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Abstract. The turbulent heat flux (THF) over leads is an im-
portant parameter for climate change monitoring in the Arc-
tic region. THF over leads is often calculated from satellite-
derived ice surface temperature (IST) products, in which
mixed pixels containing both ice and open water along lead
boundaries reduce the accuracy of calculated THF. To ad-
dress this problem, this paper proposes a deep residual con-
volutional neural network (CNN)-based framework to esti-
mate THF over leads at the subpixel scale (DeepSTHF) based
on remotely sensed images. The proposed DeepSTHF pro-
vides an IST image and the corresponding lead map with a
finer spatial resolution than the input IST image so that the
subpixel-scale THF can be estimated from them. The pro-
posed approach is verified using simulated and real Moder-
ate Resolution Imaging Spectroradiometer images and com-
pared with the conventional cubic interpolation and pixel-
based methods. The results demonstrate that the proposed
CNN-based method can effectively estimate subpixel-scale
information from the coarse data and performs well in pro-
ducing fine-spatial-resolution IST images and lead maps,
thereby providing more accurate and reliable THF over leads.

1 Introduction

Leads form a linear area of the open water and thin floating
ice within closed pack ice (Willmes and Heinemann, 2015).
They arise as a result of various forces, such as thermal stress

and wave action (Tschudi et al., 2002). Through leads, the
sea surface contacts the atmosphere, thus allowing direct ex-
change of sensible and latent heat flux (Marcq and Weiss,
2012). Although leads constitute a relatively small percent-
age of the total sea ice area in the polar regions, they are
the primary window for the turbulent heat flux (THF) be-
cause the sea ice significantly reduces the air–sea interaction
(Maykut, 1978). In the central Arctic region, leads constitute
no more than 1 % of sea area during winter but provide a
channel for more than 70 % of the upward heat flux (Marcq
and Weiss, 2012; Maykut, 1978). Additionally, it has been
revealed that small changes in leads can cause a considerable
temperature change in a region near the ice surface (Lüpkes
et al., 2008). Consequently, the estimation of THF over leads
is crucial for studying the climate (Maykut, 1978; Ebert and
Curry, 1993).

Remotely sensed satellite images are a promising data
source that has been often used in estimating the THF over
leads (Qu et al., 2019) because in situ measurement is al-
ways difficult to conduct due to harsh weather conditions
typical in polar regions. To calculate the THF over leads us-
ing the remotely sensed data, both a lead map and the cor-
responding ice surface temperature (IST) are required (Auli-
cino et al., 2018). A lead map can be obtained from vari-
ous satellite data, including visible, thermal, and microwave
images (Lindsay and Rothrock, 1995; Röhrs and Kaleschke,
2012; Willmes and Heinemann, 2015). Once a lead map has
been generated, the corresponding IST image needed to esti-
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mate the THF is commonly derived from the thermal infrared
(TIR) bands of satellite data.

Therefore, satellite TIR imagery is essential for the esti-
mation of the THF occurring over leads because it can be
used to generate a lead map and the corresponding IST im-
age simultaneously. Thermal infrared images can be obtained
from Landsat-8 and Moderate Resolution Imaging Spectro-
radiometer (MODIS) products. A Landsat-8 TIR image has
a spatial resolution of 100 m. However, the Landsat-8 satel-
lite has a revisit cycle of approximately 16 d, making it chal-
lenging to estimate THF at appropriate timing. In contrast,
MODIS has a daily repeat frequency, which is attractive for
studying rapid variations in the THF over leads. However, a
MODIS image has a spatial resolution of 1 km and includes
mixed pixels. The problem of mixed pixels in MODIS im-
ages not only strongly affects the extraction of a lead map
but also affects the estimation accuracy of the lead surface
temperature, which can result in a large error when calculat-
ing THF.

The mixed pixel problem of MODIS TIR images can be
solved by conducting a subpixel analysis (Ge et al., 2009;
Atkinson, 2013; Ge et al., 2019; Foody and Doan, 2007;
Wang et al., 2014; Zhong and Zhang, 2013). The image
super-resolution (SR), which aims to enhance the spatial res-
olution of images, is a representative subpixel-scale analy-
sis method that has been widely used in a variety of appli-
cations, including satellite images pan-sharpening (Lanaras
et al., 2018), surface topography measurement (Leach and
Sherlock, 2013), and land cover mapping (Ling et al., 2010;
Foody et al., 2005), and many image SR-based approaches
have been proposed (Wang et al., 2020; Glasner et al., 2009).
Among them, convolutional neural network (CNN) methods
have provided significantly improved performance in pro-
ducing SR images due to their ability to model a nonlinear
relationship between the input and output data (Dong et al.,
2014; Ledig et al., 2017). Specifically, in these methods, first,
the relationship between an image with a fine spatial resolu-
tion and the corresponding image with a coarse spatial reso-
lution is established through the training process with a large
amount of training data, and then the trained model is used
to super-resolve the testing coarse-spatial-resolution image.
These methods have been successfully applied to the SR of
sea surface temperature (SST) imagery (Ping et al., 2021)
and SR mapping of land cover (Ling and Foody, 2019; Ling
et al., 2019; Jia et al., 2019). Therefore, the CNN-based SR
methods have great potential in the field of image downscal-
ing, especially fine-spatial-resolution IST images and lead
maps that are useful in THF estimation. To the best of the
authors’ knowledge, a CNN-based method for estimation of
the THF occurring over leads has not been reported yet.

This study proposes a CNN-based method for a subpixel-
scale estimation of the THF from MODIS TIR images named
the deep-learning-based subpixel THF estimation (Deep-
STHF) method. Specifically, the DeepSTHF method uses
two CNNs to simultaneously produce a Landsat-like IST

image and the corresponding binary map of leads from the
MODIS IST images, and then it employs the generated
Landsat-like IST image and lead map to estimate the THF
over leads using an aerodynamic bulk formula (Marcq and
Weiss, 2012; Qu et al., 2019; Renfrew et al., 2002). This
study provides a new perspective for solving the mixed pixel
problem in THF estimation from remotely sensed images by
extracting subpixel-level information.

2 Study area and data

2.1 Study area

The Beaufort Sea, a marginal sea of the Arctic Ocean situated
north of Canada and Alaska, was selected as a study area,
and it is shown in Fig. 1. The typically severe climate of the
Beaufort Sea keeps the sea surface frozen most of the year.
However, multiple forces, such as the anti-cyclonic motion
of the Beaufort Gyre, cause the ice pack to fracture (Lewis
and Hutchings, 2019), generating linear cracks (leads). In
addition, global warming has been causing the multi-year
ice pack to shrink rapidly (Barber et al., 2014). As a con-
sequence, the size and spatial extent of leads in the Beaufort
Sea have been increasing, and various floes along with leads
of varying widths and lengths have arisen in this region (Bar-
ber et al., 2014).

2.2 Datasets and preprocessing

The proposed DeepSTHF method uses MODIS IST im-
ages as input data to calculate a subpixel-scale THF. Re-
motely sensed images obtained from the Landsat-8 Opera-
tional Land Imager (OLI) were used as fine-resolution data
to train the two CNN models and to assess the accuracy of the
output result. Additionally, associated meteorological data
(i.e., wind speed, air temperature, and dew point tempera-
ture) were obtained as well to estimate the THF occurring
over leads.

2.2.1 MODIS data

The National Snow and Ice Data Center (NSIDC) pro-
vides the MOD29 IST product, wherein all possible cloud-
contaminated pixels are removed according to the cloud
mask from the MOD35 product. However, upon visual in-
spection, a number of lead areas with ocean fog or plume
(Qu et al., 2019; Fett et al., 1997) can be mistakenly marked
as clouds, which can cause a loss of potential leads. There-
fore, instead of the MOD29 IST product, the MODIS Level-
1B product MOD021KM acquired by the sensor aboard the
Terra satellite is used in this study, and it was obtained
from the US National Aeronautics and Space Administra-
tion’s Level 1 and Atmosphere Archive and Distribution
System Distributed Active Archive Center (https://ladsweb.
modaps.eosdis.nasa.gov/, last access: 22 June 2021). The
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Figure 1. Location of the study area. The background image is the
band 2 (B2) reflectance of a MODIS image acquired on 25 April
2015. The light-colored area represents leads.

MOD021KM datasets were stored in the Hierarchical Data
Format–Earth Observing System swath structure, which was
designed to support archiving and storage of data needed
for the Earth Observing System. The MOD021KM dataset
mainly contains observational data and geolocation fields.
The observation data included 36 calibrated and geolocated
spectral bands from the optical region to the TIR wave-
length region and had a spatial resolution of 1 km of 1354×
2030 pixels. In the MOD02KM data, the cloud contamina-
tion area was masked by the cloud masks from the MOD35
product and visual inspection, and pixels with a zenith angle
of more than 25◦ were not used to reduce the panoramic bow-
tie effect (Eythorsson et al., 2019). The TIR bands 31 and
32, which were respectively centered at 11.03 and 12.02 µm,
were used to retrieve the IST using a split-window algo-
rithm (Hall et al., 2001; Key et al., 1994, 1997) that has been
adapted to the MODIS data, and whose accuracy has been re-
ported to be within 2 ◦C. Additionally, longitude and latitude
coordinates, which were provided in the geolocation field at
a 5 km resolution, were used to link the swath to points on
the Earth’s surface. The MODIS images were collected un-
der the cloud coverage of less than 10 % in the period be-
tween March and May from 2013 to 2020 because, during
these 3 months, leads are abundant with a variety of sizes
and shapes from visual inspection.

2.2.2 Landsat-8 data

This study used the Landsat-8 Level 1 terrain-corrected
(L1T) data product acquired from the United States Geologi-
cal Survey Earth Resources Observation and Science Center
from May 2013 to the present. The scenes with the cloud

coverage of less than 10 % collected during the period from
March to May 2013–2020 were selected.

These Landsat-8 data were used to produce fine-resolution
IST reference images and lead maps. The split-window algo-
rithm that was developed for the Landsat-8 data (Fan et al.,
2020; Du et al., 2015), and which is suitable for various sur-
face types, including ice and water, was employed to retrieve
the IST data. This algorithm estimates temperature from two
thermal infrared bands of Landsat-8 data and has an accuracy
of better than 1.0 ◦C (Du et al., 2015). It should be noted that
the Landsat-8 Thermal Infrared Sensor (TIRS) has a prob-
lem with the stray light, which refers to the unwanted radi-
ance from outside the field of view entering the optical sys-
tem (Montanaro et al., 2015). Nevertheless, certain correc-
tions were made in the current Landsat-8 LIT data product,
and the stray light artifact was reduced (Gerace and Monta-
naro, 2017). However, this artifact was amplified and is thus
obvious in the generated IST image, as shown in Fig. 2a,
which could impact the estimation accuracy of the THF. A
median filtering method (Eppler and Full, 1992; Qu et al.,
2019) was used to remove the noise from the Landsat-8 IST
image caused by this type of artifact, as shown in Fig. 2b. The
reference lead maps were obtained by the iterative threshold
method (Qu et al., 2019), and they were manually inspected
by referring to the Landsat-8 OLI spectral bands to eliminate
possible outliers, as shown in Fig. 2c.

