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Abstract. Using a numerical ice flow model, we study
changes in ice shelf buttressing and grounding-line flux due
to localized ice thickness perturbations, a proxy for localized
changes in sub-ice-shelf melting. From our experiments, ap-
plied to idealized (MISMIP+) and realistic (Larsen C) ice
shelf domains, we identify a correlation between a locally
derived buttressing number on the ice shelf, based on the first
principal stress, and changes in the integrated grounding-line
flux. The origin of this correlation, however, remains elu-
sive from the perspective of a theoretical or physically based
understanding. This and the fact that the correlation is gen-
erally much poorer when applied to realistic ice shelf do-
mains motivate us to seek an alternative approach for pre-
dicting changes in grounding-line flux. We therefore propose
an adjoint-based method for calculating the sensitivity of the
integrated grounding-line flux to local changes in ice shelf
geometry. We show that the adjoint-based sensitivity is iden-
tical to that deduced from pointwise, diagnostic model per-
turbation experiments. Based on its much wider applicabil-
ity and the significant computational savings, we propose
that the adjoint-based method is ideally suited for assess-
ing grounding-line flux sensitivity to changes in sub-ice-shelf
melting.

1 Introduction

Marine ice sheets like that overlying West Antarctica (and
to a lesser extent portions of East Antarctica) are grounded
below sea level, and their bedrock would remain so even af-
ter full isostatic rebound (Bamber et al., 2009). This and the
fact that ice sheets generally thicken inland lead to a geomet-

ric configuration prone to instability; a small increase in flux
at the grounding line thins the ice there, leading to floata-
tion, a retreat of the grounding line into deeper water, further
increases in flux (due to still thicker ice), and further thin-
ning and grounding-line retreat. This theoretical “marine ice
sheet instability” (MISI) mechanism (Mercer, 1978; Schoof,
2007) is supported by idealized (e.g., Schoof, 2007; Corn-
ford et al., 2020) and realistic (e.g., Cornford et al., 2015;
Royston and Gudmundsson, 2016) ice sheet modeling ex-
periments, and some studies (Joughin et al., 2014; Rignot
et al., 2014) argue that such an instability is currently un-
der way for outlet glaciers of Antarctica’s Amundsen Sea
Embayment. The relevant perturbation for grounding-line re-
treat in the Amundsen Sea Embayment is thought to be in-
trusions of relatively warm, intermediate-depth ocean waters
onto the continental shelves, which have reduced the thick-
ness and extent of marginal ice shelves via increased sub-
ice-shelf melting (e.g., Jenkins et al., 2016). These reduc-
tions are important because fringing ice shelves restrain the
flux of ice across their grounding lines farther upstream –
the so-called “buttressing” effect of ice shelves (Gudmunds-
son et al., 2012; Gudmundsson, 2013; De Rydt et al., 2015;
Haseloff and Sergienko, 2018; Pegler, 2018a, b) – which
makes them a critical control on the rate of ice flux across
Antarctic grounding lines into the ocean.

On ice shelves, the driving stress (from ice thickness gra-
dients) is balanced by gradients in membrane stresses (Hut-
ter, 1983; Morland, 1987; Schoof, 2007). For an ice shelf in
one horizontal dimension (x,z), these longitudinal stress gra-
dients provide no buttressing (Schoof, 2007; Gudmundsson,
2013). For realistic, three-dimensional ice shelves, however,
buttressing results from three main sources: (1) along-flow
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compression, (2) lateral shear, and (3) “hoop” stress (Wear-
ing, 2016). Compressive and lateral shear stresses can pro-
vide resistance to extensional ice shelf flow through along-
and across-flow stress gradients. The less commonly dis-
cussed “hoop” stress is a transverse stress arising from az-
imuthal extension in regions of diverging flow (Pegler and
Worster, 2012; Wearing, 2016). Due to the complex geome-
tries, kinematics, and dynamics of real ice shelves, an under-
standing of the specific processes and locations that control
ice shelf buttressing is far from straightforward.

Several recent studies apply whole-Antarctic ice sheet
models, optimized to present-day observations, to improve
our understanding of how Antarctic ice shelves impact ice
dynamics farther upstream or limit flux across the ground-
ing line. Fürst et al. (2016) proposed a locally derived “but-
tressing number” (extended from Gudmundsson, 2013) for
Antarctic ice shelves and used it to guide the location of
calving experiments, whereby the removal of progressively
larger portions of the shelves near the calving front identi-
fied dynamically “passive” shelf regions; removal of these re-
gions (e.g., via calving) was found to have little impact on ice
shelf dynamics or the flux of ice from upstream to the calv-
ing front. Reese et al. (2018) conducted a set of diagnostic,
forward-model perturbation experiments to link small, local-
ized decreases in ice shelf thickness to changes in integrated
grounding-line flux (GLF), thereby providing a map of GLF
sensitivity to local increases in sub-ice-shelf melting.

Motivated by these studies, we build on and extend the
methods and analysis of Fürst et al. (2016) and Reese et al.
(2018) to address the following questions: (1) how changes in
ice flux across the grounding line relate to local estimates of
ice shelf buttressing evaluated on the ice shelf, (2) what the
limitations of locally derived buttressing metrics are when
used to assess GLF sensitivity, and (3) whether new meth-
ods can overcome these limitations. Our specific goal is
to identify robust methods for diagnosing where on an ice
shelf changes in thickness (here assumed to occur via in-
creased sub-ice-shelf melting) have a significant impact on
flux across the grounding line. Our broader goal is to con-
tribute to the understanding of how increased sub-ice-shelf
melting can be expected to impact the dynamics and stability
of real ice sheets.

Below, we first provide a description of the ice sheet model
used in our study and the model experiments performed. We
then analyze and discuss the experimental results in order to
quantify the correlation between easily evaluated, local but-
tressing metrics and modeled changes in GLF. This leads us
to propose and explore an alternative, adjoint-based method
for assessing GLF sensitivity to ice shelf thickness perturba-
tions. We conclude with a summary discussion and recom-
mendations.

Figure 1. (a) Plan view of surface speed for the MISMIP+ and
(b) Larsen C Ice Shelf experimental domains. For the Larsen C do-
main, velocities have been optimized to match observations from
Rignot et al. (2011). Black curves indicate the location of the
grounding line. The location of the Larsen C Ice Shelf is shown
as the shaded area in the inset in (b). A comparison of modeled and
observed ice surface speed is provided in Fig. S1 in the Supplement.

