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Table S1: Comparison between observed and ESOLIP estimated precipitation from 1 
September 2015 to 31 August 2017 at South-Pullu (4727 m a.s.l.). 
 

Year 
Annual Sum 

Field Obs. 
(mm w.e.) 

ESOLIP Est. 
(mm w.e.) 

2015-16 120.3 92.2 
2016-17 190.6 292.5 

Total 310.9 384.7 
 
 
 
Table S2: Comparison of estimated mean monthly surface energy balance components (W m-2) 
for low (2015-16) and high (2016-17) snow years at South-Pullu (4727 m a.s.l.), in the upper 
Ganglass catchment, Leh. 
 

Month 
Rn [W m-2] LE [W m-2] H [W m-2] G [W m-2] Fsurf [W m-2] 

2015-16 2016-17 2015-16 2016-17 2015-16 2016-17 2015-16 2016-17 2015-16 2016-17 
Sep 55.7 50.7 -6.2 -5.1 -47.1 -40.9 -1.9 -4.7 -2.4 -4.7 
Oct 20.4 29.5 -1.2 -0.5 -22.9 -33.2 3.8 4.2 3.8 4.2 
Nov 1.5 5.3 0.3 0.5 -15.3 -18.2 13.5 12.5 13.5 12.5 
Dec -25.8 -11.8 2.5 0.5 -1.3 -4.7 24.6 16.0 24.6 16.0 
Jan -37.9 -20.2 -3.4 -6.8 24.1 10.9 16.5 16.1 17.2 16.1 
Feb -34.0 -22.7 -7.6 -3.8 32.9 22.1 8.4 4.5 8.7 4.4 
Mar -2.2 -12.6 -17.8 -7.3 17.6 16.9 4.7 3.8 2.4 3.0 
Apr 40.2 0.7 -17.4 -12.8 -11.7 14.5 -2.3 0.4 -11.1 -2.4 
May 92.7 80.2 -29.9 -26.4 -42.9 -2.0 -19.9 -11.2 -19.9 -51.8 
Jun 81.0 88.2 -7.9 -39.7 -52.4 -29.8 -20.8 -17.9 -20.8 -18.6 
Jul 78.9 99.6 -6.9 -48.5 -54.7 -30.7 -17.4 -20.4 -17.4 -20.4 

Aug 72.4 75.8 -8.1 -14.5 -53.3 -49.2 -10.8 -12.1 -11.0 -12.1 
Annual Av. 28.6 30.2 -8.6 -13.7 -18.9 -12.0 -0.1 -0.7 -1.0 -4.5 

 
 
 
 



 
Figure S1: Temperature variations of the model MAGST at 10 cm depth for an increasing 
number of simulations. Convergence is reached at approximately 25 simulations 
 
Performance statistics for evaluation of outgoing longwave radiation 

For the evaluation of outgoing longwave radiation, we prefer the statistics mean bias difference 
(MBD) and the root mean square difference (RMSD) (Badescu et al., 2012; Gubler et al., 2012; 
Gueymard, 2012). These statistics indicate model prediction accuracy (Stow et al., 2003).  

The MBD (Eq. S1) is a simple and familiar measure that neglects the magnitude of the errors 
(i.e. positive errors can compensate for negative ones) (Gubler et al., 2012): 
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Here, 𝑦௧ is the modelled output variable, and 𝑦௧
∗ is the corresponding measured variable. The 

MBD ranges from -∞ to ∞. The perfect model is the one with an MBD value equal to 0.  

The RMSD (Eq. S2) is calculated as (Gubler et al., 2012): 
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The RMSD takes into account the average magnitude of the errors and puts weight on larger 
errors, but neglects the direction of the errors (Gubler et al., 2012). The RMSD ranges from 0 to 



∞. The perfect model is the one with an RMSD value equal to 0. The formulae (Eq. S1 and S2) 
used for estimation of MBD and RMSD respectively provide dimensionless quantities since their 
right-hand side has been divided by the mean of the measured variable (Badescu et al., 2012). 
Hence, they are expressed in per cent throughout the manuscript for clarity.  

Coefficient of determination (R2, Eq. S3): is defined as the squared value of the coefficient of 
correlation which indicates the amount of variation in the modelled variable predictable from the 
measured variable: 
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Where 𝑦∗തതത is the mean of the measured variable. 

Performance statistics for evaluation of snow depth and near-surface ground temperature 

For the evaluation of near-surface ground temperature and snow depth apart from the coefficient 
of determination (R2), different statistical measures have been used such as mean bias (MB), and 
root mean square error (RMSE). 

