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Supplementary Material S1: Ensemble of basal parameters

In the sensitivity analysis of various parameters and boundary conditions in a companion paper (Albrecht et al., 2019), we
found that the basal sliding parameterization in conjunction with the sub-glacial hydrology scheme show very diverse simu-
lated ice volume histories for a plausible range of unconfined parameter values. We have chosen the parameter PPQ (Sect. 3.1)

as only representative of basal processes uncertainties for the ensemble analysis.

Here we want to span a sub-ensemble including three other relevant basal parameters. The four parameters and sampled

values used in the basal ensemble analysis are:

— PHIMIN is the minimal till friction angle on the continental shelf, mainly underneath modern ice shelves, where sandy
sediments are prevalent (friction coefficient on the continental shelf has been chosen as one of the ensemble parameters
in Pollard et al. (2016, 2017)). The tangens of till friction angle enters the Mohr-Coulomb-yield stress criterion. Sampled

values are 0.5°, 1°, 2° and 3°.

— TWDR is the decay rate of the effective water content within the till layer using the non- conserving hydrology model,
while basal melt adds water up to a certain threshold (for details see Bueler and van Pelt, 2015, Sect. 3.1). Sam-
pled value are 0.5 mmyr—! (1.55x10" " ms™), Immyr~—! 3.1x10" " ms™!), Smmyr~! (15.5x10~ " ms~1) and

10mmyr—! 31x10~ " ms™1).

— FEORP is the fraction of the effective overburden pressure (for details see Bueler and van Pelt, 2015, Sect. 3.2), for which
excess water will be drained into a transport system in the case of saturated till. Sampled values are 1%, 2%, 4%. 8%
and 32%.

— PPQ is the sliding exponent as in the ensemble (see Sect. 3.1)
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Figure S1. Aggregated score for 318 ensemble members (4 model parameters, 4-5 values each) showing the distribution of the scores over the
full range of plausible basal parameter values. The score values are computed versus geologic and modern data sets, normalized by the best
score in the ensemble, and range from <0.01 (bright yellow, no skill) to 1 (dark red, best score) (cfs. Pollard et al., 2016, Figs. 2 + C1), on a
logarithmic color scale. The four parameters are the effective overburden pressure fraction FEOP (outer y-axis), the minimal till friction angle
on the continental shelf PHIMIN (outer x-axis), the tillwater decay rate TWDR (inner y-axis) and the power-law sliding pseudoplasticity
exponent PPQ (inner x-axis). In the lowest row, only four ensemble scores are shown for 32% of effective overburden pressure fraction, just

to ascertain that aggregated scores decline for larger FEOP.
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In the basal sub-ensemble we find even better scores than for the best fit parameter combination in the base ensemble (here no.
8102, see Fig. S1) that covers also climatic, Earth and ice-internal parameters. Best scores are found in particular for smaller
minimal till friction angles PHIMIN = 0.5-1°, but also for rather high values of the fraction of the effective overburden pressure
at which excess water drains, here FEOP = 4-16%. These values are higher than those used in the base ensemble. However,
best fit to the nine data constraints are found for the basal ensemble in the middle range of PPQ = 0.5-0.75 and the lower
range of till water decay rates of TWDR = 0.5-1.0mm yr—"' (1.55-3.1 x10~''ms—!), which agrees with the best fit parameter
combination of the base ensemble (PPQ=0.75 and TWDR=1.0 mm yr—'). The LGM volume of the best fit simulation of the
basal ensemble is considerably smaller (4.5 m SLE) than in the best fit simulation of the base ensemble (cf. Figs. S2 and 15),

and deglacial retreat occurs a few thousand years earlier for lower PHIMIN ( Fig. S3).
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Figure S2. Snapshots of grounded ice thickness anomaly to present-day observations (Bedmap?2; Fretwell et al., 2013) over the last 15 kyr
for best-fit simulation in the basal ensemble. At LGM state grounded ice extends towards the edge of the continental shelf, with much thicker
ice than present mainly in West Antarctica. Retreat of the ice sheet initiates between 12 and 11 kyr BP and halts already latest 8 kyr in all
large ice shelf basins of Ross, Weddell Sea, Amery and Amundsen Sea. East Antarctic Ice Sheet thickness is underestimated throughout the

deglaciation period (light blue). Compare Fig. 2 in Golledge et al. (2014).
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Figure S3. During deglaciation the score-weighted ensemble mean (green) shows most of the sea-level change rates between 14.5 kyr BP
(MWP1a) and 8 kyr BP with mean rates around 1 mm yr~—', while the best-score simulation (red) reveals rates of sea-level rise of up to
4mmyr~! (100yr bins) in the same period (cf. Golledge et al., 2014, Fig. 3d). In contrast to the base ensemble (see Fig. 9c) the basal

ensemble shows a much earlier deglacial retreat and no regrowth during the late Holocene.

