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Abstract. Supraglacial lakes and melt ponds occur in the ab-
lation zones of Antarctica and Greenland during the summer
months. Detection of lake extent, depth, and temporal evo-
lution is important for understanding glacier dynamics. Pre-
vious remote sensing observations of lake depth are limited
to estimates from passive satellite imagery, which has inher-
ent uncertainties, and there is little ground truth available. In
this study, we use laser altimetry data from the Ice, Cloud,
and land Elevation Satellite-2 (ICESat-2) over the Antarc-
tic and Greenland ablation zones and the Airborne Topo-
graphic Mapper (ATM) for Hiawatha Glacier (Greenland)
to demonstrate retrievals of supraglacial lake depth. Using
an algorithm to separate lake surfaces and beds, we present
case studies for 12 supraglacial lakes with the ATM lidar and
12 lakes with ICESat-2. Both lidars reliably detect bottom
returns for lake beds as deep as 7 m. Lake bed uncertain-
ties for these retrievals are 0.05–0.20 m for ATM and 0.12–
0.80 m for ICESat-2, with the highest uncertainties observed
for lakes deeper than 4 m. The bimodal nature of lake returns
means that high-confidence photons are often insufficient to
fully profile lakes, so lower confidence and buffer photons
are required to view the lake bed. Despite challenges in au-
tomation, the altimeter results are promising, and we expect
them to serve as a benchmark for future studies of surface
meltwater depths.

1 Introduction

The ice sheets of Antarctica and Greenland modulate rates
of sea level rise, contributing 14.0± 2.0 mm (Antarctica)
and 13.7± 1.1 mm (Greenland) since 1979 (Mouginot et al.,
2019; Rignot et al., 2019). Current trends indicate greater
melt in the coming decades, leading to the contributions from
both ice sheets to overtake the contribution of thermal expan-
sion to sea level rise (Vaughan et al., 2013). Meltwater plays
vital roles in ice sheet evolution (e.g., van den Broeke et al.,
2016), including aggregation on ice sheets as supraglacial
lakes, many of which are several meters deep (Echelmeyer
et al., 1991). When unfrozen, these lakes exhibit a lower
albedo than that of the surrounding ice, allowing them to
absorb more incoming solar radiation and melt ice more ef-
ficiently, thus generating a positive feedback (Curry et al.,
1996). Supraglacial lakes are significant reservoirs of latent
heat (Humphrey et al., 2012), and their spectral emissivity in
the infrared (IR) spectrum also differs from bare ice (Chen
et al., 2014; Huang et al., 2018), which can lead to poten-
tially significant impacts on the surface energy balance of ice
sheets.

A substantial portion of meltwater eventually drains into
supraglacial streams or moulins (drainage channels), where
it can flow to the ice bed (Banwell et al., 2012; Catania et al.,
2008; Selmes et al., 2011). During catastrophic lake drainage
events, meltwater penetration into the ice can also lead to
hydrofracture, a mechanism through which meltwater facil-
itates full ice fracture as a result of the stresses induced by
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the density contrast between liquid water and ice (Das et al.,
2008). Meltwater injection to the bed can also modify basal
water pressures which in turn modify the resistance to ice
flow and thus can impact sliding velocity and ice discharge.
(Parizek and Alley, 2004; Zwally et al., 2002). Hydrofrac-
ture can lead to significant ice loss for outlet glaciers and
ice shelves (Banwell et al., 2013). Current observations and
modeling efforts indicate a propagation of supraglacial lakes
farther inland as the climate warms (Howat et al., 2013; Lee-
son et al., 2015; Lüthje et al., 2006), raising further concerns
for accelerated mass loss. For these reasons, knowledge of
supraglacial lakes is important for our understanding of ice
sheet evolution.