For the obtained Landsat-8 data product, both the OLI
spectral bands and the TIRS bands had a pixel size of 30 m.
Considering that the TIRS bands at a 30 m resolution were
up-sampled from the 100 m raw data using the cubic interpo-
lation to match the OLI spectral bands, the TIRS bands were
resampled to 100 m by the average strategy to retain the orig-
inal spatial resolution.

2.2.3 Meteorological data

Meteorological data included a 10 m wind speed, a 2 m
air temperature, and dew point temperature. The mete-
orological data were taken from the European Centre
for Medium-Range Weather Forecasts ERA5 reanalysis
hourly dataset (https://cds.climate.copernicus.eu/, last ac-
cess: 22 June 2021). These data were provided on a 0.25◦

grid and resampled to a 100 m resolution using the cubic in-
terpolation method.

2.2.4 Co-registration of MODIS and Landsat-8 images

It should be noted that MODIS and Landsat-8 products em-
ploy different spatial reference systems; the MOD021KM
dataset uses a geolocation subset consisting of longitude
and latitude coordinates to provide a geographic location,
while Landsat-8 imagery uses a projected coordinate sys-
tem. Therefore, before being used in the experiment, these
datasets were converted to the same spatial reference sys-
tem. To avoid footprint deviations in different projected co-
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Figure 2. The IST images obtained from the Landsat-8 images on 31 March 2020, and the corresponding corrected IST image: (a) the
original IST image, (b) the IST image corrected by the median filtering method, and (c) the manually produced lead map. The lead and
ice-covered areas are marked as blue and white, respectively.

ordinate systems and achieve an accurate registration, the
Landsat-8 data were transformed into the geolocation data of
MOD021KM using the latitude and longitude data. Specifi-
cally, the geolocation data of MOD021KM with a 5 km res-
olution was interpolated to obtain a 100 m resolution geolo-
cation data using a subpixel interpolation strategy. This strat-
egy included three processes, as shown in Fig. 3. First, for
a 100 m resolution pixel P to be interpolated, four bounded
5 km resolution pixels P1–P4 were searched. Next, two pix-
els P′ and P′′ with a 100 m resolution on the along-track line
were obtained, and they were on the same along-scan line
as pixel P. Then, the longitude and latitude coordinates of
pixels P′ and P′′ were interpolated using P1 and P3, and P2
and P4, respectively. The approximation that two successive
scan lines were parallel to each other was adopted. Further,
the position of pixel P was interpolated with P′/P′′. For each
pixel in the interpolated geolocation grid, the corresponding
Landsat-8 pixels were obtained using the latitude and longi-
tude coordinates of the grid center. Since points on the ice
surface with the same longitude and latitude were identical
to each other in different spatial reference systems, the pro-
posed approach can match the coordinates of the different
datasets accurately.

3 Methods

The estimation of the THF at a subpixel scale involved two
main steps, as shown in Fig. 4. First, a fine-resolution IST
image and the corresponding fine-resolution lead map were
obtained from a coarse-resolution IST image using a CNN-
based integrated method. The CNN-based SR IST recon-
struction and lead mapping process included three parts:
(1) training data preparation, (2) CNN model training, and
(3) prediction of a fine-resolution IST image and lead map
using the trained CNN models. Second, the THF was esti-

Figure 3. The process used to generate a fine-resolution geolocation
grid.

mated from the fine-resolution IST image and a lead map
using an aerodynamic bulk formula, and finally the accuracy
of the results was assessed.

3.1 Generation of fine-resolution IST image and lead
map

Using a coarse-resolution IST image as input, the proposed
framework (Fig. 4) aims to produce an IST image and a lead
map with finer resolution. Assume that the original coarse-
resolution IST image I IST

CR has H ×W pixels; then, the ob-
jective of the integrated framework is to generate an IST
image I IST

FR and a lead map MLeads
FR , both of which contain

(z×H)× (z×W) pixels, where z represents the scaling fac-
tor, and it equals 10 in this study.

Although the key factors for SR IST image reconstruc-
tion and lead mapping both include modeling of a nonlin-
ear relationship between coarse- and fine-resolution data,
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Figure 4. The flowchart of the subpixel-scale THF estimation using the proposed deep residual convolutional neural-network-based frame-
work. Note that IST denotes the ice surface temperature.

their objectives are different. The process of generating fine-
resolution IST images focuses on recovering a fine spatial
pattern, while in the generation of a fine-resolution lead map
it is crucial to classify every subpixel in addition to recov-
ering the fine spatial pattern. Therefore, two CNNs with dif-
ferent structures, a very deep residual CNN and a multi-level
feature fusion residual CNN, are used in the proposed frame-
work to achieve the generation of a fine-resolution IST im-
age and a lead map, as shown in Fig. 5. The two CNNs are
explained in more detail as follows: (1) for fine-resolution
IST image reconstruction, a very deep residual CNN, which
has been widely used in image SR methods (Zhang et al.,
2018b; Ledig et al., 2017), was used (Fig. 5); (2) the SR
lead mapping method is essentially a type of image segmen-
tation – considering the good performance of an encoder–
decoder structure in image segmentation (Ronneberger et al.,
2015; Badrinarayanan et al., 2017), the very deep CNN and
encoder–decoder structure were combined, and a multi-level
feature fusion residual CNN (Fig. 5) was used for SR lead
mapping.

3.1.1 Integrated framework architecture

A very deep residual CNN model with 57 layers was used for
SR IST reconstruction. The input coarse IST image was pro-
cessed by a convolution layer consisting of 64 filters with a
size of 3×3 and a parametric rectified linear unit, which was
used to ensure the output would be a nonlinear expression of
the input data. The core of the very deep residual CNN con-
sisted of nine residual blocks denoted as the “Resblocks”,
each of which contained two convolution layers with 64 fil-
ters with a size of 3× 3× 64 followed by the batch norm

layers and parametric rectified linear unit functions. The last
layer of the very deep residual CNN consisted of a single
3× 3× 64 filter.

A multi-level feature fusion residual CNN model was
used for SR lead mapping. The model included a symmet-
ric encoder–decoder module and a feature fusion unit. The
core of the encoder–decoder also consisted of nine residual
blocks. The size of filters in the first convolution layer in each
Resblock in the decoder part was 3×3×128, while all other
filters in the Resblock had a size of 3× 3× 64. Additionally,
a max-pooling layer, which contained 64 filters with a size of
2× 2 and a sliding step of two, was added behind each Res-
block in the encoder procedure to downscale the feature maps
and to amplify the receptive field. A transpose convolution,
which denoted a reverse process to normal convolution (Noh
et al., 2015), and a concatenation operation were used in the
decoder procedure to enlarge the size of feature maps and to
fuse multi-level features, respectively. An attention mecha-
nism module was employed in the concatenation process to
increase the feature difference at the boundary of a lead and
ice. In the feature fusion part, the features extracted in the
decoder part were up-sampled and fused with the element-
wise summing to combine multi-level features. The scaling
factors of the four up-sampling modules (from left to right
in Fig. 5) were eight, four, two, and one, in turn, and they
were defined according to the scale differences between the
extracted features and the output image. The last layer after
the feature fusion part used a softmax function as an activa-
tion function to estimate the class label (lead or not lead) of
every pixel.
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Figure 5. Architecture of the two CNNs used for the IST image super-resolution reconstruction and super-resolution lead mapping. Note
that PReLU stands for parametric rectified linear unit.

3.1.2 Implementation of CNN models

According to the structures of the CNN models, the input
IST image should match the size of the fine-resolution im-
ages. Therefore, the coarse-resolution IST images used as
training data must be interpolated. A standard interpolation
method, the cubic interpolation, was used to process the raw
image data to obtain the input dataset. The CNN models were
trained using the data consisting of the interpolated coarse-
resolution IST image patch x, the corresponding referenced
fine-resolution IST image patch y, and lead map patch l. Due
to different objectives of image SR IST reconstruction and
image SR lead mapping, the mean square error (MSE) loss
given by Eq. (1) and the cross-entropy loss given by Eq. (2)
were used as loss functions of the two associated CNNs.

LSR−IST(wSR−IST)

=
1
n

n∑
i=1
||yi −FSR−IST(wSR−IST,xi)||

2, (1)

LSR−LM(wSR−LM)

=
1
n

n∑
i=1

[
li · log(FSR−LM (wSR−LM,xi))

+(1− li) · log(1−FSR−LM(wSR−LM,xi))
]
. (2)

In Eqs. (1) and (2), n denotes the number of training sam-
ples, F(·) denotes the network, w is the weight parameter
of the network to be updated in the training process, and the
two subscripts correspond to different networks, i.e., SR-IST
and SR-LM denote SR of IST and SR of lead mapping, re-
spectively. For optimization, an adaptive moment estimation
(Adam) (Kingma and Ba, 2014) with standard backpropaga-
tion was applied to minimize the loss and update the network

weights until convergence; the parameters of Adam were set
as follows: β1 = 0, β2 = 0.999; the learning rate α was ini-
tialized as 10−1.

Once the two networks have been trained, they could
be used to generate the fine-spatial-resolution IST images
and the corresponding lead maps. During this procedure,
the coarse-resolution IST image was fed into the integrated
framework. The fine-resolution IST image was directly gen-
erated by the SR IST reconstruction CNN, while the output
of the SR lead mapping CNN was a lead indicator image. An
appropriate threshold was used to binarize the lead indica-
tor image into a lead map according to specific requirements.
The threshold value was empirically set to 0.5, meaning that
a fine-spatial-resolution pixel in the indicator image exceed-
ing 0.5 would be classified as a lead pixel.

