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Abstract. Satellite and airborne remote sensing provide
complementary capabilities for the observation of the sea ice
cover. However, due to the differences in footprint sizes and
noise levels of the measurement techniques, as well as sea
ice’s variability across scales, it is challenging to carry out
inter-comparison or consistently study these observations. In
this study we focus on the remote sensing of sea ice thick-
ness parameters and carry out the following: (1) the analysis
of variability and its statistical scaling for typical parame-
ters and (2) the consistency study between airborne and satel-
lite measurements. By using collocating data between Oper-
ation IceBridge and CryoSat-2 (CS-2) in the Arctic, we show
that consistency exists between the variability in radar free-
board estimations, although CryoSat-2 has higher noise lev-
els. Specifically, we notice that the noise levels vary among
different CryoSat-2 products, and for the European Space
Agency (ESA) CryoSat-2 freeboard product the noise lev-
els are at about 14 and 20 cm for first-year ice (FYI) and
multi-year ice (MYI), respectively. On the other hand, for
Operation IceBridge and NASA’s Ice, Cloud, and land Eleva-
tion Satellite (ICESat), it is shown that the variability in snow
(or total) freeboard is quantitatively comparable despite more
than a 5-year time difference between the two datasets. Fur-
thermore, by using Operation IceBridge data, we also find
widespread negative covariance between ice freeboard and
snow depth, which only manifests on small spatial scales
(40 m for first-year ice and about 80 to 120 m for multi-
year ice). This statistical relationship highlights that the snow
cover reduces the overall topography of the ice cover. Be-

sides this, there is prevalent positive covariability between
snow depth and snow freeboard across a wide range of spa-
tial scales. The variability and consistency analysis calls for
more process-oriented observations and modeling activities
to elucidate key processes governing snow–ice interaction
and sea ice variability on various spatial scales. The statis-
tical results can also be utilized in improving both radar and
laser altimetry as well as the validation of sea ice and snow
prognostic models.

1 Introduction

Sea ice and its snow cover are an integral component of the
earth’s climate system. Basin-scale Arctic sea ice concentra-
tion observations have been available since 1978 with passive
microwave satellite remote sensing (Cavalieri et al., 1999).
During this period, the Arctic sea ice cover has undergone
drastic changes, with record lows of September extent mini-
mums as the most prominent feature. Accompanying the all-
season shrinkage of the Arctic sea ice cover are the overall
thinning of the sea ice (Stroeve et al., 2014) and the transi-
tion to a younger ice age (Lindell and Long, 2016). Besides
this, the thermodynamics of sea ice and the polar air–sea in-
teraction are greatly modulated by the snow over the sea ice
(Webster et al., 2018). Due to snow’s low thermal conductiv-
ity and high albedo, it can effectively insulate air–sea heat ex-
change and play important roles in the positive albedo feed-
back. With climate warming, there is also growing evidence
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of changes in snow properties (Webster et al., 2014). How-
ever, large gaps still exist in understanding snow processes,
especially their interaction with sea ice, mainly due to limited
observations and deficiencies of sea ice and climate models.
Sea ice, together with its snow cover, is a focus for the inter-
national research community, from both observational and
modeling perspectives.

Among various sea ice parameters, the thickness parame-
ters, including sea ice thickness (hi) and snow depth (hs), are
essential to sea ice-related climate research and key applica-
tions. Ice thickness is a direct indicator of the history of both
thermodynamic and dynamic interaction between polar at-
mosphere and ocean. Due to its longer persistence, ice thick-
ness and volume can be potentially utilized to improve fore-
casts on seasonal or longer scales (Chen et al., 2017; Block-
ley and Peterson, 2018). However, despite their importance,
thickness parameters are challenging for observations in both
in situ campaigns and remote sensing. Satellite altimetry is
the major approach for the estimation of sea ice thickness on
the basin scale. By sending active signals from the satellite
to the earth’s surface and measuring the latency of backscat-
tered signals, satellite altimetry determines the range be-
tween the satellite and the scattering plane of the signal on
the earth. This range is converted into the height information
and by differentiation of echoes in ice floes from those on
water (i.e., leads) and retracking of lead and floe height. Re-
construction of the local water level is carried out based on
water levels in leads and environment conditions (large-scale
dynamical height, tidal effects, atmospheric loading, etc.).
The correction for local sea-surface height (SSH) is then sub-
tracted from the floe’s range to retrieve the freeboard, which
is the difference between the range of floes and that of the
reconstructed local water level.

Figure 1a shows the typical parameters of thickness re-
trieval of sea ice, including satellite altimetry. There are two
types of satellite altimetry: laser altimetry and radar altime-
try. For laser altimetry (Kwok and Cunningham, 2008), the
main backscattering plane resides close to the surface of the
snow cover, and the target of retrieval is the snow freeboard
(Fs). For Ku-band radar altimetry such as CryoSat-2 (CS-
2; Wingham et al., 2006), the backscattering of the radar
signal may occur at the air–snow interface, through snow
volume scattering and at the snow–ice interface. With dry
snow, it is usually assumed that radar signals can effectively
penetrate the snow cover. According to Armitage and Rid-
out (2015), there is overall 82 % penetration into snow over
multi-year ice (MYI) and 97 % over first-year ice (FYI). Due
to slower penetration speed (Cs) of the radar signal in the
snow than in the air, the “raw” range includes a bias which
should be accounted for by a correction term determined by
Cs and hs. This raw elevation before correction is denoted
radar freeboard (Fr), while the corrected freeboard is called
ice freeboard (Fi). Under the assumption of climatological
snow density of 320 kg m−3, the correction term is approxi-
mately 1/4 of hs. Figure 1a shows the general case of limited

penetration (apparent penetration depth of h∗s ), and the cor-
rection term should be in turn associated with h∗s (instead of
hs) for the non-biased elevation of the main reflection plane.

The freeboards are in turn converted into ice thickness es-
timations under the assumption of hydrostatic equilibrium
and buoyancy relationships (Eq. 1 for radar altimetry and
Eq. 2 for laser altimetry). This conversion depends on ac-
curate estimations of the following parameters: snow depth,
snow density (ρs), ice density (ρi) and water density (ρw).
In existing CryoSat-2-based products, climatological snow
depth and density based on Warren et al. (1999) are usually
adopted for this conversion and for the correction term of
slow radar propagation. For existing Ice, Cloud, and land El-
evation Satellite (ICESat) products, snow depth fields are re-
constructed based on accumulation of reanalysis-based pre-
cipitation and numerical sea ice drifts (Kwok and Cunning-
ham, 2008). For both types of altimetry, snow properties re-
main a major source of uncertainty in the retrieval of hi,
while other factors including ice density also play important
roles in determining the overall uncertainty (Zygmuntowska
et al., 2014; Tilling et al., 2015):

hi =
( ρw

ρw− ρi

)
·Fi+

( ρs

ρw− ρi

)
·hs, (1)

hi =
( ρw

ρw− ρi

)
·Fs−

(ρw− ρs

ρw− ρi

)
·hs. (2)

Airborne surveys provide high-resolution scanning of the
sea ice cover, which usually features more payload types and
have complementary observational capabilities with satel-
lites. They also provide invaluable calibration and valida-
tion support for satellite retrieval. NASA’s Operation Ice-
Bridge (OIB) and the European Space Agency’s (ESA’s)
CryoSat Validation Experiment (CryoVEx) are representa-
tive airborne campaigns which provide both scientific evi-
dence of sea ice parameters and practical support to satellite
altimetry. For OIB, total freeboard and snow depth are re-
trieved, and sea ice thickness can be derived with altimetric
relationships (Eq. 2; see also Fig. 1a). Commonly available
in CryoVEx campaigns is the electromagnetic induction sen-
sor (EM), which is towed under the fixed-wing platform, and
the total thickness of snow and ice (hi+hs) is retrieved.

