
An analysis of limit cycles in glacier-dammed lake
systems: Supplementary material

Christian Schoof
Department of Earth, Ocean and Atmospheric Sciences,

University of British Columbia,
2207 Main Mall, Vancouver, Canada, V6T 1Z4

cschoof@eos.ubc.ca

September 17, 2020

S1 An introductory note

The purpose of these notes is to provide mathematical detail for the results presented
in the main paper. To make these notes more continuously readable, some of the
material in the main paper (specifically the linear stability analysis) is repeated below.

S2 Model

S2.1 A spatially extended model

The main paper uses two closely related models to study the dynamics of glacier-
dammed lake systems. The first is the spatially one-dimensional model of Schoof et al.
(2014) described in this subsection, while the second is a lumped version detailed in
section S2.3. The former is a slightly simplified version of the more general form

∂S

∂t
= c1qΨ + vo(S)− vc(S,N) (S1a)

∂S

∂t
+
∂q

∂x
= rc1qΨ (S1b)

q = q(S,Ψ) (S1c)

Ψ = Ψ0 +
∂N

∂x
(S1d)

on 0 < x < L, subject to boundary conditions

−Vp(N)
∂N

∂t
= qin − q at x = 0 (S1e)

N = 0 at x = L (S1f)
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Here, S(x, t) > 0 is conduit cross-section, N(x, t) is effective pressure, Ψ(x, t) is
hydraulic gradient, q(S,Ψ) is discharge through the conduit, t is time and x is position
along the conduit.

Equation (S1a) describes the evolution of conduit size: c1 = 1/(ρiLlat) is a con-
stant that relates the dissipation rate qΨ to the rate of conduit enlargement through
melting. where ρi is the density of ice and Llat the specific heat of fusion for ice, while
vo and vc are functions describing conduit opening due to flow over bed roughness and
creep closure, respectively. Wall melt also contributes to water mass balance along
the conduit as described by (S1b), and r in (S1b) is the ratio of ice to water densities,
r = ρi/ρw in order to account for the change in volume on melting. Equation (S1c)
signifies the generic form of the dependence of discharge on conduit size and hydraulic
gradient, while (S1d) defines that hydraulic gradient in terms of the effective pressure
gradient and a purely geometrical term Ψ0: if b(x) and and h(x) are bed elevation
and ice thickness along the flow path, then

Ψ0 = −ρwg
∂b

∂x
− ρig

∂h

∂x
, (S2)

where g is acceleration due to gravity. As we are interested in lakes that do not
require a geometric seal, we do not impose the condition that Ψ0 change sign along
the flow path (Fowler, 1999), and in fact will take Ψ0 to be a constant for simplicity.

The boundary conditions correspond to a lake at x = 0 and the glacier terminus
at x = L, at which both overburden and water pressure vanish. The left-hand side
of (S1e) represents the rate of change of water volume stored in the lake basin, while
qin is an imposed water input to the lake, which may be constant or vary in time.
Vp = A/(ρwg) where A = A(N) is the surface area of the lake at the filling level that
corresponds to an effective pressure N , given ice overburden ρigh(0) adjacent to the
lake. In practice, we will generally treat Vp as a positive constant, idealizing the lake
as occupying a vertically-walled basin with constant surface area A.

The model (S1) and the model presented in the main paper differ in the retention
of the rate of change of conduit cross-section and of the wall melt term in the mass
conservation equation (S1b). We will demonstrate shortly that these two terms are
always small in realistic, terrestrial glacier-dammed lake systems, and can therefore
be omitted from the model.

Schoof et al. (2014) specifically use the constitutive relations

vo(S) = ubhr(1− S/S0), vc(S,N) = c2S|N |n−1N, q(S,Ψ) = c3S
α|Ψ|−1/2Ψ,

(S3)
where ub, hr, S0, c2, c3, n and α are parameters: ub is sliding velocity and hr is
the amplitude of bed roughness elements and S0 a cut-off conduit size beyond which
bed roughness is drowned out, all assumed to be constant, while c2 is related to the
cross-sectional shape of the conduit and the usual coefficients A and n in Glen’s law
(Glen, 1958). The exponent α > 1 is determined by the choice of turbulent friction
parameterization for discharge in the conduit, with α = 4/3 for Manning’s law and
α = 5/4 for a Darcy-Weisbach law, and c3 is similarly determined by the friction law
and conduit cross-sectional shape. The notation above in (S8a) is almost identical to
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that in the corresponding conduit evolution equation in Schoof (2010), except that we
have opted here to split the conduit opening term (denoted vm(S,Ψ) in Schoof (2010))
explicitly into a dissipation-driven melt term c1qΨ and a generic cavity opening term
vo(S).

S2.2 Scales and a simplification

We will present results in the main part of this paper in dimensional form. It is how-
ever instructive to non-dimensionalize the model in order to simplify the parameter
space that needs to be explored, and in order to motivate reducing (S1b) to

∂q

∂x
= 0.

The contents of this section are not absolutely essential to an understanding of what
follows, but will aid in understanding the relationship between the models in sections
S2.1 and S2.3, and in how the exploration of parameter space is structured. Put

S = [S]S∗, N = [N ]N∗, q = [q]q∗, Ψ = [Ψ]Ψ∗, x = [x]x∗, t = [t]t∗

where the quantities in square brackets are scales (essentially, a new set of units) that
satisfy

[S]

[t]
= c1[q][Ψ] = vo(0) = vc([S], [N ]), [q] = q([S], [Ψ]), [x] = L, [Ψ] = Ψ0.

(S4)
In terms of the dimensionless variables S∗, N∗, q∗, x∗ and t∗, the model becomes

∂S∗

∂t∗
= q∗Ψ∗ + v∗o(S

∗)− v∗c (S∗, N∗) (S5a)

γ
∂S∗

∂t∗
+
∂q∗

∂x∗
= rγq∗Ψ∗ (S5b)

q = q(S,Ψ) (S5c)

Ψ∗ = 1 + L∗−1∂N
∗

∂x∗
(S5d)

on 0 < x∗ < 1, subject to boundary conditions

−V ∗p
∂N∗

∂t∗
= q∗in − q∗ at x∗ = 0 (S5e)

N∗ = 0 at x∗ = 1 (S5f)

with the constitutive equations (S3) given by

v∗o(S
∗) = 1−S∗/S∗0 , v∗c (S

∗, N∗) = S∗ |N∗|n−1N∗, q∗(S∗,Ψ∗) = S∗α |Ψ∗|−1/2 Ψ∗.
(S5g)

The dimensionless parameters that remain in the model are

r =
ρi
ρw
, γ = c1Ψ0L, S∗0 =

S0

[S]
,

3



q∗in =
qin

c3[S]αΨ
1/2
0

, V ∗p =
Vp[N ]

c3[S]αΨ1/2[t]
, L∗ =

Ψ0L

[N ]
. (S6)

Since the definitions of the scales [S], [N ] and [t] do not involve the values of qin,
Vp, L or S0, the dimensionless water supply rate q∗in, storage capacity V ∗p , glacier
length L∗ and conduit cut-off size S∗0 are independent from each other, being direct
proxies for their dimensional, unstarred counterparts. In terms of the prescribed
model parameters, we have

q∗in =c1vo(0)−1qinΨ0

V ∗p =c
1+(n+1)/(αn)
1 c

−1/n
2 c

(n+1)/(αn)
3 vo(0)[α−(n+1)]/(αn)VpΨ

(2αn+3(n+1))/(2αn)
0

L∗ =c
−1/(αn)
1 c

1/(αn)
2 c

−1/α
3 v0(0)−(α−1)/(αn)LΨ

1−3/(2αn)
0

For glacial systems on earth, we can also immediately establish that

γ � 1,

and drop the corresponding terms from the model. Specifically, Ψ0L ∼ ρwg[b] +
ρig[h] = ρig(r−1[b] + [h]) where [b] and [h] are the bed elevation and ice thick-
ness changes along the flow path. Since c1 = 1/(ρiLlat), it follows γ = c1Ψ0L ≈
g (r−1[b] + [h]) /Llat is approximately the ratio of the gravitational potential energy
lost by a fixed parcel of water travelling along the flow path to the latent heat of
fusion contained in that parcel. With Llat = 3.35 × 105 J kg−1 and r close to unity,
γ ∼ O(1) would require a total ice surface elevation change [b] + [h] along the flow
path of around 33 km, exceeding ice thicknesses on Earth by an order of magnitude.
For more typical changes of [b] + [h] . 1 km, we find γ . 3× 10−2, allowing terms of
O(γ) to be neglected.

As a consequence, we approximate (S1b) and (S5b) from now on in the form

∂q

∂x
= 0,

∂q∗

∂x∗
= 0, . (S7)

This leaves only q∗in, V ∗p , L∗ and S∗0 as dimensionless parameters. S∗0 is essentially a
regularizer, intended to stop conduit size from becoming infinite at the glacier termi-
nus, where effective pressure goes to zero and creep closure vanishes as a result. We
will use large values of S∗0 (or S0) throughout the paper, and concentrate on the effect
of changes in q∗in, V ∗p , L∗ on the dynamics of the drainage system. We ultimately
present results in dimensional form in the main paper, and use the dimensional coun-
terparts of these parameters (qin, Vp and L).

S2.3 A reduced model

A further simplification is possible if we also deal with a long dimensionless flow
path length L∗. By an argument analogous to that in section S2.2, we have Ψ0L ∼
ρwg[b]+ρig[h] and hence large L∗ = (ρwg[b]+ρwi[h])/[N ] implies that the hydrostatic
drop in pressure over the length of the flow path must be much larger than the typical
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effective pressure [N ]. This is realistic in many glacier-dammed lake systems. (Note
however that the question of when L∗ is large enough for the pressure gradient to be
negligible may also depend on the parameters q∗in and V ∗p , since N∗ may become large
when these other parameters take extreme values. For instance, in section S4 we find
an example where we require L∗ � V ∗p

(α−1)/(n+1−α) in order for the contribution of
pressure to hydraulic to be negigible.)

When L∗ � 1, (S5d) and (S7) suggest that we can take q∗ ≡ q∗|x∗=0 and Ψ0 = 1 to
be independent of along-flow position x∗ (see also Ng, 1998), and reduce the dynam-
ics of the drainage system to two coupled ordinary (rather than partial) differential
equations, in dimensional form

Ṡ = c1qΨ + vo(S)− vc(S,N) (S8a)

−VpṄ = qin − q (S8b)

q = q(S,Ψ) (S8c)

where N is to be understood as N(0, t),the effective pressure at the head of the
conduit, at the outlet from the lake, and a dot denotes ordinary differentiation. The
constitutive relations can be taken as (S3) without modification.

A long flow path L∗ � 1 suggests we put Ψ∗ = 1, or equivalently Ψ = Ψ0. To
retain some representation of the effect of pressure gradients along the flow path, we
generalize this in an ad hoc fashion to

Ψ = Ψ0 −N/L, (S8d)

corresponding to a crude divided-difference approximation of the actual gradient
∂N/∂x by [N(L, t)−N(0, t)]/L = −N/L along the flow path. We will subsequently
test the effect of this crude representation against the full, spatially extended model
of section S2.1.

A dimensionless version of (S8) can be constructed on the basis of the same choice
of scales as in section S2.2, and results in (S8a) and (S8b) taking the form of (S5a) and
(S5e), with the constitutive relations defined through (S5g). (S8d) simply becomes
Ψ∗ = 1 − L∗−1N∗. In the limit of large L∗, we therefore obtain the expected form
Ψ∗ = 1, and the reduced model corresponds to the appropriate limit of the full model.

The reduction of the full model of section S2.1 to a set of ordinary differential
equation follows the template of the jökulhlaup model in Ng (1998) and Fowler (1999).
The main difference relative to their models is that we allow is for conduits to behave
as a cavities due to the opening rate term vo: the conduit is held open not only
by dissipation driven by flow through the conduit, but also by ice flow over basal
roughness. This turns out to be key to the limit cycles in our model.

The motivation for using a simpler model is that it allows the theory of dynamical
systems (Wiggins, 2003) as well as asymptotic methods to be brought to bear more
easily: analysing the reduced model (S8) allows us to determine qualitatively not just
that limit cycles emerge in particular parameter regimes, but why. This allows us to
guide a parallel but more complicated investigation of the full model (S1) by purely
numerical means.
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S2.4 A note on lake systems with a seal

As discussed at greater length in the main paper, the model in section S2.1 effectively
assumes an ice cliff at x = 0, so that effective pressure N(0, t) there can vary in time
without causing the ice to detach from the bed and partially floating on the water in
the reservoir. Here we briefly outline the alterations to a one-dimensional model of
the form of (S1) that are necessary when there is no such cliff, and demonstrate that
a seal is then necessary, with Ψ0 < 0 at least close to the reservoir itself.

Let b(x) denote bed elevation, whether this is the lake bed or the base of the
glacier, and let h(x) be ice thickness. Assume that part of the lake surface is open to
the atmosphere, and let hw be the elevation of that water surface. Our terminology
here differs slightly from that in the main paper (where hw refers to water level above
the lowest point in the lake, whereas we mean water level relative to the same datum
as b here).

