
The Cryosphere, 14, 4719–4733, 2020
https://doi.org/10.5194/tc-14-4719-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Scoring Antarctic surface mass balance in climate
models to refine future projections
Tessa Gorte1, Jan T. M. Lenaerts1, and Brooke Medley2

1Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USA
2Cryospheric Sciences Laboratory, National Aeronautics and Space Administration’s Goddard Space Flight Center,
Greenbelt, Maryland, USA

Correspondence: Tessa Gorte (tessa.gorte@colorado.edu)

Received: 11 October 2019 – Discussion started: 17 December 2019
Revised: 26 October 2020 – Accepted: 2 November 2020 – Published: 23 December 2020

Abstract. An increase in Antarctic Ice Sheet (AIS) surface
mass balance (SMB) has the potential to mitigate future sea
level rise that is driven by enhanced solid ice discharge from
the ice sheet. For climate models, AIS SMB provides a diffi-
cult challenge, as it is highly susceptible to spatial, seasonal,
and interannual variability.

Here we use a reconstructed data set of AIS snow accu-
mulation as “true” observational data, to evaluate the ability
of the CMIP5 and CMIP6 suites of models in capturing the
mean, trends, temporal variability, and spatial variability in
SMB over the historical period (1850–2000). This gives in-
sight into which models are most reliable for predicting SMB
into the future. We found that the best scoring models in-
cluded the National Aeronautics and Space Administration
(NASA) GISS model and the Max Planck Institute (MPI) for
Meteorology’s model for CMIP5, as well as one of the Com-
munity Earth System Model v2 (CESM2) models and one
MPI model for CMIP6.

Using a scoring system based on SMB mean value, trend,
and temporal variability across the AIS, as well as spa-
tial SMB variability, we selected a subset of the top 10th
percentile of models to refine 21st century (2000–2100)
AIS-integrated SMB projections to 2274± 282 Gt yr−1,
2358± 286 Gt yr−1, and 2495± 291 Gt yr−1 for Representa-
tive Concentration Pathways (RCPs) 2.6, 4.5, and 8.5, re-
spectively. We also reduced the spread in AIS-integrated
mean SMB by 79 %, 79 %, and 74 % in RCPs 2.6, 4.5, and
8.5, respectively.

Notably, we find that there is no improvement from
CMIP5 to CMIP6 in overall score. In fact, CMIP6 performed
slightly worse on average compared to CMIP5 at capturing

the aforementioned SMB criteria. Our results also indicate
that model performance scoring is affected by internal cli-
mate variability (particularly the spatial variability), which is
illustrated by the fact that the range in overall score between
ensemble members within the CESM1 Large Ensemble is
comparable to the range in overall score between CESM1
model simulations within the CMIP5 model suite. We also
find that a higher horizontal resolution does not yield to a
conclusive improvement in score.

1 Introduction

Surface mass balance (SMB) is the rate of accumulation of
mass on the surface of the ice sheet and is characterized
predominantly by precipitation and sublimation and also in-
cludes runoff and blowing snow terms (Lenaerts et al., 2019).
We neglect blowing snow and runoff and estimate SMB as
precipitation minus sublimation (Lenaerts et al., 2012). As
SMB variability is dominated by that of Antarctic Ice Sheet
(AIS) precipitation, which is subject to high spatial and tem-
poral variability (Bromwich et al., 2011), SMB is also highly
variable from year to year (Monaghan and Bromwich, 2008).

Over longer (∼ 100–1000-year) timescales, AIS SMB was
assumed – until recently – to be relatively constant. Frezzotti
et al. (2013) found that current SMB values are not anoma-
lously high compared to the past ∼ 1000 years. Monaghan
et al. (2006) found no discernible trend in AIS snowfall in
the period 1957–2003. More recent studies, adding more an-
nually resolved SMB records covering the period 1800 to
present and improving the spatial extrapolation, contested
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those earlier findings (Thomas et al., 2017; Medley and
Thomas, 2019). These studies found that, integrated over the
AIS, SMB has been increasing at a rate of 0.4± 0.1 Gt yr−2

over the last 200 years, although the trends show substantial
regional variability. Several studies have provided additional
evidence of regional variations in SMB trends, with strong
SMB increase in some areas (Philippe et al., 2016; Thomas
et al., 2015, 2017), and no SMB increase, or even SMB
decrease, in other areas (Burgener et al., 2013). Synoptic-
scale variability induces a strong regional variability of SMB
(Fyke et al., 2017; Marshall et al., 2017). Additionally, as the
atmosphere is projected to warm both globally and especially
in the polar regions, the atmosphere is expected to be able to
hold more moisture per the Clausius–Clapeyron relation. As
such, SMB is expected to show an overall increase. In recent
decades, this forced SMB response is undetectable due to
the significant natural SMB variability (Previdi and Polvani,
2016). Teasing apart the forced response from natural SMB
variability requires longer SMB time series – on the order of
centuries. In 2017, Thomas et al. (2017) found no significant
SMB trend over the last 1000 years. In 2019, however, Med-
ley and Thomas (2019) found that, over the past 200 years,
there is a statistically significant SMB increase that can be
derived from ice core measurements.

Despite its importance for AIS mass balance and global
mean sea level, there are only a few robust observations of
SMB across the continent. A lack of regular spatial and tem-
poral distribution of observations has led to many efforts to
model SMB using both regional and global climate mod-
els (RCMs and GCMs, respectively). Because the AIS is so
large, predicting SMB out onto timescales from decades to
centuries requires the use of GCMs (Gallée et al., 2013).
Some GCMs have been shown to capture positive precipi-
tation and SMB trends (Palerme et al., 2014; Lenaerts et al.,
2016), but many of those models tend to overestimate an-
nual precipitation values likely due to poor representation
of coastal topography as previous studies have shown this
to be a significant factor in how precipitation is represented
for the AIS (Genthon et al., 2009). This allows the atmo-
spheric moisture to penetrate too far inland and leads to ex-
cessive precipitation on much of the grounded AIS, while
underestimating precipitation close to the coasts (Palerme
et al., 2017). This inability to reproduce modern observations
brings into question the models’ ability to accurately project
future changes.

While past research by Palerme et al. (2014) compared
model output to observations using CloudSat and ERA-
Interim, their observational data sets only spanned a short
period (2006–2011). The limited climatology of AIS pre-
cipitation combined with its highly temporally variable na-
ture means that large limitations exist to enable a compari-
son. Barthel et al. (2020) investigated the Ice Sheet Model
Intercomparison Project for CMIP6 to determine a recom-
mendation of which models to use for ice sheet model forc-
ings based on best captured current Antarctic climate rela-

tive to observations and their ability to project certain met-
rics into the future. The objective of this paper is similar in
that Barthel et al. (2020) use scoring criteria to refine model
selection specifically for ice sheet model forcing. Their work
differs in that their criteria look more at the large-scale cir-
culation patterns around ice sheets, and the data set to which
they compare models consists of large-scale reanalysis fields.
Additionally, they do not then use this subselection of mod-
els to constrain future projections. In this work, we use a
data set that specifically accounts for AIS SMB using recent
advancements in synthesizing ice cores and reanalysis prod-
ucts. These reconstructed data sets now allow for a new av-
enue to investigate the ability of GCMs to capture SMB into
the more distant past (Medley and Thomas, 2019) – an av-
enue that we leverage for climate model evaluation of AIS
SMB to compare the suite of CMIP5 and CMIP6 climate
models to this new SMB reconstruction.