Both OIB and CryoVEx have limited coverage of the sea
ice cover, and the measurements are concentrated along the
flight tracks. Nominally, the sea ice thickness and snow depth
from OIB products have approximately 40 m resolution (see
Sect. 2.1.1 for details). For CryoVEx, the footprint and
across-track coverage of airborne EM is about 50 to 70 m.
Various existing works have compared freeboard retrieval of
CS-2 against OIB, and there is usually very low statistical
correlation even for collocating tracks (Kurtz et al., 2014;
Xia and Xie, 2018; Yi et al., 2018). On the other hand, with
the same geophysical correction of CS-2 and snow depth cor-
rection based on OIB SnowRadar, the mean freeboards from
four CS-2 retrackers are all in agreement with the Airborne
Topographic Mapper (ATM) with 0.05 m in Yi et al. (2018).
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There are several contributing factors to the low correlation,
including the limited range resolution of CS-2 (about 0.23 m)
as well as low representation of OIB due to the relatively
small OIB coverage compared with CS-2 (Fig. 1b).

In this study, we investigate the variability and its scal-
ing among airborne and satellite remote sensing of thick-
ness parameters. The parameters subject to analyses include
snow depth, radar freeboard and snow freeboard. The vari-
ability (in terms of variance and standard deviation) in a cer-
tain parameter is essentially governed by its inherent, physi-
cal variability. However, the estimation of variability through
sampling is subject to the footprint of observations and mea-
surement errors (or noise levels), which are specific to each
sensor and campaign. Therefore, we account for data prod-
uct uncertainties during the analysis of the variability and
its scaling. In order to avoid the extra uncertainties in ice
thickness retrievals (introduced during the altimetric rela-
tionships), we analyze freeboard instead of ice thickness. The
collocating data between CS-2 and OIB since 2011 during
high winters of the Arctic are used for the analysis. Further-
more, data from collocating tracks between CS-2 and air-
borne campaigns of OIB and CryoVEx are utilized. For laser
altimetry, we adopt ICESat and study the statistical behavior
of variability and compare it with OIB (due to no available
collocating data). Section 2 includes details of the dataset of
satellite and airborne campaigns and the specific treatments
and methods for analysis. Section 3 covers all the results,
including the following: analysis with collocating measure-
ments between CS-2 and OIB, analysis of statistics of scaling
for OIB and ICESat, and covariability analysis based on the
OIB dataset. In Sect. 4 we summarize the article and discuss
related topics including the effects of variability and covari-
ability on sea ice altimetry and snow–ice interaction.

2 Data and methods

In this study, we focus on thickness-related parameters mea-
sured by airborne and satellite campaigns for the Arctic sea
ice. In specific, the following datasets are used: (1) OIB
datasets of 40 m scale snow depth, snow freeboard, derived
ice freeboard and radar freeboard; (2) CS-2 (ESA) per-
sample radar freeboard that collocates with OIB; (3) ICE-
Sat per-sample total freeboard during February, March and
April; and (4) airborne electromagnetic (AEM) induction
sensor-measured total thickness of ice and snow from Cry-
oVEx (collocating tracks with CS-2). Section 2.1 gives a de-
tailed introduction of these datasets, and Sect. 2.2 contains
the necessary treatments for analyses and inter-comparison.

Before the analysis, we also formally define the physical
parameters and their measurement errors as follows. We de-
note the measurement of any parameter a by a|obs, which
contains the linear combination of the inherent, physical sta-
tus (a|phy) and uncertainty terms, including the systematic
bias (e) and the random error (ε). Adopting both e and ε al-

lows us to differentiate the behavior of these two types of
uncertainty during scaling analysis:

a|obs = a|phy+ e+ ε. (3)

Biases (e) arise from both measurements and treatments
to the measurements. For example, sea-surface height in al-
timetry is computed from local water level estimations based
on sea ice lead detection. The retracking error in sea ice leads
causes uncertainty in the freeboard estimation. Therefore, the
freeboard uncertainty that is associated with SSH estimations
is usually persistent across adjacent altimetric samples, and
on local scales it is treated as a bias. Biases affect the estima-
tion of the mean value of the parameter but not its second-
order statistics (i.e., variance and standard deviation). On the
other hand, random errors (ε) which usually arise from mea-
surements and limited by the sensors’ precision are indepen-
dent between samples and usually follow normal distribu-
tions. During the analysis of variability, we only consider
random errors and ignore the contribution from biases. With
scaling, random errors usually diminish fast through averag-
ing. Based on these formulations, we carry out the sample-
based analyses of variability and scaling (details in Sect. 2.3).

2.1 Datasets

2.1.1 Operation IceBridge

Since 2009, NASA’s Operation IceBridge (OIB) has been
carrying out surveys with fixed-wing airborne remote sens-
ing in the western Arctic during high winter months (mainly
around March and April). In each campaign, the sea ice cover
along the flight path is scanned with various onboard sensors,
yielding high-resolution measurements of sea ice parameters,
including freeboard, snow depth, visual images, etc. The ma-
jor device onboard is the ATM, which performs conical scans
with laser beams (Krabill, 2009). The coverage of the ATM
on the ground is spiral, progressive scans centered near the
flight path, with (1) each laser footprint at about 1 m2 and
(2) a swath of about 250 m for wide-swath setting at the nom-
inal flight height of about 460 m (as in Fig. 1b). Under wide-
swath scanning, the nominal distance between each point on
the nadir of the path is about 2 to 3 m. For certain campaigns,
narrow-swath scanning is available, which increases the foot-
print density at nadir of the flight. Through visual inspection
of imagery from the onboard digital mapping system (DMS)
and differentiation between reflections from leads (water or
very thin ice) and floes, the elevation of the sea ice floes (i.e.,
total freeboard; Fs) is retrieved (Kurtz et al., 2013).

Another sensor onboard for thickness parameter retrieval
is the ultra-wideband (UWB) snow radar (SnowRadar) from
the University of Kansas (Leuschen, 2014). SnowRadar peri-
odically sends 2 GHz to (about) 7 GHz wideband microwave
signals to the sea ice cover and records backscattered wave-
forms. By retracking the major scattering planes in the wave-
forms, the travel latencies between the air–snow interface and
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Figure 1. Sea ice remote sensing by CryoSat-2, ICESat and Operation IceBridge.

snow–ice interface are tracked down, and the snow depths
are retrieved under certain assumptions of snow density and
radar travel speed in snow (Kurtz et al., 2013). The nomi-
nal footprint size of SnowRadar (with flight altitude at about
460 m) is 11 m across track and 14.5 m along track on snow-
covered sea ice (Kurtz et al., 2013), with a minimum de-
tectable snow depth of 5 cm.

OIB campaigns date back to 2009, and in this study, we
carry out analysis based on two OIB datasets that contain
campaigns between 2011 and 2017. The first is the IceBridge
L4 Sea Ice Freeboard, Snow Depth, and Thickness (IDCSI4)
product for OIB campaigns between 2011 and 2013 (Kurtz
et al., 2015). Since this product does not contain campaigns
after 2013, we also use the IceBridge Sea Ice Freeboard,
Snow Depth, and Thickness Quick Look (Kurtz et al., 2012)
for campaigns between 2014 and 2017. In these products,
measurements of hs are averaged within each 40 m segment
(about 50 SnowRadar samples) in order to reduce the noise
level of individual SnowRadar footprints. In order to com-

bine the measurements by ATM and hs to generate ice free-
board (Fi) and ice thickness, all the ATM height measure-
ments within 20 m of the center of the SnowRadar measure-
ments are averaged to produce Fs (see the hollow circle in
Fig. 1b). Ice freeboard then is derived as Fi = Fs−hs. In
turn, ice thickness can be computed using the typical buoy-
ancy relationship widely adopted in altimetry (Eq. 1).

