
The Cryosphere, 14, 93–113, 2020
https://doi.org/10.5194/tc-14-93-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Feature-based comparison of sea ice deformation in
lead-permitting sea ice simulations
Nils Hutter and Martin Losch
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany

Correspondence: Nils Hutter (nils.hutter@awi.de)

Received: 25 April 2019 – Discussion started: 16 May 2019
Revised: 15 November 2019 – Accepted: 22 November 2019 – Published: 16 January 2020

Abstract. The sea ice modeling community is progressing
towards pan-Arctic simulations that explicitly resolve leads
in the simulated sea ice cover. Evaluating these simulations
against observations poses new challenges. A new feature-
based evaluation of simulated deformation fields is intro-
duced, and the results are compared to a scaling analysis of
sea ice deformation. Leads and pressure ridges – here com-
bined into linear kinematic features (LKFs) – are detected
and tracked automatically from deformation and drift data.
LKFs in two pan-Arctic sea ice simulations with a horizon-
tal grid spacing of 2 km are compared with an LKF dataset
derived from the RADARSAT Geophysical Processor Sys-
tem (RGPS). One simulation uses a five-class ice thickness
distribution (ITD). The simulated sea ice deformation fol-
lows a multi-fractal spatial and temporal scaling, as observed
from RGPS. The heavy-tailed distribution of LKF lengths
and the scale invariance of LKF curvature, which points to
the self-similar nature of sea ice deformation fields, are re-
produced by the model. Interannual and seasonal variations
in the number of LKFs, LKF densities, and LKF orienta-
tions in the ITD simulation are found to be consistent with
RGPS observations. The lifetimes and growth rates follow
a distribution with an exponential tail. The model overesti-
mates the intersection angle of LKFs, which is attributed to
the model’s viscous-plastic rheology with an elliptical yield
curve. In conclusion, the new feature-based analysis of LKF
statistics is found to be useful for a comprehensive evalua-
tion of simulated deformation features, which is required be-
fore the simulated features can be used with confidence in the
context of climate studies. As such, it complements the com-
monly used scaling analysis and provides new useful infor-
mation for comparing deformation statistics. The ITD simu-
lation is shown to reproduce LKFs sufficiently well for it to

be used for studying the effect of directly resolved leads in
climate simulations. The feature-based analysis of LKFs also
identifies specific model deficits that may be addressed by
specific parameterizations, for example, a damage parameter,
a grounding scheme, and a Mohr–Coulombic yield curve.

1 Introduction

Current efforts in the sea ice modeling community push sea
ice models to pan-Arctic lead-permitting sea ice simulations.
In these simulations, the Arctic ice cover consists of individ-
ual “floes” that are formed by strongly localized deforma-
tion along the emerging floe boundaries. There are two ap-
proaches to obtain such a behavior: (1) a very fine grid spac-
ing (< 5km) and the classic viscous-plastic (VP) rheology
(Hutter et al., 2018; Wang et al., 2016; Spreen et al., 2017) or
(2) new rheological frameworks (e.g., Maxwell elasto-brittle,
MEB, Dansereau et al., 2016). The emergence of deforma-
tion features, which can be identified as leads and pressure
ridges, calls for a proper evaluation of model simulations
against observations. This is challenging because ice me-
chanics are nonlinear and chaotic. A direct comparison of
deformation fields has similar issues to comparing eddy re-
solving ocean model simulations to high-resolution satellite
observations (Mourre et al., 2018). Therefore, it should not
be attempted when accurate initial conditions (e.g., obtained
by data assimilation) are not available.

Resolving leads in sea ice simulations opens up new pos-
sibilities in Arctic climate research and sea ice forecast-
ing. Leads are openings in the sea ice cover where direct
atmosphere–ocean processes are strong. A sea ice component
including leads allows for the direct simulation of these inter-
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actions in regional or global climate models. The distribution
of leads also has a strong impact on the local drift field. Re-
liable short-term sea ice drift forecasts will therefore depend
on the model’s capacity to simulate and initialize fields with
localized deformation. The increasing economic interest in
the Arctic (e.g., shipping, Eguíluz et al., 2016) requires skill-
ful predictions in these remote regions (Jung et al., 2016) to
prevent environmental catastrophes and to organize search
and rescue operations. A realistic representation of deforma-
tion features in sea ice models is the prerequisite of both ap-
plications.

In the past, high-resolution sea ice simulations were
mostly evaluated with respect to their simulated deformation
fields. In these studies, calculating scaling characteristics of
sea ice deformation was the most common method (Girard
et al., 2009; Rampal et al., 2016; Spreen et al., 2017; Bouchat
and Tremblay, 2017; Hutter et al., 2018). The scaling statis-
tics make use of the observed power law scaling of sea ice
deformation (Marsan et al., 2004) and determine the degree
of heterogeneity and intermittency of sea ice deformation for
satellite observations and model simulations (Rampal et al.,
2016; Hutter et al., 2018). The underlying idea of these met-
rics is that the presence of extreme values and strong local-
ization in sea ice deformation indicates a realistic represen-
tation of deformation features.

While scaling characteristics give some insight into the
underlying material properties of sea ice, their interpreta-
tion with respect to individual deformation features is not
straightforward (Bouchat and Tremblay, 2017; Hutter et al.,
2018). Various metrics for evaluating linear kinematic fea-
tures (LKFs) as discontinuities in the deformation fields have
been suggested, but they all provide only a summary of
agreement with a reference in a single score for the entire
LKF field (Coon et al., 2007; Levy et al., 2008; Mohammadi-
Aragh et al., 2018). A comprehensive description of individ-
ual deformation features requires their detection to extract
statistics such as density, orientation, intersection angle, and
persistence. A new LKF detection and tracking algorithm
(Hutter et al., 2019a) identifies single LKFs in deformation
data both derived from satellite observations and simulated
by sea ice models. The resulting dataset provides ample op-
portunity to compare various spatial characteristics and the
temporal evolution of LKFs.

The objective of this paper is to establish a feature-based
evaluation of sea ice deformation in lead-permitting sea ice
simulations. We apply the LKF detection and tracking al-
gorithm of Hutter et al. (2019a) to two different sea ice
simulations with a horizontal grid spacing of 2 km, one of
which uses an ice thickness distribution (ITD). We com-
pare the extracted LKFs to an LKF dataset derived from
RADARSAT Geophysical Processor System (RGPS) defor-
mation data (Hutter et al., 2019b) with respect to their pan-
Arctic distribution (density and orientation), spatial proper-
ties (length, curvature, and intersection angle), and temporal
characteristics (persistence and growth rates). In addition, we

test which conclusions about the properties of LKFs can be
drawn from a spatiotemporal scaling analysis of sea ice de-
formation (following, e.g., Rampal et al., 2016; Hutter et al.,
2018). By analyzing two different model simulations, we
study how changes to the model physics, in our case the ex-
plicit ridging processes in an ITD model, affect the simulated
LKFs, and how the different analysis methods outline that
difference. With our analysis we test whether the ice strength
parameterization of the ITD model, which mainly depends
on the thinner ice classes, accelerates lead formation via a
faster feedback between deformation, ice thickness, and ice
strength, as suggested in Hutter et al. (2018).

2 Methods

2.1 LKF detection and tracking algorithms

Our LKF detection and tracking algorithms (Hutter et al.,
2019a) split the detection of LKFs in sea ice deformation
fields into three steps: (i) the algorithm classifies pixels with
locally higher deformation rates as LKF pixels; (ii) sepa-
rates the LKFs in a global binary map into minimal LKF-
segments; and (iii) reconnects multiple minimal segments
into individual LKFs based on a probability that is deter-
mined by their distance, orientation relative to each other,
and difference in deformation rates.

The tracking algorithm combines the detected LKFs of
two subsequent time records with the drift information be-
tween the two records to track individual LKFs over time.
First, the algorithm advects the LKFs from the first time
record according to the drift information to obtain a first-
guess position for the LKFs. Tracked LKFs in the second
record are then identified by the degree of overlap between
the advected LKFs and the detected LKFs of the second time
record.

2.2 RGPS LKF dataset

The deformation data of the RADARSAT Geophysical
Processor System (RGPS, Kwok, 1998) were processed
by the LKF detection and tracking algorithms (Hut-
ter et al., 2019a) to produce a comprehensive dataset
(https://doi.org/10.1594/PANGAEA.898114, Hutter et al.,
2019b). The dataset contains LKFs in the winter months
(November to May) from 1996 to 2008 and covers large
parts of the Amerasian Basin in the Arctic Ocean. In total the
dataset contains 165 000 detected LKFs and 36 000 tracked
LKFs.