2 Data

2.1 SMB reconstructions

To improve upon model estimates, several groups have com-
bined ice core data with models to create spatio-temporally
robust SMB data sets (Monaghan et al., 2006; Thomas et al.,
2017; Medley and Thomas, 2019). In this paper, we use the
AIS SMB reconstruction generated by Medley and Thomas
(2019). The authors synthesize SMB time series from an ex-
tensive ice core database with reanalysis-derived spatial co-
herence patterns to generate a continent-wide AIS SMB data
set. While Medley and Thomas (2019) compared three re-
analysis products, they also show that MERRA-2 performed
better than the other two reconstructed products in matching
observations. As such, we will use the MERRA-2-based data
set provided by Medley and Thomas (2019) as a proxy for all
three reconstructions and refer to it as a “reconstruction”.

The reconstructed uncertainty used throughout this paper
is a combination of the reconstruction uncertainty (i.e., un-
certainty from the ice core records) and internal variabil-
ity (Eq. 1). The inclusion of the internal variability uses
the spread generated from climate models to estimate uncer-
tainty in observations due to internal variability of the climate
system. Tokarska et al. (2020) note that noise due to internal
variability can be derived using a finite number of model en-
semble members. See Supplement for an explanation of this
process.

Total uncertainty=
√
(reconstruction uncertainty)2

+(internal variability uncertainty)2 (1)

For this work, we investigate AIS SMB in GCMs. GCMs
have, compared to RCMs, relatively low horizontal resolu-
tion, which makes it difficult for them to reproduce the de-
tailed AIS SMB. RCMs have been shown to be more accu-
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rate in capturing AIS SMB (Agosta et al., 2019); however,
due to their high resolution, RCMs are also relatively com-
putationally expensive to run for long periods (hundreds of
years). Because one of the goals of this paper is to investi-
gate the future of SMB over Antarctica, we analyze GCMs
for their ability to simulate these long-term climate effects.
As RCMs are by definition regional, they need boundary
forcings, which adds an additional layer of complexity and
a source of uncertainty to running RCMs into the long-term
future. An additional reason we choose to analyze GCMs is
simply to figure out which GCMs perform best at captur-
ing these SMB phenomena. There has been extensive work
investigating SMB in RCMs (e.g., Agosta et al., 2019; van
Wessem et al., 2018; Lenaerts et al., 2012) but compara-
bly little looking at GCMs. To investigate the global cou-
pled response to future SMB changes, one needs GCMs. As
such, this work is aimed to inform the modeling community,
who are interested in global ramifications of changing AIS
mass balance, and the ice sheet modeling community, who
need AIS SMB input for running dynamical ice sheet models
(Seroussi et al., 2019). Several recent studies, such as Barthel
et al. (2020), Krinner et al. (2014), and Beaumet et al. (2019)
have investigated the impacts of thermodynamical phenom-
ena such as sea level pressure, zonal wind speed, and near-
surface temperatures as well as phenomena like sea ice ex-
tent on AIS SMB, but they have not scored climate models
on their performance on SMB specifically. Here, we develop
scoring criteria that assess AIS SMB exclusively and focus
less on the mechanisms behind SMB variability and change.
To get a comprehensive look at how well global climate mod-
els capture SMB, we compared the suites of CMIP5 and
CMIP6 models to the reconstruction.

2.2 Climate models

We used all applicable CMIP5 and CMIP6 model outputs,
of which there were 81 models and 42 independent mod-
els (i.e., different model physics and/or resolutions), respec-
tively, for the historical simulations (1850–2005). For the fu-
ture simulations, we only had available output for 30 CMIP5
models, 19 of which are independent, and 24 CMIP6 mod-
els, of which 16 are independent. See Tables S1–S3 in the
Supplement for a list of models and their resolutions. The fu-
ture simulations include three different forcing scenarios for
CMIP5: Representative Concentration Pathway (RCP) 2.6,
RCP4.5, and RCP8.5. RCP2.6 represents a low-emission sce-
nario, RCP4.5 a mid-range-emission scenario, and RCP8.5
a high-emission scenario through the 21st century (van Vu-
uren et al., 2011) as well as three comparable forcing scenar-
ios for CMIP6: Shared Socioeconomic Pathway (SSP) 1–2.6,
SSP2–4.5, and SSP5–8.5 (Riahi et al., 2017).

We downloaded CMIP5 and CMIP6 precipitation
and evaporation–sublimation output at monthly time
resolution and, after calculating SMB as precipita-
tion− evaporation / sublimation, converted an annual

timescale and integrated across the grounded AIS using the
Ice Sheet Mass Balance Inter-comparison Exercise Team’s
(IMBIE Team) ice sheet mask (Shepherd et al., 2018).

3 Methods

We formulated five criteria on which to score the historical
runs of the models. Three of the criteria are based on the
AIS-integrated SMB – mean, trends, variability – and two
are based on AIS SMB spatial patterns: modes of SMB vari-
ability and variance explained by these modes. As the mod-
els’ abilities to capture SMB are presented in the format of a
“score card”, judging the models against each criterion will
be hereinafter referred to as “scoring”. These criteria were
determined having in mind the following questions: (1) do
the models adequately simulate several SMB observed char-
acteristics in the recent past? (2) Are the models that perform
well adequately simulating SMB for the right reasons? All
five criteria are weighted equally in the final scoring to pre-
vent the final score from being skewed by any given criterion.

3.1 AIS-integrated SMB criteria

To score the models based on AIS-integrated SMB, we took
the mean SMB across the AIS for every year that the recon-
struction overlapped the models (1850–2000) to generate a
single 151-year, AIS-integrated time series. We then split the
time series into three aspects: the mean value of the SMB
time series values (mean value referring to the value obtained
by integrating SMB over the entire AIS), the time series lin-
ear trend, and the time series interannual variability.

To score the time series mean value, we assigned a score,
x, for how many x times the total uncertainty was required
for the entire time series to be within the total uncertainty.
The minimum possible score, then, is 1, for a model that rep-
resents SMB within 1× the total uncertainty. Figure 1 illus-
trates that a model that fits entirely within 1× the total un-
certainty (dark indigo) – MPI ESM LR – would receive a
score of 1. A model that fits within 2× the total uncertainty
(medium indigo) – IPSL CM5A LR – would receive a score
of 2. A poorer scoring model, BNU ESM, would receive a
score of 6.