Previous studies developed techniques for detecting
supraglacial lakes and retrieving depth, areal coverage, and
volume. In situ observations employed sonar and radiome-
ters to approximate lake depth and albedo (Box and Ski,
2007; Tedesco and Steiner, 2011). However, the harsh condi-
tions of Antarctica and Greenland, the transience of meltwa-
ter, and the sheer size of the ice sheet ablation zones restrict
the potential for extensive in situ measurements, encourag-
ing lake depth and areal coverage estimates from passive re-
mote sensing data such as Landsat-8, MODIS, and Sentinel-
2 A/B. Supraglacial water is darker than surrounding ice in
the visible and IR bands, allowing the use of band ratios be-
tween blue and red reflectance (Stumpf et al., 2003). The nor-
malized water difference index (NWDI) and dynamic thresh-
olding techniques have also been considered for lake detec-
tion (Fitzpatrick et al., 2014; Liang et al., 2012; Moussavi
et al., 2016; Pope, 2016; Williamson et al., 2017; Moussavi
et al., 2020). Other methods implemented radiative trans-
fer models (Georgiou et al., 2009) or positive-degree-day
models (McMillan et al., 2007) to estimate lake albedo and
meltwater volume. By comparing surface reflectance data of
supraglacial water to that of ice and optically deep water, em-
pirical relationships have been derived to approximate lake
depth (Philpot, 1989; Sneed and Hamilton, 2007).

Image-based empirical techniques rely on approximations
of lake bed albedo and an attenuation parameter, both of
which are subject to uncertainties from lake heterogeneity
and cloud cover (Morassutti and Ledrew, 1996). Further-
more, Pope et al. (2016) found that band ratios were in-
sensitive to lakes deeper than 5 m, leading to errors that
may exceed 1 m. Parameter fitting in the empirical equations
requires supplementary depth retrievals, often from in situ
sources. More accurate methods for supraglacial lake detec-
tion are needed to improve image-based estimates.

In September 2018, the Ice, Clouds, and land Elevation
Satellite-2 (ICESat-2) was launched with the primary objec-
tive of obtaining laser altimetry measurements of the polar
regions (Abdalati et al., 2010; Markus et al., 2017; Neumann
et al., 2019b). Observations using the Airborne Topographic
Mapper (ATM) and Multiple Altimeter Beam Experimen-
tal Lidar (MABEL) indicated the potential for shallow wa-
ter profiling with laser altimetry (Brock et al., 2002; Brunt

et al., 2016; Jasinski et al., 2016), and ICESat-2 applications
were recently demonstrated by Ma et al. (2019) and Par-
rish et al. (2019). In this study, we identify test cases from
ICESat-2 and ATM altimetry data and use these pilot cases
to develop an algorithm for detecting supraglacial lakes and
retrieving lake depth. The algorithm is designed as a semi-
automatic method to find supraglacial lakes within select al-
timetry granules.

2 Data description

2.1 ICESat-2

ICESat-2 is a polar-orbiting satellite with an inclination of
92◦ that carries the Advanced Topographic Laser Altimeter
System (ATLAS), a 532 nm micro-pulse laser that is split into
six distinct beams with names based on the ground track:
GT1L/R, GT2L/R, and GT3L/R. The beams are configured
in pairs with a 90 m separation between beams within a beam
pair and 3.3 km between pairs. With an operational altitude
of ∼ 500 km and a 10 kHz pulse repetition rate, ICESat-
2 records a unique laser pulse approximately every 0.7 m
along-track over a 91 d repeat cycle.

The ATLAS product used here is the ATL03 Global Ge-
olocated Photon Data V002 (Neumann et al., 2019a), which
consists of retrieved photons tagged with latitude, longitude,
received time, and elevation. Each photon pulse also car-
ries a classification as either signal or background (noise).
The differentiation between signal and background is per-
formed using a statistical algorithm outlined by Neumann
et al. (2019b). Signal photons are further classified by confi-
dence level, such that photons labeled as “high confidence”
are most likely to originate from the surface. Generally,
cloudy or variable profiles exhibit “medium/low confidence”
or noise photons, whereas low-slope surfaces, such as water
and ice sheets, result in more high-confidence photons (Neu-
mann et al., 2019b). In thin layers of water, high-confidence
photons are observed from both the water surface and the
underlying ice.