2.3 Model simulations

2.3.1 Model configurations

Both simulations in this paper are based on a regional Arc-
tic configuration (Nguyen et al., 2012) of the Massachusetts
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Institute of Technology general circulation model (MITgcm,
Marshall et al., 1997; MITgcm Group, 2017) but with a re-
fined horizontal grid spacing of 2 km. The number of vertical
layers is reduced to 16, with the first 5 layers covering the
uppermost 120 m to decrease computational cost associated
with the ocean model component, as we are only interested in
sea ice processes. The Refined Topography dataset 2 (RTopo-
2) (Schaffer and Timmermann, 2016) is used as bathymetry
for the entire model domain. The lateral boundary conditions
are taken from the globally optimized ECCO-2 simulations
(Menemenlis et al., 2008). We use the 3-hourly Japanese 55-
year Reanalysis (JRA-55, Kobayashi et al., 2015) with a spa-
tial resolution of 0.5625◦ for surface boundary conditions. In
the baseline simulation, the ocean temperature and salinity
were initialized on 1 January, 1992, from the World Ocean
Atlas 2005 (Locarnini et al., 2006; Antonov et al., 2006). The
initial conditions for sea ice are taken from the Polar Science
Center (Zhang et al., 2003). Ocean and sea ice parameteri-
zations and parameters are directly taken from Nguyen et al.
(2011), with the ice strength P ? = 2.264× 104 Nm−2. The
baseline simulation uses the classical discrimination of two
ice classes: thin and thick ice (Hibler, 1979). The momentum
equations are solved by an iterative method and line succes-
sive relaxation (LSR) of the linearized equations following
Zhang and Hibler (1997). In each time step (1t = 120 s), 10
nonlinear steps are made and the linear problem is iterated
until an accuracy of 10−5 is reached or 500 iterations are
performed. The baseline simulation is run from 1 January
1992 to 31 December 2012. The analysis is based on daily
averages of sea ice drift, ice thickness and concentration.

On 17 October 1995 the simulation with an ice thickness
distribution (Thorndike et al., 1975) with five thickness cat-
egories separated by boundaries at 0.0, 0.64, 1.39, 2.47, and
4.57 m is started. In doing so, the initial sea ice thickness
and concentration of all thickness categories need to be de-
termined from the two-category simulation for each grid cell.
Most commonly this conversion is done by assigning all ice
in one grid cell to the category with the same ice thickness.
Some years of spin-up time are then used to redistribute the
ice into different categories (Ungermann and Losch, 2018).
Due to the high resolution in our simulation a multiyear spin-
up is not affordable. Therefore, we use the fact that observed
ITDs follow lognormal functions (Wadhams, 1992; Haas,
2010) and describe the ITD of each grid cell by a lognormal
distribution with a mode of two-thirds of the mean thickness.
The mean thickness and concentration over all categories re-
main unchanged. With this initialization of the ITD simula-
tions, the spin-up of the ice thickness distribution is reduced
to 1 year. We use the ice strength formulation of Rothrock
(1975) and the smooth partition and redistribution functions
of Lipscomb et al. (2007). The simulation with ITD is inte-
grated from 17 October 1995 to 31 December 2012. In the
following we refer to this simulation as “ITD” and to the
baseline simulation as “noITD”. Both models provide data
in the RGPS period of 1996 to 2008.

Both model configurations are not tuned to reproduce the
observed ice distributions due to limited computational re-
sources. Instead, we carry over ocean and sea ice parameters
from optimized coarse-resolution configurations (Nguyen
et al., 2011; Ungermann and Losch, 2018, for ITD-specific
parameters). The resulting simulations overestimate the sea-
sonal amplitude of sea ice volume and extent, but their trends
are reasonable (not shown). The resulting ocean circulation
has not been evaluated in detail, but the wind-driven surface
circulation is plausible with strong mesoscale activity; the
surface temperature and large-scale sea ice distribution fol-
low the prescribed surface forcing as expected. The main role
of the ocean model is to provide dynamic bottom boundary
conditions to the sea ice model.

2.3.2 Sampling and LKF extraction

The RGPS dataset was originally provided as a Lagrangian
dataset that consists of trajectories of points that were fol-
lowed throughout a winter season in consecutive synthetic-
aperture radar (SAR) imagery. For each time record in this
dataset, vertices are constructed for four neighboring trajec-
tories to approximate the deformation rates from the drift of
a vertex by using line integrals. This results in Lagrangian
deformation rates. The Lagrangian data are then interpolated
onto a regular Eulerian grid that is the basis of the RGPS
LKF dataset.

This Lagrangian nature of the RGPS dataset confounds the
comparison to Eulerian model output. Different approaches
have been used to overcome this issue: (1) generate La-
grangian trajectories by online or offline advection of arti-
ficial buoys in the model simulation that are initialized at the
initial position of RGPS trajectories (Rampal et al., 2016;
Hutter et al., 2018), (2) interpolate simulated drift speeds
to the position of the RGPS vertices (Spreen et al., 2017),
or (3) just directly compare Eulerian gridded deformation
rates with RGPS (Wang et al., 2016; Bouchat and Tremblay,
2017). For an accurate magnitude of the deformation rates
and the temporal scaling in particular, only the most sophis-
ticated option (1) can be used, as it takes the advection of ice
into account and addresses the effect of distorted vertices on
the computation of the deformation rates (Lindsay and Stern,
2003) consistently for the model and RGPS.

The LKF detection algorithm used here does not depend
directly on the magnitude of the deformation rate itself but
on the local variations in the deformation rates (Hutter et al.,
2019a). Therefore, the detection algorithm can be applied di-
rectly to the deformation rates on the output grid assuming it
is a regular grid. Thus, we avoid complicated sampling strate-
gies that involve expensive post-processing of model output.
The advection of ice is taken into account by the tracking
algorithm.

Deformation rates are computed from daily mean veloc-
ity output following the spatial discretization of strain rates
as formulated in the model code (Losch et al., 2010). We
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reduce the spatial resolution of the input fields of the detec-
tion algorithm by a factor of 3 to 6.75 km by taking only
every third pixel into account to reduce computational costs.
As deformation features in the simulations show a width of
∼ 5 pixels, this can be done without missing features in the
detection. We detect features every 3 d to agree with the tem-
poral resolution of RGPS. The parameters used in the detec-
tion algorithm are the same as in Hutter et al. (2019a, their
Table 1), where all parameters marked with b are scaled to
the reduced model resolution by multiplying using a factor
of 12.5 km/6.75 km= 1.85 to account for the resolution dif-
ference between the simulations and the RGPS dataset. The
detected features are tracked with the tracking algorithm us-
ing the parameters of Hutter et al. (2019a, their Table 2).
The drift required for the tracking of LKFs is obtained by
the integration of the mean daily velocities over a 3 d period.
The LKF datasets of both simulations can be found in Hutter
(2019b, c).

2.4 Spatiotemporal scaling analysis

Sea ice deformation is known to depend on spatial and tem-
poral scales following a power law (Weiss, 2013; Weiss and
Dansereau, 2017, for a space–time coupled form),

|ε̇ (T ,L)| ∼ Lβ(T ), (1)

|ε̇ (T ,L)| ∼ T α(L), (2)

where |ε̇ (T ,L)| is the mean deformation rate for the tempo-
ral scale T and the spatial scale L. These scaling properties
have been used to compare the self-similarity of sea ice de-
formation in satellite observations and various model simu-
lations (Rampal et al., 2016; Spreen et al., 2017; Hutter et al.,
2018; Bouchat and Tremblay, 2017). Higher moments of the
deformation rate also follow a power law scaling (Marsan
et al., 2004; Weiss and Dansereau, 2017),∣∣ε̇(T ,L)q ∣∣∼ Lβ(q), (3)∣∣ε̇(T ,L)q ∣∣∼ T α(q), (4)

with q being the order of the moment. Here, the scaling ex-
ponents vary with the moment order and follow quadratic
structure functions β (q)= aq2

+ bq and α (q)= cq2
+ dq

to show the multi-fractal intermittency and localization, i.e.,
larger deformation events are more localized and intermittent
than low deformation rates (Rampal et al., 2019).