We assume a shallow glacier geometry and negligible bending moments in the ice
(Evatt and Fowler, 2007), so that normal stresses at the base of the ice are cryostatic.
Parts of the glacier adjacent to the lake will therefore start to float if ρwg(hw − b) >
ρigh, and the upstream end of the grounded glacier and the channel inlet can therefore
be identified as the location xf where

ρwg(hw − b(xf )) = ρigh(xf ) (S9)

With pi = ρigh(xf ) and pw = ρwg(hw − b(x)f)) at the bed, this of course simply
amounts to putting N(xf ) = pi = pw at the conduit inlet. As advertised in the
main paper, the upstream boundary condition for the lake no no longer amounts to
specifying a positive N at the conduit inlet as a function of filling level hw (and hence
volume, as we will see shortly) of the lake, but to specifying the inlet location as a
function of hw.

For a viable lake that will not simply lift ice off the bed near its edge, we require
that the ice cannot float, and hence

ρwg(hw − b) < ρigh (S10)

in some finite region adjacent to the lake; this is not quite the hydrological ‘seal’
referred to in the main paper, but closely related to it. With (S9), if we assume that
x increases in the flow direction of the conduit (i.e., the x-axis points away from the
lake and into the glacier at x = xf ), this amounts to requiring

∂[ρigh− ρwg(hw − b)]
∂x

> 0 at x = xf (S11)

Since hw does not depend on x, the left-hand side is of course simply equal to

−Ψ0 = ρig
∂h

∂x
+ ρwg

∂b

∂x
,

and this must be positive. In other words, we obtain the rather obvious result that
the geometrical hydraulic gradient must be negative and therefore points into the
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lake: a glacier that partially floats on a lake that it dams must have a ‘seal’ in the
sense of a finite region adjacent to the lake where the geometrical hydraulic gradient
points into the lake.

We can complete this sketch by relating xf to lake volume as advertised in the
main paper. For a given filling level, (S9) specifies where the lake edge is on the glacier
side of the lake. Similarly, the opposite lake edge would be at xl where hw = b(xl),
and the volume of the lake can be related to hw through

V =

∫ xf

xl

hw − rh(x)− b(x) dx

where h(x) = 0 in the ice-free parts of the lake, and r = ρi/ρw as before. With xl and
xf defined implicitly in terms of hw, V is clearly a function of hw alone for a given
glacier bed and ice geometry. If we treat this function as invertible, then xf itself
becomes a function of V .

S3 Nye’s jökulhlaup instability in the reduced model

In this section, we analyze the stability of steady-state solutions to the reduced model
(S8), following the earlier work of Nye (1976), Ng (1998) and Fowler (1999). Assume
quite generally that vo and vc satisfy

∂vo
∂S
≤ 0,

∂vc
∂S

> 0,
∂vc
∂N

> 0 (S12)

with vo(S) > 0 bounded as S → 0, vc(S, 0) = 0 and vc(0, N) = 0, while q satisfies

∂q

∂S
> 0,

∂q

∂Ψ
> 0. (S13)

q also has the same sign as Ψ, and satisfies q(0,Ψ) = q(S, 0) = 0. These are the
minimal assumptions we make on these functions, allowing us to generalize from the
specific forms in (S3) in analyzing the stability of the drainage system.

The primary dependent variables in the model (S8) are S and N . For constant
water input qin, the model admits a steady state (S̄, N̄) given implicitly by

c1q(S̄, N̄)Ψ̄ + vo(S̄)− vc(S̄, N̄) = 0 (S14a)

q(S̄, Ψ̄) = qin (S14b)

Ψ̄ = Ψ0 − N̄/L. (S14c)

If qin > 0, it follows that Ψ̄ > 0, and from (S14a) and the properties of vc, we also
have N̄ > 0. For future convenience, we also write q(S̄.N̄) = q̄. Note that, for the
specific choices in (S3), a steady state exists for every positive qin. Eliminating S̄ and
Ψ̄, we find a problem for N̄ alone:

c1qin

(
Ψ0 −

N̄

L

)
+ v0 − c2

(
qin

c3(Ψ0 − N̄/L)

)1/α

N̄n = 0
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The left-hand side is a monotonically decreasing function of N̄ for 0 ≤ N̄ < Ψ0L,
positive at N̄ = 0 and tending to −∞ as N̄ → Ψ0L, so the equation always admits
a unique solution for N̄ in this range, from which S̄ can then be determined. The
solution then has positive N̄ , S̄ and Ψ̄.

We wish to establish conditions under which this steady state is unstable to a
Nye-type instability. Previous work due to Ng (1998) and Fowler (1999) indicates
that the steady state solution is always unstable for a Manning or Darcy-Weisbach
law (S3)3, provided that vo = 0 and L = ∞. Here we are interested in the effects of
conduit opening due to flow over bed roughness, and the effect of pressure gradients
in a system of finite size. Linearizing about the steady state as

N = N̄ +N ′, S = S̄ + S ′

and putting V̄p = Vp(N̄) gives

Ṡ ′ = c1qSΨ̄S ′ − (qΨΨ̄ + q̄)L−1N ′ + vo,SS
′ − vc,SS ′ − vc,NN ′ (S15a)

−V̄pṄ ′ = −qSS ′ + qΨL
−1N ′ (S15b)

where

qS =
∂q

∂S

∣∣∣∣
S=S̄,Ψ=Ψ̄

, qΨ =
∂q

∂Ψ

∣∣∣∣
S=S̄,Ψ=Ψ̄

, vo,S =
dvo
dS

∣∣∣∣
S=S̄

,

vc,S =
∂vc
∂S

∣∣∣∣
S=S̄,N=N̄

, vc,N =
∂vc
∂N

∣∣∣∣
S=S̄,N=N̄

.

Looking for solutions of the form S ′ = S ′0 exp(λt), N ′ = N ′0 exp(λt), we get the
eigenvalue problem(

c1qSΨ̄ + vo,S − vc,S − λ −c1(qΨΨ̄ + q̄)L−1 − vc,N
V̄ −1
p qS −V̄ −1

p qΨL
−1 − λ

)(
S ′0
N ′0

)
= 0

Setting the determinant of the matrix on the left to zero leads to a polynomial for λ,

λ2 − a1λ+ a2 = 0 (S16)

where the coefficients take the form

a1 =c1qSΨ̄ + vo,S − vc,S − V̄ −1
p qΨL

−1 (S17a)

a2 =V̄ −1
p qS

[
c1(qΨΨ̄ + q̄)L−1 + vc,N

]
− V̄ −1

p qΨL
−1
[
c1qSΨ̄ + vo,S − vc,S

]
(S17b)

=V̄ −1
p

[
c1qS q̄L

−1 + qSvc,N + qΨL
−1(vc,S − vo,S)

]
(S17c)

But, from our assumptions on the various functions involved, we see that a2 > 0
(recall that vo,S ≤ 0 from (S12)), while a1 can be either sign.

The characteristic quadratic (S16) has solutions

λ =
1

2

[
a1 ±

√
a2

1 − 4a2

]
(S18)
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Since a2 > 0, we have a2
1 − 4a2 < a2

1 and two possible types of solution: either
a2

1 − 4a2 > 0 and we have two real roots, both of which have the same sign as a1.
Alternatively, we have a2

1 − 4a2 < 0 and a complex conjugate pair of roots, both of
which have real part a1. In either case, we see that the system is linearly unstable if
and only if a1 > 0, or (

c1qSΨ̄ + vo,S − vc,S
)
− V̄ −1

p qΨL
−1 > 0. (S19)

We have deliberately written the left-hand side of (S19) as the difference of two
terms, a potentially destabilizing term c1qSΨ̄ + vo,S − vc,S and a stabilizing term
−V̄ −1

p qΨL
−1. As in the main paper, the first term can be recognized as the growth

rate for a perturbations to a steady state channel that is kept at a fixed effective
pressure. The same term is also the relevant indicator of whether the steady-state
conduit is ‘channel-like’ in the terminology of Schoof (2010): in the notation of that
paper, we would put vm(S,Ψ) = c1q(S,Ψ)Ψ + vo(S) so that Ṡ = vm − vc. A steady-
state conduit is then identified as being channel-like if vm,S − vc,S > 0. This criterion
here simply becomes

vm,S − vc,S = c1qSΨ̄ + vo,S − vc,S > 0. (S20)

Changing the inequality sign to ‘<’ corresponds to a ‘cavity-like’ conduit, and we see
that Nye’s instability will not occur in that case.

Note that the definition of ‘channel-like’ or ‘cavity-like’ in Schoof (2010) distin-
guishes conduits that are unstable to growth or shrinkage when placed in parallel
with a second, identical conduit in the absence of an upstream reservoir from those
that are stable when placed in parallel: the former are channels, the latter cavities.
The modification of hydraulic gradients to account for gradients in N above notwith-
standing, this channelizing instability, described in the supplementary material of
Schoof (2010), will still occur if and only they are channel-like as defined by (S20).
The relevant stability analysis turns out to be identical to that in Schoof (2010).

S3.1 Onset of instability under changes in water input

Equation (S19) shows that the system experiences Nye’s instability when the conduit
is channel-like and if the stabilizing effect of increased drainage on effective pressure is
not too large. Here, we will show how the instability can be triggered as water input
qin to the system is changed. Specifically, we show that for given storage capacity V̄p
and system length L and cavity opening rate vo = ubh, there is generally a range of
intermediate values of qin at which Nye’s instability occurs, if it does at all. Outside
of that intermediate range of water inputs, the steady state solution remains stable.
Stability at high qin ensured by the effect of limited water storage through the second
term in (S19), and stability at low qin ensured by a cavity-like conduit through the
first term in (S19).

Below, we show first that, even with Ψ dependent on N as in (S8d), channel- and
cavity-like steady states retain the following characteristics demonstrated in Schoof
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(2010):
dN̄

dqin
> 0 if channel-like,

dN̄

dqin
< 0 if cavity-like (S21)

while dS̄/ dqin > 0 always. Subsequently, we use these properties to show that the
conduit switches from cavity-like at small qin to channel-like at large qin at a water
input. Nye’s instability therefore requires discharge above a critical minimum value.

Next, we show that both, the stabilizing and destabilizing terms in (S19) increase
with water input qin, but that the stabilizing term does so faster, and hence that
Nye’s instability is suppressed as a result above an upper critical level of water input:
large water throughput makes it harder for water storage to buffer effective pressure
against changes due to increased water discharge as conduit size grows. Hence Nye’s
instability only occurs for an intermediate range of water inputs qin.

It is straightforward to show by applying the chain rule to (S14) and rearranging
that

dN̄

dqin
=

c1qSΨ̄ + vo,S − vc,S
qS(c1qL−1 + vc,N) + qΨL−1(vc,S − vo,S)

, (S22a)

dS̄

dqin
=

c1(qΨΨ̄ + q)L−1 + vc,N
qS(c1qL−1 + vc,N) + qΨL−1(vc,S − vo,S)

, (S22b)

where, with the constraints in (S12), we see that dN̄/ dqin is the same sign as
qSΨ + vo,S − vc,S, while dS̄/ dqin > 0 always. As in the simpler model in Schoof
(2010), effective pressure increases with water input in the channel-like state, while it
decreases in the cavity-like state. Conduit cross-section always increases with water
input.

We can also show that the conduit must be cavity-like at low qin. Note that Ψ̄
must lie between 0 and Ψ0. Since Ψ̄ is therefore bounded, the term q(S̄, N̄)Ψ̄ = qinΨ̄
in (S14a) approaches zero at low qin, while vo(S̄) remains bounded below (and in fact
approaches a constant value). Hence we must have vo(S̄) ∼ vc(S̄, N̄). It is easy to
show then that N̄ decreases with S̄: with (S3), we have N̄n ∼ ubh/(c2S̄) as in Schoof
(2010). More generally, by the chain rule

dN̄

dqin
∼ vo,S − vc,S

vc,N

dS̄

dqin

Since dS̄/ dqin > 0 and vo,S < 0, vc,S > 0, it follows that N̄ decreases with increasing
qin at low qin, and the conduit is therefore cavity-like and stable at low water input.

Conversely, at high water input, it can be shown with (S3) that the conduit must
be channel-like. It is straightforward to see that (S14a) reduces to c1qinΨ̄ ∼ c2S̄N̄

n

with N̄ ∼ Ψ0L. We also have qin = c3S̄
αΨ̄1/2, and hence S̄ ∼ [c1/(c2c

2
3)]1/(2α+1)q

3/(2α+1)
in (Ψ0L)n/(2α+1).