Mean Bias (MB): The MB  (Eq. S4) provides a good indication of the mean over or 
underestimate of predictions (Carslaw and Ropkins, 2012). MB is in the same units as the 
variables being considered. 
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The optimal value of MB is equal to zero. The positive and negative MB values indicate model 
over-estimation and under-estimation bias, respectively. 

Root Mean Square Error (RMSE): The RMSE (Moriasi et al., 2007) is a commonly used 
statistic that provides a good overall measure of how close modelled values are to predicted 
values and is given below (Eq. S5): 
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Nash-Sutcliffe efficiency (NSE): The Nash-Sutcliffe efficiency (NSE) (Eq. S6) is a normalized 
statistic that determines the relative magnitude of the residual variance (“noise”) compared to 
the measured data variance (“information”) (Moriasi et al., 2007; Nash and Sutcliffe, 1970). 
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NSE indicates how well the plot of observed versus simulated data fits the 1:1 line. 

 
 

 
Figure S2: Comparison of hourly observed and GEOtop simulated snow depth at 4727 m a.s.l. 
in the upper Ganglass catchment, Leh from September 2015 to August 2017. The solid red line 
is the 1:1 line. 



 
Figure S3: Comparison of hourly observed and GEOtop simulated near-surface ground 
temperature at 4727 m a.s.l. in the upper Ganglass catchment, Leh from September 2016 to 
August 2017. The solid red line is the 1:1 line. 
 



 
 
Figure S4: Comparison of hourly observed and GEOtop simulated outgoing longwave radiation 
at 4727 m a.s.l. in the upper Ganglass catchment, Leh from September 2016 to August 2017. 
The solid red line is the 1:1 line. 
 



 
Figure S5: Comparison of hourly observed wind speed (m s-1) as a function of hourly wind 
direction (°) at 4727 m a.s.l. in the upper Ganglass catchment, Leh from September 2015 to 
August 2017. 
 
 

Seasonal diurnal variability of SEB components 

The seasonal response of diurnal variation of modelled SEB components (Rn, LE, H and G) for 

both years are shown in Figures S6 and S7, respectively. The seasons chosen were pre-winter 

(Sep to Dec), winter (Jan to Apr), post-winter (May-Jun), and summer (Jul to Aug). 

In the 2015–16 year (Figure S6), the amplitude of Rn and the G during pre-winter, post-winter 

and summer season were the largest and smallest in winter. The G peaks earlier than those of the 

LE and H during the pre-winter, post-winter and summer season. The LE and H show strong 

seasonal characteristics such as (a) during the pre-winter season, the magnitude of diurnal 

variation of H was greater than LE depicting lesser soil moisture content because of freezing 

conditions at that time, (b) during the winter season, the amplitude of LE was slightly greater 

(sublimation process) than H, (c) during the post-winter, the amplitude of H was greater than LE 

and, (d) during the summer season, again the amplitude of H was greater than LE, which is 



similar to that of the pattern seen during the pre-winter season. In the 2015-16 year, the amplitude 

of LE in comparison to H was smaller in summer season due to the lesser precipitation and lesser 

moisture availability. The Rn and G increased rapidly after the sunrise and changed the direction 

during pre-winter, post-winter and summer seasons. After sunset, the Rn and G again change sign 

rapidly, but the LE and H gradually decreased to lower values. The LE and H in the morning 

increased 1 to 2 hours after the Rn during pre-, post-winter and summer season.  

In the 2016–17 year (Figure S7), the pre-winter, winter and summer were the same as that of the 

2015–16 year except for the amplitude of LE in was larger in summer season due to the more 

precipitation and more moisture availability. However, during the winter and post-winter season 

of the 2016–17 year, the main difference in diurnal changes was found because of the extended 

snow cover till May during that year. The amplitude of Rn, LE, H and G were smaller compared 

to the 2015-16 year. 

 

 
 
 
 
 



 
 
Figure S6: The diurnal change of modelled surface energy fluxes on (A) pre-winter, (B) winter, 
(C) post-winter, and (D) summer seasons for the 2015-16 year  at South-Pullu (4727 m a.s.l.), in 
the upper Ganglass catchment, Leh. 
 
 
 



 
 

Figure S7: The diurnal change of modelled surface energy fluxes on (A) pre-winter, (B) winter, 
(C) post-winter, and (D) summer seasons for the 2016-17 year at South-Pullu (4727 m a.s.l.), in 
the upper Ganglass catchment, Leh. 

 

 

 

 

 

 

 



APPENDICES 

APPENDIX-I 

Table A1: Snow characterisation parameters used as input to the GEOtop model. 