2 Numerical ice sheet model

2.1 Model description

We use the MPAS-Albany Land Ice model (MALI; Hoffman
et al., 2018), which solves the three-dimensional, first-order
approximation to the Stokes momentum balance for ice flow.
Using the notation of Perego et al. (2012) and Tezaur et al.
(2015a), this can be expressed as

−∇ · (2µeε̇1)+ ρig
∂s

∂x
=0,

−∇ · (2µeε̇2)+ ρig
∂s

∂y
=0, (1)

where x and y are the horizontal coordinate vectors in a
Cartesian reference frame, s(x,y) is the ice surface eleva-
tion, ρi represents the ice density, g is the acceleration due to
gravity, and ε̇1,2 are given by

ε̇1 =
(

2ε̇xx + ε̇yy, ε̇xy, ε̇xz
)T (2)

The Cryosphere, 14, 3407–3424, 2020 https://doi.org/10.5194/tc-14-3407-2020



T. Zhang et al.: Diagnosing the sensitivity of grounding-line flux to sub-ice-shelf melting 3409

and

ε̇2 =
(
ε̇xy, ε̇xx + 2ε̇yy, ε̇yz

)T
. (3)

The “effective” ice viscosity, µe in Eq. (1), is given by

µe =
1
2
γA−

1
n ε̇

1−n
n

e , (4)

where γ is an ice stiffness factor; A is a temperature-
dependent rate factor; n= 3 is the power-law exponent; and
the effective strain rate, ε̇e, is defined as

ε̇e ≡
(
ε̇2
xx + ε̇

2
yy + ε̇xx ε̇yy + ε̇

2
xy + ε̇

2
xz+ ε̇

2
yz

) 1
2
, (5)

where ε̇ij are the corresponding strain-rate components.
Under the first-order approximation to the Stokes equa-

tions, a stress-free upper surface can be enforced through

ε̇1 ·n= ε̇2 ·n= 0, (6)

where n is the outward-pointing normal vector at the ice
sheet’s upper surface, z= s(x,y). The lower surface is al-
lowed to slide according to the continuity of basal tractions,

2µeε̇1 ·n+βu= 0, 2µeε̇2 ·n+βv = 0, (7)

where β is a spatially variable friction coefficient, 2µeε̇1,2
represent the viscous stresses, and u is the two-dimensional
velocity vector (u, v). The field β is set to 0 beneath floating
ice, and the basal traction is computed with the SEP3 method
described in Seroussi et al. (2014). On lateral boundaries in
contact with the ocean, the portion of the boundary above sea
level is stress-free, while the portion below sea level feels the
ocean hydrostatic pressure according to

2µeε̇1 ·n=
1
2
ρigH

(
1−

ρi

ρw

)
n1,

2µeε̇2 ·n=
1
2
ρigH

(
1−

ρi

ρw

)
n2, (8)

where n is the outward-pointing normal vector to the lateral
boundary (i.e., parallel to the (x,y) plane), ρw is the density
of ocean water, and n1 and n2 are the x and y components
of n. A more complete description of MALI, including the
implementations for mass and energy conservation, can be
found in Hoffman et al. (2018). Additional details on the mo-
mentum balance solver can be found in Tezaur et al. (2015a,
b).

2.1.1 GLF computation

The grounding line (GL) is computed as the zero level set
of φ(x,y) := ρiH(x,y)+ ρwb(x,y), where H and b are
the continuous, piecewise linear finite-element fields for the
thickness and the bed topography, respectively, defined on
a triangulation of the domain at hand. As a consequence,

the GL is a piecewise linear curve, separating grounded ice
(where φ(x,y) > 0) from floating ice (where φ(x,y) < 0).
The flux F per unit width at a point on the GL is calculated
as F :=Hu ·nGL, where u is the vertically averaged veloc-
ity, and nGL is the normal to the GL, pointing towards the
floating-ice region. The integrated grounding-line flux, here-
after GLF, is the line integral of F along the GL, and it has
units of cubic meters per year. We note that perturbations of
the thickness far from the GL affect the GLF only through
changes in the velocity field, whereas perturbations of the
thickness at triangles intersecting the GL also directly affect
ice thickness at the GL and, via the flotation condition, also
possibly the position and length of the GL. We further note
that ice rises in the model are also surrounded by grounding
lines and require no special treatment.

2.2 Model configuration

We apply MALI to experiments on both idealized and real-
istic marine ice sheet geometries. For our idealized domain
and model state, we start from the equilibrium initial condi-
tions for the MISMIP+ experiments with a mesh resolution
of about 2 km, as described in Asay-Davis et al. (2016). For
our realistic domain, we use Antarctica’s Larsen C Ice Shelf
and its upstream catchment area. For the Larsen C domain,
the model state is based on the optimization of the ice stiff-
ness (γ in Eq. 4) and basal-friction (β in Eq. 7) coefficients in
order to provide a best match between modeled and observed
present-day velocities (Rignot et al., 2011) using adjoint-
based methods discussed in Perego et al. (2014) and Hoffman
et al. (2018). The domain geometry is based on Bedmap2
(Fretwell et al., 2013), and ice temperatures, which are used
to determine the flow factor and held fixed for this study, are
taken from Liefferinge and Pattyn (2013). Mesh resolution
is 2 km at the grounding line and coarsens to 4 km near the
calving front of the ice shelf and 5 km into the ice sheet in-
terior. Following optimization to present-day velocities, the
model is relaxed using a 100-year forward run, providing the
initial conditions from which the Larsen C experiments are
conducted (as discussed below). The domain and initial con-
ditions were extracted from the Antarctica-wide configura-
tion used by MALI for initMIP experiments (Hoffman et al.,
2018; Seroussi et al., 2019). Both the MISMIP+ and Larsen
C experiments use 10 vertical layers that are finest near the
bed and coarsen towards the surface.

3 Perturbation experiments

To explore the sensitivity of changes in GLF to small, local-
ized changes in ice shelf thickness, we conduct perturbation
experiments analogous to those of Reese et al. (2018). Using
diagnostic model solutions, we calculate the instantaneous
change in GLF for the idealized geometry and initial state
provided by the MISMIP+ experiment (Asay-Davis et al.,
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2016). We then conduct similar experiments for Antarctica’s
Larsen C Ice Shelf using a realistic configuration and initial
state. The geometries and ice speeds for MISMIP+ (steady-
state) and Larsen C Ice Shelf (present-day) are shown in
Fig. 1.

Our experiments are conducted in a manner similar to
those of Reese et al. (2018). We perturb the coupled ice
sheet–shelf system by decreasing the ice thickness uniformly
by 1 m at ice shelf grid cells (note that perturbations are ap-
plied to Voronoi grid cells, which reside on the dual grid to
the Delaunay triangulation used by the finite-element solver;
every point of the Delaunay triangulation corresponds to a
Voronoi cell center), after which we examine the instanta-
neous impact on kinematics and dynamics (discussed further
below).

For both the MISMIP+ and Larsen C domains, the local
ice shelf surface and basal elevations are adjusted following
perturbations in order to maintain hydrostatic equilibrium.
Lastly, for the MISMIP+ 2 km experiments, we note that, in
order to save on computing costs, we only perturb the region
of the ice shelf for which x < 530 km (the area over which
the ice shelf is laterally buttressed) and for which y > 40 km
(due to symmetry about the center line). We do, however,
analyze the response to these perturbations over the entire
model domain.

