.002± 0.004 0.003± 0.004 0.003± 0.003 0.0016± 0.0005 0.0013± 0.0004 0.016± 0.0008

Global (without peripheral 0.73± 0.46 0.42± 0.21 0.56± 0.27 0.56± 0.06 0.75± 0.07 0.90± 0.12
Antarctic and Subantarctic)

Our results also indicate that the glaciers’ retreat to higher
altitudes acted as a negative feedback on mass loss in more
recent times. This is based on the observation that although
the global average temperature anomalies at glacier loca-
tions were considerably higher after 2000 than around 1930,
and the amount of solid precipitation was lower, the global
glacier sea-level contribution rates are not higher according
to our model results (see Figs. 7 and 8). However, this result
might have been influenced by the applied scaling and re-
laxation laws (see Sect. 2.2.1), as they control the geometric
response to mass changes in our model. Comparing our re-
sults of glacier geometry to a publication that estimated con-
temporary global glacier volumes (Farinotti et al., 2019), on
the basis of modeling results as well, we find that our global
volume estimate differs less than 1 % from their result. An-
other feedback that certainly plays a role here, but cannot be
resolved by our model, is the positive mass-balance–surface-
elevation feedback: as a glacier’s surface elevation decreases
due to mass loss, it experiences higher temperatures, because
of the atmospheric temperature lapse rate. This in turn en-
hances the initial mass loss (Harrison et al., 2001). Since our

model is calibrated and validated with data from more recent
years, it could be argued that mass change was actually lower
in earlier years due to higher surface elevations of glaciers
(Huss et al., 2012).

Concerning uncertainty estimates, Table 3 shows that most
of the uncertainty stems from the regions of Alaska, Arc-
tic Canada (North), and the Greenland periphery in more re-
cent periods (e.g., 1993–2018). In the earliest period (1901–
1940), the Russian Arctic region exhibits a high uncertainty
as well, indicating that the large model error in the early 20th
century (see Fig. 5) is produced there alongside regions 1 to
5.

4 Discussion

Table 4 shows our global results compared to previously pub-
lished estimates for mass change rates over certain periods.
We mostly find good agreement within the respective uncer-
tainty ranges. For the periods 2003–2009, 2002–2016, and
1992–2016 there is a significant disagreement between liter-
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ature values and our model results. The disagreeing values
for 2002–2016 from Wouters et al. (2019) were solely de-
rived from gravimetry (GRACE) data. Estimates for 2003–
2009 from Gardner et al. (2013) and for 1992–2016 from
Bamber et al. (2018) involve GRACE data as well. Interest-
ingly, we find that when we compare the five pentads Bamber
et al. (2018) studied during 1992–2016 individually to our es-
timates, those for the first three pentads (when the GRACE
mission had not yet started) agree within uncertainty ranges.
Another work based on GRACE data (Jacob et al., 2012)
estimated a mass loss of glaciers outside of Antarctica and
Greenland for the period 2003–2010 of 0.41± 0.08, while
our estimate for that period lies at 0.66± 0.08 and that of
Gardner et al. (2013, for 2003–2009) at 0.59± 0.07. Part of
these disagreements might be explained by the storage of
meltwater for example in glacial lakes (Shugar et al., 2020),
which because of the close proximity to the glaciers cannot
be separated from the ice mass in gravimetry data. GRACE
will therefore observe lower mass change values than in situ
or geodetic observations. Since these lower values might be
closer to the glaciers’ actual contribution to sea-level rise,
the issue points to the larger problem of distinguishing be-
tween glacier mass change and the corresponding sea-level
change, which are not exactly equal. However, Shugar et al.
(2020) also point out that glacial lake storage accounts for
only about 1 % of glacier melt volume (excluding Green-
land and Antarctica), which indicates that this process is of
limited relevance. Other hydrological processes like ground-
water flow or human activities (e.g., building of reservoirs)
might still induce discrepancies between gravimetric and in
situ/geodetic measurements. Another potential source of un-
derestimating glacier mass loss by using gravimetry data in
regions with many marine-terminating glaciers is the pres-
ence of discharged icebergs close to the glaciers that GRACE
is presumably not able to separate from the actual glacier
mass.