Our study focused on the central strong beam (GT2L), as
the number of lakes was deemed sufficient for our purposes.
While we recognize that the other strong beams could be use-
ful for depth retrievals, we did not consider them here. We
speculate that the weak beams may avoid issues with multi-
ple scattering and specular reflection, but their power is too
low to reliably detect lakes deeper than 4 m. Ground-based
validation by Brunt et al. (2019b) indicates an accuracy of
< 5 cm in ATL03 photons over ice sheet interiors. The use of
medium, low, and “buffer” photons slightly decreases mea-
surement precision, but a less truncated transmit pulse gives
better agreement with ATL06 and ground-based data (Brunt
et al., 2019b).
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2.2 Airborne Topographic Mapper

The Operation IceBridge (OIB) campaign was designed to
fill the gap in polar altimetry between ICESat and ICESat-
2. Its scientific payload included the Airborne Topographic
Mapper, a 532 nm lidar that has been used for ice sheet and
shallow water measurements since 1993. The ATM lidar con-
ically scans at 20 Hz, providing a 400 m swath width along-
track (Brock et al., 2002; Krabill et al., 2002). The ATM
Level-1B Elevation and Return Strength (ILATM1B) prod-
uct converts analog waveforms into a geolocated elevation
product to emulate ATLAS data (Studinger, 2013, updated
2018). Although it lacks a statistical confidence definition,
ATM applies a centroid model to digitized waveforms to re-
trieve high-confidence photons. Brunt et al. (2019a) found
that ATM errors were −9.5 to 3.6 cm relative to ground-
based measurements. Here, the ATM results presented serve
as a proof of concept for the lake detection algorithm.

3 Methods

3.1 Lake detection

Supraglacial lake surfaces are much flatter than surrounding
terrain. We thus performed topography checks with the ex-
pectations that (i) lake surfaces would be identifiable in pho-
ton histograms and (ii) lake beds may be found via statistical
inference in the region of the lake surface. To simplify the
identification of lake features, we separated them into two ar-
rays: one for the surface and one for the bed, which we refer
to as “lake surface–bed separation” (LSBS). For both lidars,
the procedure for separation was identical and is as follows
(see Fig. 1 for a schematic view).

i. We divided each data granule into discrete along-track
windows to reduce the data volume to ∼ 104–105 pho-
tons per window. This photon count is equivalent to
∼ 1–10 km in the along-track distance for ICESat-2 and
∼ 0.15–1.5 km for ATM. If a supraglacial lake appeared
on the edge of the window, the window size was ad-
justed to include the full observed water feature.

ii. Each data window was binned into elevation-based his-
tograms. We assumed that the lake surface dominates
the total bin count within each window of photons. We
check the flatness of the window by computing the stan-
dard deviation (σ ) of high-confidence signal photons
within the upper 85th percentile of bin count. We define
a “flat” surface for regions where σ ≤ 0.05 m for ATL03
data and≤ 0.02 m for ILATM1B data. We selected these
values by comparing the flatness of lake surfaces to that
of surrounding ice topography. If data were within the
appropriate flatness threshold, they were verified as a
lake surface using Landsat-8 OLI imagery. This step

was included to filter non-glacial features, such as ocean
or fjords.

iii. If the satellite image(s) confirmed the presence of a lake,
the data were assigned to a new array for the height of
the lake surface (hsfc). The horizontal extent of the lake
surface served as a constraint for where the lake bottom
data could be defined. Within these horizontal bounds,
photons were defined as a lake bottom if they satisfied
the condition hsfc−a σsfc ≤ h≤ hsfc−bσsfc, where σsfc
is the standard deviation of lake surface photons. The
constraints a and b were derived through trial and error,
such that a = 1.0(1.8) and b = 0.5(0.75) for ICESat-2
(ATM). We set these constraints to reduce the impacts
of multiple scattering and specular reflection on depth
estimates. If these conditions were met, then the data
were placed in an array for the height of the lake bottom,
hbtm.

iv. A series of filters were applied to improve surface–bed
estimates. For ICESat-2, lakes shallower than 1.3 m or
smaller than 200 m in horizontal extent were considered
too noisy or ill-defined for further analysis (see Sect. 5.2
for more details). To remove water bodies with deep
bed returns (e.g., oceans or fjords) or with no bed re-
turns, the algorithm counted the number of bed photons
present for both lidars. If the number of bed photons was
very small (100 or less), then the scene was marked as
a probable false positive.

v. If the data were obtained from ICESat-2, then we fol-
lowed a photon refinement routine that is described in
more detail in Sect. 3.2. Calculations for lake depth
were then performed for both ATM and ICESat-2 re-
trievals and corrected for refraction (Sect. 3.3).