Similar to Reese et al. (2018), we define a GLF response
number for our perturbation-based experiments,

Nrp =
R

P
, (9)

where R is the change in the GLF due to a perturbation in
the thickness at a single grid cell calculated over 1 year, and
P is the local volume change associated with the perturba-
tion. The subscript “rp” denotes the “response” from “per-
turbation” experiments. Note that both R and P have units
of cubic meters so that Nrp is dimensionless.

Changes in GLF (quantified by Nrp) in response to a lo-
cal change in ice shelf thickness are expected to occur via
changes in ice shelf buttressing, which generally acts to re-
sist the flow of ice across the grounding line. To quantify
the local ice shelf buttressing capacity, we calculate a dimen-
sionless buttressing number,Nb, analogous to that from Gud-
mundsson (2013) and Fürst et al. (2016),

Nb (n)= 1−
Tnn

N0
, (10)

where Tnn := n·Tn is a scalar measure of the stress normal to
the surface defined by n. The two-dimensional stress tensor
T is computed according to the shallow shelf approximation
and is defined in Eq. (A6). N0 is the value of Tnn if the ice
was removed up to the considered location and replaced with
ocean water (or alternatively, the resistance provided by a
static, neighboring column of floating ice at hydrostatic equi-

librium) defined by

N0 :=
1
2
ρig

(
1−

ρi

ρw

)
H, (11)

with ρi and ρw being the densities of ice and ocean water, re-
spectively. For the MISMIP+ experiment, ρi is 918 kg m−3,
and for the Larsen C experiment, ρi is 910 kg m−3. For both
experiments, ρw = 1028 kg m−3. We elaborate further on the
calculation of the buttressing number in Appendix A. While
Gudmundsson (2013) chose the unit vector n to be normal to
the grounding line to define the “normal” buttressing num-
ber, Fürst et al. (2016) extended his definition to the ice shelf
by examining Nb (n) for n along the ice flow direction and
along the direction of the second principal stress. Here, we
explore the connection between changes in grounding-line
flux (quantified by Nrp), subshelf melting, and local buttress-
ing on the ice shelf (quantified by Nb) corresponding to arbi-
trary n (in order to consider all possible relationships on the
ice shelf). Note that we do not discuss the tangential buttress-
ing number defined by Gudmundsson (2013); hereafter, we
use “buttressing number” to refer exclusively to the “normal
buttressing number”, as defined above.

4 Results

4.1 Correlation between buttressing and changes in
GLF

A decrease in ice shelf buttressing tends to lead to an increase
in GLF (e.g., Gagliardini et al., 2010; see also Fig. 2a) and
intuitively we expect that the GLF should be relatively more
sensitive to ice shelf thinning in regions of relatively larger
buttressing. We aim to better understand and quantify the re-
lationship between the local ice shelf buttressing “strength”
in a given direction (characterized by Nb) and changes in
GLF (characterized by Nrp). A reasonable hypothesis is that,
for a given ice thickness perturbation, the resulting change
in the GLF is proportional to the buttressing number at the
perturbation location. In Fig. 2, we show the results from all
(730) perturbation experiments for MISMIP+ and the cor-
responding Nrp and Nb values. We show values of Nb for
three different directions, corresponding to the choice of n
in Eq. (10): the first principal stress direction (np1), the sec-
ond principal stress direction (np2), and the ice flow direction
(nf). In the discussion below, we frequently refer to these
three directions when discussing the buttressing number. In
agreement with the findings of Fürst et al. (2016), the largest
values forNb occur when it is calculated in the np2 direction.
While there appears to be a qualitatively reasonable spatial
correlation between the magnitude of Nrp and Nb when the
latter is calculated in the np2 and nf directions (and less so
when calculated in the np1 direction), in Fig. 3 we show that
there is no clear relationship between the response number
Nrp and the buttressing number Nb calculated along any of
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Figure 2. GLF number and buttressing number for each of the 730 perturbed grid cells in the MISMIP+ experiments. (a) The spatial
distribution of the GLF response number, Nrp. (b–d) The spatial distribution of the buttressing number, Nb, corresponding to directions
(b) np1, (c) np2, and (d) nf. Black dots indicate grid cells located along the grounding line. Here the color bars for (a)–(d) do not show
the full data range. Note that the negative GLF numbers in panel (a) are due to the nonlinear impacts of changes in both ice thickness and
velocity at the GL.

these directions, at least for the case where we consider all
points on the ice shelf.

In Fig. 4, we show correlations between the modeled value
of Nrp and Nb where we ignore points meeting the follow-
ing criteria: (i) points where the ice shelf becomes uncon-
fined (x > 480 km); (ii) points within two cells from the GL;
(iii) points where shear stresses are large according to the
metric

ms =
|σp1− σp2|

|σp1+ σp2|
, (12)

where σp1 and σp2 are the first and second principal nor-
mal stresses, respectively, and ms is the ratio of the maxi-
mum shear stress to the mean normal stress. For the case of
(i), a good correlation between Nb and Nrp is not expected
for unconfined flow where buttressing is insignificant (Van
Der Veen, 2013). For the case of (ii), complications near
the grounding line (e.g., grounding-line movement and ge-
ometry change associated with thickness perturbations, as
noted in Sect. 2.1.1) may give incorrect GLF response num-
bers. For the case of (iii), we expect a relatively poor cor-
relation between Nb and Nrp for locations where buttressing
occurs primarily via lateral drag, which will be poorly cap-
tured by a stress metric (i.e., buttressing number) associated
with a single direction. In a principal stress framework, shear
stress is described by perpendicular normal stresses of oppo-
site sign. Applying this metric means that we only evaluate
correlations between Nb and Nrp for points where ms from

Eq. (12) is < 1 (i.e., where normal stress is dominant over
shear stress; see also Fig. S2). When applying criteria (i)–
(iii) above as a spatial filter, the number of points considered
is reduced (Fig. 4a), and stronger correlations between Nrp
and Nb emerge. In particular, a stronger correlation between
Nrp and Nb occurs when Nb is calculated using np1 (Fig. 4b)
or nf (Fig. 4d) relative to when using np2 (Fig. 4c).

4.2 Directional dependence of buttressing

The buttressing number at any perturbation point depends on
Tnn, which in turn depends on the chosen direction of the nor-
mal vector, n (Eq. 10). Fürst et al. (2016) calculatedNb using
nf and np2 and chose the latter – the direction correspond-
ing to the second principal stress (the maximum compressive
stress or the least extensional stress) – to quantify the local
value of “maximum buttressing” on an ice shelf. In Fig. 5a,
we plot the linear-regression correlation coefficients (r) for
theNrp :Nb relationship, where the direction of n used in the
calculation of Tnn varies continuously from 1φ = 0 to 180◦

relative to np1 (we also show how the buttressing number Nb
varies as a function of direction in Fig. S3). We find large
correlation coefficients (r > 0.9) when Nb is aligned closely
with np1 (1φ = 0 or 180◦) and the smallest correlation co-
efficient (r < 0.5) when Nb is aligned with np2 (1φ = 90◦).
Similar conclusions can be reached when examining the vari-
ation in r with respect to the ice flow direction (Fig. 5b),
where correlations are phase-shifted by approximately 50◦
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Figure 3. (a) Blue dots represent the locations of all perturbation points analyzed (730) for the Nrp :Nb relation analysis. Black dots indicate
grid cells located along the grounding line. (b–d) Modeled Nrp versus buttressing number Nb calculated along (b) np1, (c) np2, and (d) nf.