Gardner et al. (2013) point to discrepancies between
satellite-derived and in situ estimates of glacier mass
changes, suggesting a negative bias in in situ observations
for regions where the density of those measurements is low.
They hence only relied on in situ observations in regions
where those have a high density. Zemp et al. (2019) ad-
dressed this issue as well by combining glaciological and
geodetic measurements. Although our model is calibrated
solely using in situ observations, its estimates are still close to
Zemp et al. (2019), in which the uncertainty for some periods
is admittedly large (Table 4). Comparing our results to Zemp
et al. (2019) in periods where we included the Greenland
periphery (2003–2009 and 1961–2010), we see a slightly
lower agreement. Our estimates’ uncertainty range also over-
laps more with the one of Gardner et al. (2013) for 2003–
2009 if we exclude that region. This indicates that our mass
change estimates for the Greenland periphery might be too
large in these time periods. We also included estimates from
WGMS (2015) in Table 4, which are merely arithmetic av-
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erages of the available in situ (glaciological) and geodetic
mass balance measurements to show that our estimates, al-
though solely calibrated and validated with in situ measure-
ments, are lower than those and closer to more thorough anal-
yses of mass change data. Our estimates lying close to those
of Marzeion et al. (2012) or Marzeion et al. (2015) cannot
be explained merely by the fact that the same model was
used. One reason for this is that we used newer and more
validation data and a newer RGI version. Another one is the
change in calibration strategy that we applied in this work
(see Sect. 2.2.2). Furthermore, driven with other meteorolog-
ical data, the Marzeion et al. (2015) mass loss estimates for
2003 to 2009 lie lower than ours when using the same model
but a different calibration procedure, while those of Marzeion
et al. (2012) lie higher (see Table 4). This underlines the in-
fluence of boundary and initial conditions on modeling re-
sults.

Finally, the global glacier sea-level rise contribution es-
timates of Frederikse et al. (2020), excluding the Greenland
and Antarctic periphery, agree well with ours for the more re-
cent time intervals they specify (1957–2018 and 1993–2018),
while our estimates lie at the very low end of the confidence
interval given for the whole time interval they studied (1900–
2018). This is presumably due to the modeling approach that
their estimates in early years rely on, which includes esti-
mations of disappeared and missing glaciers that are not in-
cluded in the RGI. The increase in global glacier mass loss
estimations this causes declines throughout the 20th century
by roughly 66 % (Parkes and Marzeion, 2018).

Regarding regional values, Table 3 shows that roughly
two-thirds of our global mass loss estimate during 2006–
2018 occurred in the Greenland periphery and the North
American continent. A large amount of the global uncer-
tainty originates from these regions as well. Comparing our
regional mass change estimates for recent years to those in
the literature (Ciracì et al., 2020; Wouters et al., 2019; Zemp
et al., 2019), the most obvious discrepancy can be found in
estimates for the Southern Andes, where our ensemble mean
is substantially smaller and even positive in earlier periods
shown in Table 3 (e.g., 1901–1940), caused mainly by the
model setup forced with 20CRV3 reanalysis data. The oppo-
site is true for the regions Arctic Canada (North) and Sval-
bard, where our estimate is larger than those previously pub-
lished. This might be caused by the relatively large portion
of area draining into marine-terminating glaciers in those re-
gions, since glacier–ocean interactions are not included in
the model we applied, and the calibration applying solely at-
mospheric forcing might thus be problematic. Moreover, our
regional estimates for the Greenland periphery and Alaska in
the most recent period (2006–2016) are close to each other,
while Alaska lost significantly more mass according to Zemp
et al. (2019) or Ciracì et al. (2020) during that time. This
could be indicative of our mass loss estimates for Alaska be-
ing too small or those for the Greenland periphery being too
high. Two regions for which our estimates are significantly

larger than in the previously published literature are Central
Asia and South Asia (West). This might be caused by a nega-
tive bias of the in situ measurements used for calibration and
validation in this region.

Another region of interest is the Russian Arctic, for which
no in situ measurements of annual specific mass balances
were available in the data we used for calibration and vali-
dation. That is either because the sparse amount of measure-
ments for that region was not covering at least 3 years for
the individual observed glaciers or we did not find a link of
the glaciers to the RGI. Also, more than half of the glacier-
ized area in the Russian Arctic region drains into marine-
terminating glaciers. For this region we estimate an aver-
age mass change rate of 0.08± 0.02 mm SLE yr−1 during
2002–2016, while Wouters et al. (2019) estimate 0.03± 0.01
and Zemp et al. (2019) 0.07± 0.03 mm SLE yr−1. Regard-
ing the whole period that Zemp et al. (2019) provide esti-
mates for in that region (1951–2016), the average they find is
0.05± 0.02 mm SLE yr−1. Our average estimate for that pe-
riod and region lies at 0.06± 0.01 mm SLE yr−1. This shows
that our model results do not, as is the case globally, agree
well with GRACE-derived data in that region, but they still
do with one other previously published estimate although we
did not have calibration/validation data at hand in this region.

