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In this supplementary material, we provide additional numerical examples with the goal of further demonstrating the robust-
ness and effectiveness of the proposed approach. Specifically, we consider

1. using a true auxiliary parameter, atrue, which is a given function rather than a sample from the associated prior,

2. using different (in terms of mean and variance) prior distributions for the basal sliding coefficient, and

3. the use of a reguralization-type approach, where we tune the parameters of the prior and likelihood, to account for the5
approximation errors.

For ease of exploration, the numerical studies in this supplemental material are applied to the problem outlined in Example 1a
of the manuscript, i.e., the case of an uncertain flow rate factor in the two-dimensional linear Stokes ice sheet model. The true
basal sliding coefficient, βtrue, for all examples is also the same as in Example 1a in the manuscript.

S.1 Studying the effect of the true auxiliary parameter on approximating the posterior10

In this case we set the true auxiliary parameter used to generate the data to

atrue = sin(2πx1/L)+ sin(2πx2/H),

where L= 104 m and H = 250 m, rather than using a sample from the prior. In Fig. S.1 we show the marginal prior and
Laplace approximated posterior distributions, as well as three draws from each of the distributions, the corresponding MAP
estimates, and the true basal sliding coefficient. As expected, the accurate MAP estimate, βREF, closely resembles the true15
basal sliding MAP coefficient, and the truth is well supported by the posterior distribution. Second, the Laplace posterior found
using the conventional error approach is significantly different (compared to the results in the manuscript) for this choice of
the auxiliary parameter, though it is still inaccurate and somewhat infeasible. Third, similar to Example 1a in the manuscript,
the true basal sliding coefficient lies well within the bulk of the (Laplace approximated) posterior for the BAE approach. This
study shows that choosing the true auxiliary parameter field as a function that is not a sample from the prior distribution leads20
to the same conclusion as reported in the manuscript (see Example 1a).
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Figure S.1. Prior and MAP estimates of the basal sliding parameter with the true auxiliary parameter (used to generate the data) set to
atrue = sin(2πx1/L)+ sin(2πx2/H). Prior (far left), accurate/reference (REF) case (centre left), conventional error model (CEM) case
(center right), and Bayesian approximation error (BAE) case (far right). In each plot, the mean of the distribution (blue line) is shown along
with the true basal sliding parameter, βtrue, (red line), three samples from the respective distributions (green lines), the marginal distribution
(shaded) with darker shading indicating higher probability, and the ±2 (approximate) standard deviation intervals (black dashed line).

S.2 Studying the effect of the prior on approximating the posterior

Here we consider changing the prior mean β∗ and variance on β. Specifically, we consider three distinct cases: a) β∗ = 6,
b) β∗ = 5, and c) β∗ = 5 and the variance is increased by a factor of 4. In Fig. S.2 we show the marginal prior and Laplace
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Figure S.2. Prior and MAP estimates of the basal sliding parameter with the use of different priors on β. Top row: The prior mean is
changed to β∗ = 6, with the prior (far left), accurate/reference (REF) case (center left), conventional error model (CEM) case (center right),
and Bayesian approximation error (BAE) case (far right). Middle row shows the same plots for changing the prior mean to β∗ = 5, while
the bottom row shows the same plots for changing the prior mean to β∗ = 5 and increasing the variance by a factor of 4. In each plot, the
mean of the distribution (blue line) is shown along with the true basal sliding parameter, βtrue, (red line), three samples from the respective
distributions (green lines), the marginal distribution (shaded) with darker shading indicating higher probability, and the ±2 (approximate)
standard deviation intervals (black dashed line).

approximated posterior distributions, as well as three draws from each of the distributions, the corresponding MAP estimates,
and the true basal sliding coefficient for each case a)–c). The results of this study show the same conclusion as the one reported
in the manuscript, though as expected, a more variable prior will generally lead to larger uncertainty (shown on the far right
column). In addition, the results show that when the truth is less well supported by the prior, the MAP estimates deteriorate.