Figure 4. (a) Blue dots represent the locations of all perturbation points analyzed (168) for the Nrp :Nb linear-regression analysis based
on the filtering criteria discussed in Sect. 4.1. Black dots indicate grid cells located along the grounding line. (b–d) Modeled Nrp versus
buttressing number Nb calculated along (b) np1, (c) np2, and (d) nf. The correlation coefficient for each modeled Nrp versus Nb is given by
r .

counterclockwise relative to Fig. 5a. Clearly, the best corre-
lation occurs along a direction somewhere between np1 and
nf. Note that we do not see an exact match between Fig. 5a
and b if we shift the angle by 50◦ because the angular differ-
ence between np1 and nf varies for the perturbation locations
analyzed.

Fürst et al. (2016) posit that Nb(np2) provides a good lo-
cal buttressing metric and chose it for identifying regions of

maximum buttressing on an ice shelf with the goal of iden-
tifying “passive” ice that can be removed without tangibly
affecting the remaining ice. While our results also show that
buttressing is greatest in the direction of the second princi-
pal stress (which follows from the definitions of the second
principal stress and the buttressing number; see also Fig. S3),
we find that buttressing in this direction is not useful for pre-
dicting changes in GLF; compared to Nb(np2), Nb(np1) and
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Figure 5. Correlation coefficients for the linear-regression relation-
ship of Nrp :Nb, where n is rotated counterclockwise by 1φ de-
grees relative to (a) np1 and (b) nf. The perturbation points ana-
lyzed here are the same as in Fig. 4a.

Nb(nf) both show a better correlation with changes in GLF
via local sub-ice-shelf melt perturbations. We discuss these
differences further in Sect. 5.

4.3 Perturbation impacts: local, far-field, and
integrated changes

We now look more carefully at thickness perturbations on
the ice shelf in terms of their local, far-field, and integrated
impacts on changes in geometry, velocity, stress, buttressing,
and GLF.

4.3.1 Local perturbation impacts

Local thickness perturbations on the ice shelf alter the local
ice thickness gradient; on the upstream side of the perturba-
tion it becomes more negative, while on the downstream side
it becomes less negative (Fig. 6a, b). These thickness gradient
changes increase the ice speed immediately upstream from
the perturbation and decrease it immediately downstream of
the perturbation (Fig. 6c), resulting in anomalous flow con-
vergence towards the perturbation location (Fig. 6d). The re-
sulting impacts on the principal strain rates (and thus the
principal stresses) are increased compression (or decreased
extension) along both principal directions (Fig. 6e, f) and,
via Eq. (10), a corresponding increase in the local value of
Nb along both principal stress directions (Fig. 6g, h). These
spatial patterns of change are robust for a number of differ-
ent perturbation points on the ice shelf (see Figs. S4 and S5
in the Supplement).

An important caveat applies to the grid cell associated with
the location of the perturbation itself, where a decrease in
Nb is seen, sometimes for only the np1 direction but other
times for both principal directions (Fig. S5). In Fig. 7, we
quantify the local (at the perturbation location; Fig. 7a) and
neighboring (immediately surrounding the perturbation loca-
tion; Fig. 7b) changes in Nb for all of the points analyzed
in Fig. 4 and for all possible directions. From Fig. 7, we
make two conclusions: (1) the local change in Nb is gener-
ally more positive along the np2 direction (indicating a local
increase in buttressing accompanying a thickness perturba-

tion), and (2) the local and neighboring changes in buttress-
ing are often inconsistent (i.e., a decrease inNb at a particular
grid cell coincides with an increase in Nb in the neighboring
cells). The first conclusion would seem to argue against using
Nb(np2) for quantifying local changes in buttressing in terms
of their broader impacts on GLF (because, surprisingly, lo-
cal thinning perturbations are more likely to indicate a local
increase in buttressing along the np2 direction). The second
conclusion suggests that analysis over wider spatial scales
may be necessary for a consistent understanding of how lo-
cal ice shelf perturbations impact GLF.

4.3.2 Far-field perturbation impacts

Away from the immediate vicinity of ice shelf thickness per-
turbations (i.e., beyond the grid cell where perturbations are
applied and its immediate neighbors), the resulting changes
are more uniform and easier to interpret. The broader pattern
of increased ice speed upstream from a perturbation location
can be seen to extend spatially and diffuse with increased
distance (Fig. 6c). A similar pattern can be observed with
respect to changes in principal strain rates and buttressing,
at least for the np1 direction (Fig. 6e and g), where a wide
swath of increased extension and decreased local buttress-
ing (as quantified by reductions in Nb(np1)) coincides with
the region of increased ice speed extending upstream to the
grounding line. This implied causality – a reduction in but-
tressing on the shelf leads to an increase in GLF upstream
– is consistent with our understanding of ice shelf buttress-
ing. Importantly, we note that a similar understanding based
on changes in the np2 direction (Fig. 6f and h) is much less
straightforward due to more complicated spatial patterns and
no obvious consistency between reductions in Nb(np2) and
the increases in ice speed that would lead to a corresponding
increase in GLF. This interpretation of the far-field effects of
local ice shelf perturbations is consistent when perturbations
are applied at a number of different locations on the ice shelf
(see Figs. S4 and S5 in the Supplement).

A reasonable hypothesis is that the apparent correlation
between Nb(np1) and Nrp in Fig. 4b arises because of the
connection, discussed above, between local thickness pertur-
bations, far-field changes in principal stresses and buttress-
ing along the np1 direction, and increases in ice speed up-
stream of the perturbation. Similarly, the lack of such a clear
connection for local perturbations and principal stresses and
buttressing along the np2 direction may account for the rel-
atively poorer correlation between Nb(np2) and Nrp shown
in Fig. 4c. Next, we explore how these far-field changes are
expressed at the grounding line.
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Figure 6. An example of the local change (ratio, in percent) in (a) the ice thickness gradient in x, (b) ice thickness gradient in y, (c) ice speed,
(d) ice velocity (relative), (e, f) principal strain rates, and (g, h) buttressing number following a local perturbation to the ice shelf thickness.
In (e) and (g), changes (colors) are associated with the np1 direction, and for (f) and (h) changes are associated with the np2 direction.

Figure 7. The change in buttressing number,1Nb, at and near to ice
shelf thickness perturbations. In (a), the change at the perturbation
location is shown, and in (b) the mean change in all immediately
neighboring cells is shown. Changes in buttressing are calculated
along the direction1φ, rotated counterclockwise relative to the np1
direction. The points analyzed include those in Fig. 4a, which are
shown as the shaded area, with the solid curve representing their
mean value.