3.2 Estimation of THF over leads

Given a dataset consisting of fine-resolution IST images, the
corresponding lead maps, and related meteorological data
(10 m wind speed, 2 m air temperature, and dew point tem-
perature), the THF was estimated over every lead using the
traditional aerodynamic bulk formula (Brodeau et al., 2017;
Goosse et al., 2001; Renfrew et al., 2002). It should be noted
that the overall THF included two parts, sensible (Hs) and la-
tent heat fluxes (Hl). According to the bulk formulae, it was
assumed that Hs and Hl were mainly determined by the tem-
perature and humidity differences between the leads’ surface
and atmosphere at a certain height r (the height of 2 m was
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used in this study), and they were calculated by

Hs = ρcpCshUr (Ts− Tr) , (3)
Hl = ρLwCleUr (qs− qr) , (4)

where ρ is the air density, cp is the specific heat of air, and
Lw is the latent heat of evaporation; they represent constants
in the bulk formula; Ur , Tr , and qr represent the air velocity,
temperature, and specific humidity, respectively, at a certain
height (here, r = 2 m); Ts and qs are the surface temperature
and specific humidity at the leads’ surface, respectively. The
vapor pressure at saturation es (in Pa) was used to calculate
qs as follows:

es = 611× 10a(Tr−273.16)(Tr−b), (5)

qs =
0.622es

P − 0.378es
, (6)

where P is the air pressure, and a and b are coefficients;
for an open water area, a = 7.5 and b = 35.86. Equation (6)
was also used to estimate specific humidity qr using the dew
temperature. It should be noted that air temperature and air
velocity provided by the ERA5 reanalysis hourly dataset cor-
responded to different heights, so the air velocity at a 2 m
height was calculated using the logarithmic neutral wind pro-
file equation (Tennekes, 1973) as follows:

Ur =
µ∗

K
ln
(
hr

z0

)
, (7)

z0 = α
µ∗

g
+β

ν

µ∗
, (8)

where hr is the reference height (2 m in this study), z0 is the
momentum roughness length, K is the von Kármán constant
(K = 0.4), and µ∗ represents the friction velocity; α and β
are the Charnock constant and a “smooth flow” constant, re-
spectively, and they were set to 0.018 and 0.11 empirically
in this study; ν is the dynamic viscosity of air, and g is the
gravitation constant.

Equations (7) and (8) can be solved in an iteration loop us-
ingU10 acquired from the ERA5 dataset. Further, the transfer
coefficients Csh and Cle can be respectively calculated by

Csh =
K2

ln(hr/z0) ln(hr/z0t )
, (9)

Cle =
K2

ln(hr/z0) ln
(
hr/z0q

) , (10)

where z0t and z0q denote the roughness lengths for tempera-
ture and humidity, respectively, and they can be obtained as
follows:

zot = 0.62
ν

µ∗
, (11)

z0q = 0.40
ν

µ∗
. (12)

All of the mentioned variables can be acquired or calculated
from the IST image and meteorological data. Once Hs and

Hl have been calculated, the overall THF can be obtained by
adding them together.

3.3 Accuracy assessment

The DeepSTHF output results were compared with
those obtained by the cubic-convolution-interpolation-based
subpixel-scale method, which is denoted in this work as
cubic-convolution-interpolation-based subpixel THF estima-
tion (CubicSTHF), and the pixel-scale method, which is de-
noted in this work as original image-based THF estimation
(OriTHF). In the CubicSTHF method, the coarse-resolution
IST image was first super-resolved by cubic interpolation.
Then, the resulting super-resolved IST image was used to
produce the corresponding lead map with a pixel-based clas-
sification approach (Willmes and Heinemann, 2015). Finally,
the THF over leads was calculated using the super-resolved
IST image and lead map. In the OriTHF method, the THF
over leads was estimated using the original coarse-resolution
IST image and the corresponding lead map, which was also
obtained from the coarse-resolution IST image using the
pixel-based approach.

To assess the performance of the proposed DeepSTHF
method comprehensively, two experiments using the simu-
lated and real MODIS images were performed. The experi-
ment with the simulated MODIS images was conducted to
explore the performances of the DeepSTHF model as well
as to avoid the uncertainty due to co-registration and temper-
ature differences between Landsat-8 and MODIS data. The
experiment with the real MODIS images was conducted to
assess the performance of the DeepSTHF model in practical
applications.

4 Experiments and results

4.1 Experiment with simulated MODIS images

In this experiment, the MODIS IST images were obtained
from the Landsat-8 IST images using the pixel aggregate
method and were used as the input coarse-resolution data.
The original Landsat-8 IST images and the corresponding
lead maps were used as the fine-resolution data and as a ref-
erence.

4.1.1 Training and test data

The training data of the CNN models were generated from
the IST images and lead maps derived from 10 Landsat-8
images acquired during the period of 2013–2017. The IST
images and lead maps were clipped into image patches, each
of which had a size of 80× 80 pixels; the sliding size in
the clipping process was set to 40. The clipped IST image
patches were degraded to 1000 m to simulate the MODIS
IST images. A total of 36 000 image patches, consisting of
degraded IST image patches, original Landsat-8 IST image
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patches, and lead map patches, were randomly selected to
form the training data. The degraded IST image patches and
the corresponding original IST image patches were used to
train the SR IST image reconstruction CNN. Similarly, the
degraded IST image patches and the corresponding lead map
patches were used to train the SR lead mapping CNN.

During the testing process, the IST images and lead maps
obtained from the Landsat-8 scene (p071r010) acquired on
31 March 2020 were used. The IST images were degraded
to 1000 m and used as the input of the trained CNNs. The
original IST images and lead maps were used as real data to
validate the results.

4.1.2 Results

The comparison of the simulated coarse-resolution MODIS
IST image, the SR IST images obtained by the CubicSTHF
and the DeepSTHF, the reference fine-resolution Landsat-8
IST image, and the error images for the coarse-resolution im-
age and SR results are shown in Fig. 6. Note that the over-
all spatial texture of the output from DeepSTHF is more like
the reference Landsat-8 IST image than the coarse-resolution
image and that from CubicSTHF. The SR result for Cubic-
STHF is blurred in lead areas. Although the SR results of the
CubicSTHF and DeepSTHF methods are similar to the ref-
erence data for areas covered by ice, the DeepSTHF method
produced more accurate results in areas with leads. From the
error images, the original coarse-resolution IST image has
the largest root-mean-square error (RMSE), which is more
than twice as much as those of CubicSTHF and DeepSTHF.
Even though CubicSTHF generated a smaller number of er-
rors when compared with the coarse-resolution image, the
errors in the lead areas were more significant than those of
DeepSTHF.

The comparison of the scatter plots of the reference IST
in generated lead areas and the corresponding IST obtained
by a different method, namely, the OriTHF, CubicSTHF, and
DeepSTHF methods, is presented in Fig. 7. In the scatter plot
corresponding to the OriTHF, the value of r2 was only 0.274,
while the values of the CubicSTHF and DeepSTHF meth-
ods were significantly higher, indicating a stronger correla-
tion between the SR methods’ results and the fine-resolution
image. Among the two SR methods, the DeepSTHF has a
higher value of r2 but lower RMSE than the CubicSTHF
method. Additionally, the results in Fig. 7b show that the
CubicSTHF method underestimated most pixels with a ref-
erence temperature higher than −6 ◦C, which is indicated by
the substantial number of data points below the diagonal line.
This problem has been overcome by using the DeepSTHF
method. Namely, as shown in Fig. 7c, when the DeepSTHF
method was used, the data points are closer to the diago-
nal line that denotes a 1 : 1 relationship, and data points are
relatively equally located on both sides of the diagonal line
in contrast to the other two methods. Thus, the DeepSTHF
method achieved the most accurate IST image SR results.

Table 1. The lead mapping results of the three methods.

Method Overall Commission Omission MIOU
accuracy error error

OriTHF 0.961 0.015 0.341 0.756
CubicSTHF 0.975 0.008 0.240 0.834
DeepSTHF 0.980 0.008 0.171 0.865

Note that MIOU denotes the mean intersection over union. The most accurate results
are highlighted in bold.

The lead maps obtained by the OriTHF, CubicSTHF, and
DeepSTHF methods are presented in Fig. 8. The main lead
networks generated by the three methods were similar to
those in the reference fine-resolution lead map, as shown in
Fig. 8c, especially for leads wider than several kilometers.
However, the boundaries of the lead maps obtained by the
OriTHF were not smooth and not visually realistic. In addi-
tion, many narrow lead networks were not extracted by the
OriTHF and CubicSTHF, as indicated by the red ellipses in
Fig. 8a and b. In contrast, the lead map obtained by the Deep-
STHF method was more visually realistic and much closer to
the reference lead map. When the DeepSTHF was used, the
narrow leads were correctly mapped, and their connectivity
was well maintained. It should be noted that some very nar-
row lead networks in the fine-resolution lead map, especially
those with a width of smaller than five pixels, became dis-
connected when the DeepSTHF method was used, as the red
rectangle in Fig. 8c shows; this was because the ice lead frac-
tion in the mixed pixels of the coarse-resolution IST image
was too small to provide detailed lead information.

The quantitative assessment of the lead mapping results of
the OriTHF, CubicSTHF, and DeepSTHF methods is given
in Table 1. The DeepSTHF method had higher overall accu-
racy and mean intersection over union (MIOU) and a smaller
omission error than the OriTHF and CubicSTHF methods.
The omission errors for the OriTHF and CubicSTHF meth-
ods were 0.341 and 0.240, and they were much greater than
that for the DeepSTHF, indicating that many lead pixels were
not extracted, which is consistent with the results presented
in Fig. 8. In addition, it should be noted that although more
lead pixels have been identified by the DeepSTHF method,
this did not increase the rate of commission errors. Thus,
the DeepSTHF method provided the most accurate lead map
among all the methods.

Regarding both the IST image SR reconstruction and SR
lead mapping, the DeepSTHF method achieved the most ac-
curate results among all the methods. This result is mainly
caused by the fact that the CNN-based DeepSTHF model has
the ability to extract a potential spatial pattern in the coarse-
and fine-resolution IST images/lead maps through learning
and built an appropriate nonlinear relationship between them
to implement subpixel analysis, which is essential for obtain-
ing reliable SR results. Meanwhile, the CubicSTHF method
generated a value for each pixel in the IST image SR result
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Figure 6. Simulated MODIS IST image and SR results of different methods. (a) The IST obtained by the OriTHF; (b) the IST obtained
by the CubicSTHF; (c) the IST obtained by the DeepSTHF; (d) the reference IST; (e) the IST error of the OriTHF; (f) the IST error of the
CubicTHF method; (g) the IST error of the DeepSTHF method.