The measurement accuracy of independent ATM scans is
about 3 cm (Martin et al., 2012), and usually over 200 ATM
samples are averaged to produce Fs on the 40 m scale. With
averaging, the random error of Fs due to ATM measure-
ment errors is very small. The uncertainty of Fs is further
determined by factors including available SSH observations
within the local regions, which are variable along the track
and in the range from 1 to 30 cm (Kurtz et al., 2015). Since
along-track SSHs are usually constructed with observations
on much larger spatial scales (over 100 km), their uncertainty
is not considered in the variability scaling, which involves
local averaging within several kilometers. The uncertainty of
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snow radar is inherently limited by its range resolution of
about 5 cm after windowing. The overall uncertainty of hs of
the OIB product is estimated to be 5.7 cm through validation
with in situ data (Kurtz et al., 2013). In this study we adopt
5 cm as the random error associated with hs.

2.1.2 CryoSat-2 (CS-2)

The ESA’s satellite campaign CryoSat-2 has been monitor-
ing the Arctic sea ice cover since autumn of 2010. On-
board CryoSat-2 is the delay-doppler Ku-band radar al-
timeter SIRAL (Parrinello et al., 2018). By delay-doppler
treatment of pulse-limited radar signals and range tracking,
CryoSat-2 achieves the nominal resolution of about 400 m
by 1500 m (see Fig. 1b), which greatly enhances that of con-
ventional pulse-limited radar altimeters (Resti et al., 1999).
Lead detection, lead and floe retracking, mean SSH estima-
tion, and local sea-level correction is then carried out to con-
vert L1 stacked waveforms to L2 Fr. Then Fr is converted
into Fi with radar propagation speed and snow depth estima-
tions (Fig. 1a and Eq. 4).

For CS-2, it is usually assumed that the radar signal fully
penetrates the snow cover and the major scattering hori-
zon is at the snow–ice interface. However, there is grow-
ing evidence that the effective backscattering plane may be
shifted upward, mainly due to scattering within the snow
cover (Ricker et al., 2015; King et al., 2018; Nandan et al.,
2017). In the general case of limited penetration (penetrated
depth h∗s smaller than the true hs), the correction term asso-
ciated with radar propagation speed should be changed ac-
cordingly (Fig. 1a). As in Eq. (4), the correction term is as-
sociated with the radar signal propagation in snow (Cs) and
in a vacuum (C):

Fi = Fr+

(
1−

Cs

C

)
·hs ≈ Fr+ 0.25 ·hs. (4)

It is worth noting that large differences exist in the L2
production protocols for producing ice freeboard, including
ESA, Centre for Polar Observation and Modelling (CPOM)
and Alfred Wegener Institute for Polar and Marine Research
(AWI), among others. The differences mainly fall into four
categories: (1) lead detection, (2) lead and floe retracking,
(3) snow depth and its correction term, and (4) SSH correc-
tion. For example, all three products adopt a threshold-based
floe retracker but differ in terms of the specific threshold
value (50 % for ESA and AWI and 70 % for CPOM). Another
example is that the correction for slow radar propagation in
snow cover for AWI (Ricker et al., 2014) and CPOM (Till-
ing et al., 2017) is based on different climatological snow
density and snow depth settings (Warren et al., 1999), while
this correction is not present in the ESA’s product (baseline
C). Despite these differences, as shown in Yi et al. (2018),
under the same protocols for geophysical corrections, there
is general consistency (within 5 cm) for the mean freeboard
among these datasets. Besides this, we also found that the

correlation between the along-track freeboard measurements
among these products is also very high (not shown).

In this study, we mainly use ESA’s CS-2 L2 radar free-
board product (baseline C) for analysis. We also adopt AWI’s
L2 ice freeboard product for comparative studies but carry
out de-correction of the radar propagation speed to de-
duce the radar freeboard, following AWI’s protocol (Ricker
et al., 2014). Since altimetric scans (such as CS-2) only
cover the nadir of the satellite’s ground path, it usually re-
quires monthly measurements to achieve basin-scale cover-
age. Therefore, we use along-track freeboard data and com-
pile them when needed (see below for details). The free-
board uncertainty associated with speckle noise is estimated
at about 10 cm (Wingham et al., 2006). Besides this, in AWI’s
CS-2 protocols, the uncertainty associated with SSH correc-
tion is in the range of 5 to 50 cm, while the bias caused by
the fixed retracking threshold and limited penetration is es-
timated to be 6 and 12 cm for FYI and MYI, respectively
(Ricker et al., 2014). Since the uncertainty associated with
SSH is dependent on lead detection and specific treatments
of along-track interpolation, its contribution to systematic er-
ror (e) and random error (ε) is also variable. For example, in
Tilling et al. (2017), 100 km is chosen as the range of valid
lead observations for determining the local SSH. Therefore,
the uncertainty associated with SSH at adjacent Fr samples
along each track is highly correlated, but it will be much
more dependent on longer spatial ranges (e.g., over 100 km).
This scale is usually much larger than the scaling analysis in
this study (usually within 2 km; see Sect. 3). Therefore, in
this study, SSH related uncertainties in freeboard measure-
ments are treated as systematic error and ignored in the scal-
ing analysis.

2.1.3 CryoSat Validation Experiment (CryoVEx)

Another airborne campaign dataset we compare against
satellite data is CryoVEx. Onboard sensors of CryoVEx in-
clude the AEM and laser scanner, and the total thickness
of snow and ice (hi+hs) is retrieved. The effective resolu-
tion (footprint) by AEM is about 50 to 70 m (Haas et al.,
2010, 2009), with an accuracy of 0.1 m on level ice. In or-
der to produce correspondence with CS-2 measurements, the
flight lines of CryoVEx campaigns have been colocated with
ground tracks of CS-2. Since there is smaller overall cov-
erage from CryoVEx campaigns, we use the available Cry-
oVEx data together with OIB campaigns (only collocating
tracks with CS-2) for certain analysis. Specifically, we use
a dataset provided by ESA, which contains CryoVEx cam-
paigns in 2011, 2012 and 2014.

2.1.4 ICESat

Between 2003 and 2009, NASA’s ICESat carried out remote
sensing of earth surface’s elevation with its onboard laser al-
timeter. The ground track of ICESat consists of illuminated
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regions of 65 m in diameter, with consecutive ground foot-
prints along the flight track that are about 175 m apart (Kwok
and Cunningham, 2008). With lead detection and SSH esti-
mations, the snow freeboard (Fs) is retrieved. In turn, under
certain assumptions about snow depth and snow and ice den-
sity (Kwok and Cunningham, 2008), sea ice thickness is at-
tained (Eq. 2). Wintertime campaigns over the Arctic sea ice
yield basin-scale ice thickness fields on the bi-monthly basis.

Since there are no collocating data available between ICE-
Sat and OIB, we carry out the analysis of statistical scaling
and its consistency with respect to ice types (MYI or FYI).
Specifically, we use the ICESat along-track Fs product (Yi
and Zwally, 2009) for campaigns during high winters (Febru-
ary and March or March and April) for analysis.

The precision of the Geoscience Laser Altimeter System
(GLAS) sensor is estimated to be a few centimeters, and in
this study we adopt 5 cm as the noise level for each ICESat
footprint. As a reference, according to Kwok and Cunning-
ham (2008), the 25 km segment mean Fs has the uncertainty
of about 5 cm, which is inherently limited by tie points dur-
ing the production of Fs.