4.3.3 Perturbation impacts on buttressing and ice flux
at the grounding line

To understand how local perturbations in ice shelf thickness
impact GLF, we now examine changes in the buttressing
number and ice speed at and normal to the grounding line.
To quantify this relationship, we define ϒgl as

ϒgl = Corr(1Nb,1u)=
cov(1Nb,1u)

s(1Nb)s(1u)
, (13)

where1Nb = Nbp−Nbc and1u= up−uc and with the sub-
scripts p and c denoting the “perturbed” and “control” (i.e.,
initial) model states, respectively. 1Nb and 1u denote vec-
tors of the changes in the buttressing number and ice speed
normal to the GL, respectively, for all GL cells along the
main trunk of the ice stream (red points in Fig. 8). ϒgl, a
correlation coefficient, is an integrated measure of the con-
sistency between the magnitude and the sign of the change
in buttressing number and ice speed between the control and
perturbation experiments, with cov and s representing the co-
variance and the standard deviation, respectively.

By plotting values of ϒgl mapped to their respective per-
turbation locations on the ice shelf (Fig. 8), we show there
is generally a negative correlation between speed and but-
tressing at the GL: in response to a thickness perturbation
on the ice shelf, buttressing decreases and speed (and hence
flux) across the GL increases, in line with our general un-
derstanding of buttressing. In Fig. 8a, we show a reference
case for which Tnn in Eq. (10) – and hence in Eq. 13 – is
calculated normal to the grounding line. In this case, the Nb
values in Eq. 13 are calculated along the GL as defined by
Gudmundsson (2013; ϒgl = ϒgl(ngl), where ngl is the direc-
tion normal to the grounding line). In Fig. 8b and c, we show
ϒgl(np1) and ϒgl(np2), respectively. As expected, the cor-
relation is strongly negative for ϒgl(ngl) (Fig. 8a), and we
find that ϒgl(np1) is a close match (Fig. 8b). While much of
the shelf under consideration also shows a negative correla-
tion for ϒgl(np2), the correlations are generally weaker, and
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Figure 8. Spatial distribution of the correlation coefficientϒgl from
Eq. (13) over the MISMIP+ domain for buttressing number changes
calculated parallel to (a) ngl, (b) np1, and (c) np2 (colors). ϒgl is
a measure of the correlation between changes in buttressing num-
ber and ice speed along the grounding line. The dashed black line
represents the grounding line, and the red dots indicate the area of
the grounding line for which values of ϒgl are calculated for each
perturbation on the ice shelf, as shown in Fig. 4a.

there are regions near the center of the shelf and closer to the
grounding line where the correlation switches sign, imply-
ing an increase in buttressing (as calculated in that direction)
accompanying an increase in GLF (Fig. 8c).

In addition to the results for the three discrete normal di-
rections discussed above, a continuous analysis of ϒgl as a
function of the normal stress direction is shown in Fig. 9,
where we plot ϒgl at each perturbation point and for all di-
rections in the range of 1φ = 0–180◦ relative to np1. This
correlation is generally negative and stronger for buttressing
numbers calculated near the np1 direction (1φ closer to 0 or
180◦) and weaker (or even strongly positive) approaching the
np2 direction. This analysis connects the local perturbations
and far-field impacts described above with changes in inte-
grated GLF, providing a further means for understanding the
correlation between Nb(np1) and Nrp in Fig. 4b.

Figure 9. Correlation between the change in buttressing number
and the change in ice speed across the grounding line (i.e.,ϒgl from
Eq. 13) for the entire MISMIP+ grounding line. The horizontal axis
shows how ϒgl varies as a function of the direction n used to define
the normal stress, rotated counterclockwise from np1 by1φ. Values
from the maps in Fig. 8a and b plot at 1φ values of 0 and 90◦,
respectively. Thus, the shaded blue region represents all possible
maps for all possible values of buttressing direction. The thick black
curve represents the mean value of ϒgl for any given map.

4.3.4 Summary of local versus integrated impacts of ice
shelf perturbations

The changes in ice speed and buttressing at the grounding
line quantified by Figs. 8 and 9 must be the result of pertur-
bations initiated on the ice shelf that have propagated (here,
instantaneously) to the grounding line, where increases in
speed are associated with increased extension along np1 and,
according to Eq. (10), decreased buttressing associated with
the np1 direction. Intuitively, these increases in ice speed at
the grounding line must be triggered by the loss of buttress-
ing on the shelf, initiated here via small and highly local-
ized ice thickness (thinning) perturbations. As shown and
argued above, however, it is difficult to understand the in-
tegrated impacts of these perturbations on GLF based on
changes in locally derived quantities alone, in particular the
locally derived buttressing number, Nb. One would come to
very different conclusions regarding how a perturbation im-
pacts local buttressing depending on both the spatial scale
of the area around a perturbation being examined and the
principal direction used for calculating Nb (e.g., Fig. 7a and
b). Over wider spatial scales, however, we do find consis-
tency between the impacts of local perturbations on geome-
try, stresses, local buttressing, ice speed, and changes in GLF
(Figs. 6, 8, 9). While we hypothesize that it is this consis-
tency that lies behind the apparent correlation between Nb
and Nrp in Fig. 4b, we still lack the detailed physical under-
standing behind that correlation that would be required for us
to apply it with confidence.

Further, we show in the Supplement and Table S1 that the
correlation between Nb and Nrp may be spurious, perhaps
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due to correlations with some other common variable. More
importantly, in the next section we show that this tenuous
correlation between Nb and Nrp breaks down almost entirely
when applied to a realistic ice shelf.

4.4 Application to Larsen C Ice Shelf

We apply a similar set of analyses, as discussed above for
the MISMIP+ domain, to a realistic Larsen C Ice Shelf do-
main. For this domain, with complex geometry and spatially
variable ice temperature (and associated ice rigidity), the re-
lationship between Nb(np1) and Nrp becomes much weaker
relative to that for the MISMIP+ domain. Figure 10 shows
that using the shear metric ms (Eq. 12) to filter locations re-
duces the scatter between Nb(np1) and Nrp. However, even
when retaining only points with low shear contributions, the
relationship is nonlinear without a clear functional form. Fur-
thermore, restricting analysis to the low-shear regions where
the relationship is stronger excludes the majority of the ice
shelf, including most of the regions where the GLF response
number is large (see also Fig. 13a below). We find a simi-
lar result when coarsening the analysis to use 20km× 20km
boxes for the analysis, as was done for the Nrp calculations
performed by Reese et al. (2018); a strong correlation exists
for only a small area near the center of the ice shelf (Fig. S6).
Even weaker relationships are found for the np2 and nf direc-
tions. Thus, while there clearly is some link betweenNb(np1)

andNrp for a realistic ice shelf, it is far too tenuous to be used
in a predictive way and likely differs across and between ice
shelves.