3.2 ATL03 refinement

The above steps were sufficient to obtain lake profiles within
the ATM data, but melt lake bottoms observed by ICESat-2
were significantly noisier as a consequence of higher back-
ground (noise) photon rates. After the initial LSBS proce-
dure, we manually assessed bed estimates for each lake. For
lakes that did not pass qualitative assessment, we adopted
photon refinement procedures initially used for the ATL06
surface-finding algorithm (Smith et al., 2019). In short,
ATL03 photon aggregates within overlapping 40 m segments
were used to estimate lake surfaces and beds with greater
precision via least-squares linear fitting applied to the aggre-
gates. These linear fits were used to approximate a window
of acceptable surface or bed photons for every 20 m along-
track. A more detailed description of the ATL06 algorithm is
given in Smith et al. (2019).

The linear regression in ATL06 accounts for all ATL03
photons (background or signal), and the technique performs
a background-corrected spread estimate to narrow the range
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Figure 1. Schematic for the workflow of the lake surface–bed separation algorithm.

for acceptable photons. This is an iterative scheme; the re-
finement process repeats its acceptable photon filter until no
photons are removed. As a consequence, the ATL06 algo-
rithm assumes a single returning surface, so over a melt lake
it will compute a height for either the lake bottom or the lake
surface, depending on their return strengths.

The condition for acceptable surface photons in ATL06 is
given by

|r − rmed|< 0.5Hw. (1)

Within a 40 m photon segment, r is the residual of a photon
relative to the linear regression, rmed is the median residual,
and Hw is window height. The height of the window is taken
as the maximum of the observed photon spread, the win-
dow height (if any), and 3 m, and photons within the window
range are defined as the surface. The LSBS algorithm fol-
lows a similar procedure, but the flatness of the lake surface
and relatively low photon density of the corresponding beds
rendered iteration unnecessary. The lake bed is then defined
as photons not within the window and below the surface. In
other terms, lake bed photons satisfy the conditions

|r − rmed|> 0.5Hw, h < hsfc. (2)

As with the initial guess, the lake bottom was only defined
within the horizontal bounds of the lake surface, and the im-
proved guesses were assigned to hsfc and hbtm.

As a final adjustment to lake photons, we applied a re-
fraction correction algorithm to account for slowing down of
light as it enters water. The correction follows the methods
utilized by Parrish et al. (2019) by approximating refractive
biases as a function of depth and beam elevation angle. The
center strong beam for ICESat-2 is near the nadir, so the hor-
izontal offset was determined to be small relative to the size

of lakes (∼ 3 cm, far below the horizontal geolocation uncer-
tainty for ICESat-2). However, vertical offsets of 1 m or more
were found for lakes ≥4 m in depth, necessitating the use of
refraction correction.

3.3 Lake depth and extent estimations

Once we obtained hsfc and hbtm, lake depth from the altime-
ter signal (zs) was estimated using

zs = hsfc−hbtm, (3)

where hsfc and hbtm represent the moving mean of the surface
elevation and the bottom elevation, respectively. The moving
mean was used to account for signal attenuation and scatter-
ing at the lake bottom, a problem most evident for ICESat-2
retrievals.

For deep or inhomogeneous lakes, attenuation of photon
energy in water resulted in fewer signal photons observed at
lake bottoms (Fig. 4). In these situations, we fitted polyno-
mial or spline fits to all lake profiles with bounds at the lake
edges. Lakes observed by ATM typically featured “bowl”
shapes and attenuation at the deepest parts, so third-order
polynomials were sufficient. In ICESat-2 data, the retrieved
lake beds showed greater complexity, so we tested polyno-
mial fits and splines on a case-by-case basis. Lake depths ap-
proximated with curve fitting were denoted as zp. We com-
pare zs and zp over lakes with well-defined bottoms, and we
show in Sect. 4 that the two generally agree to within 0.88 m.

To test the limits of the algorithm relative to lake size, we
utilized the great-circle formula (ATM) or predefined along-
track distance (ICESat-2) to approximate along-track extent
L. We acknowledge the desire to retrieve lake volume from
laser altimetry, but we leave the development of such an al-
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gorithm for a future study. For example, depth retrievals from
ICESat-2 could potentially be combined with lake radius and
shape estimations determined from visible satellite imagery
to derive water volume.