Figure 7. Scatter plots of the reference IST in lead areas obtained from the Landsat and the IST obtained by a different method. (a) The
OriTHF method; (b) the CubicSTHF method; (c) the proposed DeepSTHF method. The red dashed lines denote fitted linear regression lines
of the data points; RMSE and r denote the root-mean-square error and Pearson coefficient, respectively.

that is a linear combination of surface temperatures of neigh-
boring pixels, which makes it difficult to represent a complex
nonlinear relationship between fine- and coarse-resolution
images. Additionally, the threshold approach is used in the
CubicSTHF method to extract leads, which is a pixel-based
method and cannot achieve subpixel analysis.

The distributions of the THF over leads estimated by the
three methods are presented in Fig. 9, where it can be seen
that the proposed DeepSTHF method preserved abundant
spatial texture and achieved more accurate results than the

OriTHF and CubicSTHF methods. Since the OriTHF and
CubicSTHF failed to retrieve many small leads, the THF
over these leads was not calculated, as shown in Fig. 9a and
b, and thus significant errors in the corresponding areas ap-
peared in the error map, as shown in Fig. 9e. Additionally,
even though the estimated THFs for large leads obtained by
the OriTHF and CubicSTHF were close to the reference data,
the obtained THF along boundaries was much lower than the
true value, which resulted in large errors, especially for the
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Figure 8. Lead maps generated from the simulated IST image using different methods. (a) The lead map generated by the OriTHF method;
(b) the lead map generated by the CubicSTHF method; (c) the lead map generated by the DeepSTHF method; (d) the reference lead map
extracted from the Landsat-8 operational land imager data. The lead and ice-covered areas are marked in blue and white, respectively. The
red ellipses represent lead networks that have not been properly mapped by the OriTHF and CubicSTHF methods, and red rectangles indicate
an area with very narrow leads that have not been mapped by the DeepSTHF.

OriTHF method, as shown in Fig. 9e and f. In contrast, the
DeepSTHF has a relatively small overall error.

The scatter plots of the reference THF data plotted against
the THF data estimated by the OriTHF, CubicSTHF, and
DeepSTHF methods are shown in Fig. 10. Generally, the
THF data estimated by the DeepSTHF method were closer
to the diagonal line than those estimated by the OriTHF
and CubicSTHF methods. Several THF values estimated
by the OriTHF and CubicSTHF methods were less than
0.25×106 W. This mainly occurred because small leads were
not mapped, so the corresponding THFs were not estimated.
The r2 values of the CubicSTHF and DeepSTHF methods
were both much higher than that of the OriTHF. Even though
the result of the CubicSTHF had a higher correlation with
the reference data than that of the OriTHF, it is evident that
most of the pixel values were underestimated, as shown in
Fig. 10b. It should be noted that, for all plots, there are data
points on both vertical and horizontal axes, which was due to
the omission (points on the horizontal axis) and misclassifi-
cation (points on the vertical axis) of lead pixels of the three
methods during the lead mapping.

The total THF estimated by the OriTHF, CubicSTHF, and
DeepSTHF methods, as well as the accuracies of all the
methods, are listed in Table 2. Generally, the total THF esti-
mated by the DeepSTHF method was the closest to the ref-
erence data. Although the THF estimated by the OriTHF
was relatively closer to the reference value than that esti-
mated by the CubicSTHF, its RMSE was much larger. In
contrast, the THF estimated by the DeepSTHF had the small-
est RMSE and overall error (OE) and the greatest r2, espe-
cially for the OE. The OE values of the OriTHF and Cu-
bicSTHF methods were almost 3 times that of the Deep-
STHF method. The THF error (i.e., the real value minus
the estimated value) distributions of the three methods are
demonstrated in Fig. 11. More than 70 % of all errors of the
DeepSTHF method were located in the small error range of

[−0.25×1011, 0.25×1011 W], while the percentage of errors
in this range for the other two methods was much smaller,
i.e., less than 50 % for the OriTHF method and less than 60 %
for the CubicSTHF method. For the DeepSTHF method, the
errors were close to a normal distribution, and the rate of
positive errors was close to that of negative errors. Mean-
while, for the CubicSTHF method, the THF of most pixels
was underestimated, as shown in Fig. 10; the rate of positive
errors was significantly larger than the corresponding nega-
tive errors, and the errors were biased. Therefore, compared
with the CubicSTHF method, although the improvement of
the DeepSTHF method in RMSE was not large, the total es-
timated THF data were much closer to the reference data be-
cause the most positive and negative errors tended to cancel
out each other, which was statistically good. These findings
indicated that the proposed DeepSTHF method can achieve
a more favorable result than the other two methods and can
accurately estimate THF over leads at a subpixel scale.

4.2 Experiment with real MODIS images

In this experiment, real MODIS images were used to obtain
the input coarse-resolution IST images, while the Landsat-
8 images were used to produce the reference fine-resolution
IST images and lead maps.

4.2.1 Training and test data

Ten MODIS IST images, the corresponding Landsat-8 IST
images, and lead maps acquired during the period of 2013–
2017 were used to create training samples of the CNN mod-
els. The Landsat-8 images were converted to a MODIS ge-
olocation grid to achieve accurate co-registration between the
Landsat-8 and MODIS images. Using the same method as in
the previous experiment, the images were clipped into image
subsets with a size of 80×80 pixels with an overlapping size
of 40 pixels between neighboring subsets. The SR IST image
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Figure 9. Spatial distribution of the THF calculated by different methods: (a) the OriTHF method; (b) the CubicSTHF method; (c) the
proposed DeepSTHF method; (d) the reference distribution. The error maps of the distribution of the THF of (e) the OriTHF method, (f) the
CubicSTHF method, and (g) the proposed DeepSTHF method.

Figure 10. Scatter plots of the THF calculated from the reference data and the THF estimated by (a) the OriTHF method, (b) the CubicSTHF
method, and (c) the DeepSTHF method. The red dashed lines denote the fitted linear regression lines of the data points. RMSE and r denote
the root-mean-square error and Pearson coefficient, respectively.

reconstruction CNN model and the image SR lead mapping
CNN model were trained using a total of 36 000 randomly se-
lected MODIS IST image patches as well as the correspond-
ing Landsat-8 IST image and lead map patches.

Three MODIS IST images acquired on 25 April 2018,
9 May 2019, and 31 March 2020 were used to estimate the
THF at a subpixel scale. For each MODIS image, a subset
containing leads with different widths and lengths was se-
lected for the experiment. The three corresponding Landsat-8
scenes denoted as p057r010, p111r240, and p071r010 were

employed to provide reference fine-resolution data used to
validate the results. The generalization ability of the pro-
posed model could be accurately validated because the test
images were located in different regions and observed on
these dates when leads changed quickly.

It should be noted that there were large temperature dif-
ferences between the MODIS and Landsat-8 IST images,
which was mainly due to different overpass times of the
MODIS and Landsat-8 satellites. A possible way to reduce
this inconsistency is to use a sinusoid-based temporal cor-
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Table 2. Accuracies of the estimated turbulent heat flux (THF) estimated by different methods.

Method Reference THF (W) Estimated THF (W) OE RMSE (W) r2

OriTHF
2.243× 1011

1.871× 1011 3.72× 1010 5.162× 105 0.260
CubicSTHF 1.765× 1011 4.78× 1010 3.576× 105 0.623
DeepSTHF 2.115× 1011 1.28× 1010 2.970× 105 0.705

Note that OE stands for the overall error.

Figure 11. Error distribution of the THF estimated by three different methods.

rection method (Van Doninck et al., 2011). However, in prac-
tice, the temporal correction method can introduce an addi-
tional error because the sinusoidal method may not be able
to model a complex variation of temperatures. Due to this
factor, the MODIS and Landsat-8 IST images were normal-
ized before training by the min–max normalization method.
Furthermore, in the test stage, the MODIS IST image SR re-
sults were not evaluated quantitatively due to a lack of true
fine-resolution IST reference images; they were assessed vi-
sually. For lead mapping, it was assumed that the range of
leads varied slightly from the MODIS observation time to
the Landsat-8 observation time so that the lead maps pro-
duced from the Landsat-8 OLI data could be used to validate
the SR lead mapping results.

4.2.2 Results

The MODIS IST images and the corresponding image SR re-
construction results of the CubicSTHF and DeepSTHF meth-
ods are shown in Fig. 12. A visual assessment of the results
of the CubicSTHF and DeepSTHF method shows that these
results were more realistic than those of the original MODIS
IST images, which were not smooth along the boundaries of
the lead networks. Compared with the results of the Cubic-
STHF method, finer spatial textures were observed in the im-
ages obtained by the DeepSTHF. For lead networks, the SR
result of the CubicSTHF method was blurred to a certain ex-
tent, but it was sharper than that of the DeepSTHF method.
The temperature difference between the lead and ice areas
along the boundary was more significant in the result of the
DeepSTHF method than in that of the CubicSTHF method.

The generated lead maps obtained by the OriTHF, Cu-
bicSTHF, and DeepSTHF methods are displayed in Fig. 13.
Generally, the lead maps obtained by the DeepSTHF method
were more similar to the reference maps than those obtained
by the other methods. The OriTHF and CubicSTHF methods
failed to identify many narrow leads, which made the corre-
sponding lead networks become disconnected, as red rectan-
gles in Fig. 13b, f, and j show. Some parts of the ice-covered
regions surrounded by leads were misclassified as leads by
the OriTHF and CubicSTHF methods, as shown in red el-
lipses in Fig. 13b and j. Even though the main lead networks
were correctly mapped by the OriTHF method, the bound-
aries of the obtained lead networks were jagged, as shown in
Fig. 13q and u. The results of the CubicSTHF method were
smoother than those of the OriTHF method, but some parts of
large lead networks were discontinuous, as shown in Fig. 13r
and v, which increased the lead widths in them to a certain ex-
tent. In contrast, the proposed DeepSTHF method achieved
more promising results. First, it identified most small leads
and maintained their connectivity. Second, the boundaries of
the segmented leads were smooth and much closer to those of
the reference leads (subareas r1–r3). Third, most ice-covered
areas surrounded by leads were correctly classified, even
when the areas were relatively small, as shown in the dashed
red rectangle in Fig. 13k. It should be noted that although the
DeepSTHF method extracted most leads accurately, it did not
perform well on very narrow leads, especially those with the
width of less than 5 pixels in the fine-resolution map from
Landsat-8 data because the lead fraction for these leads in the
coarse image was too small and could hardly be mapped to
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Figure 12. The IST images were acquired on (a–c) 25 April 2018, (d–f) 9 May 2019, and (g–f) 31 March 2020. The SR result was obtained
by (a, d, g) the OriTHF method, (b, e, h) the CubicSTHF method, and (c, f, i) the proposed DeepSTHF method.

the fine-resolution lead map using the CNN model. Addition-
ally, the results of the DeepSTHF method were influenced
by abnormal pixels in the input data. For instance, some of
the pixels were misclassified in a narrow rectangular area, as
shown in the red dashed ellipse in Fig. 13c, because the tem-
perature of this area did not correctly reflect the actual case
in the ocean, as displayed in Fig. 12a.