Overall, for a realistic ice shelf like Larsen C with a com-
plex geometry and flow field, we find it even more difficult to
demonstrate robust relationships between the local ice shelf
buttressing number and changes in GLF. This is, at least in
part, likely due to the fact that, for more complex and real-
istic domains, there is no dominant direction of buttressing
controlling ice flux across the grounding line. These find-
ings further diminish our confidence in using locally derived
buttressing numbers for assessing the sensitivity of GLF to
changes in the ice shelf. For this reason, we explore an alter-
native and more robust method for quantifying how ice shelf
thickness perturbations affect flux at the grounding line.

4.5 Adjoint sensitivity

While our goal throughout this study has been to find a sim-
ple and robust metric for diagnosing GLF sensitivity to ice
shelf thickness perturbations, the challenges and complica-
tions discussed above suggest that this may not be possi-
ble. This motivates our investigation of a wholly different
approach, which provides a GLF sensitivity map analogous
to that from Reese et al. (2018) instead of seeking a sim-
ple buttressing number indicator to predict the GLF sensitiv-
ity. But rather than computing the GLF change due to a per-
turbation applied individually at each of n model grid cells

(thus requiring n diagnostic solves), we use an adjoint-based
method that allows for the computation of the sensitivity at
all n grid cells simultaneously at the cost of a single adjoint
model solution. Briefly, this method involves the solution of
an auxiliary linear system (the adjoint system) to compute
the so-called Lagrange multiplier, a variable with the same
dimensions as the forward-model solution for the ice veloc-
ity. Here, the matrix associated with the system is the trans-
pose of the Jacobian of the first-order approximation to the
Stokes flow model (Perego et al., 2012). In addition, the ad-
joint method requires computation of the partial derivatives
of the first-order model residual and the GLF with respect
to the velocity solution and the ice thickness. Here, we com-
pute the Jacobian and all the necessary derivatives using au-
tomatic differentiation (Tezaur et al., 2015a). Additional de-
tails of the adjoint-based method and calculations are given
in Appendix C.

A similar approach has been proposed by Goldberg et al.
(2019). That work primarily assessed the adjoint sensitiv-
ity of the volume above floatation with respect to sub-ice-
shelf melting of the Dotson and Crosson ice shelves in
West Antarctica. In contrast to our approach, Goldberg et al.
(2019) compute transient sensitivities because their quantity
of interest (volume above floatation) is time-dependent. The
adjoint-based sensitivity has units of volume flux per year
per meter of ice thickness perturbation (m2 yr−1). We nondi-
mensionalize this value, dividing it by the area of the per-
turbed cell and multiplying it by the 1-year period over which
we consider the perturbation, so that it is dimensionless and
comparable to Nrp, and we refer to it as Nra (where the sub-
script “a” is for “adjoint”). In Figs. 11 and 12, we demon-
strate the application of this method to the MISMIP+ and
Larsen C domains by comparing GLF sensitivities deduced
from 730 and 1000 points (i.e., from the respective pertur-
bation experiments discussed above for the MISMIP+ and
Larsen C domains, respectively) with those deduced from a
single adjoint-based solution. The comparison demonstrates
that the two approaches provide a near-exact match.

As might be expected based on the discussion above, the
two methods disagree in regions very close to the grounding
line (see Fig. 13c). This discrepancy is likely a consequence
of large nonlinearities near the grounding line, as suggested
by the fact that the agreement between the two methods im-
proves as the size of the perturbation decreases (from 10 to
0.001 m; see Fig. 13), the only change being the magnitude
of the applied perturbation. This might be exacerbated by
the sliding law adopted in this work, which results in abrupt
changes in the basal traction across the grounding line. Other
sliding laws, e.g., Brondex et al. (2017), allow for a smoother
transition at the grounding line and might mitigate this prob-
lem. We also note that some isolated cells adjacent to the
grounding line exhibit negative sensitivities (a decrease in
ice flux following a decrease in ice thickness) opposite those
exhibited by the rest of the ice shelf. We attribute these to par-
tially grounded cells, for which the sensitivity may be more
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Figure 10. (a) Larsen C model domain colored by the shear metric, ms (Eq. 12). (b) Scatter plot of Nb(p1) and Nrp colored by different
values of ms.

akin to that expected for grounded ice (i.e., a direct relation-
ship between ice thickness and ice flux).

The adjoint sensitivity map represents a linearization of
the GLF response to thickness perturbations. As long as
the perturbations are small enough, one can approximate
the GLF response by multiplying the sensitivity map by the
thickness perturbation. Comparison of Nra and Nrp for dif-
ferent perturbation sizes (Fig. 13) suggests that this is rea-
sonable for perturbations on the order of < 10 m for points
on the ice shelf that are not too close to the GL. At the same
time care should be taken when interpreting the sensitivities
– based on either the perturbation- or adjoint-based meth-
ods – in the vicinity of grounding lines. This is especially
important when considering that the near-grounding-line re-
gion is also that with the largest sensitivities (Figs. 11a and
12a). Because these sensitivities may be inaccurate, they pro-
vide an argument for applying high spatial resolution near the
grounding line; coarse resolution near the grounding line will
extend the region over which inaccurate sensitivities may be
assessed. More accurately assessing the sensitivities near the
grounding line may require the application of perturbations
with both magnitudes and spatial scales that are more realis-
tic than the infinitesimal, highly localized perturbations ex-
plored here.

The adjoint method provides sensitivity maps over the en-
tire ice shelf, including around islands, promontories, and
along the grounding line itself, which is generally the part
of the ice shelf where the GLF is the most sensitive to thick-
ness perturbations (see, e.g., Figs. 11a and 12a and Fig. 1 in
Reese et al., 2018). Thus, despite the added complexity in
its computation, the adjoint-based method provides signifi-
cant advantages over the simpler perturbation-based analysis
methods discussed above.

5 Discussion and conclusions

The current interest in better understanding the controls on
the MISI is due to the potential for future (and possibly
present-day, ongoing) unstable retreat of the West Antarc-
tic ice sheet (e.g., Joughin et al., 2014; Hulbe, 2017; Konrad
et al., 2018). Because a loss of ice shelf buttressing is a pri-
mary cause of increased GLF (and thus an indirect control on
the MISI), recent attention has been focused on better under-
standing the sensitivity of ice shelf buttressing to increases
in iceberg calving and sub-ice-shelf melting. In this study,
we have attempted to better characterize and quantify how
local thickness perturbations on ice shelves – a proxy for lo-
cal thinning due to increased sub-ice-shelf melting – impact
ice shelf buttressing and GLF.