2.2 Data summary and treatments

Figure 2 shows all the geolocations of OIB and CryoVEx
data as used in this study. Although OIB flight lines achieve
large-scale coverage, the actual area of Arctic sea ice cover
as scanned by OIB is very small. In Fig. 2 we also show
three local regions with good OIB coverage. Each region
corresponds to 3× 3 EASE grid cells and has area of
37.5 km×37.5 km. For these regions, the OIB flights contain
recursive flyovers or crossover points. The valid ESA CS-2
sample points are shown for those within (1) the same month
of the corresponding OIB campaigns and (2) the same EASE
grid cells. It is worth noting that since ice drift is promi-
nent on the monthly scale, a potential risk exists of non-
collocating measurements by OIB and CS-2 for the regions
of study. The analysis with ice drift corrections for CS-2 sam-
ples is further carried out in Sect. 4.

For each local region within the Arctic, we record the ef-
fective OIB sample count (40 m scale), denoted by N , as an
indicator for OIB coverage at local regions. The value of N
follows a long-tail distribution (not shown) for all the local
regions, and in Fig. 2a we show with different colors the re-
gions with better OIB coverage (N of the local region over
50th and 90th percentile for all local regions). N values for
the three regions in Fig. 2 are 1856, 2389 and 1907, which
are all over the 99th percentile for N . Due to the sparse OIB
coverage even at local regions, in order to improve the rep-
resentativeness of OIB and avoid limited OIB sample count,
we limit the analysis of OIB to the regions with relatively
good OIB coverage (N over the 50th percentile).

2.2.1 Local regions as a basis for analysis

The statistical analyses in this study are mainly carried out on
local regions (37.5 km×37.5 km). For any type of measure-
ment (OIB, CryoVEx, CS-2 or ICESat), we use the samples
(usually organized in tracks) for each local region to carry
out scaling analysis. Basin-scale analysis is further carried
out by using the statistics at local regions as samples. The
purpose of using local regions is to study the behavior of
different measurements within a small region, which usu-
ally have relatively homogeneous sea ice cover. Besides this,
since airborne measurements are relatively scarce, adopting
larger scales (e.g., over 100 km) will further deteriorate the
representativeness of the underlying sea ice cover. This spa-
tial scale (37.5 km×37.5 km) is also on par with the typical
resolution by satellite passive microwave remote sensing as
well as the scale adopted by many gridded altimetry prod-
ucts.

When comparing OIB with CS-2 or ICESat, in order to in-
crease the correspondence of satellite data to (daily) airborne
campaigns, we adopt all samples from the same month for
CS-2 (or bi-monthly data from ICESat) for each local region
for the scaling analysis. On the other hand, for collocating
tracks between airborne campaigns (OIB or CryoVEx) and
CS-2, we only use CS-2 measurements on the same tracks
for analysis.

2.2.2 Treatments for Fr

In order to reduce the uncertainty, we choose ice freeboard
instead of ice thickness for comparing satellite and airborne
data. Furthermore, for the comparison between OIB and CS-
2, we use Fr instead of Fi. Since Fi in CS-2 products con-
tains potentially different and incoherent snow corrections,
we convert CS-2 Fi back into Fr when snow propagation has
been applied in the product. In order to align OIB data with
this treatment, Fr is simulated for each OIB 40 m sample,
based on Fi and hs provided by OIB (Eq. 4). This equivalent
radar freeboard by OIB takes into account the effect of slow
propagation of radar in the snow cover, and we assume total
penetration of the radar signal in the (OIB-measured) snow
depth. Besides this, we also analyze Fi from OIB when it is
needed. For the study with OIB and ICESat, we simply use
Fs samples from both datasets for analysis and comparison.

2.3 Methods for scaling analysis

For a local region of 37.5 km ×37.5 km (nine Equal-Area
Scalable Earth – EASE – grid cells), we carry out the fol-
lowing analysis. For OIB, we locate segments of OIB tracks
that are (1) from the campaigns within the same year and
month and (2) within the local region. For CS-2, we locate
segments of CS-2 tracks that are (1) from the same month
as the campaign and (2) within the local region. For ICESat,
the treatment is similar to CS-2, utilizing bi-monthly ICESat
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Figure 2. Locations of OIB and CryoVEx measurements from 2011 to 2017 (a), with sample regions of good OIB coverage (b–d). Local
OIB sample counts (N) over the 50th and 90th percentiles (PCTL) are shown in different colors in (a). OIB-measured ice freeboard values
are shown in color in (b–d), with effective ESA CS-2 samples within the same month of the OIB campaign shown with black dots.

tracks for each local region. As shown in Fig. 1 and Sect. 2.1,
there is large difference between the footprint and coverage
among the remote-sensing techniques as well as uncertainties
in measurements. For each local region, we consider the mea-
surements from airborne campaigns and those from satellite
colocation and carry out the scaling analysis.

At each local region, for a certain parameter (e.g., Fr from
OIB and CS-2 or hs from OIB), the analysis mainly involves
analyzing the parameter’s variability and the change of its
variability on coarser spatial scales. The variability on larger
scales beyond the original resolution is estimated by (1) com-
puting the locally averaged values of the parameter based
on samples and (2) estimating the sample variance (VAR)
or standard deviation (STDEV) from the (locally averaged)
values. The sample count for local averaging is denoted by
M . When M = 1, the original resolution is adopted (without
averaging). In order to ensure enough sample counts for es-
timating variability when M is large, we limit the analysis
involving monthly altimetry tracks to regions with an OIB
sample count N larger than 709 (over the 50th percentile;
see Fig. 2a for details). This allows over 30 samples even if
using M = 20 (800 m) for local averaging with OIB data.

If the parameter subject to scaling analysis is independent
and follows the same distribution within the region of anal-
ysis, the sample variance should decrease at the rate of 1/M

(or 1/
√
M for STDEV). However, other factors may mod-

ulate the scaling of variability, including (1) spatial correla-
tion in adjacency (autocorrelation) and (2) the inhomogene-
ity of the sea ice cover within the region of study. Nonnega-
tive auto-correlation and inhomogeneity would usually cause
a slower decrease in variability under scaling. The faster
the decrease speed is (approaching 1/

√
M for STDEV), the

more homogeneous the parameter is within the region of
study. Besides the local-averaging-based analysis, we also
adopt a “randomized sampling” strategy: M randomly cho-
sen samples of the local region are averaged (instead of
adjacent samples) to compute the statistics of STDEV and
VAR. Since with random samples, the effects of both auto-
correlation and inhomogeneity are very limited, the behav-
ior of STDEV (or VAR) with scaling is expected to follow
the assumption of independent variables (1/

√
M decrease in

STDEV).
On the other hand, random errors (ε) in the measurements

of the physical parameters would also affect variability anal-
ysis. Specifically, they are assumed to (1) be an additive
to the true physical value, (2) follow Gaussian distribution,
(3) be independent from measurement to measurement and
(4) be independent of the true value of the physical parame-
ter. Under these assumptions, the sample-estimated variabil-
ity includes an additive term from the random error, and this
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term decreases with M (1/M for VAR). Therefore, if a slow
decrease in VAR (or STDEV) is witnessed during scaling, it
can be inferred that the inherent properties of the physical
parameter, rather than random error due to measurements, is
the major cause.

3 Results and analysis

3.1 Analysis of sample regions

We start with analysis for the three regions with good OIB
coverage (Fig. 2). By using OIB and CS-2 samples in these
regions, we compare the scaling of Fr and hs as measured
by OIB- and CS-2-measured Fr. With randomized sampling,
the sample standard deviation (STDEV) decreases with the
square root of sample count M (or

√
M) as used for averag-

ing for both OIB and CS-2 (Fig. 3a). However, CS-2 shows
overall much larger variability than OIB: (1) in the original
resolution for both OIB and CS-2, STDEV of Fr is already
larger in CS-2 than OIB, and (2) on the scale of 400 m (CS-
2 footprint size in the along-track direction), STDEV of Fr
of OIB is lower than 1/3 of that of CS-2. It is worth not-
ing that on the 400 m scale (with local averaging of 10 OIB
samples of 40 m), the effective OIB footprint is still much
smaller than (about 1 % of) CS-2. With an equivalent foot-
print size, the STDEV as measured by OIB is expected to be
much smaller than that of CS-2.