Similarly, for the time series trend, we assigned a score of
x based on how many x times the reconstructed trend uncer-
tainty was required to capture the model trend. We looked
at multiple time “slices” to investigate how well the mod-
els performed at capturing century-scale (100+ years) versus
multi-decadal (50-year) SMB trends. To achieve this goal,
we analyzed trends from 1850–2000, 1900–2000, and 1950–
2000. The first two of these three time slices confirm the ro-
bustness of the trends with longer periods for trend analy-
sis. The last time slice, 1950–2000, allows us to view SMB
in the context of significant anthropogenic warming. How-
ever, the large interannual variability overwhelms the signal
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Figure 1. Time series of the reconstructed AIS-integrated SMB
time series (dark indigo) with 1×, 2×, and 3× the uncertainty in
dark indigo, medium indigo, and light indigo, respectively. Three
model AIS-integrated SMB time series, MPI ESM LR (green), IPSL
CM5A LR (yellow), and BNU ESM (cyan) have been plotted as
well to demonstrate different model scoring. MPI ESM LR is en-
tirely captured within 1× the total uncertainty and, thus, receives
a score of 1. IPSL CM5A LR is entirely captured within 2× the
uncertainty so its score for this criterion is 2. BNU ESM is fully
captured within 7× the uncertainty.

at shorter period lengths, which results in large uncertainty
bounds. By looking at several time slices, we ensure consis-
tency between the model and reconstruction over different
intervals. It is equally important to confirm that pre-1950,
the trends are relatively small. We performed a Monte Carlo
simulation wherein we assumed a normal distribution where
the standard deviation of the distribution is equal to the total
uncertainty of possible SMB values for each year. We then
created 10 000 potential SMB time series by choosing SMB
values based on that normal distribution for each year and
recalculated the trend for each of these time series. Our un-
certainty, then, was the standard deviation of this range of
trends, similar to Medley and Thomas (2019).

For temporal variability, if a model should greatly under-
estimate the mean value, for example, the variability about
that mean value will also likely be underestimated. To ensure
that we are not double-counting the impact of SMB mean
value (because this is already covered by the first scoring cri-
terion), we calculated the variability about the normalized
time series. To detrend and normalize each time series, then,
to separate the SMB variability from its mean value, we per-
formed the following analysis:

normalized SMB=
SMB−mean SMB

mean SMB
. (2)

We then calculated the standard deviation of each time se-
ries and assigned a score, x, based on how many x times
the reanalysis standard deviation was required to capture the
model standard deviation. For this criterion, we used the

original MERRA-2 reanalysis precipitation minus evapora-
tion data (1980–2019). Likely due to sampling only 53 ice
core sites, the reconstruction produced a relatively low vari-
ability record. The reconstructed variability at any location
can only be as large as the maximum variability in the ice
cores. Thus, undersampling regions of stronger interannual
variability will dampen the variability signal in the recon-
struction. Analyses of the AIS-integrated SMB mean value
and trend show that the reconstruction is generally in line
with the literature (Medley and Thomas, 2019).

3.2 Spatial SMB criteria

To ensure model performance was not solely based on AIS-
integrated SMB values, we also analyzed the spatial SMB
variability. To do so, we performed an empirical orthogo-
nal function (EOF) analysis on annual AIS SMB data from
1850–2000. EOF analysis maps the spatial pattern of a vari-
able where the first mode represents the largest explained
variance, the second mode – which is orthogonal to the first –
represents the next largest explained variance, the third mode
– which is orthogonal to both modes one and two – repre-
sents the third largest explained variance, and so on until all
the variance is explained. By breaking this criterion down
into two main factors, (1) spatial variability and (2) variance
explained, both of which are considered as separate scoring
criteria, we aim to determine the models’ abilities to accu-
rately capture the modes of variability as well as how much
variance each EOF mode explained.

In the reconstruction, the top three modes of variability
collectively explain roughly 76 % of the total variance ex-
plained. The fourth mode explains only about 6 % of the total
variance, and all other modes explain< 5 % of the total vari-
ance. As such, we only include the top three modes in our
analysis. To avoid manually sorting the top three modes of
variability for all 53 models, we generated difference maps
between each of the top three reconstructed modes and each
of the top three modes for each model: nine difference maps
for each model. For each grid point, we took the absolute
value of the difference between the model and the reconstruc-
tion. We then summed those differences to generate a sin-
gle number (“difference number”) that represented the dif-
ference between the model and the reconstruction in terms
of spatial variability. Mathematically, this looks like

difference number=
∑
lat

∑
lon

∣∣reconstructionlat,lon

−modellat,lon
∣∣. (3)

We did this for all nine combinations of model and
reconstruction maps for the top three modes of variabil-
ity (model1:reconstruction1, model1:reconstruction2,
model1:reconstruction3, model2:reconstruction1,
model2:reconstruction2, etc.). For reconstruction mode
1 (reconstruction1), then, we matched which model mode
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Figure 2. A spatial map of (a) the temporal average from 1801–2000 of the reconstructed AIS SMB, (b) the linear trend from 1801–2000 of
the reconstructed AIS SMB, and (c) the relative SMB trend in percent SMB change per year. Non-shaded regions in panel (c) denote areas
that are statistically significant.

best represents this spatial variability by sorting the model
modes based on the smallest difference number. We did this
for each reconstruction mode (excluding previously matched
model modes) to sort the modes based on the smallest
difference. Summing the absolute value of these differences
yielded a single number that explained how different a
given model was from the reconstruction for each mode of
variability. The score, then, for the variability of SMB is the
total difference of the top three modes.

Because the variance explained is also important for gaug-
ing how well models are performing at recreating the ob-
served spatial patterns, we also summed the difference in
variance explained for the top three sorted modes of vari-
ability for each model. Because the modes were sorted based
on difference for the maps, each mode kept its variance ex-
plained to preserve the accuracy of the models regarding the
dominance of each spatial pattern.

3.3 Final scoring

After compiling scores for all five of the aforementioned
scoring criteria, we removed any outliers by calculating the
1.5 quartile range of the data and neglecting models that fell
outside of that range. We then normalized each set of scores
to be on a scale from 1 to 10 to ensure that each criterion was
equally weighted. After this normalization, the outliers for
any given criterion were retroactively assigned a score of 10
for that criterion. The total score, then, is the average of all
five sets of normalized scores. Because the scores are based
on the difference between the reconstruction and the models,
higher scores indicate poorer model performance.

To look at the impact of resolution and internal variability
on the final scoring, we correlated the horizontal resolution
to final score and applied the same scoring analysis to the
CESM Large Ensemble (CESM-LENS) experiment.

3.4 Future projections

To reduce the uncertainty for AIS SMB in the future, we cre-
ated a subset of models that had a final score in the top 10th
percentile (90th percentile and above) of CMIP5 and CMIP6.
For our future projections, we investigated the impacts of

SMB under forcing scenarios RCP2.6, RCP4.5, and RCP8.5
for CMIP5 and SSPs 1–2.6, 2–4.5, and 5–8.5 for CMIP6. We
compared the top scoring models that could be projected out
under the selected forcings (of which there are five: four for
CMIP5 and one for CMIP6) to the entire scope of CMIP5 and
CMIP6. We ran a Monte Carlo simulation in which five ran-
dom models were selected 100 000 times. Those 100 000 sets
of five random scores were compared to the five best scoring
model scores using a two-sided t test. From this, we found
that, to a 95 % confidence level, we can say that the five best
scoring models are statistically significantly different from
any random five CMIP5 or CMIP6 models.