But N = L[Ψ0 − Ψ̄] = L[Ψ0 − q2
in/(c

2
3S

2α)] so

N ∼ L
[
Ψ0 − c−2/(2α+1)

3 (c2/c1)2α/(2α+1)(Ψ0L)2nα/(2α+1)q
−2(α−1)/(2α+1)
in

]
,

and N decreases with qin at large qin, so the conduit is channel-like.
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Next we show that the system can change from cavity-like to channel-like only
once as qin increases, so there is a single critical water input at which this switch must
happen. Consider differentiating the measure c1qSΨ̄ + vo,S − vc,S of ‘channel-likeness’
with respect to qin. We have

d(c1qSΨ̄ + vo,S − vc,S)

dqin
=
(
c1qSSΨ̄ + vo,SS − vc,SS

) dS̄

dqin
−
(
c1(qSΨΨ̄ + qS)L−1 + vc,SN

) dN̄

dqin
,

(S23)
with qSS = ∂2q/∂S2|S=S̄,N=N̄ etc. Note that, from (S3), we have qSSΨ+vo,SS−vc,SS >
0 as well as qSΨ > 0, vc,SN > 0. From (S22a), the right-hand side of (S23) is
positive whenever the conduit is cavity-like with qSΨ̄ + vo,S− vc,S < 0. It follows that
qSΨ̄ + vo,S − vc,S can only ever change sign from negative to positive as qin increases.
There is therefore a single value of qin at which the conduit changes from cavity-like
to channel-like. Nye’s instability can only occur above this critical value.

We can also show that the second, stabilizing term in (S19) becomes dominant at
large water inputs. With (S3) and (S14a), we have

c2N̄
n = c1c3S̄

α−1Ψ̄3/2 +
ubhr(1− S/S0)

S̄

and hence

c1qSΨ̄ + vo,S − vc,S = (α− 1)c1c3S̄
α−1Ψ̄3/2 − ubhr

S̄

=
(α− 1)c1qinΨ̄

S̄
− ubh

S̄
(S24)

while

V̄ −1
p qΨL

−1 =
c3S

α

2V̄pLΨ̄1/2

=
c3

2V̄pL

qin
Ψ̄

(S25)

so that(
c1qSΨ̄ + vo,S − vc,S

)
− V̄ −1

p qΨL
−1 =

c1qin
Ψ̄

(
(α− 1)Ψ̄2

S̄
− c3

2c1V̄pL
− ubhΨ̄

c1qinS̄

)
(S26)

But, from the above, we know that N̄ increases monotonically with qin when qin is
above the critical value for channel-like behaviour. In that regime, Ψ̄ = Ψ0 − N̄/L
therefore decreases with qin. At the same time S̄ increases with qin; in fact, since
S̄ = q

1/α
in /Ψ̄1/(2α), S̄ increases without bound. It is therefore clear that the bracketed

term on the right-hand side of (S26) becomes negative for sufficiently large qin, and
that Nye’s instability is suppressed by large water inputs.

Combined, these results show that Nye’s instability can only occur when qin is large
enough for the conduit to be channel-like, but not large enough for the stabilizing
effect of limited water storage to dominate.
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The existence of such an unstable range of values of qin is, however, not guaranteed
for given values of the remaining parameters. Recall that the steady state solution
(S̄, N̄) does not depend on the value of V̄p, and hence so are the coefficients qS, vo,S,
vc,S, qΨ and Ψ̄ in (S26). Changes in storage capacity V̄p therefore affect stability
purely through that second term in (S26): making V̄p small enough while keeping
all other parameters constant will increase the size of the stabilizing term to any
value required while keeping the destabilizing term constant. Given that we have just
shown that there is only ever a finite range of qin over which instability will occur for
a given V̄p, the size of the destabilizing term over that range for one value of V̄p is
bounded, and it follows that we make the system stable for all values of qin within
that range by simply shrinking V̄p enough. Conversely, by making V̄p → ∞, we can
make the stabilizing term vanish, and ensure that instability occurs. In other words,
for fixed values of all the other parameters, a minimum value of V̄p is required to
cause Nye’s instability to occur in practice.

S3.2 Computing the stability boundary

In the main paper, we plot stability boundaries for the model (S8) as curves of points
(qin, V̄p) for fixed L at which a change from a stable to an unstable steady state
occurs, demarcating regions in parameter space where we expect instability to occur:
steady drainage of the lake will not persist in these unstable regions, and we expect
outburst floods will occur. Computing these stability boundaries amounts finding
combinations (S̄, N̄ , qin, V̄p) of the system

q(S̄,Ψ0 − N̄/L) =qin (S27a)

c1q(S̄,Ψ0 − N̄/L)(Ψ0 − N̄/L) + vo(S̄)− vc(S̄, N̄) =0 (S27b)

c1qS(S̄,Ψ0 − N̄/L) + vo,S(S̄)− vc,S(S̄, N̄)− V̄ −1
p qΨ(S̄,Ψ0 − N̄/L)L−1 =0 (S27c)

for a given set of the remaining parameters; given these three equations for the
for unknowns (S̄, N̄ , qin, V̄p), the problem defines a one-dimensional curve in a four-
dimensional space.

We solve the problem numerically using arc length continuation based on Newton’s
method. Generically, let f : Rn × R 7→ Rn and assume we are solving a rootfinding
problem f(z;µ) = 0 for an n-dimensional vector-valued variable z given a parameter
µ. The continuation method then works as follows: given a solution (zi;µi), we find
a new solution solution (zi+1, µi+1) defined by

f(zi+1, µi+1) = 0, d(µi+1, µi) = s (S28)

where s is a prescribed positive value and d is a distance metric. This in itself becomes
an (n+ 1)-dimensional rootfinding problem in which µi+1 is part of the solution, and
can be solved using Newton’s method. Here of course z = (S̄, N̄ , qin) and µ = V̄p or
z = (S̄, N̄ , V̄p) and µ = qin.

Asymptotic forms of the stability boundary are relatively straightforward to derive
when L is large. For large L and V̄p ∼ O(1) or large, it is straightforward to show

12



that one solution to

c1qS(S̄,Ψ0 − N̄/L) + vo,S(S̄)− vc,S(S̄, N̄)− V̄ −1
p qΨ(S̄,Ψ0 − N̄/L)L−1 = 0

can be approximated by omitting the second, stabilizing term, since this behaves as
∼ (V̄pL)−1. With L large, we also have Ψ0 − N̄/L ∼ Ψ0, and the stability boundary
is given by

c1qS(S̄,Ψ0) + vo,S(S̄)− vc,S(S̄, N̄) ∼ 0;

this is simultaneously the boundary of ‘channel-like’ conduit behaviour. If we assume
the constitutive relations in (S3) with large S0 (so vo,S = 0), this boundary is at

S̄ =

(
ubhr

(α− 1)c1c3Ψ0

)1/α

, N̄ =

(
αc1S̄

α−1Ψ0

c2

)1/n

, qin =
ubhr

(α− 1)c1Ψ0

.

(S29)
This can be refined for large V̄p and finite L, in which case Ψ can no longer be
approximated accurately by Ψ0: in the first two equalities in (S29), Ψ0 then needs to
be replaced by Ψ0 = N̄/L, and together the two form equations that must be solved
numerically for S̄ and N̄ . Given a result for N̄ , Ψ0 in the third equality for the critical
value of qin also needs to be replaced by Ψ0 − N̄/L. The corrected critical value will
be somewhat larger than that given in (S29).

Equation (S29)3 is an asymptotic formula for the lower value of water supply
at which steady drainage becomes unstable. Recall that in general a finite band
of values of qin is unstable. We can also find an asymptotic formula for the larger
critical value, at which steady drainage becomes stable again. Assume again that
L and V̄p are large. In order for the second, stabilizing term in (S27c) to balance
the first, discharge qin and conduit size S̄ must be large, since only in that case
can V̄ −1

p L−1qψ = qin/(2V̄pΨ̄L) ∼ qin/(2V̄pΨ0L) be comparable to qS = αqin/S̄. For
such large discharges, the conduit acts entirely channel-like, and at leading order
|N̄ |n−1N̄ ∼ c1c3S̄

α−1Ψ
3/2
0 /c2, so

c1qS(S̄,Ψ0) + vo,S(S̄)− vc,S(S̄, N̄) ∼ c1c3S̄
α−1Ψ

3/2
0

Equating this with V̄ −1
p qΨL

−1 ∼ V̄ −1
p qinΨ−1

0 L−1/2 and using qin ∼ c3S̄
αΨ

1/2
0 , the

stability boundary is at

V̄p ∼
q

1/α
in

2(α− 1)c1c
1/α
3 Ψ

(3α+2)/(2α)
0 L

. (S30)

S3.3 Weakly nonlinear stability analysis

The change from a stable to an unstable steady state, for instance under changes in
qin as in section S3.1, occurs when the real part of at least one of the eigenvalues
λ changes from negative to positive. While the preceding section provides a means
of computing where the onset of instability occurs, it does not offer information
on where the unstable evolution of solutions leads to. A weakly nonlinear stability
analysis provides some of that information.

13



From the discussion following (S18), the onset of instability corresponds to a1 = 0
and hence to λ = ±i√a2. A change from stability to instability at which two eigen-
values are purely imaginary is termed a Hopf bifurcation (Wiggins, 2003). This type
of bifurcation leads to the generation of a limit cycle solution that oscillates around
the steady state solution, with an amplitude that goes to zero at the bifurcation point
itself. This limit cycle solution can come in two flavours: either it is a stable limit
cycle that exists around the unstable branch of the steady state solution (the bifur-
cation is then known as a supercritical Hopf bifurcation), or it is an unstable closed
orbit around the stable steady state solution (a subcritical Hopf bifurcation).

If the bifurcation is supercritical, then the onset of instability leads to stable,
small-scale oscillations that grow in amplitude as the bifurcation parameter qin moves
away from its critical value at which the change from stability to instability occurs.
If the bifurcation is subcritical, this is not the case, and different behaviour (such as
a limit cycle with large amplitude) must emerge. Here we lay out the machinery for
determining whether the bifurcation is sub- or supercritical, which (given the nature
of the algebraic manipulations required) is then done numerically as in the main
part of the paper. What follows is standard procedure, and we include it here for
completeness.

Generically, we consider a 2-dimensional autonomous dynamical system that de-
pends on a parameters µ,

dyi
dt

= Fi(y;µ), (S31)

and which admits a steady state Fi(y
(0)
i , µ0) = 0 and where F is real-valued for real

y and µ, and sufficiently smooth around that steady state. Let

Fi,jkl... =
∂nFi

∂yj∂yk∂yl . . .

∣∣∣∣
y=y(0),µ=µ0

.

The equilibrium solution y(0) at µ = µ0 corresponds to a Hopf bifurcation if the
Jacobian matrix Fi,j has a pair of purely imaginary eigenvalues ±iω, which we assume
to be the case. We also define

Fi,µ =
∂Fi
∂µ

∣∣∣∣
y=y(0),µ=µ0

, Fi,jµ =
∂2Fi
∂yj∂µ

∣∣∣∣
y=y(0),µ=µ0

We simultaneously perturb y(0) and µ as

y = y(0) + εy(1) + ε2y(2) + ε3y(3) + o(ε3), µ = µ(0) ± ε2,

where ε is some small number, and introduce a slow time variable T in addition to t
through

T = ε2t.

Treating T and t as independent variables as in a multiple scales expansion (Holmes,
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1995), we get

ε
∂y

(1)
i

∂t
+ ε2∂y

(2)
i

∂t
+ ε3∂y

(3)
i

∂t
+ ε3∂y

(1)
i

∂T
=Fi,j

(
εy

(1)
j + ε2y

(2)
j + ε3y

(3)
j

)
+

1

2
Fi,jk

(
εy

(1)
j + ε2y

(2)
j + ε3y

(3)
j

)(
εy

(1)
k + ε2y

(2)
k + ε3y

(3)
k

)
+

1

6
Fi,jkl

(
εy

(1)
j + ε2y

(2)
j + ε3y

(3)
j

)(
εy

(1)
k + ε2y

(2)
k + ε3y

(3)
k

)
×
(
εy

(1)
l + ε2y

(2)
l + ε3y

(3)
l

)
± ε2Fi,µ ± ε3Fi,jµy

(1)
j + o(ε3)

(S32)

where we have used the summation convention for repeated indices, and the sign in
‘±’ has to be picked consistently between the two uses of that symbol. Equating
powers of ε,

∂y
(1)
i

∂t
= Fi,jy

(1)
j (S33)

∂y
(2)
i

∂t
= Fi,jy

(2)
j +

1

2
Fi,jky

(1)
j y

(1)
k ± Fi,µ (S34)

∂y
(3)
i

∂t
+
∂y

(1)
i

∂T
= Fi,jy

(3)
j +

1

2
Fi,jk

(
y

(1)
j y

(2)
k + y

(2)
j y

(1)
k

)
+

1

6
Fi,jkly

(1)
j y

(1)
k y

(1)
l ± Fi,jµy

(1)
j

= Fi,jy
(3)
j + Fi,jky

(1)
j y

(2)
k +

1

6
Fi,jkly

(1)
j y

(1)
k y

(1)
l ± Fi,jµy

(1)
j (S35)

With Fi,j having imaginary, conjugate eigenvalues ±iω, we get

y
(1)
i = A(T )ei exp(iωt) + A(T )ei exp(−iωt) (S36)

where ei is the eigenvector of Fi,j corresponding to the eigenvalue iω, and A(T ) is a
potentially complex amplitude. An overbar denotes complex conjugation.