Based on local averaging, STDEV of Fr is also smaller in
OIB than in CS-2 (Fig. 3b). However, for both OIB and CS-
2, the decrease speed of STDEV with respect to M is much
lower, especially for OIB. For OIB, the slopes of STDEV
decrease are about −0.24, −0.27 and −0.27 for these three
regions, respectively. For CS-2, the decreasing speeds are
slightly higher, with slopes of−0.28,−0.26 and−0.33. This
indicates that at for both OIB- and CS-2-measured Fr, large
spatial variability exists on both the local scale (within sev-
eral hundreds of meters) and larger scales.

The higher variability in CS-2 Fr is suspected to be due
to a high noise level of CS-2 on the per-sample scale. The
STDEV of uncertainty due to speckle noise, SSH estimation
and various other sources is estimated to be larger than 10 cm
(Ricker et al., 2014). Therefore, gridding is usually carried
out to generate monthly CS-2 sea ice thickness products to
improve both spatial coverage and reduce noise (Laxon et al.,
2013). By aligning OIB with the along-track footprint size of
CS-2 at 400 m, we show that the difference of Fr variability
(STDEV) between CS-2 and OIB is in the range of 20 to
40 cm. This comparison of uncertainty is then qualitatively
consistent with previous studies. Systematic analysis with all
OIB data is further carried out in Sect. 3.2.

For these three regions, we also compare the scaling of hs
and Fs in Fig. 3c with local averaging. Compared with Fr by
OIB (Fig. 3b), Fs shows much lower variability on the wide
range from 40 m (M = 1) to over 1 km (M > 25). Besides

this, the reduction of STDEV of Fs from 40 to 120 m is very
small, and the overall reduction rate of Fs is also lower com-
pared with Fr (slopes at −0.21, −0.17 and −0.18, respec-
tively). This indicates that compared with Fr, small-scale,
local variability in Fs is relatively low. Fs, similar to Fr, is
controlled by both sea ice thickness and snow depth, and
it also shows comparable variability to Fr on larger scales.
Compared with Fs and Fr, hs shows the lowest overall vari-
ability. The decrease in STDEV of hs with scaling is also the
fastest, with slopes at −0.43, −0.40 and −0.40. This indi-
cates that local averaging attenuates the hs variability more
effectively than both Fr and Fi. This also implies that within
the region of study, the snow cover is more homogeneous
compared with freeboards.

3.2 Basin-scale analysis of radar freeboard scaling

We extend the analysis of consistency between OIB and CS-
2 to available OIB data on the basin scale. Similar to regions
in Fig. 3, we carry out analysis for all local regions (each
37.5 km×37.5 km) with good OIB coverage and collocating
CS-2 measurements and compute the scaling of Fr for each
local region (similar to Sect. 3.1).

VAR of both CS-2 and OIB for collocating local regions is
shown in Fig. 4a (original sample variances with M = 1 for
OIB) and Fig. 4b (400 m with M = 10 for OIB). Each point
represents a local region and is colored according to the MYI
fraction of the local region. Specifically, data from Korosov
et al. (2018) are adopted for 2013 to 2017, and data from Ye
et al. (2016) for 2011 and 2012 are adopted when the former
are not available.

We compute the linear fitting between the VAR of OIB
and CS-2 for MYI-dominated (MYI fraction > 90 %; red
line) and FYI-dominated (MYI fraction < 10 %; blue line)
regions. As shown, statistically significant correlation exists
between OIB and CS-2 (p < 0.01) for both FYI and MYI
at OIB’s original resolution (M = 1) as well as at 400 m
(M = 10).

We also carried out similar analysis with AWI’s per-track
CS-2 product. In terms of the CS-2 freeboard retrieval, there
is more strict waveform filtering in AWI’s protocol than
ESA’s in order to eliminate outliers according to radar free-
board values. Accordingly, the radar freeboards from AWI
show lower variability compared with ESA. When using
M = 10 for OIB, we also witness much larger variance in
Fr in AWI’s data than OIB’s. However, statistically signifi-
cant fitting also exists (p < 0.01 for both FYI and MYI) be-
tween the VAR of Fr from AWI’s product and that of OIB
(not shown), which is consistent with the analysis of the ESA
CS-2 product.

This result with basin-scale observations confirms that CS-
2 generally shows larger variability in Fr than OIB. For
M = 1, the intercept of the linear fitting of the VAR of both
FYI and MYI is 0.019 and 0.04 m2, respectively (Fig. 4a).
For M = 10, it is 0.02 and 0.045 m2 (Fig. 4b). By assum-
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Figure 3. Statistical scaling of sea ice measurements by OIB and CS-2 for sample regions in Fig. 2. Scalings of Fr under randomized
sampling (or local averaging) by OIB (dots) and CS-2 (+) are shown in (a) (or b). Scalings of OIB-measured hs (diamond) and Fs (dashed)
are shown in (c).

ing the additive nature of the CS-2 noise, we deduce that the
noise levels of the ESA CS-2 Fr product for FYI and MYI
are about 14 cm and 20 cm. The noise levels of AWI’s prod-
uct for FYI and MYI are about 10 and 14 cm, respectively.
This estimation is slightly higher than existing studies of less
than 10 cm, as in Ricker et al. (2014).

In Fig. 4c we show the analysis with data from collocat-
ing tracks between CS-2 and airborne campaigns of OIB and
CryoVEx. Since no direct measurement of Fr is available
from CryoVEx, we follow the density settings in altimetry
(Sect. 2) and approximate Fr with 1/10 of the total thickness.
In total, 11 OIB tracks and 7 CryoVEx tracks are included
in the analysis. For CS-2, only samples on these collocat-
ing tracks are used for analysis. Similar to previous analyses,
we divide the tracks into local segments and show the along-
track 400 m average for OIB and CryoVEx to align with CS-
2’s along-track footprint size.

The across-track footprint size for Fr is different by
over 40 times between OIB (or CryoVEx) and CS-2. Com-
pared with analysis based on monthly collocating CS-2 data
(Fig. 4b), there is a larger spread between the variance by col-
locating tracks of OIB and CryoVEx and CS-2, mainly due
to the reduced CS-2 sample count and limited representative-
ness. However, a statistically significant (p < 0.01) correla-
tion exists between the VAR of CS-2 and that of OIB and
CryoVEx.

The analysis indicates that although there is a relatively
high noise level of CS-2 freeboard products, the overall vari-
ability is consistent with high-resolution, airborne measure-
ment from OIB and CryoVEx. For a given location, if the
sea ice cover shows larger (smaller) Fr variance on the small
scale, CS-2 also consistently produces Fr samples that con-
tain larger (smaller) variance. This provides us with an indi-
rect method for estimating the variability in Fr at high res-
olutions (e.g., 40 m for OIB) using CS-2 samples which are
lower in resolution. By using the ESA CS-2 Fr product and
following Fig. 4a, we deduce the variability on the OIB scale

of 40 m (STDEV40 m) using CS-2 samples (STDEVcs2) as
follows:

STDEV40 m = 0.45 ·STDEVcs2+ 0.10, for MYI, (5)
STDEV40 m = 0.24 ·STDEVcs2+ 0.07, for FYI. (6)

It is worth noting that the actual distribution of Fr on the
OIB scale is not directly reproducible with CS-2 Fr variabil-
ity. However, the second-order moment of the distribution
(STDEV or VAR) of Fr on the OIB scale can be indirectly
estimated.