3.4 Case study locations

We present cases over the Amery Ice Shelf on 2 January,
2019 (ICESat-2 Track 0081; 68.271–73.798◦ S, 63.057–
78.620◦ E), the western Greenland ablation zone for 17 June
2019 (ICESat-2 Track 1222; 66.575–69.582◦ N, 48.284–
49.239◦W), and Hiawatha Glacier on 19 July 2017 (ATM;
77.780–79.3119◦ N, 65.279–67.484◦W) (Fig. 2). Compar-
isons between Landsat-8 imagery and ICESat-2/OIB flight
tracks confirmed supraglacial lake overpasses for study. In
spring 2019, an early onset of the Arctic melt season re-
sulted in both ICESat-2 and Operation IceBridge surveying
supraglacial lakes near Jakobshavn Isbræ in May. However,
there were no lakes sampled at the time by both ICESat-2
and OIB.

4 Results

We detected 12 melt lakes with sufficient bed returns from
the ATM data and 16 potential melt lake surfaces overall.
The melt lake profiles are shown in Fig. 3, with maximum
depths of 0.98–7.38 m and extents of 180–730 m. The algo-
rithm reliably distinguishes between lake surfaces and the
surrounding ice terrain. The mean spread among lake surface
photons is 0.0087 m, or well within the flatness threshold of
0.02 m. Lake bottoms are well-defined when ds < 8 m. Lake
bottoms deeper than 8 m exhibit fewer signal returns, for the
associated return signal is below the threshold required to
be digitized (Martin et al., 2012). The average depth esti-
mate for the lakes in Fig. 3 was 1.95 m (Table 1), and lakes at
this depth typically featured adequate bed returns. In deeper
lakes, the polynomial estimate produced reasonable guesses
for the lake bed location, with the most effective fitting seen
in lakes 3e, 3g, and 3h. With the polynomial-based depths,
mean lake depth increased to 2.15 m, and the maximum mod-
eled depth was 8.83 m.

The spread in ATM lake bed photons is low (Table 1, col-
umn 7), with a maximum of 0.2 m for lake 3g. The highest
uncertainties are observed for lake depths greater than 3 m,
perhaps influenced by low signal-to-noise ratios or the con-
ical scanning of the OIB lidar instrument. Polynomial esti-
mation errors are 0.41 m on average. Several depth errors are
below this mean, but a strong standard error (1.03 m) in lake
3g, due to difficulties in capturing its steep bed slope, slightly
skews the mean error. Excluding this value, the mean error
among ATM polynomial estimates reduces to 0.35 m.

We examined an additional 12 supraglacial lakes with
ICESat-2, eight in Greenland and four on the Amery Ice
Shelf in Antarctica. Three of the Antarctic melt lakes (4a,

Table 1. Cumulative statistics for ATM supraglacial lakes explored
in this study, including mean and maximum signal-based depth (ds)
and polynomial-based depth (dp), along-track extent L, mean lake
depth uncertainty (σ d), and mean polynomial estimation error (εp).
Units are in meters.

Lake ds max(ds) dp max(dp) L σ d εp

3a 0.98 1.69 0.91 1.51 270 0.08 0.31
3b 2.25 3.75 2.32 3.49 640 0.15 0.45
3c 1.33 2.39 1.33 2.24 440 0.09 0.25
3d 0.64 0.98 0.71 1.09 180 0.10 0.38
3e 1.81 2.98 2.37 4.11 520 0.05 0.42
3f 1.70 2.70 1.97 3.15 470 0.10 0.49
3g 4.32 7.38 5.50 8.83 630 0.20 1.03
3h 3.64 5.91 3.90 6.37 730 0.15 0.41
3i 1.56 2.38 1.48 2.37 510 0.12 0.15
3j 3.17 5.18 3.39 5.29 650 0.11 0.65
3k 0.60 1.06 0.55 0.97 350 0.09 0.21
3l 1.45 2.32 1.39 2.18 590 0.11 0.15
Mean 1.95 3.23 2.15 3.47 500 0.11 0.41

Table 2. As with Table 1, but for ICESat-2 tracks.