The quantitative performances of the lead maps generated
by the three methods are compared in Table 3. As the re-
sults in Table 3 show, the DeepSTHF method provided the
highest overall accuracy and MIOU, as well as the lowest
commission error, on 25 April 2018 and 31 March 2020. Al-
though the commission error of the DeepSTHF method on
9 May 2019 was higher than those of the OriTHF and Cu-
bicSTHF methods, the overall accuracy and MIOU of the
DeepSTHF method were larger. The accuracy of the OriTHF
method was the lowest except for 9 May 2019. The com-
mission errors of the three methods on 9 May 2019 were

small because, in the data collected on this day, the lead
areas mainly consisted of a large lead network that could
be easily extracted. For all dates, the omission errors of the
OriTHF and CubicSTHF methods were much larger than that
of the CNN, demonstrating that many lead pixels were not
correctly classified, which was consistent with the visual re-
sults presented in Fig. 13. Therefore, the proposed frame-
work was also effective in the image SR lead mapping with
real MODIS data.

The THF over mapped leads estimated by the OriTHF,
CubicSTHF, and DeepSTHF methods is shown in Fig. 14.
Since the estimated THF was dependent on the generated
lead maps, the spatial distribution of the estimated THF was
consistent with the lead maps. Specifically, in the plots corre-
sponding to the OriTHF and CubicSTHF methods, the THF
of most small leads was not depicted, and the lead bound-
aries were not smooth, especially for the plot corresponding
to the OriTHF method. Additionally, the estimated THF of
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Figure 13. The lead maps generated from the MODIS IST images using the three methods. The images were acquired on (a–d) 25 April 2018,
(e–h) 9 May 2019, and (i–l) 31 March 2020. The lead and ice-covered areas are marked in blue and white, respectively. (a, e, i, m, q, u) The
results of the OriTHF method, (b, f, j, n, r, v) the results of the CubicSTHF method, and (c, g, k, o, s, w) the results of the DeepSTHF
method. The black rectangles in panels (d), (h), and (i) represent the subareas. The red rectangles in panels (b), (f), and (j) represent the lead
networks that have been mapped by the CubicSTHF method. The red ellipses in panels (b) and (j) show the ice-covered regions that have
been misclassified as leads by the CubicSTHF method. The red dashed rectangle in panel (k) represents the ice-covered areas that have been
correctly classified by the DeepSTHF method. The red dashed ellipse in panel (c) shows the pixels misclassified as leads by the DeepSTHF
method due to the errors in the ice surface temperature.
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Table 3. Accuracies of the lead maps obtained by different methods using data acquired on different dates.

Date Overall accuracy Commission error Omission error MIOU

25 April 2018 0.960/0.966/0.978 0.027/0.024/0.015 0.247/0.185/0.126 0.745/0.779/0.843
9 May 2019 0.968/0.966/0.973 0.004/0.006/0.010 0.254/0.265/0.162 0.843/0.833/0.873
31 March 2020 0.956/0.960/0.972 0.022/0.021/0.018 0.319/0.281/0.156 0.742/0.764/0.831

Note that MIOU stands for the mean intersection over union. The given numbers denote the first, second, and third numbers in the
entry, respectively. The most accurate results are in bold text.

pixels along the boundaries of the lead networks was rela-
tively small for the CubicSTHF method, which could be due
to the underestimation of temperature in the SR IST image.
Meanwhile, for the DeepSTHF method, the THF over many
of the small leads was correctly estimated, and the overall
spatial pattern of the estimated THF in the plot was much
finer than those of the OriTHF and CubicSTHF methods.

The estimated THFs on different dates obtained by the
three methods are given in Table 4. Although more leads
were identified using the CubicSTHF method than the
OriTHF method on 25 April 2018 and 31 March 2020, which
is indicated by a smaller number of omission errors, the THF
estimated by the CubicSTHF was slightly smaller than that
of the OriTHF method on both dates. This was mainly be-
cause the temperature of lead pixels along the lead networks
was lower in the SR process by the CubicSTHF method,
as shown in Fig. 12. Meanwhile, since for the DeepSTHF
method more leads were mapped, and the reconstructed tem-
perature of lead pixels along lead networks was close to
the pixels in the central part of lead networks, the total
THF obtained by the DeepSTHF method on all dates was
greater than those of the OriTHF and CubicSTHF methods.
The THF difference between DeepSTHF and the other two
methods on 31 March 2020 was the largest, followed by
that on 25 April 2018, while that on 9 May 2019 was the
smallest. The main reason for this was that the test area on
31 March 2020 comprised many small leads that were not
correctly classified by the OriTHF and CubicSTHF, and the
test area on 9 May 2019 mainly consisted of a large lead
network that was successfully extracted by all three meth-
ods, where only a few small lead networks were mapped
by the DeepSTHF method, as shown in Fig. 13g. There-
fore, the DeepSTHF achieved more accurate results in the
areas composed of leads with abundant widths and lengths
than the other two methods. There was a large difference in
the estimated THF by the three methods between the sim-
ulated and real MODIS images on 31 March 2020. For in-
stance, the THFs estimated by the DeepSTHF method from
simulated and real MODIS images were 2.115× 1011 and
1.747× 1011 W, respectively. This could be due to the tem-
perature differences between the MODIS and Landsat-8 data.

Table 4. Total THF estimated by the three methods on different
dates (unit: W).

Method 25 April 2018 9 May 2019 31 March 2020

OriTHF 2.114× 1011 2.074× 1011 1.348× 1011

CubicSTHF 2.006× 1011 2.096× 1011 1.287× 1011

DeepSTHF 2.426× 1011 2.337× 1011 1.747× 1011

5 Discussion

5.1 DeepSTHF novelty

The THF over leads is an important parameter in the study
of climate in the Arctic region. Fine-spatial-resolution satel-
lite imagery is required for accurate calculation of THF, but
sometimes these data have limited usage in comparison to
the coarse-resolution data due to several reasons, including
data availability. It should be noted that mixed pixels along
the edges of a lead can greatly decrease the accuracy of THF
estimation when traditional methods are used. To overcome
this problem, the CNN-based method, the DeepSTHF, is pro-
posed in this work. The verification results of the DeepSTHF
method demonstrate its great ability in modeling the spa-
tial pattern and relationship between the coarse- and fine-
resolution data and show that it can achieve reliable results
with a high level of accuracy. The main reason for such a
good performance of the DeepSTHF method is the ability
of CNN models to accurately model complex nonlinear rela-
tionships between input and output data. For SR IST image
reconstruction, the bicubic-interpolation-based method can
obtain the values of interpolated pixels by linearly combining
the neighboring pixels. However, the spatial textures between
the coarse- and fine-resolution pixels are not linear under cer-
tain conditions, especially for pixels along the lead bound-
aries. Therefore, the interpolated IST images commonly lack
a fine spatial pattern. The same problem can be observed in
the lead maps produced by the threshold method since this
method is a pixel-based method. In contrast, the proposed
CNN-based method learns the spatial patterns automatically
from the existing data, thus achieving a more powerful SR of
data.

The real experiments on three dates, namely,
25 April 2008, 5 May 2009, and 31 March 2020, demon-
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Figure 14. Spatial distributions of the THF obtained by (a, d, g) the OriTHF method, (b, e, h) the CubicSTHF method, and (c, f, i) the
DeepSTHF method. The data were collected on (a–c) 25 April 2018, (d–f) 9 May 2019, and (g–i) 31 March 2020.

strated that the THF estimated by the DeepSTHF was more
accurate than those of the OriTHF and CubicSTHF, which
was mainly because it correctly identified more lead pixels,
as well as obtained higher IST in SR, especially along the
lead boundaries. Specifically, when the area included the
leads of various widths, such as on 31 March 2020, the
DeepSTHF estimated approximately 30 % more THF than
the other two methods. Even when the study area consisted
mainly of a large lead network, such as on 9 May 2019,
the THF calculated by the DeepSTHF was 11 % larger than
those of the OriTHF and CubicSTHF methods. It should
be noted that regardless of the fact that leads cover only
1 %–2 % of the sea surface in the Arctic region during win-
ter, they contributed to more than 70 % of the upward THF
(Marcq and Weiss, 2012; Maykut, 1978). Therefore, it can
be inferred that, compared to the OriTHF and CubicSTHF
method, the DeepSTHF method can calculate considerably
more THF for the Arctic region, which is significantly
important relative to the overall heat budget.

5.2 DeepSTHF generalization ability

An experiment was conducted in the Barents Sea of the Arc-
tic region using the MODIS images collected on 4 April 2020
to validate the generalization ability of the proposed Deep-
STHF in SR lead mapping. Due to the lack of the Landsat-
8 data, the Sentinel-2 images were used as reference data,
and the obtained results are shown in Fig. 15. As results
in Fig. 15 show, the OriTHF and CubicSTHF did not iden-
tify most of the narrow leads; also, although the wide leads
were mapped, their edges were not smooth and visually re-
alistic. The lead map generated by the DeepSTHF method
was closer to the reference data; namely, the boundaries of
obtained main lead networks were smooth, a large number
of narrow leads were segmented, and their connectivity was
well maintained. However, it should be noted that for all three
methods, not all leads were correctly identified, as red el-
lipses in Fig. 15c–e show, which could be because some parts
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Table 5. The lead mapping results of the OriTHF, CubicSTHF, and
DeepSTHF methods.

Method Overall Commission Omission MIOU
accuracy error error

OriTHF 0.918 0.049 0.350 0.686
CubicSTHF 0.916 0.054 0.333 0.684
DeepSTHF 0.941 0.035 0.265 0.753

Note that MIOU stands for the mean intersection over union. The most accurate
results are highlighted in bold.

of the area under study might be contaminated by thin clouds
or drifting snow, as presented in Fig. 15a and b.