3.3 Scaling analysis of snow freeboard

In this section we compare the statistical scaling of Fs mea-
surements by OIB and ICESat. Since there are no temporally
collocating data, we compare the statistical consistency of
Fs variability and scaling. Similar to Fr, the analysis of Fs
scaling is also based on local regions. For comparison, ICE-
Sat attains bi-monthly basin coverage in autumn and win-
ter, while most OIB campaigns are carried out during high
winters in the western Arctic. Therefore we focus on their
measurements during February, March and April in the west-
ern Arctic and differentiate between FYI and MYI. Each lo-
cal region for computing the STDEV and scaling consists of
about 7073 to 24 100 ICESat bi-monthly samples for each
of the five winters between 2003 and 2008. Since there is
no MYI fraction data product available for these years, we
adopt the ice type as specified by ICESat and OIB datasets.
In total, 70 673 and 96 528 local regions for FYI and MYI are
recorded by ICESat. Similar to ICESat data, all OIB tracks
within the same year for a local region are treated as a unit
for computing STDEV.

Figure 5 shows the STDEV of Fs and its scaling. Based
on the original sample resolution for both ICESat (65 m in
diameter) and OIB (40 m in diameter), the modes of STDEV
distribution for ICESat are 0.175 and 0.105 m for MYI and
FYI, respectively, and, for OIB, they are 0.165 and 0.093 m
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Figure 4. Sample variance in Fr between OIB, CryoVEx and CS-2. Panels (a, b, c) compare ESA Fr with OIB and CryoVEx, while (d,
e, f) use AWI Fr product for the comparison. Panels (a) and (d) use the sample variances as measured by original OIB resolution (40 m),
while panels (b) and (e) use those of OIB on 400 m resolution (local averaging with M = 10). Panels (c) and (f) show the comparison of the
collocating tracks of OIB and CryoVEx with CS-2 on the scale of CS-2’s along-track footprint of 400 m.

for MYI and FYI, respectively (blue lines in Fig. 5a and c).
Both OIB and ICESat show larger variability in Fs for MYI
than FYI (about 50 % higher STDEV). The effective foot-
print for ICESat is about 3320 m2, and the area covered by
OIB is lower, at 1260 m2 (see Fig. 1b). In the original foot-
print sizes, ICESat shows slightly higher variability. This re-
sult aligns well with the quantitative variability and uncer-
tainty of these two products. First, after eliminating the effect
of random error of ICESat (σ = 5 cm) from its sample vari-
ance, the mode of STDEV distribution for ICESat is reduced
from 0.175 and 0.105 to 0.168 and 0.092 m. These values
are close to those observed by OIB. As previously shown
in the scaling analysis, there is only a slight decrease in Fs
variability from 40 to 80 m (Fig. 3c). Therefore, in the na-
tive footprints, we consider that the variability as measured
by ICESat and OIB is consistent. ICESat measurements pre-
cede those of OIB by over 5 years, and we do not witness
significant change in Fs variability across the Arctic Basin
during this period.

In Fig. 5a and c, we also show the PDF of STDEV un-
der local averaging. As shown, on coarser spatial scales, the
overall variability in Fs drops for both OIB and ICESat. In
order to accommodate the differences in footprint sizes and
spatial coverage by OIB and ICESat, we study two stages for
scaling analysis: (1) M = 20 for OIB for comparison with
M = 10 for ICESat and (2) M = 60 for OIB for comparison

with M = 30 for ICESat. For the first stage, OIB coverage is
800 m of 20 consecutive and non-overlapping “dots” of 40 m
in diameter, while the ICESat footprint is 10 consecutive dots
that are 1600 m apart, with each dot covering about 3300 m2.
The aggregated footprint size for OIB is comparable to ICE-
Sat (25 000 m2 for OIB and 33 000 m2 for ICESat). For the
first stage, the modes of STDEV for OIB and ICESat are both
at 0.1 m and 0.06 m for MYI and FYI, respectively. For the
second stage, the modes are 0.06 to 0.07 m (MYI) and 0.04
to 0.05 m (FYI). Here we ignore the random error’s effects,
since the influence on the sample STDEV is less than 2 mm
for M > 20.

We also compare the scaling behavior of Fs in Fig. 5b (for
OIB) and Fig. 5d (for ICESat). For each local region, the
slope is computed based on 40 to 1200 m (M = 1 toM = 30)
for OIB and 65 m to 1750 m (M = 1 to M = 10) for ICESat.
For OIB, the modes of slope PDF for MYI and FYI are−0.2
and −0.16. For ICESat, they are of similar values, at −0.2
and −0.16. Also the distribution of slopes is quite similar,
with a similar standard deviation of 0.07.

As shown in Fig. 1b, OIB footprints are spatially adja-
cent, but for ICESat they are 175 m apart. As a consequence,
the scaling analysis with local averaging is different between
the two. Therefore, we study the effect of the interval be-
tween footprints of ICESat (i.e., 175 m) on OIB measure-
ments: along-track OIB samples that are 175 m apart are ex-
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tracted for the study of variability and scaling. The results
are shown in Fig. 5e and f, and the sample counts (M) in
Fig. 5e are aligned with Fig. 5c. While for M=1, the vari-
ability in Fs is the same as in Fig. 5a, when M is larger, the
detected variability in Fs decreases faster (Fig. 5f). This in-
dicates that when samples that are spread further are used for
local averaging, the variability is more effectively dampened.
With aligned spatial intervals between samples, OIB shows
comparable variability to ICESat for M = 10 and M = 30
(Fig. 5e), and the differences between the modes of STDEV
are within 1 cm.

To summarize, the general behavior of Fs scaling by ICE-
Sat and OIB is consistent, with similar values in variabil-
ity and scaling behaviors. Although ICESat observations are
several years before OIB campaigns, we do not observe sig-
nificant changes in the variability in Fs and its scaling. It is
also noted that both footprint size and spatial coverage are
important for the comparison of scaling behaviors. Two fac-
tors affect the variability in Fs. First, with the increase in the
aggregate footprint size, the variability decreases. Second,
if the spatial coverage of samples increases while keeping
the total footprint size constant, there is even more effective
dampening in variability. This indicates that the portion of
variability on the local scale increases with wider coverage
of local samplings.

3.4 Covariability in snow depth and freeboard

In this section we study the covariability between hs and free-
board measurements (both Fs and Fi). We mainly use OIB
datasets for this analysis, since both hs and Fs are available,
and they are measured and retrieved independently. The mea-
surement errors (e and ε, as in Eq. 3) are formulated as below,
with differentiation between the observed (denoted by |o) and
inherent physical states (denoted by |p) of the parameters:

Fs|o = Fs|p+ eATM+ εATM, (7)
hs|o = hs|p+ eSR+ εSR, (8)
Fi|o = Fs|o−hs|o (9)
= Fi|p+ (eATM− eSR)+ (εATM− εSR). (10)

For covariability between Fs and hs, we show in Eq. (11)
the deduction of covariance between Fs|p and hs|p. Hereby
we assume (1) the statistical independence of errors (eATM,
eSR, εSR and εATM) from physical parameters (Fs|p and hs|p),
(2) the statistical independence relationships between errors
and (3) no local variability in bias terms. Then we deduce that
the sample covariance estimated from observations between
Fs|o and hs|o is an unbiased estimator for the true, physi-
cal covariance. Figure 6 shows the PDF of sample covari-
ance between Fs and hs for local regions with good coverage
(Fig. 6a and b for 40 and 800 m, respectively). At 40 m, 95 %
of all local regions show statistically significant positive co-
variance (hence correlation), while at 800 m, still 90 % retain

positive covariance. This dominant feature is consistent with
the physical perspective (Eq. 2) that the thicker snow cover
induces higher total freeboard:

