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Abstract. Firn densification modelling is key to under-
standing ice sheet mass balance, ice sheet surface elevation
change, and the age difference between ice and the air in en-
closed air bubbles. This has resulted in the development of
many firn models, all relying to a certain degree on param-
eter calibration against observed data. We present a novel
Bayesian calibration method for these parameters and apply
it to three existing firn models. Using an extensive dataset
of firn cores from Greenland and Antarctica, we reach op-
timal parameter estimates applicable to both ice sheets. We
then use these to simulate firn density and evaluate against in-
dependent observations. Our simulations show a significant
decrease (24 % and 56 %) in observation–model discrepancy
for two models and a smaller increase (15 %) for the third.
As opposed to current methods, the Bayesian framework al-
lows for robust uncertainty analysis related to parameter val-
ues. Based on our results, we review some inherent model
assumptions and demonstrate how firn model choice and un-
certainties in parameter values cause spread in key model
outputs.

1 Introduction

On the Antarctic and Greenland ice sheets (AIS and GrIS),
snow falling at the surface progressively compacts into ice,
passing through an intermediary stage called firn. The pro-
cess of firn densification depends on local conditions, pri-
marily the temperature, the melt rate and the snow accumu-
lation rate, and accurate modelling of densification is key to
several applications in glaciology. Firstly, variability in firn

densification affects altimetry measurements of ice sheet sur-
face elevation changes. Consequently, uncertainties in mod-
elled densification rates have a direct impact on mass bal-
ance estimates, which rely on a correct conversion from mea-
sured volume changes to mass changes (Li and Zwally, 2011;
McMillan et al., 2016; Shepherd et al., 2019). Errors in the
firn-related correction can lead to over- or underestimation
of mass changes related to surface processes and also lead to
misinterpreting elevation change signals as changes in mass
balance and in ice flow dynamics. Secondly, firn models are
used to estimate the partitioning of surface meltwater into
runoff off the ice sheet, and refreezing within the firn column,
which strongly influences mass loss rates (van den Broeke
et al., 2016). Model estimates of current and future surface
mass balance of the AIS and GrIS are thus dependent on ac-
curate models of firn evolution. And finally, the densification
rate determines the firn age at which air bubbles are trapped
in the ice matrix. Knowing this age is crucial for precisely
linking samples of past atmospheric composition, which are
preserved in these bubbles, to paleo-temperature indicators,
which come from the water isotopes in the ice (Buizert et al.,
2014).

Firn densification has been the subject of numerous mod-
elling studies over the last decades (e.g. Herron and Lang-
way, 1980; Goujon et al., 2003; Helsen et al., 2008; Arthern
et al., 2010; Ligtenberg et al., 2011; Simonsen et al., 2013;
Morris and Wingham, 2014; Kuipers Munneke et al., 2015).
However, there is no consensus on the precise formulation
that such models should use. Most models adopt a two-stage
densification process with the first stage characterizing faster
densification for firn with density less than a critical value
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and then slower densification in the second stage. The firn
model intercomparison of Lundin et al. (2017) demonstrated
that, even for idealized simulations, inter-model disagree-
ments are large in both stages. Firn compaction is driven by
the pressure exerted by the overlying firn layers. Dry firn
densification depends on numerous microphysical mecha-
nisms acting at the scale of individual grains, such as grain-
boundary sliding, vapour transport, dislocation creep and
lattice diffusion (Maeno and Ebinuma, 1983; Alley, 1987;
Wilkinson, 1988). Deriving formulations closely describing
the densification of firn at the macroscale as a function of
these mechanisms is challenging. Consequently, most mod-
els rely on simplified governing formulations that are cali-
brated to agree with observations. The final model formu-
lations have usually been tuned to data either from the AIS
(Helsen et al., 2008; Arthern et al., 2010; Ligtenberg et al.,
2011) or from the GrIS (Simonsen et al., 2013; Morris and
Wingham, 2014; Kuipers Munneke et al., 2015), consisting
of drilled firn cores from which depth–density profiles are
measured. However, the calibration of firn densification rates
to firn depth–density profiles requires the assumption of a
firn layer in steady state. To overcome this limitation, some
models have been calibrated against other types of data such
as strain rate measurements (Arthern et al., 2010; Morris and
Wingham, 2014) or annual layering detected by radar reflec-
tion (Simonsen et al., 2013), but such measurements remain
scarce and do not extend to firn at great depths below the
surface. Ultimately, firn model calibration is an inverse prob-
lem that relies on using observational data to infer parameter
values.

In this study, we adopt a Bayesian approach in order
to address firn model calibration. This provides a rigorous
mathematical framework for estimating distributions of the
model parameters (Aster et al., 2005; Berliner et al., 2008).
Bayesian inversion has been applied in several glaciologi-
cal studies, and it has been demonstrated that this method-
ology improves our ability to constrain poorly known fac-
tors such as basal topography (Gudmundsson, 2006; Ray-
mond and Gudmundsson, 2009; Brinkerhoff et al., 2016a),
basal friction coefficients (Gudmundsson, 2006; Berliner et
al., 2008; Raymond and Gudmundsson, 2009), ice viscosity
(Berliner et al., 2008) and the role of the subglacial hydrol-
ogy systems on ice dynamics (Brinkerhoff et al., 2016b). In
the Bayesian framework, model parameters are considered as
random variables for which we seek an a posteriori probabil-
ity distribution that captures the probability density over the
entire parameter space. This distribution allows us not only
to identify the most likely parameter combination, but also to
set confidence limits on the range of values in each parame-
ter that is statistically reasonable. This enables us to quantify
uncertainty in model results, to challenge the assumptions in-
herent to the model itself and to assess correlation between
different parameters. Calculations rely on Bayes’ theorem
(see Sect. 2.4 and Eq. 7), but because of the high-dimensional
parameter space and the non-linearity of firn models, solu-

tions cannot be computed in closed form. As such, we apply
rigorously designed Monte Carlo methods to approximate
the target probability distributions efficiently. By exploiting
the complementarity between the Bayesian framework and
Monte Carlo techniques, we recalibrate three benchmark firn
models and improve our understanding of their associated
uncertainty.