The lead mapping results of the OriTHF, CubicSTHF, and
DeepSTHF were quantitatively evaluated, and they are given
in Table 5. The overall accuracy and MIOU of the Deep-
STHF method were larger than those of the OriTHF and
CubicSTHF methods, which indicated that the DeepSTHF
method achieved the best overall performance among all the
methods. The omission errors of the OriTHF and Cubic-
STHF methods were much larger than that of the DeepSTHF
method, indicating that many more lead pixels were not cor-
rectly classified, which was consistent with the visual perfor-
mance. Furthermore, the DeepSTHF had the smallest com-
mission error among all the methods, although it mapped
more leads. Consequently, the proposed DeepSTHF method
performed well in image SR lead mapping in areas other than
the Beaufort Sea.

5.3 CNN architecture and parameter setting

The enhanced performance of the DeepSTHF method in
comparison to the CubicSTHF method is mainly due to the
ability of the DeepSTHF to automatically learn the compli-
cated nonlinear relationships between the coarse-resolution
IST image and the corresponding fine-resolution IST image
and lead map using the two CNN models. In this study, two
CNNs with different architectures are used for the IST image
SR and SR lead mapping because a single CNN architecture
cannot simultaneously achieve different objectives of the two
CNN models. The performance of the multi-level feature fu-
sion residual CNN, which was used for lead mapping, was
tested on a MODIS SR IST image, and the test results are
shown in Fig. 16. Although most fine spatial information has
been recovered as red rectangles in Fig. 16b show, the re-
trieved surface temperature of lead pixels along boundaries
was greater than that in the central regions, which caused vi-
sual discontinuity, as displayed in the red ellipses in Fig. 16b.
This could be because the multi-level feature fusion residual
CNN mainly focused on the semantic information of lead
networks in the down-sampling layers, which might cause
the loss of spatial texture of the input data to a certain extent.
Additionally, the very deep CNN used for the SR IST was
also proven to be invalid in lead mapping because it could

not identify lead networks. A major reason for this was that
it did not include any down-sampling layers, and therefore
the semantic information of lead networks could be difficult
to extract.

However, like many classic algorithms, the proposed
DeepSTHF method is not totally automatic, and there are
certain customized parameters for the CNN models. The
batch size of the training samples, an optimization method
during the training process, and the learning rate should be
set in advance. The optimization method (or optimizer) is a
method used in the CNN model training process to adjust
the model’s weights and biases to minimize the training er-
ror. In recent studies, the stochastic gradient descent (SGD)
and Adaptive Moment Estimation (Adam) optimizers have
been widely used. These two optimizers are the gradient-
based methods; their performances regarding the proposed
DeepSTHF method were compared, and the results showed
that the Adam algorithm could achieve a much faster conver-
gence speed and performed better than the SGD algorithm.
As a result, the Adam algorithm was selected as the optimiza-
tion method in this study. The exponential decay rates β1
and β2 of the Adam algorithm were set to 0.9 and 0.999, re-
spectively, which denoted the values that have been typically
recommended in practical applications (Reddi et al., 2019).
The learning rate value determines the step size at every it-
eration while moving toward a minimum of a loss function,
and the most appropriate learning rate value for a particular
problem mainly depends on the training dataset and model
architecture. In this study, the learning rate was set to 10−4,
which was empirically found as the most appropriate value
for the studied problem. The batch size defines the number
of training samples used in one iteration of the model train-
ing process. Masters and Luschi (2018) suggested setting the
batch size between 2 and 32 because this size can provide the
most stable convergence. In this study, the batch size was set
to 24, considering the trade-off between the training speed
and computational speed of the computer. The experiment
showed that the DeepSTHF method could accurately gen-
erate subpixel THF data for input data acquired on differ-
ent dates and covering different areas. However, more suit-
able model parameter values could be selected in the future,
which could provide more accurate results. Determination of
the most suitable model parameter values has been a hot topic
in the deep learning field, and it requires further investiga-
tion.

5.4 Uncertainties and future work

The proposed DeepSTHF method has certain limitations
when used in THF estimation. First, there is a large spa-
tial resolution gap between the Landsat-8 and MODIS sur-
face temperature images, which makes the relationship be-
tween them complex and difficult to model. Therefore, very
narrow lead networks in a fine-resolution image, especially
those with a width of less than 5 pixels, cannot be mapped
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Figure 15. (a) The MODIS IST image of a subarea in the Barents Sea; (b) the Sentinel-2 B8 reflectance image; (c) the lead map obtained
from the MODIS IST image by the OriTHF method; (d) the lead map obtained from the MODIS IST image by the CubicSTHF method;
(e) the lead map obtained from the MODIS IST image by the DeepSTHF method; (f) the reference lead map extracted from the Sentinel-2
image. The red ellipse in panel (e) represents the area impacted by the drifting snow.

Figure 16. Results of the MODIS SR IST imaging for data acquired on 31 March 2020 obtained by (a) the cubic interpolation method,
(b) the CNN model with the backbone of the CNN used in SR lead mapping, and (c) the very deep residual CNN model. The red rectangles
represent that the fine spatial pattern has been recovered by the multi-level feature fusion residual CNN. The red ellipses represent the
recovered surface temperatures of lead pixels by the multi-level feature fusion residual CNN that were not visually continuous.

The Cryosphere, 15, 2835–2856, 2021 https://doi.org/10.5194/tc-15-2835-2021



Z. Yin et al.: Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery 2853

by the proposed DeepSTHF method. In practice, leads can
be meters to kilometers wide (Zhang et al., 2018a; Qu et
al., 2021), and their widths vary with region and time. For
instance, leads are more prevalent in the marginal ice zone
comprising much thin ice than in the central Arctic ice pack
(Zhang et al., 2018a). Additionally, it has been revealed that
lead fractions are minimal in the period from February to
early March (in the winter season) when the surface temper-
ature decreases to near its minimum value in a year and then
increases quickly in April; the lead fractions then reach more
than 10 % ice area in June since the temperature rises largely
in the summer season (Qu et al., 2021). Therefore, the relia-
bility of the proposed DeepSTHF decreases as the number of
very narrow leads increases, especially in the central Arctic
region during the winter season. In addition, in this study, it is
assumed that the lead network does not change between the
overpass times of the MODIS and Landsat-8 satellites, and
the lead maps obtained from the Landsat-8 data are used as
reference data in the MODIS imagery experiment, which can
introduce certain errors in the training process if an abrupt
change occurs in the ice pack. Further, clouds or drifting
snow may have a negative impact on the DeepSTHF perfor-
mance. Namely, the surface temperature of a region contami-
nated with clouds or drifting snow does not represent reality,
so the DeepSTHF parameters obtained in training with the
data that contain clouds or drifting snow may not be opti-
mal. In the test process, the clouds or drifting snow outside
the lead area will have little impact on the estimated THF
over lead, but if they occur in the lead area, the DeepSTHF
will not correctly classify the lead pixels and will not accu-
rately reconstruct the corresponding temperature, resulting
in an unreliable THF calculation result. Furthermore, since
there have been no available meteorological data matching
the scale of Landsat imagery, in this study, the meteorolog-
ical data from the ERA5 dataset are used and interpolated
by the cubic interpolation method. Therefore, the potential
influence of a warm lead surface on the bottom air might be
neglected, which can cause extra uncertainty in the estimated
THF.

Although the proposed DeepSTHF achieved the most ac-
curate THF among all the methods in the experiments, there
was still a large discrepancy between the estimated and ref-
erence THF data, as shown in Fig. 10c. This discrepancy was
mainly due to the errors of IST imagery SR reconstruction
and SR lead mapping, whose major part originated from the
very narrow lead network that the DeepSTHF could not iden-
tify, especially those with a width of less than five pixels.
Therefore, in practical applications, as the number of very
narrow lead networks increases, the uncertainty of the Deep-
STHF will increase as well.

The proposed DeepSTHF method can be further improved
for future use. First, in this study, the integrated framework
is applied with the MODIS thermal images, which have a
spatial resolution of 1 km. However, there are other spec-
tral bands with finer resolution in the MODIS product, in-

cluding the first and second bands with a spatial resolution
of 250 m. These finer-resolution images contain more spatial
texture than the thermal infrared images, so the accuracy of
an SR analysis may be increased by combining them (Li et
al., 2013). Second, so as to make sure a lead indicated by
the MODIS images is consistent with that of the Landsat-8
images, a change detection method can be first employed to
detect abrupt lead change area during the overpass time of
the two satellites. Third, the proposed method can achieve
higher efficiency for long-term large-area analysis since the
fine SST image and lead map can be generated with high ef-
ficiency by the proposed CNNs once the model training is
completed. Therefore, the proposed method could be applied
to produce accurate long-term series THF products using the
MODIS images in the Arctic region.

6 Conclusions

This paper proposes the DeepSTHF method for MODIS ther-
mal infrared imagery. Specifically, the proposed DeepSTHF
method includes two CNN models that are used to gener-
ate a finer-spatial-resolution IST image and the correspond-
ing finer-resolution lead map from the MODIS IST image.
The finer-spatial-resolution data are used for THF estimation.
The proposed DeepSTHF method is compared with a pixel-
based method, the OriTHF, and a cubic-interpolation-based
method, the CubicSTHF, in two experiments using real and
simulated data. The results showed that the proposed Deep-
STHF acquired more accurate and reliable THF results than
the other two methods, which was because it could detect
more narrow leads and generate more accurate temperature
in the leads area than the OriTHF and CubicSTHF meth-
ods. Although DeepSTHF had limitations for very narrow
leads and images contaminated by clouds or drifting snow,
this study demonstrates the potential of deep learning in the
field of THF estimation over leads, where the deep-learning-
based methods can represent a favorable tool for analyzing
fine variations in leads and the corresponding impact on the
climate in the Arctic region.

Code availability. The source code is available at
https://doi.org/10.5281/zenodo.5006637 (Yin and Ling, 2021,
last access: 22 June 2021).

Data availability. The MOD021KM product can be acquired from
the US National Aeronautics and Space Administration’s Level 1
and Atmosphere Archive and Distribution System Distributed Ac-
tive Archive Center (https://ladsweb.modaps.eosdis.nasa.gov/, last
access: 22 June 2021). The Landsat-8 L1T data can be acquired
from the United States Geological Survey Earth Resources Ob-
servation and Science Center (http://glovis.usgs.gov/, last access:
22 June 2021). The meteorological data can be acquired from

https://doi.org/10.5194/tc-15-2835-2021 The Cryosphere, 15, 2835–2856, 2021

https://doi.org/10.5281/zenodo.5006637
https://ladsweb.modaps.eosdis.nasa.gov/
http://glovis.usgs.gov/


2854 Z. Yin et al.: Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery

the European Centre for Medium-Range Weather Forecasts (https:
//cds.climate.copernicus.eu/, last access: 22 June 2021).