The spatiotemporal scaling analysis performed in this
paper is based on Lagrangian drift data, as suggested in
Sect. 2.3.2. To transfer the RGPS sampling to the model
output, we convert the regular gridded velocity output of
the model to Lagrangian drift data by integrating trajecto-
ries from daily averaged velocity output of the model. Vir-
tual buoys are initialized on the RGPS grid on 1 November
of each year (1996–2007). The virtual buoys are advected
with the modeled ice drift until mid-May of the following

year, and their positions are recorded every day. Note that
the integrated trajectories agree with RGPS drift data in their
initial position but not in their entire path. We use the initial
position of the trajectories on the regular RGPS grid to de-
fine rectangular cells of four buoys to compute deformation
rates. These cells are followed over the entire winter. The de-
formation rates at the finest (initial) scales ofL0 = 10 km and
T0 = 3 d are determined from the drift of the vertices using
line integrals (Lindsay and Stern, 2003). In this computation,
cells are removed that change their size by a factor of 2 or
more.

The deformation rates for larger spatial and temporal
scales are obtained by averaging the original deformation
rates – a method referred to as coarse-graining (Marsan et al.,
2004). First, we average n∗ deformation rates in the tem-
poral domain to obtain the deformation rates for ε̇ (T ,L0).
The actual temporal scale of this average is determined by
the number of valid deformation rates at an initial scale of
n≤ n∗ with T = nT0 ≤ n

∗T0. Averages for which n≤ n∗/2,
i.e., less than half of the deformation rates in the interval that
are available, are removed. Next, the deformation rates are
averaged in space. In doing so, we averagem∗×m∗ temporal
averages of deformation rates to ε̇ (T ,L). The spatial scale L
of the average is determined by the square root of the area
that is covered by valid deformation rates where L≤m∗L0.
All cells that are less than half filled (L < L0/2) are removed.

2.5 Irregular temporal sampling of RGPS

The RGPS drift datasets consists of a set of points that
are followed in time in consecutive images of RADARSAT.
Therefore, the temporal sampling of position updates de-
pends on when the satellite passes over a particular area. The
RADARSAT repeat cycle is 3 d, during which it covers the
Arctic Ocean. The repeat cycle is also the general temporal
resolution of RGPS.

Each time an image is available in a region (smaller than
the entire Arctic) with RGPS drifters, the drifter positions are
updated. The time stamp of the record of all RGPS drifters
within one image is the same, but the time stamp of the next
(subsequent) image is slightly delayed by the time it takes
the satellite to fly to this neighboring region. Note that in
this way the positions of drifters that are on both images
are updated twice within a time period much shorter than
3 d. The time difference within one overfly (order of min-
utes) is small compared to the time difference between two
different overflies that cover the same region (order of 3 d).
This irregular time sampling complicates the computation
of deformation rates using line integral approximations on
polygons constructed of RGPS drifters because all vertices
(RGPS drifters) contained in the polygon need to have posi-
tion records at the same time.

Comparing the deformation rates of RGPS data to model
output leads to a second problem: we use trajectories initial-
ized at RGPS positions and advected with daily mean model
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velocities as described in Sect. 2.4. The positions of these
trajectories are saved in 3 d intervals, so that all deformation
rates computed from model data cover a 3 d period and start
and end at the same time. The deformation rates computed
from RGPS data, however, have varying start and beginning
times and varying time intervals.

Hence, the RGPS deformation rates need to be converted
to regular 3 d intervals to set up a common framework for a
comparison. Rampal et al. (2019) used simple nearest neigh-
bor interpolation to do so and glosses over temporal details.
For a more accurate conversion, we take the following pro-
cessing steps for each RGPS stream (all points that are cov-
ered by two consecutive overflies of the satellite; for details,
see Kwok and Cunningham, 2014). (1) We form rectangles
from all RGPS drifters using their initial position. (2) For
each rectangle, we check the time records of all vertices for
time records that are shared by all four vertices with a tol-
erance of ±3 h. (3) From these common time records we
compute velocity gradients if the time between two common
records is larger than 1.75 d and smaller than 7 d. (4) The
computed velocity gradients are then averaged in the fixed
3 d intervals weighted by the time they overlap with the fixed
3 d interval. The set of 3 d gridded deformation rates for each
stream is merged into a composite for the Arctic. In a region
where two streams overlap, we choose the data of the stream
that has a larger temporal coverage and remove the data of
the other stream.

3 Scaling in sea ice deformation

The mean deformation rates in the RGPS dataset and
both simulations decrease with the increasing spatial scale
(Fig. 1a). These decreases follows a power law (Eq. 3),
showing that the deformation is strongly localized. The ITD
simulation shows higher deformation rates than the RGPS
data across all spatial scales, whereas the noITD simulation
underestimates deformation rates. The spatial scaling expo-
nents of the ITD simulation agree very well with RGPS ob-
servations. The noITD simulation shows a slightly weaker
localization of deformation rates than the RGPS data. The
scaling exponent increases with the moment order following
a quadratic structure function for all three datasets (Fig. 1b).
This shows that strong deformation events are more strongly
localized than weak deformation events, which indicates
multi-fractal spatial scaling of deformation rates. The struc-
ture functions have curvatures of c = 0.14 (RGPS) and c =
0.15 (both model simulations), consistent with previously
published results (c = 0.13–0.14, Marsan et al., 2004; Ram-
pal et al., 2016). The remarkable agreement of the curvature
in RGPS data and model simulations implies that the model
simulations reproduce not only the spatial heterogeneity of
deformation rates but also the stronger localization of ex-
treme deformation events.

The temporal scaling analysis (Fig. 2) shows that the sea
ice deformation is governed by the multi-fractal temporal
scaling. (1) The moments of sea ice deformation decrease
with increasing temporal scale following the power law of
Eq. (4). (2) The temporal scaling exponents vary quadrat-
ically with the order of the moments. Again, the structure
functions of the model simulations resemble the structure
function found for RGPS data and the obtained curvatures
c = 0.13 (ITD) and c = 0.11 (RGPS, noITD) agree with pre-
vious studies (c = 0.12, Weiss and Dansereau, 2017). Again,
a positive curvature of the structure function implies that the
high-deformation events are more strongly localized in time
than small deformation events.

The multi-fractal scaling properties of sea ice deformation
imply a space–time coupling for both the RGPS data and
model simulations, i.e., the degree of localization changes
with temporal scale and the degree of intermittency changes
with spatial scale (Fig. 3). We find that for model simulations
the curvature of the structure function of the spatial scaling
exponent decreases with increasing temporal scale at a rate
similar to the RGPS data (Fig. 3a). The curvature of the struc-
ture function of the temporal scaling exponent also decreases
with increasing spatial scale (Fig. 3b). The curvature of the
structure function of the temporal and spatial scaling expo-
nent follows a power law (Fig. 3a and b), as suggested by
Rampal et al. (2019).

Comparing the spatiotemporal scaling of both model sim-
ulations, we find that deformation rates and spatial and tem-
poral scaling exponents for the first moment of scaling de-
formation are higher in the ITD simulation compared to the
noITD simulation. This supports the hypothesis of Hutter
et al. (2018) that the ice strength formulation in the ITD run
intensifies the feedback cycle of ice strength and deforma-
tion. This intensification in the ITD simulation is caused by
the ice strength being more dependent on the concentration
of the thinnest ice class. In the case of divergence, newly
formed ice in open water fills this thinnest class and reduces
the ice strength. Due to the reduced ice strength, deformation
increases, yielding to a stronger localization of deformation
in space and time and thereby higher scaling exponents.

In summary, the spatiotemporal scaling analysis shows
that both model simulations reproduce the observed multi-
fractal heterogeneity and intermittency of sea ice deforma-
tion (Marsan et al., 2004; Rampal et al., 2008; Weiss and
Dansereau, 2017; Oikkonen et al., 2017) equally as well as
more sophisticated models that were specifically designed
with these characteristics in mind (Girard et al., 2011).

4 LKF statistics

We split the analysis of the detected and tracked LKFs into
three different parts: (1) the pan-Arctic distribution of LKFs
that describes the overall number of LKFs and the density
and orientation of LKFs, (2) spatial properties of LKFs, i.e.,
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Figure 1. (a) The first three moments of sea ice deformation rate as a function of the spatial scale for RGPS and both model simulations.
(b) The spatial scaling exponents as a function of the moment order. A quadratic structure function β (q)= aq2

+bq is fitted (dashed lines).
The curvature of the fit is given in the legend. The error bounds of the scaling exponents are determined by the minimum and maximum
slope between successive points of the power law fit.