Track Lake ds max(ds) dp max(dp) L σ d

0081

4a 2.32 4.57 2.62 4.00 3170 0.25
4b 1.48 2.67 1.48 1.70 8570 0.80
4c 2.02 2.86 2.08 2.41 3790 0.28
4d 1.39 2.32 1.46 1.96 3860 0.77
Mean 1.80 3.11 1.91 2.52 4850 0.53

1222

4e 2.24 3.43 2.28 2.98 1990 0.28
4f 2.31 5.22 2.66 3.44 2980 0.26
4g 3.52 7.15 3.76 5.78 1370 0.49
4h 1.22 1.47 1.24 1.50 211 0.12
4i 1.52 2.88 1.55 2.37 2070 0.23
4j 4.13 6.56 4.13 6.01 530 0.73
4k 1.65 3.13 2.04 3.08 780 0.22
4l 1.93 2.76 1.93 2.78 360 0.15
Mean 2.32 4.08 2.45 3.49 1290 0.31

4b, 4d) are highlighted in Magruder et al. (2019) and Fricker
et al. (2020). The refined algorithm captures lake surfaces
and beds reasonably well (Fig. 4), with a mean uncertainty of
0.015 m for surface photons and 0.38 m for bed photons. The
lake edges partially account for the bed photon uncertainty,
for the limited number of acceptable photons produces a
slight bias in bed estimates. Antarctic melt lakes were gener-
ally shallower than those seen in Greenland (Table 2) – only
lake 4a exceeded 3 m in depth, whereas the mean maximum
depth over Greenland was 4.08 m. Melt lakes on the Amery
Ice Shelf were 3–8 km in extent, thus facilitating detection in
histograms. Greenland lakes exhibited a wider range of sizes,
but the algorithm successfully performed retrievals for lakes
as small as 200 m in extent.

On average, the noisier data from ICESat-2 produce uncer-
tainties greater than 0.2 m for the Antarctic lakes and 0.3 m
for the Greenland lakes, as seen in Table 2, column 8. The
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Figure 2. True-color Landsat-8 composites of Hiawatha Glacier on 18 July 2017 (a), the Amery Ice Shelf on 1 January 2019 (b), and the
western Greenland ablation zone on 17 June 2019 (c). Flight tracks for Operation IceBridge (a) and ICESat-2 (b, c) are shown in dotted
orange.

inclusion of lower-confidence photons increases uncertainty
despite the restricted bed photon criteria, for the larger pho-
ton cloud increases the spread of the entire lake profile. The
curve fits improved depth estimates for lakes 4b, 4f, and 4i.
Of these lakes, only 4i used a polynomial estimate due to
poor spline fitting. The inclusion of interpolants increased
the mean depth estimates of 4b, 4f, and 4i by 0.08 m, 0.04 m,
and 0.03 m, respectively. The spline fitting significantly in-
creased the maximum observed depth in lake 4b from 2.67 m
to 3.27 m. The remaining lakes featured more complete bed
profiles, meaning that the fitting estimates were less impor-
tant.

5 Discussion

5.1 Algorithm performance

The conical scanning of the ATM lidar produced oscillations
in 1D elevation profiles that dampened over lake surfaces, so
lakes generally were easier to identify with the airborne re-
trievals. Flights conducted during the OIB campaign actively
avoided cloudy conditions, reducing attenuation sources and
further simplifying the lake-finding process over common

melt regions. The data volume per granule was lower than
ATL03, resulting in less time needed to run the algorithm.
However, the number of retrievals possible with ATM is lim-
ited, so observations with the lidar best serve as a validation
and correction tool for ICESat-2 and other retrieval methods.