Two previous approaches for assessing GLF sensitivity to
changes in ice shelf buttressing – the flux response number
(Nrp) and the buttressing number (Nb) – show significant
correlations with one another only over regions with a rel-
atively small shear component. In addition, this correlation
is highly dependent on the direction chosen to define but-
tressing. Specifically, we find that the choice of the normal
vector used when calculating Nb dictates whether the corre-
lation betweenNrp andNb is significant or not. Here, for both
idealized and realistic ice shelf domains, we find a weak cor-
relation between Nrp and Nb when the normal stress used in
calculating the buttressing number corresponds to the second
principal stress direction (np2). The correlation is stronger
(though sometimes still fairly weak) when Nb is calculated
in the direction associated with the first principal stress (np1)
or the ice flow (nf).

These findings appear at odds with the interpretation from
previous efforts of Fürst et al. (2016), who argue that but-
tressing provided by an ice shelf is best quantified by Nb cal-
culated in the direction of np2. The seeming contradiction
may be partially rectified by considering the different foci of
Fürst et al. (2016) versus the present work: while Fürst et al.
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Figure 11. (a) Grounding-line flux sensitivity for the MISMIP+ domain derived from the adjoint model approach. (b) Perturbation- (Nrp;
x axis) versus adjoint-based (Nra; y axis) sensitivities plotted against one another (perturbation locations are shown by circles in the inset,
where the grounding-line grid cells are shown by the black dots.)

Figure 12. (a) Grounding-line flux sensitivity for the Larsen C domain derived from the adjoint model approach. (b) Perturbation- (Nrp;
x axis) versus adjoint-based (Nra; y axis) sensitivities plotted against one another (perturbation locations are shown by circles in the inset,
where the one outlier in b is at the calving front – red triangle – and the grounding-line grid cells in map view are shown by the black line.)

(2016) primarily focused on how the removal of passive shelf
ice (identified by Nb(np2)) impacted ice shelf dynamics, as
quantified by the change in ice flux across the calving front,
our focus is specifically on how localized ice shelf thickness
perturbations impact the change in ice flux across the ground-
ing line.1 While changes in calving flux are likely to impact
the amount of buttressing provided by an ice shelf, they do
not directly contribute to changes in sea level. For this rea-
son, changes in GLF are arguably the more important met-
ric to consider when assessing the impacts of changes in ice
shelf buttressing.

Of significant concern in applying the apparent correla-
tion between Nrp and Nb (relatively difficult and easy quan-
tities to calculate, respectively) is the lack of a clear physical
connection between local changes in buttressing on the ice
shelf and integrated changes in flux at the grounding line.
Here, we show that localized thinning on the shelf can lead
to either increases or decreases in the local buttressing met-
ric Nb, depending on both the direction of the normal stress

1While Fürst et al. (2016) also discuss the impact of perturba-
tions on the flux across the grounding line, this is a secondary focus
of their paper and mostly discussed in the Supplement.

chosen and the neighborhood over which these changes are
estimated. Yet these same perturbations consistently result
in a net decrease in buttressing and consequently a net in-
crease in grounding-line flux. While this can often be under-
stood through the detailed spatial analysis of the impacts for
a single perturbation (e.g., Sect. 4.3 and Fig. 6), this finding
suggests that local evaluations of buttressing on the ice shelf
alone should be interpreted with extreme caution as they may
not be physically meaningful with respect to understanding
overall changes in GLF. It is also possible that the correla-
tions we find between Nrp and Nb are fortuitous or spurious,
giving us further pause in attempting to apply them in a pre-
dictive sense.

Practically speaking, however, these nuances may be irrel-
evant; when realistic and complex ice shelf geometries are
considered, clear and robust relationships between Nrp and
Nb are elusive or absent. For the Larsen C domain consid-
ered here, strong, positive correlations are only found to exist
over a small, isolated region near the center of the ice shelf;
proximity to the grounding line, the calving front, complex
coastlines, islands, and promontories serves to degrade these
correlations significantly, reducing the utility of the buttress-
ing number as a simple metric for diagnosing GLF sensitiv-
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Figure 13. Comparisons between perturbation- and adjoint-based sensitivities (Nrp and Nra, respectively) for ice thickness perturbations of
(a) 0.001, (b) 0.01, (c) 1, and (d) 10 m for perturbation points near the grounding line (< 3 km), indicated by the dots on the inset map in (a).
Red dots represent grid cells next to the grounding line, and blue dots represent grid cells on the ice shelf proper.

ity on real ice shelves. Further, defining “proximity” – and
hence an adequate distance away from these complicating
features or other filtering metrics – appears to be largely ar-
bitrary. Lastly, it is precisely these more complex regions,
close to the ice shelf grounding lines, where sub-ice-shelf
thinning will result in the largest impact on changes in GLF
(as demonstrated in Figs. 11a and 12a).

Considering these complexities, we propose that assessing
GLF sensitivities for real ice shelves requires an approach
analogous to the perturbation method used by Reese et al.
(2018). Due to the computational costs and the experimen-
tal design complexity associated with the perturbation-based
method, we propose that an adjoint-based method is the more
efficient way for assessing GLF sensitivity to changes in but-
tressing resulting from changes in sub-ice-shelf melting. Fu-
ture work should focus on applying these methods to assess-
ing the sensitivities of real ice shelves based on observed or
modeled patterns of sub-ice-shelf melting and assessing how
these sensitivities change in time along with the evolution of
the coupled ocean-and-ice shelf system.
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Appendix A: Calculation of the buttressing number

At the calving front, the stress balance is given by

σ ·n=−pwn, (A1)

where σ is the Cauchy stress tensor, n is the unit normal vec-
tor pointing horizontally away from the calving front, and
pw is the water pressure against the calving front provided
by the ocean. In a Cartesian reference frame, this gives two
equations for the stress balance in the two horizontal direc-
tions:

σxxnx + σxyny =−pwnx,

σxynx + σyyny =−pwny . (A2)

Expressing the Cauchy stress as the sum of the deviatoric
stress and the isotropic pressure (σ = τ −pI ) and assuming
that the vertical normal stress σzz is hydrostatic gives

p = ρig(s− z)− τxx − τyy . (A3)

Combining Eqs. (A2) and (A3) gives

(2τxx + τyy)nx + τxyny =−pwnx + ρig(s− z)nx,

τxynx + (2τyy + τxx)ny =−pwny + ρig(s− z)ny . (A4)

On ice shelves, the left-hand terms in Eq. (A4) can be taken
as invariant in the z direction, and by vertically averaging
(A4) we obtain

(2τxx + τyy)nx + τxyny =
1
2
ρig

(
1−

ρ

ρw

)
Hnx,

τxynx + (2τyy + τxx)ny =
1
2
ρig

(
1−

ρ

ρw

)
Hny . (A5)

If we define the two-dimensional stress tensor T as

T=
(

2τxx + τyy τxy
τxy 2τyy + τxx

)
, (A6)

we can write Eq. (A5) as

Tn=N0n, (A7)

where N0 =
1
2ρig(1− ρi/ρw)H is the average pressure ex-

erted by the ocean against the calving front (as defined in
Eq. 11). The buttressing number, defined by

Nb = 1−
n ·Tn
N0

, (A8)

is thus a scalar measure of the balance between this average
ocean pressure and internal stress within the ice shelf. For the
case of Nb = 0, these two exactly balance such that stresses
within the ice shelf do not further restrain or compel the ice
flow.