Author contributions. FL and ZY designed the proposed method.
ZY performed the experiments. ZY wrote the manuscript. YD, YG,
FL, and XL revised the manuscript and results. XL and CS pro-
vided valuable instructions on data acquisition. All authors read and
helped develop the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We sincerely thank the National Aeronautics
and Space Administration’s Goddard Space Flight Center, the
United States Geological Survey, and the European Centre for
Medium-Range Weather Forecasts for supplying the datasets used
in this study. We also sincerely thank the anonymous reviewers
and handling editor Stef Lhermitte for their valuable comments that
helped improve our paper.

Financial support. This research has been supported by the Natural
Science Foundation of Hubei Province for Innovation Groups (grant
no. 2019CFA019), the National Science Fund for Distinguished
Young Scholars (grant no. 41725006), and the National Natural Sci-
ence Foundation of China (grant nos. 62071457 and 61671425).

Review statement. This paper was edited by Stef Lhermitte and re-
viewed by two anonymous referees.

References

Atkinson, P. M.: Downscaling in remote sensing, Int. J. Appl. Earth
Obs., 22, 106–114, https://doi.org/10.1016/j.jag.2012.04.012,
2013.

Aulicino, G., Sansiviero, M., Paul, S., Cesarano, C., Fusco,
G., Wadhams, P., and Budillon, G.: A New Approach for
Monitoring the Terra Nova Bay Polynya through MODIS
Ice Surface Temperature Imagery and Its Validation during
2010 and 2011 Winter Seasons, Remote Sens.-Basel, 10, 366,
https://doi.org/10.3390/rs10030366, 2018.

Badrinarayanan, V., Kendall, A., and Cipolla, R.: Segnet:
A deep convolutional encoder-decoder architecture for im-
age segmentation, IEEE T. Pattern Anal., 39, 2481–2495,
https://doi.org/10.1109/TPAMI.2016.2644615, 2017.

Barber, D. G., Ehn, J. K., Pućko, M., Rysgaard, S., Deming,
J. W., Bowman, J. S., Papakyriakou, T., Galley, R. J., and
Søgaard, D. H.: Frost flowers on young Arctic sea ice: The

climatic, chemical, and microbial significance of an emerg-
ing ice type, J. Geophys. Res.-Atmos., 119, 11593–11612,
https://doi.org/10.1002/2014jd021736, 2014.

Brodeau, L., Barnier, B., Gulev, S. K., and Woods, C.: Climatologi-
cally Significant Effects of Some Approximations in the Bulk Pa-
rameterizations of Turbulent Air–Sea Fluxes, J. Phys. Oceanogr.,
47, 5–28, https://doi.org/10.1175/jpo-d-16-0169.1, 2017.

Dong, C., Loy, C. C., He, K., and Tang, X.: Image Super-Resolution
Using Deep Convolutional Networks, IEEE T. Pattern Anal., 38,
295–307, https://doi.org/10.1109/TPAMI.2015.2439281, 2014.

Du, C., Ren, H., Qin, Q., Meng, J., and Zhao, S.: A Practical
Split-Window Algorithm for Estimating Land Surface Temper-
ature from Landsat 8 Data, Remote Sens.-Basel, 7, 647–665,
https://doi.org/10.3390/rs70100647, 2015.

Ebert, E. E. and Curry, J. A.: An intermediate one-dimensional
thermodynamic sea ice model for investigating ice-atmosphere
interactions, J. Geophys. Res.-Oceans, 98, 10085–10109,
https://doi.org/10.1029/93jc00656, 1993.

Eppler, D. T. and Full, W. E.: Polynomial trend surface analysis ap-
plied to AVHRR images to improve definition of arctic leads, Re-
mote Sens. Environ., 40, 197–218, https://doi.org/10.1016/0034-
4257(92)90003-3, 1992.

Eythorsson, D., Gardarsson, S. M., Ahmad, S. K., Hossain,
F., and Nijssen, B.: Arctic climate and snow cover trends
– Comparing Global Circulation Models with remote sens-
ing observations, Int. J. Appl. Earth Obs., 80, 71–81,
https://doi.org/10.1016/j.jag.2019.04.003, 2019.

Fan, P., Pang, X., Zhao, X., Shokr, M., Lei, R., Qu, M., Ji, Q., and
Ding, M.: Sea ice surface temperature retrieval from Landsat
8/TIRS: Evaluation of five methods against in situ temperature
records and MODIS IST in Arctic region, Remote Sens. En-
viron., 248, 111975, https://doi.org/10.1016/j.rse.2020.111975,
2020.

Fett, R. W., Englebretson, R. E., and Burk, S. D.: Techniques
for analyzing lead condition in visible, infrared and microwave
satellite imagery, J. Geophys. Res.-Atmos., 102, 13657–13671,
https://doi.org/10.1029/97JD00340, 1997.

Foody, G. M. and Doan, H. T. X.: Variability in Soft Classification
Prediction and its implications for Sub-pixel Scale Change De-
tection and Super Resolution Mapping, Photogramm. Eng. Rem.
S., 73, 923–933, https://doi.org/10.14358/PERS.73.8.923, 2007.

Foody, G. M., Muslim, A. M., and Atkinson, P. M.:
Super-resolution mapping of the waterline from re-
motely sensed data, Int. J. Remote Sens. 26, 5381–5392,
https://doi.org/10.1080/01431160500213292, 2005.

Ge, Y., Li, S., and Lakhan, V. C.: Development and Testing of a Sub-
pixel Mapping Algorithm, IEEE T. Geosci. Remote, 47, 2155–
2164, https://doi.org/10.1109/TGRS.2008.2010863, 2009.

Ge, Y., Jin, Y., Stein, A., Chen, Y., Wang, J., Wang, J., Cheng, Q.,
Bai, H., Liu, M., and Atkinson, P. M.: Principles and methods
of scaling geospatial Earth science data, Earth-Sci. Rev., 197,
102897, https://doi.org/10.1016/j.earscirev.2019.102897, 2019.

Gerace, A. and Montanaro, M.: Derivation and validation of the
stray light correction algorithm for the thermal infrared sen-
sor onboard Landsat 8, Remote Sens. Environ., 191, 246–257,
https://doi.org/10.1016/j.rse.2017.01.029, 2017.

Glasner, D., Bagon, S., and Irani, M.: Super-resolution from a single
image, 2009 IEEE 12th International Conference on Computer

The Cryosphere, 15, 2835–2856, 2021 https://doi.org/10.5194/tc-15-2835-2021

https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
https://doi.org/10.1016/j.jag.2012.04.012
https://doi.org/10.3390/rs10030366
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1002/2014jd021736
https://doi.org/10.1175/jpo-d-16-0169.1
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.3390/rs70100647
https://doi.org/10.1029/93jc00656
https://doi.org/10.1016/0034-4257(92)90003-3
https://doi.org/10.1016/0034-4257(92)90003-3
https://doi.org/10.1016/j.jag.2019.04.003
https://doi.org/10.1016/j.rse.2020.111975
https://doi.org/10.1029/97JD00340
https://doi.org/10.14358/PERS.73.8.923
https://doi.org/10.1080/01431160500213292
https://doi.org/10.1109/TGRS.2008.2010863
https://doi.org/10.1016/j.earscirev.2019.102897
https://doi.org/10.1016/j.rse.2017.01.029


Z. Yin et al.: Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery 2855

Vision, 29 September–2 October 2009, Kyoto, Japan, 349–356,
2009.

Goosse, H., Campin, J.-M., Deleersnijder, E., Fichefet, T., Math-
ieu, P.-P., Maqueda, M. M., and Tartinville, B.: Description of
the CLIO model version 3.0, Institut d’Astronomie et de Géo-
physique Georges Lemaitre, Catholic University of Louvain,
Belgium, 2001.

Hall, D. K., Riggs, G. A., Salomonson, V. V., Barton, J., Casey, K.,
Chien, J., DiGirolamo, N., Klein, A., Powell, H., and Tait, A.:
Algorithm Theoretical Basis Document (ATBD) for the MODIS
Snow and Sea Ice-Mapping Algorithms, NASA GSFC: Green-
belt, MD, USA, available at: https://modis-snow-ice.gsfc.nasa.
gov/?c=atbd (last access: 22 June 2021), 2001.

Jia, Y., Ge, Y., Chen, Y., Li, S., Heuvelink, G. B. M., and
Ling, F.: Super-Resolution Land Cover Mapping Based on the
Convolutional Neural Network, Remote Sens.-Basel, 11, 1815,
https://doi.org/10.3390/rs11151815, 2019.

Key, J., Maslanik, J., Papakyriakou, T., Serreze, M., and Schweiger,
A.: On the validation of satellite-derived sea ice surface tempera-
ture, Arctic, 280–287, https://doi.org/10.14430/arctic1298, 1994.

Key, J. R., Collins, J. B., Fowler, C., and Stone, R. S.:
High-latitude surface temperature estimates from ther-
mal satellite data, Remote Sens. Environ., 61, 302–309,
https://doi.org/10.1016/S0034-4257(97)89497-7, 1997.

Kingma, D. and Ba, J.: Adam: A Method for Stochastic Op-
timization, arXiv, https://arxiv.org/abs/1412.6980 (last access:
22 June 2021), 2014.

Lanaras, C., Bioucas-Dias, J., Galliani, S., Baltsavias, E.,
and Schindler, K.: Super-resolution of Sentinel-2 im-
ages: Learning a globally applicable deep neural net-
work, ISPRS J. Photogramm. Rem. S., 146, 305–319,
https://doi.org/10.1016/j.isprsjprs.2018.09.018, 2018.

Leach, R. and Sherlock, B.: Applications of super-resolution
imaging in the field of surface topography measurement,
Surface Topography: Metrology and Properties, 2, 023001,
https://doi.org/10.1088/2051-672x/2/2/023001, 2013.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A.,
Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W.:
Photo-Realistic Single Image Super-Resolution Using a Genera-
tive Adversarial Network, 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 21–26 July 2017, Hon-
olulu, HI, USA, 105–114, 2017.

Lewis, B. J. and Hutchings, J. K.: Leads and Associated Sea Ice
Drift in the Beaufort Sea in Winter, J. Geophys. Res.-Oceans,
124, 3411–3427, https://doi.org/10.1029/2018jc014898, 2019.

Li, X., Ling, F., Du, Y., and Zhang, Y.: Spatially adaptive
superresolution land cover mapping with multispectral and
panchromatic images, IEEE T. Geosci. Remote, 52, 2810–2823,
https://doi.org/10.1109/TGRS.2013.2266345, 2013.