At second order, we get

∂y
(2)
i

∂t
− Fi,jy(2)

j =
1

2
Fi,jkejekA(T )2 exp(2iωt) +

1

2
Fi,jkejekA(T )

2
exp(−2iωt)

+
1

2
Fi,jk(ejek + ejek)|A(T )|2 ± Fi,µ (S37)

where, by symmetry, (1/2)Fi,jk(ejek + ejek) = Fi,jkejek. This has solution

y
(2)
i =Bei exp(iωt) +Bei exp(−iωt) (S38)

+ (2iωδij − Fi,j)−1 1

2
Fj,klekelA(T )2 exp(2iωt) (S39)

+ (−2iωδij − Fi,j)−1 1

2
Fj,klekelA(T )

2
exp(−2iωt) (S40)

− F−1
i,j

(
Fj,klekel|A(T )|2 ± Fj,µ

)
, (S41)
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where B is again a potentially complex amplitude (dependent on T , though this will
be immaterial below), and δij is the Kronecker delta. The notation A−1

ij indicates the
ij-component of the matrix inverse of Aij.

At third order, we have a problem of the form

∂y
(3)
i

∂t
− Fi,jy(3)

j = ci exp(iωt) + di exp(i3ωt) + ci exp(−iωt) + di exp(i3ωt) (S42)

with

ci(T ) = Fi,jk (2iωδjl − Fj,l)−1 1

2
Fl,mnemenek|A(T )|2A(T )

− Fi,jkF−1
j,l

(
Fl,mnemen|A(T )|2 ± Fl,µ

)
ekA(T )

+
1

2
Fi,jklejekel|A(T )|2A(T )

± Fi,jµejA(T )− ∂A

∂T
ei (S43)

We have only written out explicitly the coefficient of exp(iωt) but not that of exp(i3ωt).
The crucial point about having a term proportional to exp(iωt) on the right-hand side

of (S43) is that this term is resonant, and potentially leads to secular growth in y
(3)
i

because iω is one of the eigenvalues of Fi,j, whereas a term proportional to exp(i3ωt)
will not. By the Fredholm alternative, a bounded solution exists if and only if

civi = 0

where vi is the right eigenvector corresponding to the eigenvalue iω, i.e. vi is a non-
trivial vector satisfying vi(Fi,j − iωδij) = 0.

This leads to the Landau equation, of the form

∂A

∂T
+ aA+ b|A|2A = 0 (S44)

with

a = ±
(
Fi,jkF

−1
j,l Fl,µekvi − Fi,jµejvi

)
/elvl (S45)

b =

[
Fi,jkF

−1
j,l Fl,mnekemen − Fi,jk (2iωδjl − Fj,l)−1 1

2
Fl,mnemenek −

1

2
Fi,jklejekel

]
vi/epvp

(S46)

A supercritical Hopf bifurcation corresponds to the real part of b being positive, while
the real part of b being negative signals a subcritical bifurcation: Multiplying (S44)
by A and adding the resulting equation to its own complex conjugate, we obtain

∂|A|2

∂T
+ <(a)|A|2 + <(b)|A|4 = 0.

Growth occurs when <(a) < 0 (which can be toggled by choice of the sign of the
perturbation in ‘±’), and remains bounded if <(b) > 0, in which case |A|2 saturates
at a values of −<(a)/<(b).
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Let S = y1, N = y2, µ = qin, and consider the dynamical system (S8) with (S3)
and Vp constant. Then the non-zero derivative terms for the dynamical system (S8)
are

F1,1 = c1qSΨ−vc,S, F1,2 = −c1(qΨΨ+q)L−1−vc,N , F2,1 = V̄ −1
p qS, F2,2 = −V̄ −1

p qΨL
−1,

F1,11 = c1qSSΨ, F1,12 = F1,21 = −c1(qSΨΨ+qS)L−1−vc,SN , F1,22 = c1(qΨΨΨ+2qΨ)L−2−vc,NN ,
F2,11 = V̄ −1

p qSS, F2,12 = F2,21 = −V̄ −1
p qSΨL

−1, F2,22 = V̄ −1
p qΨΨL

−2,

F1,111 = c1qSSSΨ, F1,112 = F1,121 = F1,211 = −c1(qSSΨΨ + qSS)L−1,

F1,122 = F1,212 = F1,221 = c1(qSΨΨΨ+2qSΨ)L−2−vc,SNN , F1,222 = −c1(qΨΨΨΨ+3qΨΨ)L−3−vc,NNN ,
F2,111 = V̄ −1

p qSSS, F2,112 = F2,121 = F2,211 = −V̄ −1
p qSSΨL

−1,

F2,122 = F2,212 = F2,221 = V̄ −1
p qSΨΨL

−2 F2,222 = −V̄ −1
p qΨΨΨL

−3;

This allows the Landau coefficients <(a) and <(b) to be computed directly. We do
this numerically (by simple function evaluation) at the same time as computing the
location of the stability boundaries, allowing us to identify whether the bifurcations
at these boundaries are super- or sub-critical.

S3.4 Numerical computation of closed orbits and their sta-
bility: bifurcation diagrams

The results of the previous section allow us to determine whether the Hopf bifurcation
leads locally to a stable limit cycle or not, but does not allow us to trace the evolution
of closed orbits as parameter values are changed. This can only be done numerically.

A closed orbit corresponds to a fixed point of the Poincaré map of the dynamical
system (S8), defined as the discrete mapping that maps one intersection of an orbit
of the dynamical system with a transversal hypersurface to the next such intersection
(Wiggins, 2003). This section describes the basics behind the computational method
used to compute closed orbits as fixed points of the Poincaré map, and to determine
whether the closed orbits are stable. Again, the method is a standard technique
that is included for completeness here. In practice, we use the nullclines of the
dynamical system (the hypersurfaces on which either Ṡ or Ṅ are zero) as the relevant
transversal hypersurfaces. By using the N -nullcline, this further allows us to identify
the minimum and maximum of N along each closed orbit.

The method we use to find fixed points of the Poincaré map is a single shooting
method. This becomes unsuitable for certain extreme parameter combinations, but
has the advantage of being easily implemented and of computing the Jacobian of the
map automatically, allowing the stability of the map (and hence of the closed orbits)
to be determined immediately. Assume again that we write the dynamical system as

dy

dt
= F (y;µ), (S47)

with a solution y = Y (t;µ, y0) that depends on time t, the parameter µ and the initial
condition y0, with Y (0;µ, y0) = y0.
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In our case, we integrate up to a nullcline, or more generally, a transversal hyper-
surface defined by g(y;µ) = 0 where g is scalar-valued. In other words, we need to
evaluate Y (tf ;µ, y0) at the time tf at which

g(Y (tf ;µ, y0);µ) = 0,

which numerical initial value problem solvers are generally able to; g is then known
as an ‘event function’. This condition also implicitly defines the final time tf as a
function of y0 and µ. The problem of finding a closed orbit then amounts to finding
y0 such that

Y (tf (µ, y0);µ, y0)− y0 = 0 (S48)

Solving this by using Newton’s method requires us to compute the gradient of the
left-hand side with respect to y0.

To avoid notational tangles, define a new function

Y(µ, y0) = Y (tf (µ.y0);µ, y0).

As in a standard shooting method (Atkinson, 1989), we can define the gradient of
the fixed-time solution Y (t;µ, y0) with respect to y0. Again, for later notational
simplicity, put

Jij(t;µ, y0) =
∂Yi
∂y0,j

∣∣∣∣
(t;µ,y0)

This gradient satisfies the linear differential equation

dJij
dt

=
∂Fi
∂yk

∣∣∣∣
(Y (t;µ,y0);µ)

Jkj, (S49)

subject to
Jkj(0;µ, y0) = δkj.

Note that ∂Fi/∂yk is a function of Y and µ but not of of the gradient J (hence the
linearity of the equation). This equation is straightforward to integrate numerically.
We still need to account for the dependence of tf on y0 in order to compute the
gradient of Y rather than Y : we have

∂Yi
∂y0,j

= Jij(tf ;µ, y0) + Fi(Y(µ, y0);µ))
∂tf
∂y0,j

For further simplicity, put

nj =
∂g

∂Yj

∣∣∣∣
(Y(µ,y0);µ)

Using the implicit definition of tf , we have by the chain rule

0 =
∂g(Y (tf (µ, y0);µ, y0)

∂y0,j

=nkFk(Y(µ, y0);µ)
∂tf
∂y0,i

+ nlJlj(tf ;µ, y0)
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or
∂tf
∂y0,j

= − nlJlj(tf ;µ, y0)

nkFk(Y(µ, y0);µ)
;

once the orbit from y0 to its intersection point Y(µ, y0) has been computed, this
suffices to then determine ∂Yi/∂y0,j and apply Newton’s method to finding roots of
(S48),

∂Yi
∂y0,j

=

(
δil −

Finl
nkFk

)
Jlj, (S50)

where all terms on the right-hand side are evaluated at t = tf (µ, y0), y = Y (tf (µ, y0);µ, y0)) =
Y(µ, y0).

Note that y0 7→ Y(µ, y0) is not the Poincaré map per se; this is only true for the
restriction of Y to arguments y0 that themselves lie on the transversal surface defined
by g = 0. Finding roots of (S48) naturally ensures that the root y0 itself lies on
that transversal surface. This observation is however relevant to finding the Jacobian
of the Poincaré map, which allows us to determine the stability of closed orbits: the
latter are stable if the spectral radius of that Jacobian is less than unity, and unstable
if the greater than unity.

It is straightforward to show that all but one of the right eigenvectors of ∂Yi/∂y0,j

lie in the tangent plane to the surface g = 0, and are therefore eigenvectors of the
Poincaré map. The additional eigenvector that does not lie in the tangent plane has
zero eigenvalue and therefore does not affect the spectral radius. To show this, it
suffices to recognize that ni is a left eigenvector of ∂Yi/∂y0,j with zero eigenvalue,

ni
∂Yi
∂y0,j

= ni

(
δil −

Finl
nkFk

)
Jlj = 0,

and that right eigenvectors are then either perpendicular to ni, or themselves have
zero eigenvalue. Assuming that J is invertible, the multiplicity of the zero eigenvalue
is one, and the corresponding right eigenvector can be written as ei = J−1

ij Fj. The
remaining eigenvectors are therefore normal to ni; since ni is the gradient of g, this
implies that these eigenvectors lie in the tangent plane to g = 0 as required. In
other words, the spectral radius of the Jacobian ∂Yi/∂y0,j is the spectral radius of
the Jacobian of the Poincaré map itself.

Computationally, we solve (S47) and (S49) for Y and Jij using inbuilt MATLAB
initial value solvers (usually ode15s, since the system becomes stiff when the lake
storage capacity is large, as is often of interest), and use (S50). This allows us to
solve (S48) by Newton’s method, with an arc length continuation method allowing
us to trace the evolution of closed orbits under parameter changes. This follows the
scheme of (S28), with f(y0, µ) = Y(µ, y0)−y0. Applying Newton’s method to the arc
length continuation scheme requires the derivative of Y with respect to µ. This can
be computed by analogy with the method above.

Let Yi,µ = ∂Yi
∂µ

; Yi,µ satisfies

dYi,µ
dt

=
∂Fi
∂yk

∣∣∣∣
(Y (t;µ,y0);µ)

Yk,µ +
∂Fi
∂µ

∣∣∣∣
(Y (t;µ,y0);µ)

Yk,µ
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subject to Yi,µ(0;µ, y0) = 0. This is again straightforward to integrate with an initial
value problem solver. We ultimately seek

∂Yi
∂µ

= Yi,µ(tf ;µ, y0) + Fi(Y(µ, y0);µ)
∂tf
∂µ

.

Letting gµ = ∂g/∂µ|(Y(µ,y0);µ), again apply the chain rule to find

0 =
∂g(Y (tf (µ, y0);µ, y0))

∂µ
= nkFk(Y(µ, y0);µ)

∂tf
∂µ

+ nlYl,µ(tf ;µ, y0) + gµ(Y(µ, y0), µ)

or
∂tf
∂µ

= − nlYl,µ(tf ;µ, y0)

nkFk(Y(µ, y0);µ)
− gµ(Y(µ, y0), µ)

nkFk(Y(µ, y0);µ)
.

Again dropping the arguments of the various functions,

∂Yi
∂µ

=

(
δil −

Finl
nkFk

)
Yl,µ −

Figµ
nkFk

,

with all quantities on the right-hand side again evaluated at t = tf (µ, y0), y =
Y (tf (µ, y0);µ, y0)) = Y(µ, y0).