GEOtop parameter name Description Units Value 

MaxWaterEqSnowLayerContent 
Maximum water equivalent 
admitted in a snow layer 

kg m−2 7 

SWEtop Maximum snow water 
equivalent per unit area of 
the snowpack in the top 
region 

kg m−2 3000 

SWEbottom Maximum snow water 
equivalent per unit area of 
the snowpack in the bottom 
region 

kg m−2 3000 

MaxSnowLayersMiddle maximum number of layers 
admitted in middle region 

- 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A2: Snow characterisation parameters used as input to the GEOtop model. The 

parameter values were adopted from Gubler et al. (2013) and Engel et al. (2017). 

GEOtop parameter name Description Units Value 

SnowCorrFactor 
Correction factor on fresh snow 
accumulation 

- 1.8 

RainCorrFactor Correction factor on rain - 1.0 

DewTempOrNormTemp 
Use dew temperature (1) or air 
temperature (0) to discriminate 
between snowfall and rainfall 

- 0 

ThresTempRain   
Air temperature above which all 
precipitation is rain 

°C 3 

ThresTempSnow 
Air temperature below which all 
precipitation is snow 

°C -1 

SnowEmissiv Emissivity of snow - 0.98 

IrriducibleWatSatSnow 
Irreducible water saturation. It is the 
ratio of the capillarity-hold water to 
ice content in the snow. 

- 0.07 

MaxSnowPorosity 
Maximum snow porosity allowed. 
This parameter prevents excessive 
snow densification 

- 0.7 

DrySnowDefRate 

Snow compaction (% per hour) due 
to destructive metamorphism for 
snow density < SnowDensityCutoff 
and dry snow 

- 1 

SnowDensityCutoff 
Snow density cut off to change 
snow deformation rate 

kg m−3 175 

WetSnowDefRate 
Enhancement factor in presence of 
wet snow 

- 1.5 

SnowViscosity Viscosity of snow N s m−2 6.E6 
AlphaSnow Freezing characteristic soil for snow - 1.E5 

FreshSnowReflVis 
Visible band reflectance of fresh 
snow 

- 0.85 

FreshSnowReflNIR 
Near infrared band reflectance of 
fresh snow 

- 0.65 

AlbExtParSnow 
Albedo extinction parameter (aep): 
if snow depth < aep, albedo is 
interpolated between soil and snow 

mm 10 

SnowRoughness Roughness of snow surface mm 2 

SnowAgingCoeffVis 
Reflectance of the new snow in the 
visible wave length 

- 0.2 

SnowAgingCoeffNIR 
Reflectance of the new snow in the 
infrared wave length 

- 0.5 

 

 

 

 



Table A3: Soil parameters for different groups used as input to the GEOtop model. The 

parameter values were adopted from Gubler et al. (2013). 

GEOtop parameter name Description Units Clay Silt Bedrock 

AlphaVanGenuchten Van Genuchten 
parameter α 

m-1 
0.001 0.001 0.001 

NVanGenuchten Van Genuchten 
parameter n 

- 
1.6 1.4 1.2 

ThermalConductivitySoilSolids Thermal 
conductivity of 
the soil solid 

W m-1 K-1 

2.5 2.5 2.5 

ThermalCapacitySoilSolids Thermal 
capacity of the 
soil solid 

106 J m−3 K−1 
2.25 2.25 2.25 

ThetaSat Saturated water 
content  

% 
0.49 0.47 0.47 

ThetaRes   Residual water 
content  

% 
0.06 0.07 0.002 

 

  



Table A4: Soil and ground surface characterisation parameters used as input to the GEOtop 

model. The parameter values were adopted from Gubler et al. (2013). 

GEOtop parameter name Description Units Value 

SoilLayerThicknesses vector defining the thickness 
of the various soil layers 

mm 19 layers 
with 

thickness 
increasing 
from the 
surface to 
the deeper 

layers 
Simulation depth  m 10 
InitSoilTemp Initial soil temperature °C -0.5 

BottomBoundaryHeatFlux Incoming heat flux at the 
bottom boundary of the soil 
domain (geothermal heat 
flux) 

W m−2 0 

SoilRoughness Roughness length of soil 
surface 

mm 10 

ThresSnowSoilRough Threshold on snow depth to 
change roughness to snow 
roughness values with d0 set 
at 0, for bare soil fraction 

mm 2 

SoilAlbVisDry Ground surface albedo 
without snow in the visible - 
dry 

- 0.20 

SoilAlbNIRDry Ground surface albedo 
without snow in the near 
infrared - dry 

- 0.20 

SoilAlbVisWet Ground surface albedo 
without snow in the visible - 
saturated 

- 0.18 

SoilAlbNIRWet Ground surface albedo 
without snow in the near 
infrared - saturated 

- 0.18 

SoilEmissiv Ground surface emissivity - 0.88 
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