The laser power and detector sensitivity of the ATLAS
instrument on board ICESat-2 are sufficient to reliably de-
tect lake beds, and a high along-track resolution will corre-
spond to improved estimates of lake bed topography, water
depth, and water volume. Despite strong advantages, signif-
icant difficulties must be considered before automatic lake
detection is feasible. At its operational altitude, the ATLAS
laser is subject to first-photon bias, solar background radi-
ation, and scattering and absorption by blowing snow and
clouds. Clouds are common over the fringes of Antarctica
and Greenland (Bennartz et al., 2013; Lachlan-Cope, 2010;
Van Tricht et al., 2016), and often their optical depth is suf-
ficient to render the surface undetectable. Handling the large
data volumes in ATL03 granules also presents a significant
challenge. A single granule provides coverage over hundreds
of kilometers, so the running time of the algorithm increases
relative to ATM granules. Lakes smaller than 1 km are dif-
ficult to automatically detect with the algorithm, but LSBS
may still be performed for lakes as small as 200 m if the loca-
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Figure 3. ATM lake profiles from 17 July 2017 fitted using lake surface–bed separation, including the raw ILATM1B product, the lake
surface signal, the lake bottom signal, the polynomial- and spline-fitted bottom, and the point of maximum depth. Along-track distance is
relative to the start of a data granule.

Figure 4. Supraglacial lakes and melt ponds detected by ICESat-2 over the Amery Ice Shelf (a–d) and western Greenland (e–l), using Tracks
0081 and 1222, respectively.
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tion of a lake is known through other means (e.g., Landsat-8
imagery or ATM retrievals).

We observed differences in lake topography for ICESat-2
lakes, and we attribute them to the underlying ice surfaces.
Supraglacial lakes in Greenland typically form into smooth
basins within depressions formed by the underlying bedrock,
and their location is independent of ice motion (Echelmeyer
et al., 1991). In contrast, meltwater on the Amery Ice Shelf
originates from the blue ice zone, propagating along the ice
surface in streams. The location of lakes and ice topography
is thus tied to the flow lines of the ice shelf surface. These
features are flooded in the Antarctic melt season, producing
melt lakes and streams up to 80 km in length (Mellor and
McKinnon, 1960; Phillips, 1998; Kingslake et al., 2017).

A potential issue for lake depth retrievals concerns specu-
lar reflection. When photons interact with a flat water surface,
they may reflect directly back to the detector with minimal
energy loss. The excessive return energy produces a “dead
time” in the ATLAS detector, and the return signal is rep-
resented by multiple subsurface returns below the actual sur-
face (Neumann et al., 2020). An example of this phenomenon
may be seen in Fig. 4f, where a prominent subsurface re-
turn 1 m below the true surface is featured along the lake ex-
tent. However, because the subsurface echo is smaller than
the true surface when viewed through histograms, the LSBS
algorithm is able to avoid biases caused by specular reflec-
tion.

The success of this method for lake depth retrievals is gov-
erned by spatial and temporal sampling of the instruments
across the lakes when they are full. The methods presented
here are most effective when the altimeter passes directly
over the deep part of a lake rather than at its edge. This pro-
vides a lake depth profile that is more representative of the
complete lake, allowing for improved estimates of lake depth
and extent. A complete lake profile also provides sufficient
information to the LSBS algorithm, reducing the risk of false
negatives that occur with small lakes or incomplete profiles.
The temporal sampling of ICESat-2 and ATM is infrequent
(every 91 d for ICESat-2 and random for ATM), and so the
same lakes will not always be present every time these data
are required. Therefore, coincident satellite imagery is desir-
able to simplify the lake-finding process.

5.2 Automation challenges

The identification of lake beds in the LSBS algorithm is
based on a window of acceptable photons. The photon win-
dow is constrained by the coefficients a and b (for ICESat-2,
a = 1.0, b = 0.5). Lake beds detected in this manner had a
height uncertainty of 0.38 m (Table 2). The coefficients for
ATM (a = 1.8, b = 0.75) resulted in more accurate retrievals
on an individual basis. However, implementing varying a and
b values proved difficult to automate, as other values may
produce more accurate depths.

The challenges in full automation are related to three key
issues. First, the observed extent of lakes varied considerably,
especially over Greenland. The diversity in lake sizes com-
plicated attempts to derive a universal flatness check. Smaller
lakes present fewer lake surface photons, so a smaller data
window (∼ 104 photons) is required to prevent false posi-
tives. However, larger lakes may not be fully represented in
smaller windows. A larger data window (∼ 105 photons) will
fully capture the largest lakes, but smaller lakes may then be
overlooked.