Using this subset of best scoring models, we calculated the
projected AIS-integrated mean value and trend in warming
scenarios, RCPs 2.6, 4.5, and 8.5 and SSPs 1–2.6, 2–4.5, and
5–8.5, out to 2100. To see if and how the models respond
differently to different warming scenarios, we also calculated
the AIS-integrated SMB sensitivity to temperature change as

sensitivity=
1SMB
1T

. (4)

4 Results

The final overall scores are an unweighted average of all five
different scores. After performing the analysis outlined in the
Methods section, the top 90th percentile overall of scoring
models were determined to be GISS E2 H CC, GISS E2 R
CC, GISS E2 R, MPI ESM LR, MPI ESM MR, and MPI
ESM P from CMIP5 and CESM FV2 and MPI ESM2 LR
from CMIP6. For comparison, these eight models have been
added to Figs. 3, 4, and 5, to show their performance in each
scoring criterion relative to the rest of the CMIP model suites.

Along with higher SMB values, the coastal regions of East
Antarctica and the Antarctic Peninsula also show the high-
est absolute SMB trends in the reconstruction (Fig. 2b). The
reconstruction also highlights large portions of East Antarc-
tica as well as the Antarctic Peninsula as the regions with
the most significant SMB trends from 1801–2000 (Fig. 2c).
Taking the spatial average but keeping the temporal infor-
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Figure 3. (a) An example of a box plot for model data (yellow) and
reconstructed data (black and grey). The yellow shaded box shows
the models’ interquartile range while the whiskers extend to capture
the entire distribution of modeled data. The line going through the
box plot shows the median model value. The grey shaded box shows
the reconstructed uncertainty around the reconstructed value shown
as a black line. (b) A box plot of spatially integrated, temporally av-
eraged (1850–2000) AIS SMB for CMIP5 (aqua) and CMIP6 (red).
The dark blue x’s associated with the CMIP5 box and the red x’s as-
sociated with the CMIP6 box represent the eight best scoring mod-
els: GISS E2 H CC, GISS E2 R CC, GISS E2 R, MPI ESM LR, MPI
ESM MR, and MPI ESM P from CMIP5 and CESM2 FV2 and MPI
ESM2 LR from CMIP6. The black dashed lines indicate the lower
and upper bounds of the time series plot in the bottom of Fig. 3.
(c) A time series of spatially integrated SMB for the reconstruction
(black) and its uncertainty (shaded grey) with the best eight scoring
models: GISS E2 H CC, GISS E2 R CC, GISS E2 R, MPI ESM
LR, MPI ESM MR, and MPI ESM P from CMIP5 (dark blue) and
CESM2 FV2 and MPI ESM2 LR from CMIP6 (red).

mation yields the AIS-integrated, reconstructed SMB time
series shown in Fig. 3c (black).

Panel (a) in Fig. 3 shows an example box plot for a suite of
models in yellow and the reconstructed observations in black
and grey. Panel (b) in Fig. 3 shows a box plot of the temporal
average of the spatially integrated AIS SMB for CMIP5 and
CMIP6. The interquartile range of AIS-integrated SMB in
the CMIP5 models is between 1727 and 2282 Gt yr−1, while
the interquartile range in the CMIP6 models is between 1728
and 2196 Gt yr−1. The best eight models range from 1909 to
2461 Gt yr−1 for the temporal average AIS-integrated SMB
mean value.

The reconstructed AIS SMB ranges from
1800± 338 Gt yr−1 from 1850–1900 to 2039± 333 Gt yr−1

from 1950–2000. All but one of the eight best scoring mod-
els are fully captured within the reconstructed uncertainty
for the entire 150-year time series. The reconstruction and
best scoring models all show generally increasing SMB

Figure 4. Box plots of the linear trends in spatially integrated AIS
SMB in CMIP5 (blue) and CMIP6 (red) for the periods (a) from
1850 to 2000, (b) from 1900 to 2000, and (c) from 1950 to 2000.
In all three panels, the grey boxes denote the reconstructed uncer-
tainty around the reconstructed trend (black line). The eight best
scoring models are represented by dark blue x’s if they are among
the CMIP5 suite of models or red x’s if they are among the CMIP6
suite.

from 1850–2000, albeit with large interannual variability.
Both the trend and variability are analyzed in follow-up
evaluations and scoring.

While the reconstructed SMB time series and eight best
scoring models show a generally increasing trend, the same
is not true for all CMIP5 or CMIP6 models (Fig. 4).
Looking at multiple time “slices” allows us to investigate
whether models capture the reconstructed SMB trends for
the whole time series compared to more recent decades.
Here, we looked at three time slices: the entire overlap-
ping time series from 1850–2000, the last century from
1900–2000, and the last 50 years from 1950–2000. The
reconstructed linear SMB trends for the three time slices
are 0.52± 0.27 Gt yr−2 (1850–2000), 0.56± 0.38 Gt yr−2

(1900–2000), and 1.0± 1.3 Gt yr−2 (1950–2000). That im-
plies that for all but the last time slice, 1950–2000, the total
uncertainty trends are exclusively positive.

Looking at all of the CMIP5 and CMIP6 models, the me-
dian linear trend is positive for all three time slices and the
trend interquartile ranges are from −0.8 to +1.8 Gt yr−2 for
1850–2000, −0.6 to +1.7 Gt yr−2 for 1900–2000, and 0.8
to +2.7 Gt yr−2 for 1950–2000. For CMIP5, median trends
for these time slices are 0.88, 0.66, and 1.8 Gt yr−2 for
1850–2000, 1900–2000, and 1950–2000, respectively. For
CMIP6, median trends for these time slices are 0.05, 0.46 Gt,
and 1.8 Gt yr−2 for 1850–2000, 1900–2000, and 1950–2000,
respectively. The eight best scoring models range from
−1.4 to +3.1 Gt yr−2, −1.4 to +1.7 Gt yr−2, and −0.9 to
+2.4 Gt yr−2 for the same respective time spans. The spread
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Figure 5. Gaussian distributions of SMB where the standard devi-
ation is that of the SMB time series for the reconstruction (black).
(a) All CMIP5 models are in light blue and the best scoring CMIP5
models are in dark blue. (b) All CMIP6 models are in light red and
all CMIP6 models are in red (the two Gaussians, here, are largely
indistinguishable by eye as they overlap almost entirely). (c) Box
plots of the CMIP5 (blue) and CMIP6 (red) SMB time series stan-
dard deviations. The black dots show the standard deviation of the
original MERRA-2 reanalysis.

in the eight best scoring models reduces the total spread in
AIS-integrated trend by 57 %, 62 %, and 70 %, respectively.
In both CMIP5 and CMIP6, for the first two time slices, the
reconstructed trend and uncertainty are captured within the
interquartile range for all CMIP5 models. For 1950–2000,
the models tend to overestimate the reconstructed trend.