Figure 2. (a) The first three moments of sea ice deformation rate as a function of the temporal scale for RGPS and both model simulations.
(b) The temporal scaling exponents as a function of the moment order. A quadratic structure function α (q)= cq2

+dq is fitted (dashed lines).
The curvature of the fit is given in the legend. The error bounds of the scaling exponents are determined by the minimum and maximum
slope between successive points of the power law fit.

the length and curvature of LKFs, as well as the angle at
which they intersect, and (3) the temporal evolution of LKFs
as described by their persistence and their growth rates. Each
metric is presented and discussed in a separate subsection for
RGPS data and both model simulations. The overall quality
of LKFs in the simulations and the link between LKF statis-
tics and scaling analysis is discussed in Sect. 5.

This comparison includes some metrics that are sensitive
to the coverage of the LKF dataset. While the coverage of
the model is pan-Arctic and constant in time, the coverage
of the RGPS data varies with time. We mask the LKFs of
the model simulations with the RGPS coverage of the cor-
responding record. As some LKFs are removed in part or
entirely, this filtering also affects the tracking of the features.
The tracking algorithm is, therefore, run once again on the

filtered features. We label the masked version of model LKFs
in the legend of the corresponding plots.

4.1 Pan-Arctic distribution of LKFs

In the following section we test whether the model simula-
tions reproduce (1) the number of features for different years
and seasons, (2) the regional distribution of deformation fea-
tures, and (3) the mean orientation compared to the RGPS
LKF dataset.

4.1.1 Number of LKFs

The first and most obvious metric for testing whether a model
simulates LKFs in agreement with observations is the num-
ber of features detected in model simulations and observa-
tions. This metric was used for the optimization of solver pa-

The Cryosphere, 14, 93–113, 2020 www.the-cryosphere.net/14/93/2020/



N. Hutter and M. Losch: Feature-based comparison of sea ice deformation 99

Figure 3. Spatiotemporal coupling of multi-fractal scaling: (a) the curvature of the structure function of the spatial scaling exponent as a
function of temporal scale for RGPS data and both model simulations. (b) The curvature of the structure function of the temporal scaling
exponent as a function of spatial scale. The dashed lines provide power law fits to the decay of the curvature.

rameters (Koldunov et al., 2019) and provides some valuable
first insights. The number of detected features in RGPS data
and both model simulations are given in Fig. 4. Here, we use
the version of the LKF dataset for both model simulations
that has been filtered by the RGPS coverage and normalize
the number of LKFs by the number of RGPS observations to
account for the varying RGPS coverage.

The RGPS LKF dataset shows little variation in the num-
ber of deformation features in the entire observing period
with no clear trend (from 0.015 to 0.0125 LKFs per RGPS
observation). There is no significant seasonal variability in
feature numbers for the RGPS data (Fig. 4b). The cumulative
length of all LKFs, defined as the sum of all LKF lengths in
one record, shows seasonal variations (Fig. 4d). The cumula-
tive length decreases as the ice advances and reaches a min-
imum in mid-March, implying that in this season the area is
smaller where atmosphere–ice–ocean interaction processes
take place. This difference in the seasonal cycle shows that
in the freezing season (November to January) LKFs tend to
be larger than in the remaining part of the year.

The number of detected LKFs in the ITD simulation
agrees on average very well with RGPS, except for the last
two winters (Fig. 4a). The interannual variability in LKF
numbers, however, is larger by a factor of 2 compared to the
RGPS data (shaded standard deviation in Fig. 4b). The num-
ber of features is higher than for the RGPS data in the early
freezing period in November and after mid-April. Starting in
late spring, the ice cover seems to be too weak in the simula-
tion, therefore there are more LKFs and a generally too large
LKF network.

In the noITD simulation, there are ∼ 30 % fewer detected
features than for the RGPS dataset and the cumulative LKF
length is shorter by ∼ 20 %. This simulation reproduces the
weak seasonal cycle of the numbers of LKFs in the RGPS
data, but the numbers are generally too low and then slightly

increase in April (Fig. 4b and d). For the cumulative LKF
length, however, the magnitude of seasonal cycle is twice
as strong for the model than for the RGPS data (Fig. 4c),
which shows that the average LKF length in the simulation
is more variable. The noITD simulations shows a higher av-
erage LKF length compared to RGPS data before March and
a lower average LKF length afterwards.

4.1.2 LKF density

The number of LKFs only provides insight about the tempo-
ral development of LKFs, but the LKF densities (i.e., their
relative frequency of occurrence) show how the simulated
LKFs vary in space compared to the RGPS data. In the RGPS
data (see also Hutter et al., 2019a), we find the highest densi-
ties along the shorelines of islands such as the New Siberian
Islands and Wrangel Island (Fig. 5a; for geographical refer-
ence see Fig. 5b). The highest densities within the ice pack
are found in the Beaufort Sea. Low densities stand out in
the fast-ice region in the East Siberian Sea with a sharp fast-
ice edge. Similar distributions were found for lead densi-
ties derived from MODIS thermal-infrared imagery (Willmes
and Heinemann, 2016) and CryoSat-2 data (Wernecke and
Kaleschke, 2015).

In both simulations, the regions of high LKF densities are
similar, but the ITD simulations generally have higher densi-
ties. Here, LKFs concentrate along small islands and coast-
lines as in the RGPS data. Besides Wrangel Island and the
New Siberian Islands, Severnaya Zemlya and Franz Josef
Land are preferred starting points of LKFs. The highest den-
sities along the coastlines are found at Utqiaġvik (formerly
known as Barrow, Alaska) and at the northeastern tip of
Greenland, consistent with remote sensing data estimates
(Willmes and Heinemann, 2016). These high densities along
the coast of Alaska are not resolved in the RGPS dataset be-
cause the detection algorithm cannot identify LKFs that are
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Figure 4. (a) The number of LKFs detected for the entire observing period (1996 to 2008). The lines are running means with a window size
of 17 d of the individual daily numbers represented by the light-colored dots. (b) Seasonality of the number of LKFs. The lines are running
means with a window size of 5 d. The shaded areas show the standard deviation of the individual years. (c) The same as panel (a) but showing
the cumulative length of the system of all LKFs, defined as the sum of all LKF lengths in one record. (d) The seasonal cycle of the cumulative
length of the LKF system. For the analysis presented in this figure the LKF datasets of both simulations are filtered for RGPS coverage.

located at the edge of the RGPS coverage. The general over-
estimation of coastal deformation in the model simulations
combined with an underestimation in the pack ice compared
to RGPS data suggests stress propagation to the coast in the
model due to a lack of inhomogeneities in the pack ice that
serve as seeding points for failure.

In both simulations, we observe distinct fast-ice regions
with low LKF densities in the eastern Laptev Sea but not
in the East Siberian Sea. Further, the simulated LKFs do
not accumulate at the Hanna Shoal as the RGPS LKF den-
sities. In this shallow region, keels of pressure ridge fre-
quently ground, which initiates the formation of leads (Ma-
honey et al., 2012). Both the missing landfast ice in the East
Siberian Sea and the missing effect of grounded ice may be
improved by implementing a grounding scheme (Lemieux
et al., 2015).

For the RGPS data, a band of enhanced LKF activity con-
necting Hanna Shoal and Wrangel Island (Fig. 5) is consis-
tent with results based on the Advanced Very High Reso-
lution Radiometer (AVHRR) (Mahoney et al., 2012). In the
RGPS data, we observe lower LKF densities north of this
band. Neither the band nor the region of low LKF densities
can be found in either simulation. We speculate that in the
model there are no stress locators in the form of grounded

ice, which leads to a spatially broader distribution of failure
and LKFs.

The elevated LKF densities in the Beaufort Sea in the
RGPS data are another prominent feature within the pack ice.
These have been attributed to the shear induced by the Beau-
fort Gyre circulation (Willmes and Heinemann, 2016). We
do not observe the increased probability in LKF formation in
either simulations, which may suggest that the Beaufort Gyre
circulation is too weak, that there are too few mesoscale ed-
dies (Zhao et al., 2014), or that the ice–ocean drag parame-
terization that does not take into account keels and sails in
deformed multiyear ice is too simple (Tsamados et al., 2014;
Castellani et al., 2018).