Cov(Fs|o,hs|o)= Cov(Fs|p+ eATM+ εATM,hs|p

+ eSR+ εSR)

= Cov(Fs|p,hs|p). (11)

For Fi and hs, we also deduce the covariability as in
Eq. (12). Since Fi is a derived parameter from Fs and hs in
OIB, the estimation of covariance between Fi and hs may
be biased by random errors. Specifically, random error in hs
measurements casts a positive offset on Cov(Fi|o,hs|o), by
2.5×10−3

M
m2, where M is the sample count for along-track

averaging. This implies that under the alternative hypothesis
of negative covariance between hs and Fi, using sample co-
variance without this correction would increase the chance of
type I error for the testing:

Cov(Fi|o,hs|o)= Cov(Fi|p+ (eATM− eSR)

+ (εATM− εSR),hs|p+ εSR)

= Cov(Fi|p,hs|p)− σ
2
SR. (12)

Figure 7a and b show the distribution of derived
Cov(Fi|p,hs|p) at 40 and 800 m, respectively. On the 40 m
scale, for MYI-dominated, FYI-dominated and mixed ice
type regions, 97 %, 72 % and 91 % of regions show negative
covariance (statistically significant at 95 % confidence level).
However, at 800 m, only 30 %, 8 % and 12 % of regions show
negative covariance, respectively. This result indicates that
on the small scale, there is a complementary relationship be-
tween snow depth and ice freeboard. This is probably due
to sea ice and snow interaction on small spatial scales. First,
sea ice topographical features are more prominent on smaller
spatial scales, which affects snow accumulation and results
in deeper snow for local places with lower ice freeboard and
thinner ice. On MYI with thicker ice and rougher topography,
the negative covariability is more pronounced than in FYI.
Second, since OIB campaigns are carried out during the high
winters in the Arctic, thicker snow may have induced lower
ice thickness growth during the whole winter, which is a po-
tential contributor to the thinner ice and lower freeboard.

On the other hand, the disappearance of this negative
correlation on larger spatial scales indicates that this phe-
nomenon is mostly dominant on small scales. On larger
scales, snow–ice interaction due to sea ice topography is less
dominant, with much fewer regions showing negative covari-
ance. Besides this, at 800 m, certain regions (about 29 % for
FYI and 21 % for mixture) show significant positive covari-
ance between Fi and hs. The difference in snowfall accumu-
lation may be the reason: compared with younger ice, older
ice (with larger Fi) is exposed to longer and heavier snowfall
accumulation during autumn, resulting in thicker snow and
large hs (see Fig. 4 of Boisvert et al., 2018).
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Figure 5. Variability in Fs and its scaling for OIB (a, b), ICESat (c, d) and OIB, with 175 m interval (e, f) in the western Arctic.

Furthermore, we compute, for each local region, the spa-
tial scale on which the negative covariance becomes statisti-
cally insignificant. For a local region, we define the critical
scale (s) of snow distribution as the scale (1) on which there
is statistically significant negative covariability between hs
and Fi and (2) beyond which the negative covariability is not
evident. For all the local regions with sufficient OIB coverage
(N over 50th percentile), the distributions of s for MYI, FYI
and the mixture region are shown in Fig. 7c. For FYI, about
28 % shows no negative covariance at 40 m, with the 90th
percentile of s at 280 m. For MYI-dominated regions and re-
gions with MYI and FYI mixture, a well-defined mode ex-

ists for s at 80 m and a long-tail distribution (90th percentile
at 1120 and 520 m, respectively). In Fig. 7d we also show
the spatial distribution of s in the Arctic Basin. As shown,
large spatial variability exists in s both locally and across the
basin, and regions with MYI usually feature much larger s.
Regions where the roughest MYI manifests (north of Cana-
dian Arctic Archipelago and Greenland and certain regions
in Beaufort Sea with remnant MYI) show the largest s. Com-
pared with FYI (s at about 40 m), thick MYI shows a much
larger s (over 500 m for certain regions), which is evident in
the snow cover’s complementary effect on reducing the sea
ice cover’s overall variability.
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Figure 6. Covariability between Fs and hs on 40 m (a) and 800 m (b) scale.

Figure 7. Covariability between Fi and hs on 40 m (a) and 800 m (b) scale. Distribution of sample-estimated covariance between hs and
Fi is shown (with correction for εSR). Critical spatial scale (s) for negative covariability between hs and Fi is shown in (c) (PDF) and (d)
(geolocations).
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4 Discussion and conclusion

In this article we examine the variability, its scaling and its
consistency among various remote-sensing methods for Arc-
tic sea ice, including airborne (OIB), radar altimetry (CS-2)
and laser altimetry (ICESat). Analysis with collocating mea-
surements by OIB and CS-2 shows the following: although
CS-2 products contain a higher noise level on the per-sample
scale, there is statistical consistency between variability in Fr
as measured by OIB and CS-2. The noise level of ESA’s CS-
2 baseline-C Fr product is estimated at 14 to 20 cm, which
is larger than current estimations. On the other hand, there is
general consistency for both Fs variance and its scaling by
OIB and ICESat. We do not observe significant changes of
these statistics from ICESat (2004–2008) to OIB (2009 on-
ward). Furthermore, by using OIB data, we also discovered
widespread negative covariability between ice freeboard and
snow depth on small spatial scales. This covariability gen-
erally diminishes on larger scales, indicating the dominant
role of snow–ice interaction on local scales. The critical scale
for the covariability is estimated using basin-wide OIB mea-
surements, showing shorter ranges for FYI and much longer
ranges for MYI with a long-tail distribution. The largest scale
(over 500 m) is generally witnessed on the roughest MYI in
the Arctic Basin.

4.1 Evaluation of variability

For the comparison between OIB and CS-2, existing works
mainly focus on the consistency of the mean freeboard or ice
thickness. As reported by Kurtz et al. (2014) and Xia and Xie
(2018), there is low correlation of Fr between OIB and CS-2,
using either gridded data or collocating tracks. Both retrack-
ing and geophysical corrections are shown to play an impor-
tant role in reducing the difference (or bias) between OIB and
CS-2 (Xia and Xie, 2018; Yi et al., 2018). Usually the limited
representativeness is attributed as the main cause of the low
correlation, which arises from differences in footprint size
and spatial coverage. In this work, instead of mean values,
we analyze second-order statistics (i.e., the variability) and
its scaling for radar freeboards. Although CS-2 shows much
higher Fr variance than OIB even on the 400 m scale, the
statistically significant relationship is witnessed. This result
implies that the small-scale variability in Fr can be quantita-
tively informed with CS-2 samples in spite of the high noise
level of CS-2.

4.2 Specifics about OIB

The analysis of OIB, CS-2 and ICESat data indicates that
all the factors contribute to the variability and its scaling, in-
cluding measurement footprints, noise levels and spatial cov-
erage. Except for the analysis of collocating tracks, we treat
(daily) OIB campaigns and monthly CS-2 tracks as collocat-
ing sources of measurement. Since sea ice drift is prominent

on the monthly scale, we also carried out analysis with CS-
2 sample points under drift corrections (e.g., using NSIDC –
National Snow and Ice Data Center – drift). We did not notice
evident changes in the results for the analysis of variability,
its scaling and the estimation of CS-2 noise levels.