Apart from its trend magnitude and sign, SMB variability
is also important for accurately representing SMB and can
be indicative of the relevant SMB-driving mechanisms. Fig-
ure 5a, b show the average detrended and normalized vari-
ability for CMIP5 and CMIP6 models as well as the recon-
struction plotted as a normal distribution. The detrended and
normalized interannual variability in SMB in the reconstruc-
tion ranges between ∼−20 % and 20 %, while SMB in all
the models varies between ∼−15 % and 15 %. Figure 5c
shows a box plot of the standard deviations of the normalized
and detrended time series. The normalization process made
it such that the standard deviations are calculated in percent
of variability about the mean value of the time series. The
standard deviation for the normalized and detrended SMB in
the reanalysis is about 6.6 % compared to the best eight mod-
els which range between 4.4 % and 5.1 %. Most CMIP5 and
CMIP6 models underestimate SMB variability. The CMIP5
and CMIP6 models’ standard deviations range from 4.0 % to
7.3 % and from 3.0 % to 6.1 %, respectively (Fig. 5c). For a
summary of the ranges of the values for the three temporal
criteria, see Table 1.

Figure 6. EOF analysis plots of the top three modes of variabil-
ity for (a) the reconstruction, (b) a relatively high scoring model
(CMCC CM), and (c) a low scoring model (CESM1 WACCM).
Note that the scale for the model EOFs is 3× that of the recon-
structed EOF.

Just as temporal SMB variability is important for accu-
rately capturing AIS SMB, spatial variations in SMB are
also important in AIS SMB representation in models, as pre-
cipitation is not distributed uniformly. To look at the spatial
variability in SMB, we performed EOF analysis and plotted
looked at the top three modes of variability which collec-
tively account for 76.3 % of the total spatial variability.

Separated out, the top three modes of variability in the
reconstruction from EOF analysis explain 39 %, 26 %, and
12 % of the total variability, respectively (Fig. 6). High values
on the EOF map indicate regions that explain large amounts
of the variability in AIS SMB. The top mode of variability
in the reconstruction shows a dipole pattern from the Antarc-
tic Peninsula to the Ross Sea region. Mode 2 of the recon-
struction EOF shows a strong signal over the entire Antarc-
tic Peninsula and toward the Ross Ice Shelf region of West
Antarctica. The third mode of variability shows a strong sig-
nal in Wilkes Land (East Antarctic region), near the Davis
Sea, and two opposite, weaker signals in Dronning Maud
Land (Atlantic sector) and Adélie land (Pacific sector). This
signal is reflective of the linear trend in SMB as seen in
Fig. 2b. For a map of these Antarctic regions, see the Sup-
plement.

As an example of the comparison, one of the better scoring
models for the EOF map criterion, CMCC CM, also shows
a dipole between the Antarctic Peninsula and the Ross Sea
region for the top mode as well as a strong variance signal
around the Antarctic Peninsula for mode 2 and a quadrupolar
pattern for mode 3. However, even the better scoring models
tend to overestimate the magnitude of the variance, particu-
larly around the coast, even when they capture the general
spatial patterns. CESM1 WACCM, one of the more poorly
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Table 1. List of ranges of values for the three temporal criteria for the top 90th percentile models, all CMIP5 models, and all CMIP6 models
as well as the values and uncertainties for the reconstruction.

Criterion Reconstruction Top 90th All CMIP5 All CMIP6
(time span) or reanalysis percentile models models models

Mean value
(1850–2000) 2010± 334 Gt yr−1 1909–2461 Gt yr−1 1335–3472 Gt yr−1 1976–2196 Gt yr−1

Trend
(1850–2000) 0.52± 0.27 Gt yr−2

−1.40–3.40 Gt yr−2
−3.84–6.72 Gt yr−2

−2.87–4.14 Gt yr−2

Trend
(1900–2000) 0.56± 0.38 Gt yr−2

−1.43–1.73 Gt yr−2
−4.81–3.40 Gt yr -2.14 - 3.74 Gt yr−2

Trend
(1950–2000) 1.0± 1.3 Gt yr−2

−0.89–2.38 Gt yr−2
−1.44–9.50 Gt yr−2

−3.22–4.40 Gt yr−2

Temporal variability
(1850–2000) 6.6± 0.3 Gt yr−1 4.37–5.06 Gt yr−1 4.03–7.32 Gt yr−1 3.02–6.08 Gt yr−1

performing models with regard to this metric, generally over-
estimates the variance everywhere in all three of the top
modes. The top mode for this model reflects an East–West
Antarctic SMB dipole, and mode 2 shows a strong, unidi-
rectional signal across the entire AIS, though mode 3 seems
to reflect the same quadrupolar pattern as seen in the recon-
struction.

Models that score above the 90th percentile make up the
subset of best scoring models. Eight models – GISS E2 H
CC, GISS E2 RCC, GISS E2 R, MPI ESM LR, MPI ESM
MR, and MPI ESM P from CMIP5 and CESM FV2 and MPI
ESM LR from CMIP6 – comprise this top 90th percentile.
MPI ESM P GISS E2 R from CMIP5 and CESM2 FV2 do
not have the requisite future projection data for this analy-
sis. The most poorly performing models include BNU ESM,
CESM FASTCHEM, and FIO ESM. The mean model score
is 4.36 for CMIP5 and 5.77 for CMIP6. CMIP5 and CMIP6
scores were normalized together such that all scores are on
the same scale and are directly comparable.

With this subset of the eight best performing models,
we then refined future projections of AIS SMB in terms of
mean value, trend, and variability. Comparing the difference
in SMB projections between RCPs and SSPs allows us a
look into the potential sea level changes caused by different
amounts of warming.

As stated earlier, both mean value and trend of AIS SMB
have significant implications for future projections of sea
level change. The spatially integrated AIS SMB (i.e., SMB
mean value) has been increasing from 1850–2000 (Fig. 3)
and is projected to continue to increase for the following hun-
dred years to 2100 in all three warming scenarios (Fig. 8).

From 2070–2100, spatially integrated AIS SMB
is projected to be 2294± 570 Gt yr−1 for RCP2.6,
2371± 581 Gt yr−1 for RCP4.5, and 2358± 663 Gt yr−1

for RCP8.5 for all CMIP5 models where the associated
uncertainties are 1-σ of all models between 2070–2100

(for a list of projected SMB and related variable values
for all models and the best scoring models across the
RCPs, see the Supplement). For the same time period in
CMIP6, AIS SMB is projected to be 2249± 392 Gt yr−1

for SSP1–2.6, 2305± 387 Gt yr−1 for SSP2–4.5, and
2418± 374 Gt yr−1 for SSP5–8.5. The subset of best
scoring models has lower projections and smaller spread
at 2274± 282 Gt yr−1 for RCP2.6, 2358± 286 Gt yr−1 for
RCP4.5, and 2495± 291 Gt yr−1 for RCP8.5 for CMIP5
between 2070–2100. For CMIP6 over the same period, the
best scoring model, MRI ESM2, projects AIS SMB to be
even lower at 2073 Gt yr−1 for SSP1–2.6, 2096 Gt yr−1 for
SSP2–4.5, and 2154 Gt yr−1 for SSP5–8.5. The ranges of
the best scoring models reduced the spread by 79 %, 79 %,
and 74 % for RCPs 2.6, 4.5, and 8.5, respectively. The mean
value of modeled SMB increases with increasing warming
scenarios in all CMIP5 and CMIP6 models, as well as in
the subset of the best scoring models. Similarly to the mean
value increasing with increasing warming, the projected
SMB trend also increases with increased warming (Fig. 9).