4.1.3 LKF orientation

A preferred LKF orientation indicates frequently occurring
forcing conditions. We compute the orientation of LKFs
clustered in 200 km× 200 km boxes in the Arctic. Within
each box, the orientation of the part of each LKF that over-
laps with the box is determined. From these orientations we
compute the mean orientation (Fig. 6a–c) following Bröhan
and Kaleschke (2014). In addition, we determine the modes
of the orientation distribution within each box (Fig. 6d–f),
as the mean orientation is misleading for multimodal distri-
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Figure 5. (a, c, e) The density of LKFs in the RGPS dataset and the two model simulations for the winters between 1996 and 2008 computed
in 50× 50km boxes over the Arctic Ocean. The absolute frequency of LKF pixels in a box is normalized by the total number of pixels with
deformation in the dataset. Only boxes with more than 500 deformation pixels in space and time are shown. (d, f) The difference in density
between both model simulations and RGPS. (b) The geographical locations that are referenced in the text.

butions. We find the modes of multimodal distributions of
LKF orientations by determining local maxima in a prob-
ability density function (PDF). First, we estimate the PDF
of the distribution using a kernel density estimation (KDE)
with von Mises kernels that can be seen as the analogue of
the Gaussian distribution on a circular domain (Borradaile,
2003). The modes of the distribution are given by the local
maxima of the PDF estimated by the KDE. To test whether
the obtained orientation distributions are significantly dif-
ferent from a random distribution, we draw 10 000 random
orientation samples of the same size and perform a χ2 test
(Bröhan and Kaleschke, 2014). We mark points where the
mean probability of the χ2 tests is less than 1 % as statis-
tically significant. We take into account only LKFs with an
average total deformation rate of 0.5 d−1 to agree with visu-
ally identified LKFs (Kwok, 2001).

Both the mean orientation and the first mode of orienta-
tion are generally parallel to the coastline (Fig. 6a and d).
The LKFs orientated in this direction are most likely flaw
leads between the fast ice along the coast and the mobile pack
ice. The model simulations reproduce this behavior along all
coastlines. The parallel orientation to coastlines is consis-
tent with lead orientations reported earlier (Miles and Barry,
1998; Bröhan and Kaleschke, 2014).

In the East Siberian Sea, the mean LKF orientation is from
east to west in the RGPS data, as well as in both model
simulations. This is also the orientation of the local fast-ice
edge. The mean orientation shifts towards the north–south
direction in the Beaufort Sea again for the observations and
both simulations. This general pattern of LKF orientation
is consistent with the orientations derived from visually de-
tected leads in thermal- and visible-band imagery of the years
1979–1985 (Miles and Barry, 1998). Interestingly, there are
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Figure 6. (a, b, c) Mean orientation of LKFs for RGPS and two model simulations for the winters between 1996 and 2008. We follow the
definition of mean and standard deviations for circular data from Bröhan and Kaleschke (2014) for lead orientations. The line width indicates
the standard deviation of the distribution within the cell. Orientation distributions that are statistically significantly different from a random
distribution are marked by a black dot. Only cells that contain more than 500 LKFs are shown. (d, e, f) Modal orientation of LKFs for RGPS
and two model simulations. The three largest modes of the distribution of orientation are plotted for cells that include more than 500 LKFs.
The probability (PDF) of each mode is shown by the line length, where a PDF value of 5.5× 10−3 corresponds to the mean PDF value of
a random distribution. In panels (b), (c), (e), and (f) the 0, 90, 180, and −90◦ meridians are shown as dashed grey lines. The numerical grid
lines of both simulations are parallel to these meridians.

substantial differences with more recent results with predom-
inantly east–west orientations in the Beaufort Sea (Bröhan
and Kaleschke, 2014). These differences may appear because
Bröhan and Kaleschke (2014) used data from a different time
period (years 2002–2011) or because they used a more so-
phisticated statistical method (Hough transform). We note
that although RGPS data and simulations agree in the mean
LKF orientation in these regions, the model shows a spread
in the modal values, which points towards too large LKF in-
tersection angles that lead to two peaks in the distribution of
orientations.

In the central Arctic, the mean orientation of LKFs in the
RGPS data suggests a circular deformation pattern that orig-
inates in northeastern Greenland, circles the North Pole and
heads towards Severnaya Zemlya. The pattern is reminiscent
of a basin-scale ice arch formed by the main sea ice export
pathway through the Fram Strait. In the modal representation
of LKF orientations, this arch is barely visible in the model
simulations. In the Fram Strait, we find modes parallel and
perpendicular to the outflow direction, indicating the buildup
of flow blockages similar to ice arches together with shearing
zones between the exported sea ice and the fast ice along the
coast of Greenland.

4.2 Spatial LKF properties

4.2.1 LKF length

LKFs in the Arctic have length scales from a few me-
ters up to the basin-scale (1000 km). Given that automated
lead detection is challenging and handpicked lead datasets
have a limited sampling size, the first quantitative esti-
mates of LKF length have been published only very re-
cently (Linow and Dierking, 2017; Hutter et al., 2019a).
From 10 RGPS records, Linow and Dierking (2017) in-
ferred an exponential distribution of LKF lengths. Length
measurements of lead skeletons, again from a small sample-
size, were also distributed exponentially (Van Dyne et al.,
1998). The distribution of LKF lengths from the entire
RGPS dataset contains more extreme values (Hutter et al.,
2019a) and is described by a stretched-exponential distribu-
tion: p(x)= Cxβ−1e−λx

β
with C = βλeλx

β
min (Clauset et al.,

2009). Stretched-exponential distributions belong to the fam-
ily of heavy-tailed distribution but, in contrast to the power
law distribution, have a natural upper-limit scale (Laherrère
and Sornette, 1998). Here, the upper-limit scale is the finite
size of the Arctic Ocean.

We determine the PDF of LKF lengths from RGPS data
and both model simulations (Fig. 7a). The length is mea-
sured as the cumulative sum of the distance between pixels
along the LKF. We fit a stretched exponential distribution to
all datasets using maximum likelihood estimators and per-
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Figure 7. (a) PDF of LKF lengths for RGPS data and both simulations along with fits to stretched exponential distributions. (b) Absolute
frequencies of LKF lengths in RGPS data and both simulations. For the analysis presented in this figure the LKF datasets of both simulations
are filtered for RGPS coverage.

form a goodness-of-fit test (Hutter et al., 2019a). We find
that all distributions are accurately described by stretched
exponentials (RGPS: λ= 1.69× 10−2, β = 0.719; noITD:
λ= 0.90×10−2, β = 0.761; and ITD: λ= 1.38×10−2, β =
0.741). The PDF of the ITD simulation agrees remarkably
well with the RGPS PDF. Only for LKFs longer than 150 km
are the probabilities slightly higher. In the noITD simula-
tion large LKFs (> 300 km) have a higher probability than
in the RGPS data or in the ITD simulation. From the abso-
lute frequencies of LKF lengths (Fig. 7b), it becomes clear
that these high values in the (normalized) PDF are to a large
extent a consequence of too few small LKFs. From the deficit
in small-scale deformation features in the noITD simulation
one may infer that there are too few inhomogeneities in the
ice cover that can initiate failure. The ITD sub-grid model
allows for more small-scale variations in the ice thickness
distribution that are reflected in the ice strength and in turn
lead to stronger localized deformation.

4.2.2 LKF curvature

As their name implies, linear kinematic features are mostly
linear with only little curvature (Kwok, 2001). Linow and
Dierking (2017) introduced the dependence of the distance
between both endpoints on the LKF length as a metric for
the curvature of an LKF. This ratio is 1 for perfectly linear
features and 0 for circular ones. We apply this metric to all
LKFs detected in the RGPS data and both simulations and
plot the distance between LKF endpoints against the LKF
length (Fig. 8). For perfectly linear LKFs, all points con-
verge to a line with a slope of 1 (the diagonal of the plot).
We find that all LKFs clearly fall on a line with slopes of
0.91 (RGPS and noITD) and 0.90 (ITD) for all length scales
from up to 1700 km. Thus, the shape of the LKFs does not
change with spatial scale, which agrees very well with the
self-similar properties of sea ice shown for the size of ice

floes (Stern et al., 2018) and deformation features (Weiss,
2003; Marsan et al., 2004; Wernecke and Kaleschke, 2015).
Both simulations reproduce the magnitude of the curvature
and its scale invariance. The spread in curvature decreases at
smaller LKF length (< 200 km) for RGPS and both simula-
tions because the LKF detection algorithm does a poor job of
detecting short high-curvature LKFs. Here, we note that this
fairly simple metric does not allow further inferences about
the shape of LKFs, but it has the advantage that it can be ap-
plied in a straightforward manner to a large variety of LKFs.