Lindsay, R. W. and Rothrock, D. A.: Arctic sea ice
leads from advanced very high resolution radiome-
ter images, J. Geophys. Res.-Oceans, 100, 4533–4544,
https://doi.org/10.1029/94jc02393, 1995.

Ling, F. and Foody, G. M.: Super-resolution land cover map-
ping by deep learning, Remote Sens. Lett., 10, 598–606,
https://doi.org/10.1080/2150704X.2019.1587196, 2019.

Ling, F., Du, Y., Xiao, F., Xue, H., and Wu, S.: Super-
resolution land-cover mapping using multiple sub-pixel shifted

remotely sensed images, Int. J. Remote S., 31, 5023–5040,
https://doi.org/10.1080/01431160903252350, 2010.

Ling, F., Boyd, D., Ge, Y., Foody, G. M., Li, X., Wang, L., Zhang,
Y., Shi, L., Shang, C., Li, X., and Du, Y.: Measuring River Wet-
ted Width From Remotely Sensed Imagery at the Subpixel Scale
With a Deep Convolutional Neural Network, Water Resour. Res.,
55, 5631–5649, https://doi.org/10.1029/2018wr024136, 2019.

Lüpkes, C., Vihma, T., Birnbaum, G., and Wacker, U.: Influence of
leads in sea ice on the temperature of the atmospheric bound-
ary layer during polar night, Geophys. Res. Lett., 35, L03805,
https://doi.org/10.1029/2007gl032461, 2008.

Marcq, S. and Weiss, J.: Influence of sea ice lead-width distribu-
tion on turbulent heat transfer between the ocean and the atmo-
sphere, The Cryosphere, 6, 143–156, https://doi.org/10.5194/tc-
6-143-2012, 2012.

Masters, D. and Luschi, C.: Revisiting Small Batch Training for
Deep Neural Networks, arXiv, available at: https://arxiv.org/abs/
1804.07612 (last access: 22 June 2021), 2018.

Maykut, G. A.: Energy exchange over young sea ice in the
central Arctic, J. Geophys. Res.-Oceans, 83, 3646–3658,
https://doi.org/10.1029/JC083iC07p03646, 1978.

Montanaro, M., Gerace, A., and Rohrbach, S.: Toward
an operational stray light correction for the Landsat 8
Thermal Infrared Sensor, Appl. Optics, 54, 3963–3978,
https://doi.org/10.1364/AO.54.003963, 2015.

Noh, H., Hong, S., and Han, B.: Learning Deconvolution Network
for Semantic Segmentation, 2015 IEEE International Conference
on Computer Vision (ICCV), 7–13 December 2015, Santiago,
Chile, 1520–1528, 2015.

Ping, B., Su, F., Han, X., and Meng, Y.: Applications of Deep
Learning-Based Super-Resolution for Sea Surface Tempera-
ture Reconstruction, IEEE J. Sel. Top. Appl., 14, 887–896,
https://doi.org/10.1109/JSTARS.2020.3042242, 2021.

Qu, M., Pang, X., Zhao, X., Zhang, J., Ji, Q., and Fan, P.: Estimation
of turbulent heat flux over leads using satellite thermal images,
The Cryosphere, 13, 1565–1582, https://doi.org/10.5194/tc-13-
1565-2019, 2019.

Qu, M., Pang, X., Zhao, X., Lei, R., Ji, Q., Liu, Y., and Chen, Y.:
Spring leads in the Beaufort Sea and its interannual trend us-
ing Terra/MODIS thermal imagery, Remote Sens. Environ., 256,
112342, https://doi.org/10.1016/j.rse.2021.112342, 2021.

Reddi, S. J., Kale, S., and Kumar, S.: On the Convergence of Adam
and Beyond, arXiv, available at: https://arxiv.org/abs/1904.09237
(last access: 22 June 2021), 2019.

Renfrew, I. A., Moore, G. W. K., Guest, P. S., and Bumke,
K.: A Comparison of Surface Layer and Surface Tur-
bulent Flux Observations over the Labrador Sea with
ECMWF Analyses and NCEP Reanalyses, J. Phys.
Oceanogr., 32, 383–400, https://doi.org/10.1175/1520-
0485(2002)032<0383:Acosla>2.0.Co;2, 2002.

Röhrs, J. and Kaleschke, L.: An algorithm to detect sea ice leads by
using AMSR-E passive microwave imagery, The Cryosphere, 6,
343–352, https://doi.org/10.5194/tc-6-343-2012, 2012.

Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional
networks for biomedical image segmentation, International Con-
ference on Medical image computing and computer-assisted
intervention, 5–9 October 2015, Munich, Germany, 234–241,
2015.

https://doi.org/10.5194/tc-15-2835-2021 The Cryosphere, 15, 2835–2856, 2021

https://modis-snow-ice.gsfc.nasa.gov/?c=atbd
https://modis-snow-ice.gsfc.nasa.gov/?c=atbd
https://doi.org/10.3390/rs11151815
https://doi.org/10.14430/arctic1298
https://doi.org/10.1016/S0034-4257(97)89497-7
https://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.isprsjprs.2018.09.018
https://doi.org/10.1088/2051-672x/2/2/023001
https://doi.org/10.1029/2018jc014898
https://doi.org/10.1109/TGRS.2013.2266345
https://doi.org/10.1029/94jc02393
https://doi.org/10.1080/2150704X.2019.1587196
https://doi.org/10.1080/01431160903252350
https://doi.org/10.1029/2018wr024136
https://doi.org/10.1029/2007gl032461
https://doi.org/10.5194/tc-6-143-2012
https://doi.org/10.5194/tc-6-143-2012
https://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1804.07612
https://doi.org/10.1029/JC083iC07p03646
https://doi.org/10.1364/AO.54.003963
https://doi.org/10.1109/JSTARS.2020.3042242
https://doi.org/10.5194/tc-13-1565-2019
https://doi.org/10.5194/tc-13-1565-2019
https://doi.org/10.1016/j.rse.2021.112342
https://arxiv.org/abs/1904.09237
https://doi.org/10.1175/1520-0485(2002)032<0383:Acosla>2.0.Co;2
https://doi.org/10.1175/1520-0485(2002)032<0383:Acosla>2.0.Co;2
https://doi.org/10.5194/tc-6-343-2012


2856 Z. Yin et al.: Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery

Tennekes, H.: The Logarithmic Wind Profile, J. At-
mos. Sci., 30, 234–238, https://doi.org/10.1175/1520-
0469(1973)030<0234:Tlwp>2.0.Co;2, 1973.

Tschudi, M. A., Curry, J. A., and Maslanik, J. A.: Characteriza-
tion of springtime leads in the Beaufort/Chukchi Seas from
airborne and satellite observations during FIRE/SHEBA,
J. Geophys. Res.-Oceans, 107, SHE 9-1–SHE 9-14,
https://doi.org/10.1029/2000jc000541, 2002.

Van Doninck, J., Peters, J., De Baets, B., De Clercq, E. M.,
Ducheyne, E., and Verhoest, N. E. C.: The potential of multi-
temporal Aqua and Terra MODIS apparent thermal inertia as a
soil moisture indicator, Int. J. Appl. Earth Obs., 13, 934–941,
https://doi.org/10.1016/j.jag.2011.07.003, 2011.

Wang, Q., Shi, W., and Atkinson, P. M.: Sub-pixel map-
ping of remote sensing images based on radial basis func-
tion interpolation, ISPRS J. Photogramm. Rem. S., 92, 1–15,
https://doi.org/10.1016/j.isprsjprs.2014.02.012, 2014.

Wang, Z., Chen, J., and Hoi, S. C. H.: Deep Learning for Image
Super-resolution: A Survey, IEEE T. Pattern Anal., 1, 32217470,
https://doi.org/10.1109/TPAMI.2020.2982166, 2020.

Willmes, S. and Heinemann, G.: Pan-Arctic lead detection from
MODIS thermal infrared imagery, Ann. Glaciol., 56, 29–37,
https://doi.org/10.3189/2015AoG69A615, 2015.

Yin, Z. and Ling, F.: Codes of super-resolution of ice surface
temperture and super-resolution lead mapping [code], Zenodo,
https://doi.org/10.5281/zenodo.5006637, 2021.

Zhang, Y., Cheng, X., Liu, J., and Hui, F.: The potential of sea
ice leads as a predictor for summer Arctic sea ice extent, The
Cryosphere, 12, 3747–3757, https://doi.org/10.5194/tc-12-3747-
2018, 2018a.

Zhang, Y., Tian, Y., Kong, Y., Zhong, B., and Fu, Y.: Resid-
ual dense network for image super-resolution, Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion, 18–23 June 2018, Salt Lake City, UT, USA, 2472–2481,
https://doi.org/10.1109/CVPR.2018.00262, 2018b.

Zhong, Y. and Zhang, L.: Sub-pixel mapping based on artificial im-
mune systems for remote sensing imagery, Pattern Recognition,
46, 2902–2926, https://doi.org/10.1016/j.patcog.2013.04.009,
2013.

The Cryosphere, 15, 2835–2856, 2021 https://doi.org/10.5194/tc-15-2835-2021

https://doi.org/10.1175/1520-0469(1973)030<0234:Tlwp>2.0.Co;2
https://doi.org/10.1175/1520-0469(1973)030<0234:Tlwp>2.0.Co;2
https://doi.org/10.1029/2000jc000541
https://doi.org/10.1016/j.jag.2011.07.003
https://doi.org/10.1016/j.isprsjprs.2014.02.012
https://doi.org/10.1109/TPAMI.2020.2982166
https://doi.org/10.3189/2015AoG69A615
https://doi.org/10.5281/zenodo.5006637
https://doi.org/10.5194/tc-12-3747-2018
https://doi.org/10.5194/tc-12-3747-2018
https://doi.org/10.1109/CVPR.2018.00262
https://doi.org/10.1016/j.patcog.2013.04.009

	Abstract
	Introduction
	Study area and data
	Study area
	Datasets and preprocessing
	MODIS data
	Landsat-8 data
	Meteorological data
	Co-registration of MODIS and Landsat-8 images


	Methods
	Generation of fine-resolution IST image and lead map
	Integrated framework architecture
	Implementation of CNN models

	Estimation of THF over leads
	Accuracy assessment

	Experiments and results
	Experiment with simulated MODIS images
	Training and test data
	Results

	Experiment with real MODIS images
	Training and test data
	Results


	Discussion
	DeepSTHF novelty
	DeepSTHF generalization ability
	CNN architecture and parameter setting
	Uncertainties and future work

	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