For the entirety of the 21st century, 2000–2100,
most CMIP5 and CMIP6 climate models project pos-
itive SMB trends in all forcing scenarios (Fig. 9).
For RCP2.6, all CMIP5 models project a mean trend
of 0.9± 1.2 Gt yr−2. For RCPs 4.5 and 8.5, the mean
trends are 2.5± 1.6 Gt yr−2 and 6.0± 3.2 Gt yr−2, respec-
tively. In CMIP6, the mean trends are 1.3± 1.3 Gt yr−2,
2.5± 1.9 Gt yr−2, and 5.0± 2.9 Gt yr−2 for SSPs 1–2.6, 2–
4.5, and 5–8.5, respectively.

The best scoring CMIP5 models have trends of
1.2± 1.0 Gt yr−2, 1.9± 0.7 Gt yr−2, and 3.8± 0.8 yr−2 for
RCPs 2.6, 4.5, and 8.5, respectively. The best scoring CMIP6
model has trends of 0.5 Gt yr−2, 2.0 Gt yr−2, and 3.8 Gt yr−2,
for SSPs 1–2.6, 2–4.5, and 5–8.5, respectively. For RCPs 2.6
and 4.5 and SSPs 1–2.6 and 2–4.5, the best scoring model
trend projections lie close to or within the interquartile range
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Figure 7. The scores for all CMIP5 and CMIP6 models. The large dots show the average score for all model groupings. Models are grouped
by similar model physics and have in parentheses the number of models in the grouping after the name. Each model grouping has all model
scores plotted as small blue (red) dots for CMIP5 (CMIP6) with the model average plotted in the larger dots. Models that have no like models
are followed by a 1 in parentheses and only have a larger dot. The eight best scoring models (above the 90th percentile) are denoted with red
outlines if they are among the CMIP5 suite of models – GISS E2 H CC, GISS E2 R CC, GISS E2 R, MPI ESM LR, MPI ESM MR, and MPI
ESM P – or with blue outlines if they are among the CMIP6 suite of models – CESM FV2 and MPI ESM2 LR. Note that the overall scores
for two of the GISS models and three of the MPI models in CMIP5 are almost exactly equal so outlines overlap almost completely.

for all CMIP5 and CMIP6 models. As the warming scenarios
strengthen, the five of the eight best scoring models projected
into the future move closer to the lower end of the over-
all interquartile ranges in trend. Some of the differences in
these concentration pathways can be described by the mod-
eled SMB sensitivity to different atmospheric CO2 emission
scenarios.

Box plots of modeled SMB sensitivity to changes in tem-
perature (i.e., how much SMB will change per degree Celsius
of near-surface atmospheric warming) are shown in Fig. 10.
The projected sensitivity means for RCPs 2.6, 4.5, and 8.5 are
95± 70 Gt ◦K−1, 102± 52 Gt ◦K−1, and 120± 46 Gt ◦K−1,
respectively. The four best scoring CMIP5 models are below
the median for each forcing scenario, with many of them be-
low the lower limit of the interquartile ranges. The sensitiv-
ity in CMIP6 models SSPs 1–2.6, 2–4.5, and 5–8.5 is lower
than that of CMIP5 at 39± 49 Gt ◦K−1, 59± 53 Gt ◦K−1,
and 82± 60 Gt ◦K−1, respectively. The best scoring CMIP6
model is close to or above the upper limit of the interquartile
range in sensitivity for each forcing scenario. CMIP5 shows
a greater range in sensitivity for all three forcing scenarios as
well as being generally more sensitive across all CMIP5 and
CMIP6 models.

These sensitivity results are not statistically significantly
different across forcing scenarios, however, indicating no
significant more-than-linear SMB increase in enhanced
warming scenarios. Table 2 displays ranges for SMB mean

value, SMB trend, SMB sensitivity, and temperature changes
for all models and the best scoring models for the different
forcing scenarios.

5 Discussion

5.1 EOF analysis

The differences in modes of variability in the EOF maps
likely point to differences in atmospheric conditions that
force AIS SMB. Mode 1 of the reconstruction EOF shows
a dipolar pattern across the Antarctic Peninsula and Ross
Ice Shelf region of West Antarctica. This dipole corresponds
to variability in precipitation generated by variations in the
track and strength of the Amundsen Sea Low. The Amundsen
Sea Low, a dominant synoptic phenomenon that drives a sig-
nificant amount of the circulation variability in West Antarc-
tica and on the Antarctic Peninsula (Turner et al., 2013), is
marked by high precipitation around the coast of the Antarc-
tic Peninsula (Grieger et al., 2016). Changes in the Amund-
sen Sea Low synoptic pattern, then, represent the dominant
cause of variability in the reconstruction SMB. The depth of
the Amundsen Sea Low (ASL) is strongly influenced by the
phase of the Southern Annular Mode (SAM) with positive
(negative) mean sea level pressure anomalies when the SAM
is negative (positive) (Turner et al., 2013).
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Figure 8. Time series for all CMIP5 (lighter colors) and CMIP6
models (darker colors) and best scoring models (skinny lines)
and the best scoring models’ average (thick lines) for (a) RCP2.6
and SSP1-2.6 (blue), (b) RCP4.5 and SSP2-4.5 (yellow), and
(c) RCP8.5 and SSP5-8.5 (red).

Looking at mode 2, previous work by Hosking et al.
(2013) and Turner et al. (2013) (among others) has shown
that variability in the Amundsen Sea Low is responsible for
high precipitation variability in West Antarctica and on the
Antarctic Peninsula. Because this region dominates the over-
all AIS precipitation signal (as East Antarctica sees little
snowfall by comparison), a variable Amundsen Sea Low sig-
nal, here, would explain the EOF pattern reflected in mode 2
of the reconstruction. Additional work highlighted in the
Supplement indicates that variability in sea level pressure in
the Amundsen Sea region may be playing a large role in the
AIS SMB spatial variability patterns.