4.2.3 LKF intersection angles

The intersection angle of LKFs is strongly related to the ma-
terial properties, more precisely to the yield curve of the rhe-
ology (Erlingsson, 1988; Wang, 2007), but only intersection
angles of conjugate faults, where intersecting LKFs form in-
stantaneously under the same forcing conditions, provide di-
rect information about the yield curve. Therefore, we limit
the analysis of intersection angles to pairs of LKFs that form
in the same time record. We note that with this restriction the
maximum time between the formation of both LKFs is deter-
mined by the temporal resolution of RGPS of 3 d. Therefore,
some LKF pairs may not have formed simultaneously. In ad-
dition, we require the length of both LKFs to be larger than
125 km to exclude the effect of a preferred direction along
the pixels of the image.

The PDF of intersection angles for RGPS data peaks
around 40–50◦ (Fig. 9). This peak agrees with typical in-
tersection angles of 30–50◦ inferred from satellite imagery
(Walter and Overland, 1993; Cunningham et al., 1994;
Schulson, 2004; Wang, 2007) and laboratory measurements
(Schulson et al., 2006). We find the lowest probabilities for
angles smaller than 20◦. Angles larger than 50◦ occur more
often than angles smaller than 40◦. The distributions of inter-
section angles in both model simulations are very different

www.the-cryosphere.net/14/93/2020/ The Cryosphere, 14, 93–113, 2020



104 N. Hutter and M. Losch: Feature-based comparison of sea ice deformation

Figure 8. The distance between the endpoints of an LKF plotted over its length. We find that all observations fit a linear line. The slope of
the fitted linear relationship is given next to the fitted line.

Figure 9. The PDF of intersection angles of LKFs in RGPS data
and both simulations. The analysis is limited to pairs of LKFs that
formed in the same time record and have a length larger 125 km. In-
dividual years are plotted as colored points and the multiyear mean
is given as a solid line.

from the RGPS data and peak at 90◦, which is in agreement
with idealized experiments using the VP rheology (Hutch-
ings et al., 2005). Intersection angles smaller than 60◦ are
less frequent in the model simulations than in the RGPS data.
The differences between both simulations are small.

According to theoretical considerations, the intersection
angle is determined by the slope of yield curve (Pritchard,
1988; Ukita and Moritz, 1995; Wang, 2007). As both sim-
ulations use the same elliptical yield curve with a normal
flow rule (Hibler, 1979) similar intersection angles of LKFs
are expected. We attribute the small differences in Fig. 9 to
sea ice fields with a different amount of LKFs. Ringeisen
et al. (2019) derived for idealized compression experiments
that it is impossible to obtain intersection angles smaller than
60◦ with an elliptical yield curve. This explains the deficit of
small intersection angles in our simulations. The peak in the
PDF near 90◦ suggests a dominant LKF alignment with the
numerical grid. A close inspection, however, does not show

this dominant alignment (Fig. 6b, c, e, f). Therefore, we can
assume that the grid orientation has only a small effect on
the LKF orientation but that the rheology itself causes the
overestimation of the intersection angle.

4.3 Temporal evolution of LKFs

The temporal evolution of LKFs has not been studied very
much. In situ field observations of individual leads breaking
individual floes (e.g., Dempsey et al., 2012) suffer from space
and time limitations. Qualitative evaluations of the persis-
tence of lead patterns on the order of a month (Kwok, 2001)
did not focus on individual leads to deduce these temporal
characteristics of LKFs and are necessarily inaccurate. Hut-
ter et al. (2019a) combined the large coverage of the RGPS
data with a tracking algorithm to provide first qualitative es-
timates of LKF lifetimes. Here, we use the same method to
study the persistence and the growth rates of LKFs.

4.3.1 LKF persistence

We determine the lifetime of an LKF by counting how many
times we track a feature. The lifetime estimates are binned
into 3 d intervals, i.e., the temporal resolution of the defor-
mation data. If an LKF can not be tracked, we assign it
to the lowest lifetime class (0–3 d). Tracked LKFs are as-
signed to a lifetime class according to the number of tracks
(tracked one time being assigned to 3–6 d, tracked two times
to 6–9 d, etc.). We compute the lifetime of LKFs in RGPS
data and in both simulations. For the simulations we pro-
vide two calculations each: one after reducing the simula-
tion data to the RGPS coverage (Fig. 10a) and one for the
full datasets (Fig. 10b). All lifetime distributions have an ex-
ponential tail. For the comparison with LKF lifetimes in the
RGPS data we use the reduced versions of the model sim-
ulations (Fig. 10a). The lifetime distribution of the noITD
simulation and the RGPS data have the same rate of the ex-
ponent tail of 0.34 d−1. The ITD simulations overestimates
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the lifetime of LKFs with an exponential tail decaying with
the rate of 0.21 d−1.

The long LKF lifetimes in the ITD simulation can be
caused either by forcing fields that are too homogeneous or a
memory of past deformation that is too strong, both of which
favor continuous deformation of ice. Given the high temporal
and spatial resolution of the atmospheric forcing data, forc-
ing fields that are too homogeneous are unlikely to be the
only cause. In the ITD simulation, deformation events im-
print on the ice thickness distribution of a grid cell, which has
an effect on the ice strength and hence leads to fast feedbacks
on the deformation itself. In this sense, these changes in the
ice thickness distribution can be regarded as a memory in the
ice. Interestingly, this extra memory with the ice strength of
Rothrock (1975) improves the agreement with the number
of LKFs (Sect. 4.1.1) and the LKF density (Sect. 4.1.2) in
the RGPS dataset but reduces the agreement with the RGPS
dataset in terms of LKF lifetimes. This suggests the possi-
bility of improving the sea ice model by decoupling the ice
memory in the model from the ice thickness distribution.

The varying spatial coverage of the RGPS data introduces
an unknown bias in LKF lifetimes. With our simulations we
can estimate this bias by comparing the lifetimes of filtered
LKFs to unfiltered LKFs (Fig. 10b). The difference for the
noITD simulation, which agrees almost perfectly with RGPS
data when masked by RGPS coverage (Fig. 10a), suggests
that the amount of long lifetimes is reduced by the varying
coverage with the rate of the exponential tail decreasing to
0.21 d−1, which corresponds to an increase in mean lifetime
of ∼ 50 %. For the ITD simulation the effect is similar.

4.3.2 LKF growth rates

Failure propagates quickly through the sea ice cover. This
propagation can be modified or even stopped by changing
forcing conditions. The growth rates of persistent LKFs pro-
vide information about these processes. We define the growth
rate as the change in length of an LKF divided by the time
between two records. In detail, we compute the area where
both LKFs of a tracked pair overlap following the definition
of overlap from Hutter et al. (2019a) to determine how much
of the change in length is attributed to growth and shrinking.
This overlapping area is the part of the LKF that is seen in
both time records. All parts of the LKF from the first time
record that do not lie in the overlapping area are parts of the
LKF that become inactive in the next time record. We asso-
ciate the shrinking rate to these changes. Analogously, the
LKF grows by the parts of the LKF in the second time record
that lie outside of the overlapping area. These changes are
associated with the (positive) growth rate. For completeness
we also compute the growth rates of newly formed LKFs as
their initial length divided by the temporal resolution.

All three growth rates follow an exponential distribution
for the RGPS data and both model simulations (Fig. 11). Pos-
itive growth has the largest growth rate and the slowest de-

cay of the exponential tail. The growth rate distributions of
newly formed LKFs have the steepest exponential tails but a
higher probability of small growth rates (< 50 km d−1). This
implies that it is more likely for an existing LKF to grow
longer than for a new one to form. From a physical point of
view, this is plausible because an existing LKF is a weak-
ness in the ice, where, with constant forcing, stress can ac-
cumulate which facilitates further deformation. Both model
simulations contain this effect.

The shrinking rates of persistent LKFs are smaller than
their growth rates and larger than the growth rate of newly
formed LKFs. The physical interpretation is that the fracture
of ice acts on much smaller timescales than the healing of
the ice cover. Therefore, breaking the ice and opening a lead
takes less time than closing the lead by refreezing or conver-
gent ice motion.