Supplementary Material S2: Misfit to individual paleo data types

This supplement compares model results with corresponding geological data types (AntICEdat from Briggs and Tarasov
(2013)) used in the ensemble scoring. This absolute misfit is important information as all scores are normalized against their
median (relative fit) in order to calculate the aggregated scores. Thereby, we want to demonstrate how well the ensemble
simulations span the data constraints and hence potentially represent reasonably realistic ice-sheet behavior.

Fig. S4 compares elevation vs. age for all 256 runs with cosmogenic data at 26 sites (ELEV; Briggs and Tarasov, 2013) with
amedian age of constraint of 9.6 kyr. We find a good fit in parts of East Antarctica (e.g. Framnes Mts. (1201-1203)) and in parts
of the Ross sector (e.g. Clark Mts. (1405), Allegheny Mts. (1406) or Eastern Fosdick Mts. (1408)), while in the West Antarctic
Ice Sheet there is quite a large spread among the ensemble misfit of up to 1,000 m in surface elevation, with ensemble mean
misfits of up to 1,000 m. This is due to the fact that in many ensemble simulations the large ice shelves of Ronne-Filchner,
Ross and Amery do not become afloat in time, while the best-fit simulation (green markers) shows quite a good fit, although
some regions remain thicker than observed until present (Fig. 12).

Fig. S5 shows the misfit of simulated grounding lines retreat for all ensemble simulations at 27 marine core sites (EXT;
Briggs and Tarasov, 2013), which are relatively well distributed around the Antarcric Ice Sheet with a median age of 16.6 kyr,
the oldest data point 30.7 kyr. Generally, simulated grounding-line retreat occurs later than in most of the observations, less

than 5 kyr near Victoria Land, Ross Sea and along the Antarctic Peninsula (2303, 2402-2403, 2602-2608) and less than 10 kyr
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in the Amundsen Sea, and Weddell Sea (2502, 2609, 2701). At some locations (Dronning Maud-Enderby Land (2101-2103)
or at Victoria Land (2304)), however, the ensemble never reproduces the recorded open ocean conditions or grounding-line
retreat event, respectively.

Although not used as constraint in our scoring scheme, Fig. S7 shows the misfit of modelled relative sea level in all ensemble
simulations with respect to 96 RSL proxy records at eight sites (RSL; Briggs and Tarasov, 2013), with a median age of 5.0 kyr.
The data for each site fall well within the overall model envelope (upper and lower bound indicated) with best fits at Syowa
Coast (9101), Larsemann Hills (9201), Vestfold Hills (9202), Windmill Islands (9301), and Marguerite Bay (9601) and King
George Island (9602), while in Victoria Land the model ensemble generally overestimates regional sea level (Terra Nova Bay
(9401) and Southern Scott Coast (9402)).

From each data type misfit we obtain a ensemble distribution of misfits (Fig. S6), which can be rather normal (e.g. for
EXT), exponential (e.g. TOTUPL) or long-tail (e.g. TOTDH). In order to calculate aggregated scores we normalize by the
median value, which yields for most data types similar results as the mean value, except for TROUGH (34% difference). The
corresponding variability of each of the resultant normalized scores hence contribute different skills to the aggregated score.
Generally, grounding-line related (TOTE, TOTGL, THROUGH) and ice volume-related data-types (TOTDH) show similar
individual score patterns (not shown here) with ensemble standard deviations of 0.1-0.2. In the aggregated score this patterns
becomes even more pronounced, while paleo scores (ELEV and EXT) and ice shelf extent (TOTI) show only little variation

(<0.1) among the ensemble, and hence only little effect in the aggregate score pattern.
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Figure S4. ELEV observations (colored diamonds, dark and light blue indicate last 10 kyr or 20-10 kyr observational interval) taken from
database by Briggs and Tarasov (2013), ensemble results (black circles), upper and lower bounds from base ensemble (red triangles), and
computed misfits (lower panel) for different Antarctic Peninsula sectors, indicated by vertically dashed lines and labels between panels.

Green dots correspond to best-fit simulation. Compare to Fig. 7-9 for in Briggs et al. (2014) with same data-point identifiers.
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Figure S5. EXT observations and ensemble results as in Fig. 10 in Briggs et al. (2014). Black circles represent the 256 ensemble simulations
with the best-fit simulation in green. Red indicate the grounding-line retreat (GLR) two-way constraint types, magenta the open marine

conditions (OMC) one-way constraint types. Dashed horizontal lines and associated labels segregate and identify the different sectors.
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Figure S6. Histogram of misfits per data-type with median (in blue) and mean (green).
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Figure S7. Regional sea level (RSL) data points and ensemble sea level curves for the 8 data sites, analogous to Fig. 5-6 in

(2014), upper panels in EAIS, lower panels in Antarctic Peninsula and Ross sector. Observed RSL data points are colour coded according to
the constraint they provide: two-way (light blue, dated past sea level); one-way lower-bounding (mauve, past sea level above or maximum age

of beach) or one-way upper-bounding (orange, past sea level below or minimum age beach). For a detailed description of the RSL datasets

and its processing, refer to Briggs and Tarasov (2013). RSL has not been used as constraint in this study.
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