Thus, while we find an overall good agreement of our
global mass change estimates with previously published
ones, besides most of those derived with GRACE data,
there are still significant differences in certain regional es-
timates. These require further research into the causes and
hence point to potential model shortcomings as, for exam-
ple, area initialization, geometric scalings, neglecting frontal
ablation, debris cover, and radiation, as well as into the
calibration and validation procedure applied. Incorporating
frontal ablation processes of marine-terminating glaciers in
the model and calibration procedure as well as distinguish-
ing between mass loss above and below sea level would be
crucial model developments for enhancing the reliability of
modeled global glacier sea-level rise contribution estimates.
Generally speaking, the influence of ice–ocean interaction on
global glacier mass loss remains elusive, although one study
that conducted global glacier mass change projections, ap-
plying a simple frontal ablation parameterization, estimated
a total of ca. 10 % global glacier mass loss caused by frontal
ablation (Huss and Hock, 2015).

Although the largest potential of reducing the global un-
certainty relevant to sea-level rise estimates is in strongly
glaciated but little observed regions (e.g., Greenland periph-
ery), reducing it in less glaciated regions (e.g., Southern An-
des) could still be valuable concerning hydrological changes
and hence water availability. Future studies on mass loss re-
constructions could benefit from addressing the abovemen-
tioned processes that are neglected thus far and from ex-
panding the validation framework applied here in such a way
that it would be able to include geodetic mass balance esti-
mates as well as the uncertainties attached to in situ/geodetic
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reference data. This is because in situ measurements of an-
nual specific mass balances are not only sparse and heteroge-
neously distributed but reportedly negatively biased in some
regions (Gardner et al., 2013). Since geodetic measurements
provide glacier mass change data for much larger areas than
in situ glaciological measurements, they add considerably
to our understanding of glacier mass change. Unfortunately,
they are not yet standardized and readily available as the in
situ data are, making it unpractical to use them in the valida-
tion framework we applied.

Concerning the high uncertainty of mass change estimates
during the early 20th century, it would be beneficial to have a
suite of models that are able to hindcast glacier changes over
that period, similar to intercomparison efforts for projections
(Marzeion et al., 2020). More reanalysis products covering
that time interval and also the Antarctic periphery would cer-
tainly help to constrain global estimates and their uncertainty
more, although this might be of limited value due to the lack
of historical validation data. In order to not only rely on re-
analysis data, it would also be possible to run the model with
data of climate models’ historical experiments. A compari-
son with results obtained by applying reanalysis data could
bring valuable insights into how, why, and where reanalysis
and climate model forcings of the mass balance model differ.
Finally, the application of a robust initialization method (e.g.,
Eis et al., 2019, 2021) could help to understand if and how
inaccuracies of the initialization method propagate through
the modeled period.

5 Conclusions

A multi-objective optimization of a global glacier mass bal-
ance reconstruction model, forced with an ensemble of mete-
orological data sets, was presented. We demonstrated that it
is possible to find statistically well performing sets of model
parameters for each forcing data set but that we cannot ro-
bustly identify which model setup is the most reliable when
applied outside of the temporal and spatial domain of avail-
able in situ mass balance validation data. However, one data
set (CERA20C) can be identified as performing worse than
the others. Disagreement between ensemble members is to
a large degree attributable to differences in the forcing data
in times and at locations where few validation and calibra-
tion data are available. The differences in the forcing data
result in diverging glacier mass change estimates, especially
in the first half of the 20th century, and thus are a major part
of our ensemble estimates’ uncertainty. Although our esti-
mates lie within the uncertainty range of most of the previ-
ously published global estimates, they agree less with those
derived from gravimetry (GRACE) data and show significant
differences to the literature in individual regions. Our recon-
struction ensemble average suggests that around the 1930s
mass loss rates from glaciers were comparable to those of to-
day. This finding is possibly weakened by the lack of an ex-

plicit mass-balance–surface-elevation feedback in the model
we applied, and it might be that mass change rates during the
1930s were actually smaller than in recent years. According
to our results, the increase in mass loss until the 1930s was
followed by a phase of mass loss deceleration until roughly
1980. The glaciers’ contribution to sea-level rise has been ac-
celerating again since then, despite an indication of the their
retreat to more favorable climatic conditions, i.e., higher al-
titudes. Our results also indicate that this acceleration was
partly driven by decreasing amounts of solid precipitation at
glacier locations from ca. 1980 onward. This implies that the
enhanced atmospheric warming not only increased ablation
rates but probably lowered the amount of snow the glaciers
received, notwithstanding a slight increase in total precipita-
tion.
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Appendix A

Figure A1. Estimated influence of temperature and precipitation anomalies on global glacier mass change. Red lines are modeled glacier
mass change with temperature held constant at the climatology around t∗. Blue lines are modeled glacier mass change with total precipitation
held constant at the climatology around t∗. Black lines represent the model run with full forcing. Note that in the case of this forcing data
set we found optimal model performance with t∗ = 1901, which implies the climatology only includes 16 years. (a) Estimates of GMSLR
contribution relative to 1901. (b) Estimated annual GMSLR contribution.
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