Both mechanisms – higher growth rates of persistent LKFs
and slower closing of LKFs – are present in RGPS data and
both model simulations. However, only the ITD simulation
reproduces the higher rate parameters of the exponential tails
of RGPS observations. The tails for the noITD simulation
decay more slowly for all three growth rate distributions. We
attribute these differences to two effects: (1) the feedback be-
tween deformation and thickness that accelerates the forma-
tion of LKFs is slower without the ITD due to the different
strength formulation. Therefore, higher stress builds up be-
fore plastic deformation takes place, and consequently larger
LKFs are formed. (2) The low LKF density in the noITD sim-
ulation leaves enough space for LKFs to grow larger. There
are two plausible ways of stopping an LKF from growing:
either the stress is too small for further growth or the LKF
intersects another LKF. Thus, higher LKF densities lead to
lower growth rates.

The low temporal resolution of 3 d cannot resolve true
growing or shrinking rates of the LKFs because the forma-
tion or destruction of a deformation feature may take place
on much shorter timescales. Therefore, the growth rates com-
puted here cannot be compared to fracture speeds of sea
ice determined from acoustical measurements. These frac-
ture speeds range from 100 to 1100 m s−1 (Stamoulis and
Dyer, 2000) and can be regarded as an upper limit of the LKF
growth rates. In situ measurements of lead propagation times
can also be used as an upper limit: Dempsey et al. (2012)
recorded a time of 10 s to break a 80 m ice floe which corre-
sponds to a fracture speed of ∼ 690 km d−1. A higher tem-
poral sampling rate is needed to directly compare our LKF
growth rates with fracture speeds, which could be achieved
by a higher output frequency for the model but is not possible
for satellite observations.

5 Discussion

In this section we discuss how the new feature-based evalu-
ation of LKF statistics is linked to the scaling analysis and
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Figure 10. (a) The relative frequency of lifetime of LKFs in RGPS data and both simulations. The LKFs detected and tracked in the
simulations are reduced to the RGPS coverage. The dashed line are fits to exponential tails. The rate of the exponential tail in d−1 is given
in the legend. (b) Lifetime of modeled LKFs reduced to the RGPS coverage (dots and dashed lines) and unfiltered (crosses and dot-dashed
lines).

Figure 11. Mean (symbols) and standard deviation (vertical bars) of the growth rates of LKFs in RGPS data and both simulations. We
differentiate between the growth rate, the shrinking rate, and the growth rate of newly formed LKFs. The dashed lines are fits to exponential
tails, the rate parameter of which is given in the legend. For the analysis presented in this figure the LKF datasets of both simulations are
filtered for RGPS coverage.

what insights can be gained from LKF statistics for further
model development.

Simulations both with and without ice thickness distribu-
tion (ITD) model agree remarkably well with satellite ob-
servations with respect to the representation of LKFs and
spatiotemporal scaling analysis of sea ice deformation. We
find that the simulated sea ice deformation reproduces the
multi-fractality in both spatial and temporal scaling, as well
as the spatiotemporal coupling of multi-fractal characteris-
tics, which remained a challenge even for simulations with
the MEB rheology (Rampal et al., 2019). Hence, our simu-
lated sea ice deformation is characterized by strong hetero-
geneity and intermittency. Our present analysis is the most
extensive scaling analysis so far for simulations with the VP
rheology and completes a set of previous scaling analyses
(Bouchat and Tremblay, 2017; Spreen et al., 2017; Hutter

et al., 2018) that show that previous findings about VP sim-
ulations not being able to reproduce observed scaling prop-
erties at coarse grid resolution (Girard et al., 2009) cannot
be generalized (especially not to high-grid-resolution simu-
lations). For mean sea ice deformation (first-order moment
q = 1) the simulation with an ITD leads to scaling exponents
closer to the ones retrieved from RGPS, i.e., sea ice deforma-
tion is more strongly localized in space and time compared
to the simulation without an ITD. We attribute this result to
the ice strength parameterization of Rothrock (1975) in the
ITD run that favors a fast evolution of plastic deformation.

Consistent with the scaling analysis in Sect. 3, we find that
the ITD simulation has a larger number of LKFs compared
to the noITD simulation. In general, the LKFs in the ITD
simulation agree better with RGPS data in terms of the LKF
statistics. The LKF lifetime is the only exception. We note
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that both simulations reproduce all observed characteristics:
heavy-tailed distribution of LKF lengths, exponential tails in
the distribution of LKF lifetimes and growth rates, and scale
invariance of the LKF curvature. The distribution of intersec-
tion angles, however, is not reproduced in either simulation.

By combining the scaling analysis and the feature-based
evaluation, we test which inferences from the scaling proper-
ties can be made about the representation of LKFs. We dis-
cuss in the following how the results of both analyses are
linked in our special case but stress that one analysis can-
not replace the other. Nevertheless, their combined use may
provide new insights from previous scaling studies.

The largest difference in LKFs between the simulations
is that the noITD simulation produces considerably fewer
LKFs compared to the ITD simulation. In Sect. 4.2.1, we
discussed how this overall underestimation influences LKF
properties such as LKF length and growth rates. In addition,
deformation fields that include fewer features of localized
deformation obviously will be smoother in both space and
time. We attribute the lower scaling exponents for the noITD
simulation largely to the lower numbers of LKFs. The multi-
fractal spatial scaling for both simulations is consistent with
the heavy-tailed distribution of LKF lengths and the scale in-
variance in LKF shapes that suggest self-similar deformation
patterns.

The difference in temporal scaling exponents also seems
to be caused largely by the difference in LKF numbers be-
cause the noITD simulation reproduces the distribution of
LKF lifetimes remarkably well (Fig. 10a) in spite of a lower
temporal scaling exponent (Fig. 2). In contrast, the rate pa-
rameter of the LKF lifetime distribution in the ITD simula-
tion is too low (Fig. 10) despite the better temporal scaling
exponent. The absolute number of short-lived LKFs in the
ITD simulation, however, is higher and thereby closer to es-
timates from RGPS data just because of the higher number of
LKFs. In this case, linking the results of the temporal scaling
analysis to the representation of LKF lifetimes, as attempted
in Hutter et al. (2018), appears to be incorrect.

The agreement of the scaling analysis and the LKFs statis-
tics between the model simulations and RGPS data may ap-
pear almost surprising given that the models have not been
tuned at all for these diagnostics. We argue that this model
performance is not determined by the large-scale distribu-
tion of sea ice thickness and concentration but instead by the
plastic model physics. For the plastic physics in VP mod-
els to produce highly intermittent and heterogeneous LKF
distributions, a high resolution (Spreen et al., 2017; Hutter
et al., 2018) and a sufficiently accurate solver (Koldunov
et al., 2019) are necessary. As long as there is a quasi-closed
ice cover, which is the case where and when the RGPS data
are available, the plastic physics will produce localized de-
formation – even in idealized configurations (Hutter, 2015;
Heorton et al., 2018) – and the associated statistics.

Both model simulations use the same grid and the same at-
mospheric forcing, which precludes direct inferences of res-

olution impact on the presented statistics. Here, we comment
on expected impact based on previous studies. With increas-
ing horizontal grid spacing, deformation features are more
localized and more frequent (Spreen et al., 2017). Thus, the
number of LKFs, presented in Sect. 4.1.1, are likely to in-
crease with model resolution along with a decrease in LKF
length and growth rates as discussed in Sect. 4.2.1 and 4.3.2.
In idealized experiments, it has been shown that higher spa-
tial resolution of the atmospheric forcing also has the poten-
tial to increase the localization of sea ice deformation (Hut-
ter, 2015). This suggests that the number of LKFs also in-
creases. We speculate, however, that in our simulations this
effect is saturated because we already use atmospheric forc-
ing with fairly high resolution (JRA-55, 0.5625◦) that re-
solves most scales associated with the wind. To our knowl-
edge, there is no study on the impact of temporal resolution
on sea ice deformation. We hypothesize that an increased
temporal resolution of the forcing will increase the short-
term variability in the evolution LKFs, with a direct impact
on the LKF growth rates and presence of short-lived LKFs.
However, please note that the order of this short-term vari-
ability is given by the temporal resolution (hours), which is
much smaller than the shortest LKF lifetimes regarded in our
study (0–3 d). We suggest to disentangle the effects of model
resolution and wind forcing but also ice strength parameter-
ization and solver parameters, on the formation of LKFs in
a sensitivity study. For such a study, idealized experiments
appear most suitable, as they easily allow for higher number
of simulations and to isolate effects.