In the main paper, we also compute the boundary of the region in parameter space
in which N becomes negative during the oscillation. This corresponds to solving for
a parameter value µ and the corresponding y0 for which one component of y0 is equal
to zero, and it is straightforward to adapt the methodology above to that case.

S4 An asymptotic analysis of limit cycles

Here, we provide an asymptotic description of limit cycles that occur when water
input qin as well as cavity opening rates vo are small. This is the classical case of
a glacier-dammed lake in which the filling portion of the jökulhlaup cycle is much
slower than the draining portion, and in which the opening of the channel that forms
during the jökulhlaup is eventually controlled entirely by wall melting.

The limit cycles we describe allow us to illustrate the key role played by the cavity
opening term in allowing a periodic solution without the need to appeal to a moving
flow divide in a conduit kept open at all times by dissipative melting as in Fowler
(1999). We do so by dividing the cycle into a number of distinct stages, in each of
which only a reduced set of physical processes dominate. In addition, we are able to
derive a number of semi-analytical results in the chosen parameter limit: for instance,
we can demonstrate that the limit cycle will lead to negative effective pressures at
a critical water input rate. This extends the analytical confirmation of limit cycle
behaviour beyond the local behaviour near supercritical Hopf bifurcations. Techni-
cally, the limit cycles bear close resemblance to some aspects of classical relaxation
oscillations (Holmes, 1995), but with key differences (in technical terms, we will see
that there is only one ‘slow branch’, with a single ‘fast branch’ connecting a turning
point on the slow variable nullcline with another point on the same nullcline).
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We consider the model (S8) with constitutive relations (S3) and S0 = ∞, Vp =
constant. This can be rendered in an alternative dimensionless form by defining new
scales for S, N and t through [S]′/[t]′ = c1c3[S]′αΨ

3/2
0 = c2[S]′[N ]′n and Vp[N ]′/[t]′ =

c1[S]′αΨ
1/2
0 and defining corresponding dimensionless variables S = [S]′S∗∗, N =

[N ]′N∗∗ and t = [t]′t∗∗. The new choice of dimensionless variables yields on substi-
tuting and immediately dropping the asterisks again,

Ṡ = Sα|1− νN |3/2 + δ − S|N |n−1N (S51a)

Ṅ = −ε+ Sα|1− νN |−1/2(1− νN) (S51b)

where ν = [N ]′/(Ψ0L), δ = ubhr/(c2[S]′[N ]′n) and ε = qin/(c1[S]′αΨ
1/2
0 ).

Note that the new (primed) scales differ from those defined previously in section
S2.2, and the dimensionless variables can be related to each other as

S∗ = V ∗p
n/(n+1−α)S∗∗, N∗ = V ∗p

(α−1)/(n+1−α)N∗∗, t∗ = V ∗p
−n(α−1)/(n+1−α)t∗∗,

(S52)
while the new dimensionless parameters are related to the old through

ε = q∗inV
∗
p
−αn/(n+1−α), δ = V ∗p

−αn/(n+1−α), ν = V ∗p
(α−1)/(n+1−α)/L∗. (S53)

The new choice of non-dimensionanlization is better suited to exploring the simulta-
neous limit of small δ and ε, while the original choice of scales in section S2.2 was
in large part chosen to motivate the choice of Vp, qin and L as the primary control-
ling variables, and because it makes the relationship with the onset of channelization
easier to see, by balancing all four terms in the evolution equation for S.

We assume that the scaled opening and water supply rates are small, so

δ � 1, ε� 1, (S54)

as this allows us to apply the method of matched asymptotic expansions. Note
that this is equivalent to V ∗p � 1 (to ensure a small cavity opening rateδ � 1) and

qin � V ∗p
αn/(n+1−α) (to ensure small ε). We also assume that the flow is not dominated

by pressure gradients −νN , as this would require negative N to generate a positive
discharge. In other words, we restrict ourselves to ν . 1. In order to obtain good
agreement with the full model of section S2.1, we may expect that pressure gradients
need to be small throughout the cycle, so that the crude representation of actual
pressure gradients (which would here be ν∂N/∂x) by divided differences −νN does
not affect model results. As we will show, this turns out simply to require ν � 1.
With large V ∗p , this is more restrictive than merely putting L∗ � 1, but implies

L∗ � V ∗p
(α−1)/(n+1−α) : (S55)

For a fixed system size L∗, we expect the lumped model to break down as storgae
capacity is increased.

In typical drainage models, α = 4/3 or 5/4 while n = 3. Below, we will assume
that

n+ 1 > α > 1, (S56a)

21



which affects the behaviour of flood initiation, as we shall see. With this constraint,
we also have

(α− 1)(n+ 1)

αn
< 1. (S56b)

It turns out that we need to refine (S54): in order for the the steady state solution
to (S51) not to be stable and there to be no periodic orbits, we need to have

δ . ε� 1; (S56c)

translated to the original scaling of section S2.2, ε/δ = q∗in ∼ O(1), while the condition
for ‘channel-like’ behaviour of the steady state conduit (and hence for instability, see
section S3) in the limit of large L∗ is q∗in > 1/(α − 1). In addition, we require the
constraint

ε . δ(α−1)(n+1)/(αn). (S56d)

We will show that, if the latter constraint is not satisfied, then the re-opening of
conduits by dissipation at the beginning of the flood is too slow to prevent water
storage from being ‘overfilled’, meaning that sustained negative effective pressures
are attained before the flood proper begins. Note that the two constraints (S56c) and
(S56d) are mutually consistent without implying each other: with δ � 1 and (S56b),
δ � δ(α−1)(n+1)/(αn), so there is a range of values that ε can occupy.

We expect a jökulhlaup cycle to consist ostensibly of two parts: a flood component
during which there is significant discharge but little recharge of stored water volume,
and a post-flood recharge phase during which the conduit has shut down and there
is recharge over a much longer time scale, but relatively little discharge. We show
below that flood can be identified as an ‘interior layer’ (similar to a boundary layer)
in time during which conduit size changes rapidly, with the recharge phase being an
‘outer’ solution in which the conduit is cavity-like with only slow changes in conduit
size, and the dynamics of the system is driven entirely by the refilling rate ε. We
show that in addition, there is a third component in the cycle that we term the ‘flood
initiation’, during which dissipation starts to play a significant role in controlling
conduit size, but the refilling rate is still significant; in the language of asymptotics,
this phase consists of a sequence of nested corner and interior layers. We show that
each of those three components of the cycle admits a unique solution that matches
asymptotically with the other components to form a limit cycle.

S4.1 The flood phase

The scaling in (S51) is appropriate during the flood phase of the jökulhlaup cycle,
when a initial growth in S driven by the dissipation term Sα|1− νN |3/2 is eventually
terminated because discharge through the channel increases the effective pressure
and therefore both, reduces the dissipation rate and increases the closure rate. The
appropriately reduced model for the flood phase is

Ṡ = Sα|1− νN |3/2 − S|N |n−1N (S57a)

Ṅ = Sα|1− νN |−1/2(1− νN) (S57b)
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Since α > 1, it is straightforward to see that the large time behaviour of these
equations is that N tends to some finite limit Nf , while S tends to zero exponentially
as exp(−Nn

f t), with (S57) behaving as Ṡ ∼ −S|N |n−1N , Ṅ ∼ 0. The final value of
Nf is dictated by the initial conditions, which are

Ñ ∼ S̃ ∼ [(α− 1)(−t)]−1/(α−1). (S57c)

We will finally be able to justify these in section S4.4, once we have described the
recharge and flood initiation phases of the jökulhlaup cycle.

Importantly, the problem (S57) contains no parameters, and hence Nf is inde-
pendent of the exact parameter regime we choose provided the constraints identified
above are satisfied. In practice, Nf is obtained by integrating (S57) numerically; for
the parameter values used in our numerical calculations, α = 5/4 and n = 3, we
obtain with ν = 0

Nf = 1.44. (S58)

As we will see shortly (section S4.2), our asymptotic expansions predict that the
recurrence intervals of floods is simply Nf/ε at leading order. In practice, this is not
particularly well satisfied even for fairly extreme numerical values of δ and ε. As
we will see in section S4.4, the separation of scales that underlies (S57c) relies on
δ−(α−1)/(αn) � 1. While this is formally true whenever δ � 1, note that with the
values of n = 3 and α = 5/4 used in our numerical computations, the exponent on δ
becomes very small, (α− 1)/(αn) = 1/15.

S4.2 The recharge phase

We expect an O(1) effective pressure at the end of the flood, but conduit size S to have
become small enough that the cavity opening term in (S51) must become important.
Evolution of the channel should then also occur on a much longer time scale associated
with the recharge rate ε. The obvious rescaling to describe the post-flood part of the
cycle is therefore

Ñ = N, S̃ = δ−1S, t̃ = ε(t− tf ).
where tf is the time of the last flood. The rescaled equations become

ε
dS̃

dt̃
= δα−1S̃α|1− νÑ |3/2 + 1− S̃|Ñ |n−1Ñ , (S59a)

dÑ

dt̃
= −1 + δαε−1S̃α|1− νÑ |−1/2(1− νÑ). (S59b)

Given δα � δ . ε, this can be reduced to S̃ = Ñ−n and

dÑ

dt̃
= −1 (S60)

Matching with the flood solution gives Ñ(0) = Nf at the beginning of the recharge
phase, and we have

Ñ = Nf − t̃. (S61)
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At late stages t̃ ∼ Nf in the recharge phase, effective pressure approaches zero and
conduit size S̃ becomes large. A further rescaling is required here, and we see that
the recharge phase really consists of two distinct parts. At the end of the recharge
phase, we expect dissipation in the conduit to reappear at leading order again, as this
will be necessary to restart a flood. We term this stage the flood initiation phase. In
the language of matched asymptotic expansions, the initiation phase give the flood
the structure of a sequence of nested boundary layers, or more specifically, of nested
corner and boundary layers.

These additional layers, as well as the main flood phase of section S4.1, all involve
faster time scales than that of the main recharge phase. Moreover, the recharge phase
lasts until t̃ ∼ Nf , from which the periodicity of the flood cycle at leading order is
t̃ = Nf , or equally, t = Nf/ε. In dimensional terms,

tperiod = Nfc
α/(n+1−α)
1 c

−1/(n+1−α)
2 c

1/(n+1−α)
3 Ψ

(1+2α)/[2(n+1−α)]
0 V n/(n+1−α)

p q−1
in . (S62)

S4.3 Flood initiation

The relevant rescaling to describe the onset of significant dissipation in the conduit
is

N̂ = δ−(α−1)/(αn)Ñ , Ŝ = δ(α−1)/αS̃, t̂ = δ−(α−1)/(αn)(t̃−Nf )

and gives

εδ−(α−1)(n+1)/(αn) dŜ

dt̂
= Ŝα|1− νδ(α−1)/(αn)N̂ |3/2 + 1− Ŝ|N̂ |n−1N̂ , (S63a)

dN̂

dt̂
= −1 + δε−1Ŝα|1− νδ(α−1)/(αn)N̂ |1/2(1− νδ(α−1)/(αn)N̂).

(S63b)

With the constraints (S54), (S56c), we can reduce this to

εδ−(α−1)(n+1)/(αn) dŜ

dt̂
= Ŝα + 1− Ŝ|N̂ |n−1N̂ , (S64a)

dN̂

dt̂
= −1 + δε−1Ŝα. (S64b)

and matching with the main recharge phase solution (S̃, Ñ) = (1/(Nf − tf )n, Nf − tf )
gives

N̂ ∼ −t̂, Ŝ ∼ 1/|t̂|n as t̂→ −∞. (S65)

Now we can see why δ . ε is necessary. If the coefficient of the second term on
the right-hand side of (S64b) were large, we would always be able to find a steady
state solution Ŝα = εδ−1 � 1, |N̂ |n−1N̂ = Ŝ/(1 + Ŝα) = εδ−1(/(1 + εδ−1) ∼ εδ−1,
and it is straightforward to show that this steady state is stable. The system could
therefore settle into this steady state and no further floods would need to occur. We
return to this scenario in section S4.5, where we state a precise lower bound on δε−1

required for the steady state not to be attained.
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There are now two versions of the model that could apply, depending on whether
εδ−(α−1)(n+1)/(αn) is small or not. The former physically corresponds to the conduit
remaining in a pseudo-steady state, with drainage of the reservoir starting to affect
the evolution of N through the outflow term Sα|1− νN |−1/2(1− νN) in (S51). The
latter by contrast allows a lag between effective pressure changes and the evolution of
S, so that the time derivative Ṡ in (S51) potentially features at leading order, while
the lake has not yet begun to drain effectively and the outflow term remains small in
the evolution equation for N .