S.3 Studying the effect of scaling the prior and likelihood on approximating the posterior5

The goal of this section is to study the effect of scaling the prior and likelihood to account for the approximation errors. This
study can be seen as varying the regularization parameter (or scaling the variance of the noise) in a deterministic setting. This
approach can also be understood as tempering the prior or the likelihood in the statistical setting.
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We present results for two sets of experiments. In the first set we scale the prior using the (finite-dimensional representation
of the) prior in the form πprior(β)

α with α > 0, so that the negative log-posterior can be written as

− ln(πpost(β|d))∝− ln(πlike(d|β))−α ln(πprior(β)) =
1

2
‖F(β)−d‖2Γ−1

e
+
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2
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In the second set of experiments, in which we scale the likelihood, we define the likelihood as πlike(d|β)
1
α , with α > 0, so that

the negative log-posterior can be written as5

− ln(πpost(β|d))∝−
1
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We note that Equations (1) and (2) are differing only by a factor of α, therefore the MAP estimates for each α for the two
experiments are the same. The associated posterior uncertainty on the other hand will in general be different. In addition, when
the distribution of the approximation errors is well approximated byN (0, δ2εI), i.e., ε∗ ≈ 0 and Γε ≈ δ2εI (i.e., the covariance
is a scaled identity), as is the case in Example 1a of the manuscript (see Fig. 6 of the manuscript), tempering the likelihood10

with α=
(
1+

δ2ε
δ2e

)
, where we recall that δ2e denotes the variance of the additive noise in the measurements, the CEM approach

can perform similar to the BAE approach. However, in general this is not the case, namely the approximation errors are often
highly correlated, see for example Nicholson et al. (2018); Tarvainen et al. (2009); Nissinen et al. (2007); Voutilainen and
Kaipio (2009). Furthermore, δ2ε is not known a priori and therefore for the CEM approach this needs to be estimated for
instance by the L-curve criterion (Vogel, 2002), which requires solving the inverse problem for several α values. The challenge15
with this approach is that it can be computationally intensive and more importantly, it can fail to provide feasible results even
in the case when the covariance of the approximation error is close to diagonal, as we show below.

In Figures S.3 and S.4 we show the marginal Laplace approximated posterior distributions, as well as three draws from
each of the distributions, the corresponding MAP estimates, and the true basal sliding coefficient for tempering the prior and
likelihood, respectively, with α= 10−2, α= 10−1, α= 100 (as in the manuscript), α= 101 α= 102, α= 103, and α= 104.20
For comparison, for both cases, we also show the associated results found using the BAE approach. As expected, for the case
of tempering the prior, we see that larger values of α lead to smaller posterior uncertainty, and the estimates approach the
prior mean. The case of α= 103 is especially noteworthy, as the MAP estimate appears to be in good agreement with the
true basal sliding coefficient. However, the posterior uncertainty is substantially underestimated, with the truth lying more than
six posterior standard deviations from the MAP estimate, over most of the domain. That is to say, the resulting posterior is25
drastically overconfident, and essentially not feasible.

When tempering the likelihood we see that for α= 102 and α= 103, the resulting MAP estimates are in good agreement
with the truth, and the (approximate) posterior densities are clearly feasible. However, as stated above, it is not possible to
choose α a priori, and obviously the truth is not available. As such, a heuristic approach such as the L-curve criterion would
typically be used to find a suitable value for α (usually the point on the curve which maximizes the curvature). To this end, in30
Fig. S.5 we show the resulting L-curve. Interestingly α= 100 (i.e., the CEM approach in the manuscript) corresponds to the
value for which the curvature in the L-curve is largest. As can be seen, however, the resulting (approximate) posterior density
is not feasible, with the truth lying far from the bulk of the posterior support, and the MAP estimate being a poor estimate of
the truth.
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Figure S.3. MAP estimates and approximate posteriors of the basal sliding parameter with tempering of the prior (the corresponding value
of α are shown in each plot). For comparison the results using the BAE approach are also shown (bottom far right). In each plot, the mean
of the distribution (blue line) is shown along with the true basal sliding parameter, βtrue, (red line), three samples from the respective
distributions (green lines), the marginal distribution (shaded) with darker shading indicating higher probability, and the ±2 (approximate)
standard deviation intervals (black dashed line).
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Figure S.4. MAP estimates and approximate posteriors of the basal sliding parameter for Example 1a with tempering of the likelihood (the
corresponding value of α are shown in each plot). For comparison the results using the BAE approach are also shown (bottom far right). In
each plot, the mean of the distribution (blue line) is shown along with the true basal sliding parameter, βtrue, (red line), three samples from
the respective distributions (green lines), the marginal distribution (shaded) with darker shading indicating higher probability, and the ±2
(approximate) standard deviation intervals (black dashed line).
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Figure S.5. The L-curve corresponding to tempering the likelihood (far left) and the MAP estimates and approximate posteriors of the basal
sliding parameter for tempering of the likelihood with α= 100 (the points on the L-curve with greatest curvature) (center) along with the
results found using the BAE approach (right). In the left and right plots, the mean of the distribution (blue line) is shown along with the true
basal sliding parameter, βtrue, (red line), three samples from the respective distributions (green lines), the marginal distribution (shaded) with
darker shading indicating higher probability, and the ±2 (approximate) standard deviation intervals (black dashed line).
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