With the LKF statistics, we identified some issues in the
simulated deformation fields that could be addressed by spe-
cific parameterizations. A general theme in the discussion of
LKF characteristics is the low LKF density in the simula-
tions, which we attribute to too few inhomogeneities in the
ice that can act as a starting point for fracture. With an ITD,
the number and density of LKFs increase significantly. In the
ITD simulation shear and divergence have a strong impact on
the thin thickness classes, which immediately feeds back into
the ice strength facilitating further deformation. Therefore,
inhomogeneities introduced by deformation in the thickness
fields are much stronger compared to the standard VP simu-
lation.

Simulated LKF densities in the pack ice away from the
coast are too low compared to RGPS data and the distri-
bution of LKF lifetimes is biased towards long-lived LKFs.
The results imply that introducing inhomogeneities by using
an ITD model may be one way of improving the model but
not necessarily the best one. The increased presence of long-
lived LKFs in the ITD simulation suggests that one should
reduce the strong feedback between ice thickness change
and ice strength and instead introduce a damage parameter.
This damage parameter would act as the memory of past
deformation and would also feedback into the ice strength,
similar to the one used in EB and MEB models (Girard
et al., 2011; Dansereau et al., 2016). Note that the local de-
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gree of anisotropy of the elastic-anisotropic plastic rheology
(Tsamados et al., 2013) also represents a memory of past
deformation. In doing so, a properly parameterized healing
time could be tuned independently from parameters of the
ITD formulation. We stress that a systematic parameter op-
timization (e.g., Massonnet et al., 2014; Ungermann et al.,
2017; Sumata et al., 2019) is beyond the scope of this paper
and also not possible due to limited computing resources.

The underrepresentation of fast ice and LKFs that start
from anchor points at shoals could be addressed with a
grounding scheme (e.g., Lemieux et al., 2015). As the miss-
ing anchor points at shoals lead to an overestimation of LKF
densities in the Chukchi Sea, this parameterization may also
have an impact beyond improving the representation of fast
ice and LKFs at shoals.

Although the model reproduces most LKF statistics, it
completely fails to simulate the observed distribution of LKF
intersection angles. This deficit can be traced back to the
yield curve. The result motivated a dedicated study about
the dependence of the intersection angle on the yield curve
(Ringeisen et al., 2019), which showed that, with a VP rhe-
ology and classical elliptical yield curve, it is impossible
to simulate intersection angles below 60◦ in compression
and hence to reproduce the observed intersection angles.
Ringeisen et al. (2019) suggested to use a Mohr–Coulomb
yield curve but also note numerical implementation hurdles.
Hutchings et al. (2005) also showed smaller intersection an-
gles using the Mohr–Coulomb yield curve. We hypothesize
that the density of LKFs could also increase by improving
the simulated intersection angle because with sharper inter-
section angles more LKFs can be accommodated in the same
area.

LKFs also affect the thermodynamic component of the sea
ice model. Once the sea ice cover is opened in a resolved
lead, new ice growth is initiated. Koldunov et al. (2019)
found that the wintertime sea ice volume increases with in-
creasing number of resolved features. In summertime, ice–
ocean interaction along the boundaries of smaller floes accel-
erate the melting of the ice cover (Horvat et al., 2016), which
leads to a lower sea ice volume. Locally, the heat flux and
the freshwater fluxes associated with ice melt and growth in
leads may generate horizontal gradients and sub-mesoscale
variability (Horvat et al., 2016; Manucharyan and Thomp-
son, 2017). There is no feedback of LKFs to drag in the
model. As opposed to, for example, Castellani et al. (2018)
and Tsamados et al. (2014), the LKF density is not a sub-
grid-scale parameterization, so that previous parameteriza-
tion of drag as a function of LKF density cannot used. Re-
solving LKFs allows for a drag parameterization (e.g., Lüp-
kes and Gryanik, 2015) that uses information about the free-
board and characteristic length scale of floes from the simu-
lated sea ice fields.

6 Conclusion

The LKF statistics in this paper provide valuable informa-
tion about which characteristics of LKFs are reproduced by
the model and which modifications to the model are neces-
sary to further improve these simulations. The model simu-
lations, especially the one with an ITD, have LKF fields that
are in remarkable agreement with satellite observations from
RGPS. This reproduction of realistic deformation features is
the prerequisite for regional climate studies that directly re-
solve atmosphere–ocean interaction processes along leads. In
general, our model configuration could be used to predict de-
formation features in the ice. When the orientation of leads
is of special interest, for example for navigation, modifica-
tions to the rheology seem in place to obtain more realistic
intersection angles.

So far, scaling analyses are the main tool found in the lit-
erature to evaluate lead-permitting sea ice models and pro-
vide insight into the material properties that govern ice dy-
namics. With our simulations it becomes clear that these
analyses cannot discriminate between significantly different
model physics in pan-Arctic simulations (i.e., by compar-
ing our scaling analysis results to Rampal et al., 2019). This
suggests that in these scaling analyses the effect of differ-
ent physics is confounded by external factors such as wind
and ocean forcing or interactions with coastlines. Hence, we
propose idealized experiments (e.g., as in Dansereau et al.,
2016; Weiss and Dansereau, 2017) to study and isolate indi-
vidual mechanical properties. For the evaluation of deforma-
tion features in pan-Arctic simulations, the direct comparison
of these features should be the first choice.

We find that the computed spatiotemporal scaling expo-
nents are mainly linked to the number of LKFs, whereas
other direct inferences on other LKF properties are not ob-
vious. For example, high temporal scaling exponents im-
ply high intermittency, but we find that the simulation with
higher scaling exponents also tends to have longer LKF life-
times, which at first glance suggests lower intermittency.
Therefore, we do not see our new method as a substitute
for existing scaling analyses but instead as a complement.
The presented LKF statistics offer the opportunity to directly
evaluate simulated deformation features. A scaling analysis
tests for the material properties of ice dynamics. The decision
about an appropriate metric or a combination of both metrics
will always depend on the application.
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Appendix A: Modeled sea ice volume and extent

Neither model configuration is tuned to reproduce the ob-
served ice distributions due to limited computational re-
sources. As a consequence, neither simulation reproduces the
observed sea ice volume and extent in all detail but agree in
the observed general trend of sea ice retreat (Fig. A1). The
lower trend of sea ice volume in the ITD simulations was al-
ready reported for the coarse-resolution model configuration
(Ungermann and Losch, 2018), from which we obtained the
ITD-specific parameters. Both simulations overestimate the
seasonal cycle of sea ice volume, which we attributed partly
to the zero-layer thermodynamics used in the simulation and
to the effect of resolved leads in the simulation. In winter-
time, open ocean exposed in leads allows further ice growth
even for an ice-covered Arctic Ocean. In summertime, ice–
ocean interaction along the edges of smaller floes acceler-
ate the melting of the ice cover (Horvat et al., 2016). Both
model simulations underestimate the maximum sea ice ex-
tent, which we attribute to the atmospheric forcing, as both
simulations shown agree in this underestimation. Improving
the agreement with these large-scale observations requires a
dedicated tuning study, which is beyond the scope of this pa-
per and also beyond the computer resources available to us.
Both simulations agree with observed sea ice volume and ex-
tent reasonably well from November to April, when RGPS
data are available, so that we can assume that the model–data
differences in summertime are not essential to our analysis.

Figure A1. Comparison of Arctic sea ice volume in both model simulations used in our study to the PIOMAS model given as a time series
over the entire RGPS period (1996 to 2008) and separated into a linear trend, seasonality and residual (top row). The lower row is the same
as upper row but for the Arctic sea ice extent from NSIDC. For a full description of the plots, see Ungermann and Losch (2018).
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Code and data availability. The code of the LKF detection and
tracking algorithm is available on github: https://github.com/
nhutter/lkf_tools.git (last access: 14 January 2020; Hutter, 2019a).
The RGPS LKF dataset is available on PANGAEA: Hutter
et al. (2019b, https://doi.org/10.1594/PANGAEA.898114). The
LKF datasets of both simulations are available on PANGAEA (Hut-
ter, 2019b, c).
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