Consider first the second of these two cases: suppose that εδ−(α−1)(n+1)/(αn) ∼
1. The case εδ−(α−1)(n+1)/(αn) � 1 will be described in section S4.5. Recall from
(S56a) that n ≥ α − 1, in line with typical assumptions in glaciology. In that case
εδ−(α−1)(n+1)/(αn) & 1 implies

δε−1 . δ(n+1−α)/(αn) � 1,

and we are reduced to

εδ−(α−1)(n+1)/(αn) dŜ

dt̂
= Ŝα + 1− Ŝ|N̂ |n−1N̂ , (S66a)

dN̂

dt̂
= −1, (S66b)

Here we can see why we imposed the constraint (S56d). If instead we had εδ−(α−1)(n+1)/(αn) �
1, then (S66) would further reduce to dŜ/ dt̂ = 0, and there would be nothing to pre-
vent N̂ from becoming large and negative. In fact, a further rescaling would become
necessary to capture the initiation of the next flood, which is necessary to allow N to
increase again. Assuming that sustained negative effective pressures are not realistic
and that additional physics is required in that case (Hewitt et al., 2012), we insist
instead on the constraint (S56d).

If therefore εδ−(α−1)(n+1)/(αn) = O(1), we instead expect a solution that has N̂ =
−t̂, with Ŝ satisfying

εδ−(α−1)(n+1)/(αn) dŜ

dt̂
= Ŝα + 1 + Ŝ|t̂|n−1t̂ (S67)

At late times, the right-hand side is dominated by the Ŝα term, and the solution will
experience finite-time blow-up as t̂ approaches some limit t̂→ t̂i, where

Ŝ ∼ ε1/(α−1)δ−(n+1)/(αn)

[(α− 1)(t̂i − t̂)]1/(α−1)
, N̂ ∼ −t̂i. (S68)

With the initial conditions given by (S65), the time t̂i depends purely on the remaining
model parameter εδ−(α−1)(n+1)/(αn), and therefore so does the final value of N̂ . The
relationship between

N̂c = −t̂i
and εδ−(α−1)(n+1)/(αn) can be computed numerically by integrating the system (S66)
and is shown in figure S1 for n = 3 and α = 5/4. As we expect, growth of the
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Figure S1: The finite-time blow-up value N̂c plotted against εδ−(α−1)(n+1)/(αn) for
α = 5/4 and n = 3.

solution Ŝ takes a longer time for larger εδ−(α−1)(n+1)/(αn), leading to progressively
more negative N̂c.

Importantly, there is a critical value γc of εδ−(α−1)(n+1)/(αn) when we first see N̂c

become negative; as we will see below, N̂c is the smallest effective pressure during the
flood cycle, so this threshold corresponds to the parameter regime in which negative
effective pressures first appear. For the parameter values α = 5/4 and n = 3,

γc = 0.25.

In terms of the original, unscaled parameters, the threshold for negative effective
pressures is at leading order

qin = γcc
(n+1)/(αn)
1 c

−1/n
2 c

(n+1)/(αn)
3 Ψ

3(n+1)/(2αn)
0 (ubhr)

−(α−1)(n+1)/(αn)Vp, (S69)

with smaller values of qin maintaining positive effective pressures throughout the limit
cycle. As we show in the main text, this generally underestimates the value of qin at
which effective pressures first appear.

To see that N̂c = −t̂i is the minimum effective pressure in the flood cycle, and
to complete the description of the cycle, we have to recognize that finite-time blow-
up actually corresponds to Ŝ becoming large as part of the runaway growth of the
channel at the start of the next flood. Channel size does not actually become infinite:
the next flood itself must instead be described by a further rescaling that captures
again the draining of stored water, which allows effective pressure to increase again
and stops channel size from becoming infinite. This leads us back to the flood phase
described in section S4.1.

S4.4 Flood initial conditions and uniqueness of the flood so-
lution

The rescaling mentioned above must ultimately recover the original variables (S,N).
However, proper matching of effective pressure changes requires that we do not go
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immediately to the full flood phase variables, but introduce a further two layers
in which conduit size already undergoes runaway growth while effective pressure is
beginning to be affected by drainage through the rapidly opening channel.

The first of these is a corner layer in which the (S,N) orbit crosses the N -nullcline,
allowing effective pressure to start increasing again. Put

S̆ = (δε−1)Ŝ, N̆ = N̂ , T̆ = δ(α−1)/(αn)ε−1/α(t̂− t̂i). (S70)

Note that

ε−1/αδ(α−1)/(αn) = (εδ−(α−1)(n+1)/(αn))−1/αδ−(α−1)(n+1−α)/(α2n),

which is large in the parameter regime under consideration, so T̆ is a fast time scale
comapred with t̂. We obtain

dS̆
dT̆

=S̆α
∣∣∣1− νδ(α−1)/(αn)N̂

∣∣∣3/2 + δε−1
(

1− S̆|N̆ |n−1N̆
)

; (S71a)

ε−1/αδ(α−1)/(αn) dN̆
dT̆

=− 1 + S̆α
∣∣∣1− νδ(α−1)/(αn)N̂

∣∣∣1/2 (1− νδ(α−1)/(αn)N̂
)

(S71b)

subject to matching with the solution (S66), so

S̆ ∼ [(α− 1)(−T̆ )]−1/(α−1), N̆ ∼ N̂c − ε−1/αδ−(α−1)/(αn)T̆ (S72)

as T̆ → −∞. We expand

N̆ ∼ N̂c + ε1/αδ−(α−1)/(αn)N̆1. (S73)

With this expansion, we obtain

dS̆
dT̆

=S̆α, (S74a)

dN̆1

dT̆
=− 1 + S̆α (S74b)

with solution

S̆ ∼ [(α− 1)(−T̆ )]−1/(α−1), N̆1 = −T̆ + [(α− 1)(−T̆ )]−1/(α−1). (S75)

The corner layer describes the change in sign of dN̆ / dT̆ that happens as the
orbit crosses the nullcline; this is the lake highstand. While this corresponds to an
O(1) change in the derivative, it involves only a higher order change in N̆ itself. To
describe the increase in effective pressure itself, we require a further rescaling of the
time variable

S̆ = S̆ = (δε−1)Ŝ, N̆ = N̆ = N̂ ,

t̆ = δ−(αn+1)(α−1)/(αn)ε(α−1)+1/αT̆ = (δε−1)−(α−1)(t̂− t̂i). (S76)
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Note that

δ−(αn+1)(α−1)/(αn)ε(α−1)+1/α = εδ−(n+1)(α−1)/(αn)(εδ−1)(α−1)2/α

and this is large under the assumed parameter regime, so t̆ is fast compared with T̆ .
From (S63) and using the constraints (S56), this yields at leading order

εδ−(α−1)(n+1)/(αn) dS̆

dt̆
= S̆α, (S77a)

dN̆

dt̆
= S̆α (S77b)

with matching conditions with (S68) being

S̆ ∼ ε1/(α−1)δ−(n+1)/(αn)

[(α− 1)(−t̆)]1/(α−1)
, N̆ ∼ N̂c (S78)

The solution for S̆ remains simply equal to ε1/(α−1)δ−(n+1)/(αn)/[(α − 1)(−t̆)]1/(α−1),
while N̆ = εδ−(α−1)(n+1)/(αn)S̆ − t̂i. We still have finite time blow-up at t̆ = 0, with
behaviour as t̆→ 0− of

S̆ ∼ ε1/(α−1)δ−(n+1)/(αn)

[(α− 1)(−t̆)]1/(α−1)
, N̆ ∼ εδ−(α−1)(n+1)/(αn)S̆ (S79)

Finally, to describe the full flood including termination, we need to return to the
original scaled variables. The relevant rescaling is

S = εδ−(α−1)/αS̆, N = δ(α−1)/(αn)N̆ , t = ε−αδ(α−1)(1+αn)/(αn)t̆. (S80)

This retrieves the original version of the model (S51) and hence the leading order
flood-stage version (S57). Matching with the solution (S79) corresponds to

N ∼ S ∼ [(α− 1)(−t)]−1/(α−1) as t→ −∞. (S81)

This is the set of initial conditions that formally must be satisfied by the solution to
(S57) and, as discussed, then provides the end-of-flood effective pressure Nf . Note
however that asymptotic matching here makes use of δ(α−1)/(αn) � 1 when matching
N and N̆ , meaning N → 0 as t→ −∞. As discussed in section S4.1, in practice the
exponent (α− 1)/(αn) is small, and the separation of scales is weak.

Persisting with the formal asymptotic result, Nf is the only parameter in the
recharge phase solution (S61), and dictates the repeat period. In other words, if
matching with (S79) defines a unique solution to the flood problem (S57), our asymp-
totic limit cycle solution is complete as both, the flood and the recharge phase solu-
tions are then unique.

Therefore the only important quality we still need to establish is therefore that
the set of initial conditions (S81) defines a unique solution to (S57) and hence a
unique final effective pressure Nf . Let P = N/S, and switch to (S, P ) as dependent
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variables. From (S81), we see that S → 0 while P ∼ 1 remains bounded as t→ −∞;
the impotrance of introducing the corner layer (S77) is that it permits us to say not
only that N → 0 for t→ −∞ (as we could have gleaned from (S68)), but that N/S
cannot diverge either. This change of variables turns (S57) into

Ṡ = Sα−1
[
S|1− νSP |3/2 − Sn+2−α|P |n−1P

]
(S82a)

Ṗ = Sα−1
[
|1− νSP |−1/2(1− νSP )− |1− νSP |3/2P + Sn+1−α|P |n+1

]
(S82b)

The solution must now approach the fixed point of the system (S82) at (S, P ) = (0, 1)
(note that to identify this as a fixed point, we require again the constraint (S56a)). We
therefore need to determine whether orbits that approach this fixed point as ζ → −∞
are unique. The prefactor Sα−1 can be absorbed into a new-time like variable ζ by
defining

dt

dζ
= S−(α−1), (S83)

which leads to

dS

dζ
= S|1− νSP |3/2 − Sn+2−α|P |n−1P (S84a)

dP

dζ
= |1− νSP |−1/2(1− νSP )− |1− νSP |3/2P + Sn+1−α|P |n+1 (S84b)

It is straightforward to show by linearizing about this fixed point as S = S ′, P = 1+P ′

that it is a saddle point with

S ′ζ ∼ S ′, P ′ζ ∼ −P ′.

The unstable manifold of this saddle point is therefore a unique orbit that approaches
this fixed point as ζ → −∞ (Wiggins, 2003).

From the above, we also get S ∼ exp(ζ) as ζ → −∞,. It can then be confirmed
that the limit ζ → −∞ does correspond t → −∞ (rather than t reaching a finite
limit), with S behaving as S ∼ [−α(t− t0)]−1/(α−1) for some t0. To match successfully
as required by (S81), we require t0 = 0, and this fixes the time origin along the unique
orbit that connects into the fixed point (S, P ) = (0, 1), and we obtain a unique flood
solution.

S4.5 The initiation phase revisited

We pursued the flood initiation problem in section S4.3 in the limit εδ−(α−1)(n+1)/(αn) =
O(1). We can also do the same for εδ−(α−1)(n+1)/(αn) � 1 but allow δε−1 = O(1) in
(S64). The flood initiation phase then becomes even more complicated (with no fewer
than three nested corner and boundary layers) but still leads to the same matching
conditions (S81) at the beginning of the flood phase, and a unique asymptotic limit
cycle solution.
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Figure S2: Phase plane solution for the full system (S51) (black) plotted against the
asymptotic solution (coloured lines, ε = 9.60 × 10−4, δ = 7.33 × 10−10, ν = 0.156,
α = 5/4, n = 3. Top bottom panel shows the same results as the top, but adopts
logarithmic horizontal scale with an offset of 0.246 to avoid negative values of the
abscissa. Dashed lines show the nullclines. Blue is the flood phase solution (S57),
magenta the reharge phase (S59), red the flood initiation phase (S66), light blue the
corner layer (S74) and green the early channel growth phase (S77).
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Figure S3: Phase plane solution for the full system (S51) (black) plotted against the
asymptotic solution (coloured lines, ε = 2.92 × 10−4, δ = 7.33 × 10−10, ν = 0.156.
Same plotting scheme as figure S2, but without the horizontal offset in the bottom
panel. Note that all asymptotic solutions but the flood phase agree well with the
solution of the full model in the region where they are valid; this is because the flood
phase formally satisfies the boundary conditions (N,S)→ (0, 0) as t→ −∞, but the
order of the omitted term is δ(α−1)/(αn) ∼ 0.246 despite having δ ∼ 10−10. The reason
for the apparently good agreement in figure S2 is in fact that the solution shown there
corresponds to N̂c = 0, so that N = 0 at the beginning of the flood phase is a good
approximation.
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We only sketch this very briefly here. At leading order, (S64) becomes

0 = Ŝα + 1− Ŝ|N̂ |n−1N̂ , (S85a)

dN̂

dt̂
= −1 + δε−1Ŝα. (S85b)

(S85a) defines Ŝ implicitly as a function of N̂ . Where it exists, this function has two
branches. We must pick the cavity-like branch on which Ŝ is a decreasing function of
N̂ to match with the the recharge phase solution through (S65). This is also required
in order to obtain a stable solution that justifies the neglect of the time-derivative on
the right-hand side of (S64a). (S85b) then takes the form of a first-order ordinary
differential equation in N̂ , and this will evolve towards a stable steady state with
Ŝα = εδ−1 if the latter exists.