Appendix B: Relationship between buttressing number
and back stress

Thomas (1979) defines the concept of “back pressure”
or “back stress”, which was formalized by Thomas and
MacAyeal (1982) and MacAyeal (1987) as the stress pro-
vided by lateral shearing and compression around ice rises
in excess of that of a freely spreading ice shelf. While the
concept was conceived as applying along the grounding line
(Thomas, 1979; MacAyeal, 1987), it was extended to any
material surface within an ice shelf (Thomas and MacAyeal,
1982; MacAyeal, 1987). This older concept of a normal pres-
sure characterizing downstream ice shelf conditions is remi-
niscent of the buttressing number defined by Gudmundsson
(2013) and extended by Fürst et al. (2016) as the buttressing
number (Nb), defined in Eq. A8 (and Eq. 10). Here we show
that back stress is equivalent to Nb calculated in the along-
flow direction and normalized by the hydrostatic stress.

We follow Van Der Veen (2013) and Cuffey and Paterson
(2010) and define back force, FB, as the difference between
the driving force of an ice shelf, FD, and the resistive force
from longitudinal stretching, FL:

FB = FD−FL. (B1)

The driving force for an ice shelf is

FD =
1
2
ρig

(
1−

ρi

ρw

)
H 2, (B2)

and the longitudinal stretching force for a freely spreading
ice shelf is

FL =H
(

2τ f
xx + τ

f
yy

)
, (B3)

where τ f
xx and τ f

yy are the along-flow and across-flow devia-
toric stresses, respectively. Therefore, we obtain

FL =HT
f
xx (B4)

according to Eq. (A6), where T f
xx is the along-flow stress in

the along-flow coordinate system, equivalent to the normal
stress along the flow direction, nf ·Tnf, in the x,y coordi-
nate system. To obtain the back stress, Bs, as a stress normal
to a vertically oriented material surface, divide Eq. (B1) by
thickness (force per unit width divided by thickness):

Bs =
FB

H
=
FD

H
−
FL

H
. (B5)

However, if we observe that the driving stress of an ice
shelf is the hydrostatic stress, N0 (Eq. 11), multiplied by the
thickness,

FD =N0H, (B6)

combined with Eq. (B4), we can rewrite the back stress as

Bs =N0−nf ·Tnf . (B7)
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Dividing (normalizing) by N0 then gives

Bs

N0
= 1−

nf ·Tnf

N0
=Nb(nf), (B8)

which is analogous to Eq. (A8) above.
This result, while fairly straightforward to arrive at, brings

the current concept of “buttressing” at the grounding line (as
defined by Gudmundsson, 2013, and extended to “buttress-
ing number” on the ice shelf by Fürst et al., 2016) together
with the much older concept of ice shelf “back stress” (e.g.,
Thomas and MacAyeal, 1982).

Appendix C: Adjoint calculation of GLF sensitivity

The adjoint method is often used to compute the derivative
(or “sensitivity”) of some quantity (here, the GLF) that de-
pends on the solution of a partial differential equation with
respect to parameters (here, the ice thickness; see, e.g., Gun-
zburger, 2012). It is particularly effective when the number
of parameters is large because it only requires the solution of
an additional linear system, independently of the number of
parameters. In the discrete case, the GLF is a function of the
ice speed vector, u, and the ice thickness vector, H. Using the
chain rule, we compute the total derivative of the GLF with
respect to the ice thickness as

d(GLF)
dH

=
∂(GLF)
∂u

∂u

∂H
+
∂(GLF)
∂H

. (C1)

Here
∂u

∂H
denotes the matrix with components

(
∂u

∂H

)
ij

=

∂ui

∂Hj

. Similarly
∂(GLF)
∂u

and
∂(GLF)
∂H

are row vectors with

components
∂(GLF)
∂uj

and
∂(GLF)
∂Hj

, respectively. The first

term on the right-hand side of Eq. (C1) accounts for the fact
that a perturbation of the thickness would affect the ice ve-
locity, which in turn would affect the GLF. The second term
on the right-hand side of Eq. (C1) accounts for changes in
the GLF directly due to changes in thickness and is nonzero
only when the thickness is perturbed at triangles intersecting
the GL. In this case, a thickness perturbation would affect the
position and length of the GL and the thickness of the ice at
the GL.

In order to compute
∂u

∂H
, we write the finite-element dis-

cretization (Tezaur et al., 2015b) of the flow model (Eq. 1) in
the residual form c(u,H)= 0 and differentiate with respect
to H:

0=
dc
dH
=
∂c

∂u

∂u

∂H
+
∂c

∂H
. (C2)

Here J :=
∂c

∂u
is a square matrix referred to as the Jacobian.

It follows that
∂u

∂H
is a solution of

J
∂u

∂H
=−

∂c

∂H
. (C3)

Note that this corresponds to solving many linear systems,

one for each column of
∂u

∂H
(i.e., for each entry of the ice

thickness vector). We can then compute the sensitivity as

d(GLF)
dH

=−
∂(GLF)
∂u

(
J−1 ∂c

∂H

)
+
∂(GLF)
∂H

. (C4)

The main idea of the adjoint-based method is to introduce an
auxiliary vector variable λ for solution of the adjoint system

JT λ=−
(
∂(GLF)
∂u

)T
(C5)

and then to compute the sensitivity as

d(GLF)
dH

= λT
∂c

∂H
+
∂(GLF)
∂H

. (C6)

Equations (C4) and (C6) are equivalent, but the latter has
the advantage of requiring the solution of a single linear sys-
tem given by Eq. (C5). In MALI, the Jacobian and the other

derivatives,
∂c

∂H
,
∂(GLF)
∂u

, and
∂(GLF)
∂H

, are computed using
automatic differentiation, a technique that allows for exact
calculation of derivatives up to machine precision. For au-
tomatic differentiation, MALI relies on the Trilinos Sacado
package (Phipps and Pawlowski, 2012). As a final remark,

we note that the term
∂c

∂H
requires the computation of shape

derivatives because a change in thickness affects the geome-
try of the problem. This is not the case for two-dimensional,
depth-integrated flow models (e.g., as in Goldberg et al.,
2019) or when using a sigma coordinate to discretize the ver-
tical dimension.

We conclude this section by pointing out that the sensitiv-

ity
d(GLF)

dH
depends on the local refinement of the mesh, and

it vanishes as the mesh is refined. This is particularly impor-
tant in the case of nonuniform meshes because the sensitiv-
ity map would strongly depend on the refinement. In order
to overcome this issue, it is advisable to scale the sensitiv-
ity by premultiplying it by the inverse of the mass matrix (in
a finite-element context) or, similarly, dividing it point-wise
by the measure (area) of the dual cells, as done in this paper
to compute Nra. We refer to Li et al. (2017), Sect. 6, for an
in-depth analysis in the optimization context.
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