As for the data independency in OIB, since Fs and hs are
directly retrieved with ATM and SnowRadar, respectively,
they are considered to be independent data. However, Fi, Fr
and in turn hi are computed indirectly from Fs and hs. The
random error in Fs and hs would cause uncertainty in both the
variability and the covariability in these derived parameters.
The analysis of variability scaling is less affected by random
errors, since with a larger sample count the noise level de-
creases fast. The covariability between Fi and hs, however,
can be shifted by noise in hs measurements, and the effects
are accounted for by computing covariances in Sect. 3.4.

Existing works, including Kwok et al. (2017), carried out
evaluation of various OIB datasets. For example, Kwok et al.
(2017) show general agreement but systematic differences
among hs retrievals, especially when the snow cover is thick
(Figs. 4 and 5 of the reference). Since the validation showed
good correlation of all hs products in Kwok et al. (2017), we
consider that adopting alternative OIB datasets will not qual-
itatively alter the results in this study. Specifically, the prod-
ucts used in our study (IDCSI4 and IDCSI2) may have un-
derestimated hs, so we expect that a thicker hs product would
result in higher variability in hs as well as more evident neg-
ative covariance between Fi and hs. Comparative studies of
various OIB products can be carried out in the future when
they become available, following the methodology proposed
in this study. In Kwok et al. (2011), it is shown that OIB
SnowRadar may not be able to attain stable retrieval of snow
depth over sea ice ridges. This may compromise the analy-
sis through preferential sampling of snow depth. The effects
of limited snow depth estimation over ridges is a subject of
further analysis in future studies.

4.3 Effect of covariability on altimetry

The snow cover is a major source of uncertainty for both
types of satellite altimetry. The variability in the measured
freeboard as well as the covariability between snow depth
and freeboard can be exploited to improve satellite altime-
try. For laser altimetry, the positive covariability between Fs
and hs is present across spatial scales (40 m to over 1 km),
which covers the typical footprint size of ICESat and ICESat-
2. This covariability is also reported by other works, includ-
ing Kwok et al. (2011) (4 km scale) and Zhou et al. (2018)
(scale ranging from 40 to 240 m). Furthermore, in Zhou et al.
(2018), nonlinear fittings between hs and Fs (based on 40 m
scale covariability) are utilized for the combined retrieval of
hs and hi with L-band passive radiometry with laser altime-
try. For laser altimetry with prescribed snow depth estima-
tions, this positive covariability can also be utilized (1) to
avoid the artificial reduction of snow depth (in favor of non-
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negative ice freeboard, as in Kwok and Cunningham, 2008)
and (2) for the retrieval of ice thickness distribution with alti-
metric samples. Specifically, the covariability on the satellite
sensor’s footprint scale (65 m diameter for ICESat) should
be utilized. On the other hand, for radar altimetry for which
Fi is the major target for retrieval, the negative covariance
between hs and Fi only manifests on small scales. Whether
there is prevalent negative covariability at the footprint size
of CS-2 is subject to further study.

Based on the statistical fitting between the variability in
OIB and CS-2, we derive an indirect method in Sect. 3.2 for
estimating the “real” variability on a small scale (e.g., 40 m)
using CS-2 samples. Then, the mean value of freeboard (or
thickness) from CS-2 can be combined with this derived vari-
ability to better inform applications that utilize CS-2 datasets.
These include sea ice thickness assimilation applications
(Chen et al., 2017 and Blockley and Peterson, 2018, among
others), which potentially utilize mean thickness, mean free-
board and freeboard samples from CS-2. However, statisti-
cal fitting specific to the CS-2 product should be utilized,
since noise levels may differ among various products (see
Sect. 3.2). It is worth noting that it is not generally possi-
ble to directly estimate the freeboard distribution on a small
scale with CS-2, given (1) the large footprint size of CS-
2 and (2) its relatively high noise level on the per-sample
scale. For example, in the N-ICE2015 campaign in King et al.
(2018), which surveyed local regions with second-year ice
floes mixed with first-year floes and leads, the multi-modal
distribution (from high-resolution mapping) is absent in col-
locating CS-2 measurements (Fig. 10 of the reference). The
physical features of freeboard distribution on the CS-2 foot-
print size, such as multi-modality, depend on the specific sea
ice type (age) mixture and mixture scale of the region. In this
regard, other datasets, such as synthetic-aperture radar (SAR)
images, ice type mixture maps (Korosov et al., 2018) or lead
(history) maps (Zhou et al., 2017), can be utilized for a more
holistic view of the ice cover.

4.4 Snow–ice interaction

Negative covariability exists between Fi and hs on the small
scale, which is consistent with in situ measurements. On
small scales, snow cover tends to complement sea ice topog-
raphy (Sturm et al., 2002a), and the main factor may be snow
accumulation through its interaction with topographic fea-
tures such as ridges and refrozen ponds. Besides this, snow
depth also features variabilities due to snow’s own processes
(other than those governed by ice), such as interaction with
wind. On the other hand, due to thermal insulation of snow
cover, sea ice thickness growth may also be hindered by
thicker snow, resulting in a “thick snow–thin ice” relation-
ship. Compared with previous works which mainly are based
on in situ measurements, this study, by utilizing OIB data,
reveals the critical spatial scale for the covariability in snow
distribution due to interaction with sea ice. The common spa-

tial scale for the negative covariability is below 40 m for FYI
and around 80 m with a long-tail distribution for MYI.

The understanding of the dynamical and thermodynamical
mechanisms that govern the statistical behaviors would re-
quire efforts from both modeling and observational aspects.
Current state-of-the-art sea ice models, including those in
climate studies, usually contain major thermodynamic and
dynamic processes of the sea ice cover, but many still lack
snow-related ones such as snow redistribution or distribution
and prognostic snow stratigraphy. Considering the complex
and important roles of snow on modulating air–sea interac-
tion (Sturm et al., 2002b; Abraham et al., 2015), snow dis-
tribution and interaction with ice topography should be ac-
counted for by refining vertical resolution of the sea ice and
snow cover as well as better parameterizations for unresolv-
able scales. The airborne and in situ observations, including
the statistics of variability and covariability in this study, can
be utilized to validate models and parameterization schemes.
On the other hand, systematic observations during the freeze-
up season are needed in the pursuit of quantitative attribution
to the statistics in snow distribution. Multi-scale and process-
oriented observational campaigns such as MOSAiC (Alfred-
Wegener-Institut, 2019) could potentially shed more light on
the snow cover’s key processes and its complex interaction
with sea ice.

Data availability. OIB datasets are provided by NASA National
Snow and Ice Data Center Distributed Active Archive Center,
Boulder, Colorado, USA. The OIB IDCSI4 dataset is accessi-
ble at: https://doi.org/10.5067/G519SHCKWQV6 (Kurtz et al.,
2015). The OIB IceBridge Sea Ice Freeboard, Snow Depth, and
Thickness Quick Look dataset is accessible at: https://daacdata.
apps.nsidc.org/pub/DATASETS/ICEBRIDGE/ (Kurtz and Farrell,
2011, last access: 14 September 2019). The ESA CS-2 along-
track freeboard (L2i, baseline C) product is available at: https:
//science-pds.cryosat.esa.int/ (Bouzinac, 2014). AWI CS-2 along-
track freeboard is present in the AWI CS-2 sea ice thickness
(version 2.1) daily trajectory L2P product, accessible at: ftp://
ftp.awi.de/sea_ice/product/cryosat2/v2p1/nh/ (Ricker et al., 2014,
last access: 14 September 2019). CryoVEx is from ESA Earth
Observation Campaigns, accessed at: ftp://calval-pds.cryosat.esa.
int/ (Haas et al., 2009, last access: 14 September 2019). ICESat
data are provided by NASA National Snow and Ice Data Center
Distributed Active Archive Center, Boulder, Colorado, USA, at:
https://doi.org/10.5067/SXJVJ3A2XIZT (Yi and Zwally, 2009).
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