Such a steady state would prevent repeated floods. The steady state need not
exist, however, as there need not be a value of N̂ for which Ŝα = εδ−1 with Ŝ on the
cavity-like solution branch. The solution to (S85a) ceases to exist when the minimum
with respect to Ŝ of the right-hand side of (S85a) is positive, which occurs when
N̂n > N̂n

c := α/(α − 1)(α−1)/α. Cavity-like solutions for Ŝ are all smaller than the
critical value Ŝc := (α− 1)−1/α attained at N̂ = N̂c. Repeated floods therefore occur
if

Ŝαc = 1/(α− 1) < εδ−1. (S86)

We will assume this to be the case.
As the (saddle-node) bifurcation point in (S85a) is approached, we have to switch

to a faster time scale to capture the rapid enlargement of the conduit through wall
melting that occurs once N̂ drops low enough. Let t̂c be the time at which the reduced
system (S85) would attain (Ŝ, N̂) = (Ŝc, N̂c). The relevant rescaling to capture the
first stage in that enlargement, when ongoing reduction in effective pressure is an
important factor in starting the process, is

Š = ε−1/3δ(α−1)(n+1)/(3αn)(Ŝ − Ŝc), Ň = ε−2/3δ2(α−1)(n+1)/(3αn)(N̂ − N̂c),

ť = ε−2/3δ2(α−1)(n+1)/(3αn)(t̂− t̂c). (S87)

At leading order, the problem (S63) becomes under this rescaling

dŠ

dť
= α(α− 1)Ŝα−2

c Š2 − nŜc|N̂c|n−1Ň (S88a)

dŇ

dť
= −1 + δε−1Ŝαc (S88b)

with matching conditions as ť→ −∞ being Š ∼ [nα−1(α − 1)−1Ŝ3−α
c |N̂c|n−1]1/2Ň1/2

where Ň ∼ −
(

1− δε−1Ŝαc

)
ť

With (S86), it is clear that Ň simply decreases linearly on this timescale, and that
the quadratic term in Š in (S88a) will eventually dominate, leading once more to a
solution with finite-time blow-up, this time behaving as

Š ∼ [α(α− 1)(ťb − ť)]−1. (S89)
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Of course, this again means simply that we need a further rescaling as the blow-up
time ťb is approached. Note that Š represents a perturbation around the critical
conduit size Ŝc; the rescaling must represent O(1) changes in S due to dissipation in
the conduit, but happening on a faster time scale than ť. The relevant rescaling is

Ś = Ŝ, Ń = N̂ , t́ = ε−1/3δ(α−1)(n+1)/(3αn)(ť− ťb)

which leads to, at leading order,

dŚ

dt́
= Śα + 1− Ś|Ń |n−1Ń , (S90a)

dŃ

dt́
= 0. (S90b)

Matching with the solution of (S88) gives Ś ∼ Ŝc + [α(α − 1)(−t́))]−1, Ń ∼ N̂c as
t́→ −∞. Hence Ń = N̂c throughout, and the layer (S88) simply describes the initial
growth of the solution of the system (S90) away from its fixed point (Ś, Ń) = (Ŝc, N̂c).
Note that the orbit crosses the nullcline in this layer, which occurs (a a higher order
correction to dŃ/ dt́) when Śα = εδ−1 > Ŝαc .

Ś still exhibits finite time blow-up, this time as Ś ∼ [(α − 1)(−t́)]1/(α−1). We
formally need an initial growth layer analogous to (S77), in which effective pressure
actual starts to grow as a result of drainage through the growing channel, to match
fully with the flood solution in section S4.1 as was done in section S4.4 for the case
εδ−(α−1)(n+1)/(αn) = O(1). The last rescaling necessary to make this work is

S̀ = δ(n+1−α)/(αn)Ś, Ǹ = Ń , t̀ = δ(n+1−α)(α−1)/(αn)t́. (S91)

At leading order, this yields

dS̀

dt̀
= S̀α, (S92a)

dǸ

dt̀
= S̀α. (S92b)

with matching conditions S̀ ∼ [(α − 1)(−t̀)]1/(α−1), Ǹ ∼ N̂c; this initial growth layer
has a solution behaving as S̀ ∼ [(α− 1)(−t̀)]1/(α−1), Ǹ ∼ S̀ as t̀→ 0−. This leads to
the same matching conditions (S81) with the flood problem as before, ensuring again
a unique flood solution.

S5 An unrealistic solution: flood cycles with large

water supply

Key to our asymptoric solution in the previous section was the small water supply
ε, relative to the size of the water reservoir. As discussed, even relatively moderate
ε ∼ δ(n+1)(α−1)/(αn) can lead to effective pressures becoming negative, for which the
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underlying model is not designed. In this section, we discuss briefly what happens
formally in the model if we put δ . 1 (relaxing the previous requirements) but impose
ε � 1. This is the limit of large water supply rates; in terms of the original scaling
of section S2.2, we require

q∗in � V ∗p
αn/(n+1−α).

The appropriate rescaling becomes

N = ε1/(n+1)N , S = ε1/αS, t = ε−n/(n+1)T . (S93)

Substituting in (S51),

dS
dT

=ε−(n+1−α)/[α(n+1)]Sα
∣∣1− νε1/(n+1)N

∣∣3/2 + δε−(αn+n+1)/[α(n+1)] − S |N |n−1N
(S94a)

dN
dT

= −1 + Sα
∣∣1− νε1/(n+1)N

∣∣−1/2 (
1− νε1/(n+1)N

)
(S94b)

We expect that the lumped model remains accurate only if the O(νε1/(n+1)) pressure
gradient terms stay small, which imposes the stronger restriction

ν � ε−1/(n+1) (S95)

or, in terms of the scalings of section S2.2,

V ∗p L
∗ � q∗in.

This can be compared with the similar restriction (S55) of section S4: by contrast
with the latter, we now have a better approximation of the pressure gradient for fixed
system size L∗ if V ∗p is larger. For fixed V ∗p , the approximation eventually breaks
down as water supply q∗in is increased.

Suppose that (S95) holds to all orders required below. In this case, we can sketch
out the relevant solution structure. At leading order,

dS
dT

=− S |N |n−1N ,

dN
dT

=Sα − 1.

Defining a new variable
ζ = log(S), (S96)

we obtain the Hamiltonian system

dζ

dT
= −∂H

∂N
, (S97a)

dN
dT

=
∂H

∂ζ
, (S97b)

H(ζ,N ) =
1

n+ 1
|N |n+1 − ζ + α−1 exp(αζ). (S97c)
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H is convex with isolines that form closed loops; these are the orbits followed by
(ζ,N ) at leading order. The problem is not truly Hamiltonian of course; rather, its
value H(T ) = H(ζ(T ),N (T )) evolves slowly. Retaining higher order terms except
those that are small by (S95), multiplying (S94a) by S−1∂H/∂ζ yields

∂H

∂ζ

dζ

dT
= −∂H

∂N

∂H

∂ζ
+ ε−(n+1−α)/[α(n+1)]

{
exp[(α− 1)ζ] + δε−1 exp(−ζ)

} ∂H
∂ζ

(S98)

while multiplying (S94b) by ∂H/∂N gives

∂H

∂N
dN
dT

=
∂H

∂ζ

∂H

∂N
. (S99)

Hence, by adding,

∂H
∂T

=ε−(n+1−α)/[α(n+1)]
[
exp[(α− 1)ζ) + δε−1 exp(−ζ)

] ∂H
∂ζ

(S100)

=ε−(n+1−α)/[α(n+1)]
[
exp[(2α− 1)ζ]− exp[(α− 1)ζ] + δε−1 {exp[(α− 1)ζ]− exp(−ζ)}

]
.

(S101)

To capture the slow change in H implied by this, we have to go to higher order,
defining a slow time variable T through

T = ε(n+1−α)/[α(n+1)]T

and expanding
H = H0 + ε(n+1−α)/[α(n+1)]H1.

We apply a standard multiple scales expansion: we write all dependent variables
explicitly as functions of T and T , and hence replace the ordinary derivative with
respect to T by

d

dT
=

∂

∂T
+ ε−(n+1−α)/[α(n+1)] ∂

∂T
Then

∂H0

∂T
+
∂H1

∂T
= exp[(2α−1)ζ]−exp[(α−1)ζ]+δε−1 {exp[(α− 1)ζ]− exp(−ζ)} (S102)

Note that the δε−1 terms are apparently small; we retain them for reasons that will
become apparent shortly.

As is standard in multiple scales problems (Holmes, 1995), we treat T and T
as independent and require that all dependent variables are bounded functions of
the inner variable T . In the present case, we know that they are periodic with the
period tp given by the periodicity of the leading order solution. Defining an averaging
operator

〈·〉 =
1

tp

∫ tp

0

· dT ,

we can conclude that 〈
dH1

dT

〉
= 0
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and, with the leading order Hamiltonian H0 independent of T ,

dH0

dT
= 〈exp[(2α− 1)ζ]〉 − 〈exp[(α− 1)ζ]〉+ δε−1 {〈exp[(α− 1)ζ]〉 − 〈exp(−ζ)}〉 .

(S103)
The point is that the terms on the right-hand side, averaged over a single orbital

period as indicated, are functions of H0 only at leading order: the shape of the orbit
is all that matters, and is determined uniquely by the value H0 of the Hamiltonian
and the parameters of the model. We know that H(ζ,N ) = H0, so implicitly we can
find a multivalued function F such that

N = F (H0, ζ) = ±(n+ 1)1/(n+1)
(
H0 + ζ − α−1 exp(αζ)

)1/(n+1)
. (S104)

Trivially, H is unchanged by changing the sign of N , and the orbit is symmetric about
the N -axis. Therefore it suffices to take the averaging integrals in (S103) over half
the orbit and multiply by two, allowing us to pick for instance the ‘+’ sign in ‘±’ in
(S104). With that choice, ζ decreases along the relevant half of the orbit from ζ+ to
ζ−, where both are roots of H0 + ζ± − α−1 exp(αζ±) = 0. In the averaging integral,
we can therefore use rdζ/ dT = −∂H

∂N
to write

〈G(ζ,N)〉 =− 2

tp

∫ ζ−

ζ+

G(ζ, F (H0, ζ))

(
∂H

∂N

)−1

dζ

=
2

tp

∫ ζ+

ζ−

G(ζ, F (H0, ζ))

(n+ 1)n/(n+1) (H0 + ζ − α−1 exp(αζ))n/(n+1)
dζ, (S105)

where, by a similar construction

tp = 2

∫ ζ+

ζ−

(
∂H

∂N

)−1

dζ = 2

∫ ζ+

ζ−

dζ

(n+ 1)n/(n+1) (H0 + ζ − α−1 exp(αζ))n/(n+1)
.

(S106)
It should be self-evident that the averaging integral therefore depends on H0 and the
parameters of the model only.

Equation (S103) therefore becomes a first-order ordinary differential equation in
H0(T ). We can show that it has a stable fixed point by showing that the right-
hand side changes from positive to negative somewhere as H0 increases. We do so
by computing the asymptotic limits of the terms on the right-hand side of (S103) for
small and large H0; this also allows us to show that the fixed point occurs because of
the retained O(δε−1) terms and occurs when H0 is logarithmically large in ε/δ.

We can first show that H0 must grow when small, by showing that

〈exp[(2α− 1)ζ]〉 − 〈exp[(α− 1)ζ]〉 = 〈exp((2α− 1)ζ)− exp((α− 1)ζ)〉 . (S107)

is then positive. For H0 small, ζ must also remain small by (S104), and we have
H0 + ζ −α−1 exp(αζ) ∼ H0−αζ2/2. Hence ζ± ∼ ±(2α−1H0)1/2 as well as exp((2α−
1)ζ)− exp((α− 1)) ∼ αζ. Putting ζ = (2α−1H0)1/2z, the averaging integrals become∫ ζ+

ζ−

exp[(2α− 1)ζ]− exp[(α− 1)ζ]

(n+ 1)n/(n+1) (H0 + ζ − α−1 exp(αζ))n/(n+1)
dζ ∼
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2(n+ 1)−n/(n+1)H
1−n/(n+1)
0

∫ 1

−1

z dz

(1− z2)n/(n+1)
, (S108)

and similarly

tp ∼ 2(2α−1)1/2(n+ 1)−n/(n+1)H
1/2−n/(n+1)
0

∫ 1

−1

dz

(1− z2)n/(n+1)
, (S109)

and the right-hand side of (S103) is positive, meaning that the fixed point H0 =
0 is unstable and H0 grows as expected. (Note that it is possible to show that
the remaining O(δε−1) terms in (S103) terms are in fact the expression in (S107)
multiplied by the small parameter δε−1 at leading order in small H0, and therefore
do not affect the sign of the right-hand side of (S103).)