5.2 Impact of internal variability on model scoring

Our study uses the full ensemble of available CMIP5 and
CMIP6 models. However, we only select a single member
of each model (since some models have only one ensem-
ble member available), which potentially leads to under-
sampling of internal variability in the scoring. To analyze the
effect of natural variability on final scoring, we use the Large
Ensemble of the Community Earth System Model (CESM-
LENS; Kay et al., 2015). Because of its large number of
ensemble members, the CESM-LENS experiment is useful
for quantifying the role of internal variability. Only 35 of
the original 40 ensemble members contain the necessary in-
formation for assessing AIS SMB. Figure S4 shows the fi-
nal scores of the five CESM simulations that are included in
the CMIP5 suite of models as well as the final scores of the
CESM-LENS experiment. The final scores for the CESM-
LENS model runs are calculated the same way for all model
criteria except for the AIS-integrated trend. Because these
runs only differ after 1920, we only use the third time slice

Figure 9. Box plots of the linear trend in spatially integrated
AIS SMB from 2050–2100 for (a) RCP2.6 and SSP1-2.6 (blue),
(b) RCP4.5 and SSP2-4.5 (yellow), and (c) RCP8.5 and SSP5-8.5
(red). The five darker x’s denote the five models – GISS E2 H CC,
GISS E2 R CC, MPI ESM LR, and MPI ESM MR from CMIP5 and
MRI ESM2 from CMIP6 – among the eight best scoring models
with the appropriate and necessary information for direct compari-
son of future projections.

Figure 10. Box plots of all CMIP5 models’ projected SMB sensitiv-
ity to temperature changes (1SMB/1T ) for (a) RCP2.6 and SSP1-
2.6, (b) RCP4.5 and SSP2-4.5, and (c) RCP8.5 and SSP5-8.5. The
five darker x’s denote the five models – GISS E2 H CC, GISS E2
R CC, MPI ESM LR, and MPI ESM MR from CMIP5 and MRI
ESM2 from CMIP6 – among the eight best scoring models with
the appropriate and necessary information for direct comparison of
future projections.

(1950–2000) to assess the quality of trend reproduction. The
final scores of the five CMIP5 CESM model runs range from
3.99 to 9.74 while the final scores of the 35 CESM-LENS
runs range from 1.32 to 5.96. Given that the scores range by
5.74 and 4.65 for the CMIP5 CESM runs and the CESM-
LENS runs, respectively, it is reasonable to conclude that in-
ternal variability plays as significant a role in determining
the final score as model parameterizations do. This spread in
score is due, in large part, to the spread among the ensemble
members in spatial variability (EOF) patterns.
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Table 2. Projected values for SMB, SMB trend, SMB temperature sensitivity, and change in 21st century temperature for all CMIP5 and
CMIP6 models compared to the best scoring CMIP5 models for RCP2.6, RCP4.5, and RCP8.5 and best scoring CMIP6 models for SSP1-2.6,
SSP2-4.5, and SSP5-8.5.

CMIP5

RCP2.6 RCP4.5 RCP8.5

Years All Best All Best All Best

SMB (Gt yr−1) 2070–2100 2294± 570 2274± 282 2371± 581 2358± 286 2630± 663 2495± 291
1SMB
1t (Gt yr−2) 2000–2100 0.9± 1.2 1.3± 1.0 2.5± 1.6 1.9± 0.7 6.0± 3.2 3.8± 0.8

1SMB
1T

(Gt yr−1 ◦C−1) 2000–2100 95± 70 31± 38 102± 53 57± 27 120± 46 78± 12
1T (◦C 100 yr−1) 2000–2100 0.8± 0.8 0.6± 0.6 1.2± 1.0 1.0± 1.2 4.8± 1.0 3.6± 0.2

CMIP6

SSP1-2.6 SSP2-4.5 SSP5-8.5

Years All Best∗ All Best∗ All Best∗

SMB (Gt yr−1) 2070–2100 2249± 392 2073 2305± 387 2096 2418± 374 2154
1SMB
1t (Gt yr−2) 2000–2100 1.3± 1.3 0.5 2.5± 1.9 2.0 5.0± 2.9 3.8

1SMB
1T

(Gt yr−1 ◦C−1) 2000–2100 39± 49 110 59± 53 102 82± 60 122
1T (◦C 100 yr−1) 2000–2100 0.9± 0.8 1.2 2.2± 0.8 3.0 5.2± 1.6 5.7

∗ There is only one best scoring model with data for the future forcing scenarios so no uncertainty is provided.

A major caveat of this finding, however, is that the CESM-
LENS runs and the reconstruction only overlap from 1920–
2000. This will likely most significantly impact the assess-
ment of the trend and EOF analyses.

That said, this analysis highlights that internal variability
plays a significant role in our AIS SMB assessment. Some
models within the CMIP5 and CMIP6 frameworks, such as
CESM1-CAM5, have many ensemble members. However,
not all models – and even not all model versions – have mul-
tiple ensemble members. As such, performing a direct com-
parison of the models using the ensemble mean would not
necessarily yield an accurate result as models with more en-
semble members would have their final score shifted signifi-
cantly while the same is not true for models with a single en-
semble member. For considering using GCMs for AIS SMB
analysis, then, we strongly suggest taking into account the
fact that internal variability could be playing a strong role in
some models’ final score and that the number of ensemble
members available should be considered along with the final
score.

5.3 Impact of horizontal resolution on scoring

As the CMIP5 and CMIP6 models vary widely in horizon-
tal resolution, from about 0.75◦× 0.75◦ to 3◦× 3◦ (Tables
S1–S4), we can assess the impact of resolution on individ-
ual and final model scoring. Figure S5 shows a scatter plot
of resolution versus total score. Resolution, here, is the lat-
itudinal resolution multiplied by the longitudinal resolution
such that a model with latitude and longitude resolutions
of 0.9375◦ and 1.25◦ would have a resolution of 1.1719◦.

A linear regression yields a correlation of R =−0.40 with
95 % confidence intervals of −0.62 and −0.17. From this,
there is a small, though statistically significant negative cor-
relation between resolution and total model score, signal-
ing that, perhaps contrary to intuition, lower-resolution mod-
els score equally well, if not better, than higher-resolution
models. When comparing total scores from the same model
run at different resolutions, we find a consistent result: the
relatively high-resolution CESM CAM5, IPSL CM5A MR,
MPI ESM MR, CESM2, CESM2 WACCM, and MPI ESM2
HR all perform worse than their coarser-resolution counter-
parts – CESM CAM5 FV2, IPSL CM5A LR, MPI ESM LR,
CESM2 FV2, CESM2 WACCM FV2, and MPI ESM2 LR.

5.4 Caveats

The major limitations of this work stem largely from the
subjective selection of scoring criteria. While each model is
scored based on the same criteria, each criterion is chosen
specifically to gauge model performance for capturing AIS
SMB. As such, these criteria may be ill suited for looking
at other variables, and, thus, other metrics could yield very
different results. Another caveat of this work is that we are
only capable of analyzing the CMIP6 models that have been
released. As this analysis and the release of CMIP6 are con-
current, this limits the number of models we can reasonably
analyze due to time constraints. Additional CMIP6 models
may have different results and may skew the comparison be-
tween CMIP5 and CMIP6 significantly. Similarly, due to the
small number of CMIP6 models released at this point, using
statistical analyses becomes moot as the top 90 % of mod-
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els constitute the single, best scoring model. One final major
caveat with this work is the relatively narrow scope of just
looking at AIS SMB. Because we refined our criteria at the
outset of our experiment to solely reflect model performance
with regard to capturing SMB and did not include outside
factors like synoptic weather patterns, sea ice, or sea surface
conditions (Krinner et al., 2014; Kittel et al., 2018), there are
potentially some wider model biases that we are missing that
could affect SMB projections. In our analysis, we make the
significant assumption that the past ability to capture SMB
correlates to higher skill in projecting AIS SMB into the fu-
ture. However, model biases in some of the larger physical
drivers – and how those biases change into the future – will
significantly impact future AIS SMB trajectory.