Second, multiple scattering at the lake bed increases the
photon spread and thus also increases the uncertainty of
depth retrievals. Most supraglacial lakes observed by ATM
featured smooth beds, so photons experienced one or few
scattering events before returning to the detector. The instru-
ment digitizer automatically filters return signals with low
photon counts, reducing the spread of bed photons, at the cost
of deep lake bottom detection. In contrast, the lakes observed
with ICESat-2 exhibited more heterogeneous beds, leading to
increased scattering events by photons and delays in return
pulses. In these cases, the given values for a and b may not
produce the most accurate bed solution. Furthermore, if the
return is significant for a given photon window, then it may
lead to a false negative for a portion of the lake (Fig. 4i). To
reduce uncertainty in lake depth retrievals, future improve-
ments in working with ICESat-2 data should focus on iden-
tifying and filtering multiple scattering.

Finally, the ATL03 signal-finding algorithm is conserva-
tive in that it accepts false positives (background photons
classified as signal photons) to ensure that all signal photons
are passed to higher-level products. Thus, uncertainties in the
ATL03 photon classification contribute to noise in the water
column and the lake bed. The classification algorithm uses
predefined surface masks to allocate statistical confidence to
ATL03 photons for multiple surface types (e.g. inland water,
land ice, land), with overlap possible between masks (Neu-
mann et al., 2020). Melt lakes are categorized as land ice
(lake surface) and land (lake surface and bed). Because the
land classification also includes the bed, it includes more po-
tential signal photons than land ice, so our recommendation
is to only use land photons for supraglacial lake depth re-
trievals. It must be noted, however, that a lake bed profile is
fully resolved only with the inclusion of low- and medium-
confidence and buffer photons. The buffer photons ensure
that all photons identified as surface signal are provided to
the appropriate upper-level data product algorithms. How-
ever, they can introduce greater noise to the profile, so more
sophisticated filtering techniques are needed to distinguish
between signal photons and the solar background.

6 Conclusions

We present a method to detect supraglacial lakes and esti-
mate lake depth from 532 nm laser altimetry data. We estab-
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lish test cases for lake detection over two regions of Green-
land (Hiawatha Glacier, 19 July 2017 and Jakobshavn Is-
bræ, 17 June 2019) and East Antarctica (Amery Ice Shelf,
2 January 2019), and our results demonstrate that depth re-
trievals are possible using laser altimetry. Verification of lake
detection is given with lake surface flatness tests, where we
observe low topographical variance over lake surfaces rel-
ative to surrounding ice. Lake bottoms are easy to identify
once lake surfaces are established, given that the lakes are
not deeper than 7 m.

We introduce a lake surface–bed separation scheme for
ATM and ICESat-2 geolocated photon data to determine the
maximum depth of lakes. Our results indicate that altimetry
signals reliably detect bottoms as deep as 7 m, after which
absorption of the photons in water reduces the number of
reflected photons. Heterogeneity at the lake bed also pro-
duces attenuation, complicating retrieval attempts for lakes
with rough bed topography or with high impurity concentra-
tion. Additional work is required to assess the impacts of lake
impurities and geometry on altimetry signals and to improve
estimates for such cases. Despite these shortcomings, we an-
ticipate retrieval capability to improve as observations from
the 2019 and 2020 Arctic melt seasons are released.

We establish the feasibility for estimates of supraglacial
lake depth over Antarctica and Greenland. The high accuracy
of 532 nm laser altimeters allows these results to serve as a
benchmark for future retrieval studies. Future studies need to
examine the accuracy of ICESat-2 lake retrievals relative to
ATM where applicable, with additional comparisons to depth
estimates from passive imaging sensors.

Code and data availability. ICESat-2 ATL03 V002
and ATM L1B V002 data may be accessed from
https://doi.org/10.5067/ATLAS/ATL03.002 (Neumann et al.,
2019a) and https://doi.org/10.5067/19SIM5TXKPGT (Studinger,
2013, updated 2018), respectively. Depth data for lakes in
Fig. 3 are available upon request from Zachary Fair. Depth
data for the supraglacial lakes given in Fig. 4 are available
at https://doi.org/10.5281/zenodo.3838274 (Fair, 2020). The
LSBS algorithm and its subroutines may also be accessed from
https://doi.org/10.5281/zenodo.3838274 (Fair, 2020).
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