To show that the resulting growth is bounded, we need to look at the right-hand
side of (S103) in the limit of large H0. Recall that all the averaged terms are of the
form 〈exp(mζ)〉. For m > 0, we can define a new variable as y = H−1

0 α−1 exp(αζ).
At leading order in H0, the integral is dominated by the contribution from near the
upper limit, and

〈exp(mζ)〉 ∼ 2t−1
p m−1αm/α(n+1)−n/(n+1)H

m/α−n/(n+1)
0

∫ 1

0

dy

(1− yα/m)
n/(n+1)

. (S110)

For m < 0, the dominant contribution instead comes from the lower limit. We put
ζ = −H0 + y′, giving at leading order

〈exp(mζ)〉 ∼ 2t−1
p (n+ 1)−n/(n+1) exp(−mH0)

∫ ∞
0

exp(−my′) dy′

y′n/(n+1)
. (S111)

tp can similarly be computed, but doing so requires contributions from both limits
of integration to be accounted for. The result is however immaterial since all the
averaged terms on the right-hand side of (S103) share the same factor 2t−1

p . For large
H0, the right-hand side of (S103) is therefore dominated by the first and third terms,
with

∂H0

∂T
∼ t−1

p

[
C1(α, n)H

(2α−1)/α−n/(n+1)
0 − δε−1C2(n) exp(H0)

]
(S112)

where C1 and C2 are positive functions of the parameters only.
The exponent on H0 in the first term is positive since α > 1, n > 1, and it becomes

apparent that the right-hand side changes sign at a value of H0 that is logarithmically
large in δ−1ε, specifically when H

−(2α−1)/α+n/(n+1)
0 exp(H0) ∼ δ−1ε; this is the reason

why we retained the formally small δε−1 terms in (S103). Mathematically, the change
in sign ensures a stable fixed point and bounded growth. Physically, we see that
bounded growth still requires the cavity opening mechanism (which scales as δ) to
be present even in the parameter limit of large water supply, where oscillations are
rapid and their amplitude changes only slowly.

Still, the solution we have just constructed remains physically entirely unrealistic.
The exercise we have gone through was merely designed to show that the we do
obtain a bounded solution, with a moderately large value of the Hamiltonian H0. The
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reason why this is physically unrealistic actually resides in the rescaling (S93) and the
structure of the Hamiltonian system (S97): in these solutions, the effective pressure N
becomes large and, crucially, oscillates rapidly between negative and positive values,
since at leading order, conduit evolution is driven entirely by changes in effective
pressure and the melt-driven channel growth term is a higher order correction. These
large and negative values of N are not likely to be sustained by a real glacial system,
since they should imply flotation of the ice.

S6 Distributed storage

Above, we have formulated and analyzed a model for a single reservoir, for which Nye’s
instability predicts the onset of oscillations when the conduit becomes channel-like.
In Schoof et al. (2014, section 5), the case of spatially spread-out storage capacity,
for instance in the form of numerous basal crevasses arrayed along the flow path, was
considered in addition to a single reservoir, A numerical linear stability analysis was
used to demonstrate that instability can also occur for cavity-like conduits (which are
generally stable for a single reservoir) for the case of such distributed water storage.
As in the case of a single reservoir, Schoof et al. (2014) find that there is a finite range
of values qin for which instability then occurs, only that this extends to lower values
of qin, where the conduit is cavity-like.

Here we build on the analysis in section S3 to shed further light on their resultts.
The model used in Schoof et al. (2014) was

∂v(N)

∂t
+
∂q

∂x
= 0, (S113a)

∂S

∂t
= c1qΨ + vo(S)− vc(S,N), (S113b)

q = q(S,Ψ), (S113c)

Ψ = Ψ0 +
∂N

∂x
, (S113d)

where v(N) is a decreasing function of N that describes storage of water per unit
length of the conduit, and the rest of the notation used replicates that of the single-
reservoir model (S1). Below, we will denote by

vp = − dv

dN
, (S114)

the equivalent of Vp in (S1). This model also requires boundary conditions; an obvious
choice is a prescribed flux q = qin at the inflow x = 0, with no actual reservoir there,
and again N = 0 at the terminus x = L.

In order to take advantage of the work already done in section S3, we adopt an
analytical approach to understanding the instabilities of this modified drainage model,
complementing the numerical stability analysis of Schoof et al. (2014) and providing
additional insight into the feedbacks involved.
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Figure S4: S, N and the Hamiltonian H0 plotted against the inner time variable T
for ε = 131.5, δ = 1.32× 10−4 and ν = 6.7× 10−3, α = 5/4, n = 3 from a solution of
the full model (S51). The oscillations at the inner time scale are hard to distinguish;
the period of the final limit cycle is 5.45. Note that the Hamiltonian H0 still oscillates
in time, but with a far lower amplitude than S or N ; this reflects the higher order
correction.
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With a finite domain size and the proposed boundary conditions above, a steady
state solution to (S113) will in general have spatial structure as in Schoof et al. (2014),
and a linearization around that steady state will lead to a boundary value problem
with non-constant coefficients that is not amenable to a closed-form solution. To
avoid this, we concentrate here on shorter length scales, and assume that we can
use (S113) with periodic boundary conditions at these scales. This yields a spatially
uniform steady state solution defined implicitly by

c1q̄Ψ̄ + vo(S̄)− vc(S̄, N̄), (S115a)

q̄ = q(S̄, Ψ̄), (S115b)

Ψ̄ = Ψ0. (S115c)

where q̄ is assumed to be prescribed. Note that this is closely analogous to (S14) but
simpler, as the hydraulic gradient here does not contain the gradient term retained
in (S14c).

Linearizing as N = N̄ +N ′ exp(ikx+ λt), S = S̄ + S ′ exp(ikx+ λt), we find

−v̄pλN ′ + ikqSS
′ − k2qΨN

′ = 0, (S116a)

λS ′ − (c1qSΨ̄ + vo,SS
′ − vc,S)S ′

−
[
ikc1(qΨΨ̄ + q̄)− vc,N

]
N ′ = 0. (S116b)

The eigenvalue λ satisfies a quadratic of the form (S16), with solution (S18), but now
with a1 and a2 given by

a1 = (c1qSΨ̄ + vo,S − vc,S)− v̄−1
p k2qΨ (S117a)

a2 = v̄−1
p

{
k2 [c1qS q̄ + qΨ(vc,S − vo,S)] + ikqSvc,N

}
(S117b)

The only term that differs intrinsically from (S17) is a2, which now has an imaginary
part. We see that the real part of a2 is still invariable positive, so the real part of
a1− 4a2 is smaller than a1. However, we can no longer conclude that the real part of
λ has the same sign as a1 except in appropriate limits.

For short wavelengths (large k), the system is stable with <(λ) < 0: the two
limiting forms of the two eigenvalues are

λ1 ∼ −v̄pqΨk
2, λ2 ∼ −

c1qSq + qΨ(vc,S − vo,S)

qψ
,

and the assumptions about qψ, qS, vo,S and vc,S in (S12)–(S13) ensure that both of
these expressions are negative. Limited storage over short length scales prevents large
variations in water discharge and prevents short-wavelength disturbances in conduit
size and effective pressure from growing.

Conversely, at sufficiently large wavelengths (small k), we have a1 ∼ (c1qS +vo,S−
vc,S), a2 ∼ O(k), and a channel-like conduit will be unstable with one eigenvalue
behaving as λ ∼ (c1qS + vo,S − vc,S), while a cavity-like conduit is stable at long
wavelengths. This is simply Nye’s instability at work. Clearly, then, there is a
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critical wavelength at which a channel-like conduit with distributed water storage
will become unstable (since it is stable at short wavelengths and unstable at long
wavelengths), and the critical wavelength is determined by the various parameters
in the model. How large that wavelength is matters, because we have assumed in
setting up our stability analysis that we are looking at only a relatively small part of
the domain, with periodic boundary conditions. If the critical wavelength approaches
the full domain size L, our simplified analysis breaks down, and the instability is no
longer guaranteed to occur. This is consistent with figure 7 of Schoof et al. (2014),
where channel-like conduits eventually become stable for large enough water supply
rates.

Notably, the critical wavelength for instability of channel-like conduits will depend
on storage capacity v̄p. The more storage capacity there is, the smaller all the terms
containing k are in (S117) for a given wavenumber k, and the more likely the first term
(c1qS + vo,S − vc,S) in the definition of a1 is to dominate the eigenvalue λ, leading to
instability for a channel-like system. To increase the size of the potentially stabilizing
terms therefore requires larger wavenumbers k, and therefore a larger range of short
wavelengths is likely to be unstable. Although we are not able to address a system of
finite length directly with this approach, our results indicate that systems of limited
size may remain stable if storage capacity is sufficiently limited, and this is confirmed
by Schoof et al. (2014).

However, an interesting possibility is left open by (S117). Even if the conduit is
cavity-like with (c1qS + vo,S − vc,S) < 0 and therefore a1 < 0, it may still be possible
to have an eigenvalue with positive real part and hence instability. This is the case
because a2 has a non-zero imaginary part.

One particular case in which an instability due to this term may occur is with lim-
ited storage capacity (so v̄−1

p is large) and at an intermediate wavelengths range (so k is
small but not too small). To be definite in identifying that parameter regime, suppose
we scale the model; with the constitutive relations (S3), this is done by defining scales
[S], [N ], [q], [x] and [t] through c3[S]α[Ψ]1/2 = [q], [S]/[t] = c1c3[S]α[Ψ]3/2 = c2[S][N ]n,
[Ψ] = [N ]/[x] = Ψ0 and a constraint on v([N ]) through the prescribed quantity of
water in the system. Dimensionless variables are then N∗ = [N ]−1N , S∗ = [S]−1S,
q∗ = [q]−1q, x∗ = [x]−1x, t∗ = [t]−1t. Dropping asterisks, the model then becomes
(S113) with (S3) but with periodic boundary conditions, and with c1 = c2 = c3 = 1
and Ψ0 = 1. The stability analysis applies as stated, and the derivatives qS, qΨ, vc,S,
vc,N and vo,S are O(1) quantities. v̄p is replaced by a dimensionless counterpart

ṽp = vpc
(n+2)/n
1 c

−2/n
2 c

(2−n)/α
3 q̄

′2(α−1)−n]/α|

×Ψ
(2αm+4α+2−n)/(2αn)
0 ,

and k as well as λ are scaled wavenumbers and growth rates.
We can make a cavity-like conduit unstable provided k � 1 and ṽp � k3, that

is, by picking moderately small wavenumbers and very small but non-zero storage
capacities. Whether such a parameter regime is realized in practice is of course again
dependent not only on the storage parameter but on the actual domain size, since
the analysis here somewhat spuriously assumes a quasi-periodic domain.
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With the assumptions we have just made, a2 ∼ iṽ−1
p kqSvc,N and a2

1 − 4a2 ∼
[(qS + vo,S − vc,S) − ṽ−1

p k2qΨ]2 − i4ṽ−1
p kqSvc,N . From our constraints on ṽp and k,

k � 1 and ṽ−1
p k � ṽ−2

p k4 so

a2
1 − 4a2 ∼ −4iṽ−1

p kqSvc,N .

Then we have

λ =
1

2

(
a1 ±

√
a2

1 − 4a2

)
∼1

2

[
(qS + vo,S − vc,S)− ṽ−1

p k2qΨ ± (1− i)
√

2ṽ−1
p kqSvc,N

]
But with our assumptions on k and ṽp, this is

λ ∼ ±(1− i)
√
ṽ−1
p kqSvc,N

2
(S118)

Choosing the + sign ensures an eigenvalue with positive real part. Importantly, this
instability corresponds to a growing wave that propagates, in this case downstream
as the imaginary part of λ is then negative. It is also of the same size as the real part,
so propagation is not slow. This unstable wave is not the result of Nye’s instability
as the conduit is cavity-like. Instead, it is the result of an interaction between the
dependence of the conduit closing rate on effective pressure and the dependence of
water drainage (which affects effective pressure through water storage) on conduit
size: the dominant balance that underpins it is

∂S ′

∂t
∼ vc,NN

′, (S119a)

−v̄p
∂N ′

∂t
+ qS

∂S ′

∂x
∼ 0, (S119b)

where the perturbed conduit evolution does not include the melting term c1qΨ at all.
Equations (S119) can be combined into the single ‘diffusion’ equation v̄p∂

2N ′/∂t2 −
qsv
−1
c,N∂N

′/∂x ∼ 0, except that the roles of time t and space x have been reversed.
We can identify the positive feedback causing growth as a the result of a phase lag,
where S ′ leads N ′ in phase and thus ensures that ∂S ′/∂x is positive where N ′ has a
maximum, therefore ensuring that ∂N ′/∂t is also positive.

Naturally, this sketch is incomplete, as the ‘diffusion’ problem with the roles of x
and t reversed is not well-posed. The growth rate in (S118) grows unboundedly as
wavelength k−1 approaches zero, which is a clear sign something is amiss. The discus-
sion above was merely designed to identify a positive feedback that can drive growth;
a negative feedback is necessary to ensure there is a fastest growing wavelength and
that short wavelengths are damped as already discussed.
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