Another significant caveat of this work is the use of single
ensemble members. For this work, we use the first ensemble
member for each model. This choice was made as the var-
ious model members of CMIP5 and CMIP6 vary widely in
the number of ensemble members available – ranging from
1 to 50 – so using only a single ensemble member helps
account for this large disparity between the models. How-
ever, in looking at the CESM-LENS experiment – which has
35 ensemble members – it is clear that there can be a large
spread caused solely by internal variability. The spread in
final score among the CESM-LENS ensemble members is
4.65, which is largely generated by the difference in EOF
maps, meaning that the precise realization of atmospheric
conditions in the models is incredibly significant in how the
model, in turn, represents AIS SMB.

6 Conclusions

In this paper, we tested the ability of the suite of models in
CMIP5 to capture SMB reconstructed from ice cores and
reanalysis products by scoring them using a series of cri-
teria: AIS-integrated mean value, trend, and variability, as
well as the spatial variability patterns. This scoring system
is designed as a guide for choosing what GCMs to focus
on studying for future SMB projections. Using this scoring
system, we found that the top 90th percentile models were
GISS E2 H CC, GISS E2 R CC, GISS E2 R, MPI ESM LR,
MPI ESM MR, and MPI ESM P of CMIP5 and CESM FV2
and MPI ESM2 LR of CMIP6. A similar study in Agosta
et al. (2015) found ACCESS1-3, ACCESS1-0, CESM BGC,
CESM CAM5, NorESM1-M, and EC-Earth to most accu-
rately capture AIS sea level pressure, 850 hPa air tempera-
ture, precipitable water, and ocean conditions – all of which
impact AIS SMB to varying degrees. They focused their in-
vestigation on more atmospheric and oceanic dynamics (sea
ice extent, sea surface temperature, sea surface pressure, pre-
cipitable water, 850 hPa temperature) and were comparing
models directly to a reanalysis product. Barthel et al. (2020),
another study with a similar goal of analyzing SMB per-
formance among GCMs, selected CCSM4, MIROC ESM

CHEM, and NorESM1-M as their top three performing mod-
els for Antarctica. They ruled out both the GISS and MPI
modeling groups due to their initial selection criteria and
were also looking more at the impacts of thermodynamical
processes on SMB.

Our SMB mean value estimates are comparable to those
of Agosta et al. (2019), who found a mean SMB value
of roughly 2100± 100 Gt yr−1 for the grounded AIS using
ERA-Interim products. The SMB trends are also in line with
Medley and Thomas (2019) over the 20th century. Unlike
previous studies, we use a reconstructed data set based on
ice core reanalysis, not RCMs. Also of note is the fact that
this data set and the GCMs we use for comparison allow us
to investigate much longer time periods (150 years), enhanc-
ing the robustness of long-term AIS SMB trends. Using this
reconstruction, we are able to refine estimates of SMB mean
value and SMB trend by the end of the 21st century using
CMIP5 by assigning scores to the models and creating a sub-
set of the most accurate models historically. Also unlike pre-
vious studies, we analyze both CMIP5 and the early models
of CMIP6 together, allowing for direct comparison between
the two suites of models. The scores for all CMIP5 models
are, on average, better than the average score of the currently
released CMIP6 models.

All scores are equally weighted to avoid issues with coin-
cidental good or bad performance. Having a spread of criteria
against which we score the models limits the possibility that
models are recreating one aspect well for the wrong reasons.
This scoring method does well in determining simple and
consistent criteria to score the accuracy of modeled SMB. In
contrast, it struggles to recognize any difference in the impor-
tance of individual criteria as they are all weighted equally
and also only reflects a few, simple scoring metrics. The cri-
teria were chosen such that they all carry equal weight, which
we justify by arguing that not meeting any one of the crite-
ria to within a reasonable degree would significantly impact
future SMB estimates.

Of the top eight scoring models, six were from CMIP5 and
two from CMIP6. Using the top six best scoring models from
CMIP5, four of which we were able to project out to 2100 un-
der three different RCPs, we refined future SMB predictions
to 2274± 282 Gt yr−1 for RCP2.6, 2358± 286 Gt yr−1 for
RCP4.5, and 2495± 291 Gt yr−1 for RCP8.5. Of the two best
scoring CMIP6 models, only one (MRI ESM2) had data for
the comparable future SSP forcing scenarios. For the 1–2.6
and 2–4.5 scenarios, MRI ESM2 is within the standard devia-
tion of the CMIP5 models (albeit at the very low end). For the
SSP5–8.5 scenario, MRI ESM2 is about 50 Gt yr−1 less than
the lower limit of the mean ± the standard deviation of the
CMIP5 models. Our result of these best scoring models pro-
jecting AIS SMB at the lower end of the overall CMIP5 in-
terquartile range in trend is in contrast to that of Palerme et al.
(2017), who found that, especially considering RCPs 2.6 and
4.5, the CMIP5 models that best captured snowfall change
rates tended to predict higher snowfall rates into the 21st cen-
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tury. The best scoring CMIP6 model similarly tends to fall at
the lower end of the overall interquartile range. Additionally,
model trends were refined to 0.47 to 2.45 Gt yr−2 for RCP2.6,
1.44 to 2.88 Gt yr−2 for RCP4.5, and 3.06 to 4.63 Gt yr−2 for
RCP8.5. MRI ESM2, the best scoring CMIP6 model, showed
trends of 0.5, 2.0, and 3.8 Gt yr−2 for SSPs 1–2.6, 2–4.5, and
5–8.5, respectively. Comparing the projected change in SMB
per degree warming between the emission scenarios gives
mean sensitivities of 31± 38 Gt ◦K−1, 57± 27 Gt ◦K−1, and
78± 12 Gt ◦K−1 for RCPs 2.6, 4.5, and 8.5, respectively, for
the best scoring models. The best scoring CMIP6 model had
sensitivities that were generally higher than the best scoring
CMIP5 models at 110, 102, and 122 Gt ◦K−1 for SSP1–2.6,
SSP2–4.5, and SSP5–8.5, respectively. (For a list of all val-
ues for CMIP5 and CMIP6 models, see Table 2.) However,
the sensitivity results from CMIP5 are not statistically sig-
nificantly different from one another across forcing scenar-
ios and indicate that there is no difference in the sensitivity
response to changes in temperature between the three forc-
ing scenarios. The fact that the best performing models show
lower AIS-integrated SMB values and trends compared to
the entire CMIP5 spread indicates less sea level rise mitiga-
tion from increasing SMB than is implied by looking at all
CMIP5 models.

Some of the major caveats of this work are the subjective
selection of scoring criteria which dictate the assessment of
best scoring models as well as the use of single-ensemble
members for model analysis which may lead to an under-
sampling of internal variability.
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