2 Data and methods

2.1 Firn densification data

In order to calibrate three firn densification models, we use
observations of firn depth–density profiles from 91 firn cores
(see Data Availability and Supplement) located in different
climatic conditions on both the GrIS (27 cores) and the AIS
(64 cores) (Fig. 1). Using cores from both ice sheets is im-
portant since we seek parameter sets that are generally appli-
cable and not location-specific. We only consider dry densi-
fication since meltwater refreezing is poorly represented in
firn models and wet-firn compaction is absent (Verjans et al.,
2019). As such, we select cores from areas with low mean an-
nual melt (< 0.006 m w.e. yr−1) but spanning a broad range
of annual average temperatures (−55 to −20◦) and accu-
mulation rates (0.02 to 1.06 m w.e. yr−1). For each core, we
use the depth-integrated porosity (DIP), also called firn air
content. We calculate DIP until 15 m depth (DIP15, Eq. 1).
For sufficiently deep measurements, we also calculate DIPpc,
Eq. (2), taken below 15 m and until pore close-off depth (zpc,
where a density of 830 kg m−3 is reached). These are the ob-
served quantitative values used for the calibration:

DIP15=

15∫
0

ρi − ρ

ρi
dz, (1)

DIPpc=

zpc∫
15

ρi − ρ

ρi
dz, (2)

where z (m) increases downwards, ρ is the density of firn
(kg m−3) and ρi is the density of ice (917 kg m−3). In Eq. (2),
we consider porosity only below 15 m to avoid dependency
between DIP15 and DIPpc. We choose to use both DIP15 and
DIPpc in order to account for first- and second-stage den-
sification. One of the cores has only a single density mea-
surement above 15 m depth, and thus its DIP15 value is dis-
carded. We note that 48 cores are too shallow to reach zpc
and so cores which do reach this depth provide a stronger
constraint to the Bayesian inference method. This is sensible
because these deep cores carry information about both stages
of the densification process.

We use DIP as the evaluation metric for the models be-
cause of the crucial role of this variable in both surface mass
balance modelling and altimetry-based ice sheet mass bal-
ance assessments (Ligtenberg et al., 2014). We note that it
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Figure 1. Maps of Antarctic (a) and Greenland (b) ice sheets. Back-
ground is mean annual air temperature as modelled by RACMO2.
Note the different colour scales.

is commonly used in firn model intercomparison exercises
(Lundin et al., 2017; Stevens et al., 2020) and is a quantity of
interest for field measurements (Vandecrux et al., 2019). Due
to its formulation (Eqs. 1 and 2), DIP represents the mean
depth–density profile and thus is robust to the presence of
individual errors and outliers in density measurements.

Observed firn density can be prone to measurement uncer-
tainty, which previous studies point out is about 10 %, though
it is variable in depth and between measurement techniques
employed (Hawley et al., 2008; Conger and McClung, 2009;
Proksch et al., 2016). We outline our procedure to account
for measurement uncertainty in Sect. 2.4.

We separate the dataset into calibration data (69 cores)
and independent evaluation data (22 cores). The latter are
selected semi-randomly; we ensure that they include a rep-
resentative ratio of GrIS–AIS cores and that they cover all
climatic conditions, including an outlier of the dataset with
high accumulation and temperature (see Supplement). The
resulting evaluation data have 8 GrIS and 14 AIS cores; 11
of the 22 cores extend to zpc.

2.2 Climate model forcing

At the location of each core, we simulate firn densification
under climatic forcing provided by the RACMO2.3p2 re-
gional climate model (RACMO2 hereafter) at 5.5 km hori-
zontal resolution for the GrIS (Noël et al., 2019) and 27 km
for the AIS (van Wessem et al., 2018). Each firn model sim-
ulation consists of a spin-up by repeating a reference climate
until reaching a firn column in equilibrium, which is followed
by a transient period until the core-specific date of drilling.
The reference climate is taken as the first 20-year period of
RACMO2 forcing data (1960–1979 and 1979–1998 for the
GrIS and AIS respectively). The number of iterations over
the reference period depends on the site-specific accumula-
tion rate and mass of the firn column (mass from surface
down to zpc). We ensure that the entire firn column is re-
freshed during the spin-up but fix the minimum and maxi-
mum number of iterations to 10 (200 years spin-up) and 50
(1000 years spin-up). We note that at 33 sites, the core was

drilled before the last year of the reference climate and so the
transient period is effectively a partial iteration of the spin-up
period.

Results of the calibration would depend on the particular
climate model used for forcing. We thus propagate uncer-
tainty in modelled climatic conditions into our calibration of
firn model parameters by perturbing the temperature and ac-
cumulation rates of RACMO2 with normally distributed ran-
dom noise. Standard deviations of the random perturbations
are based on reported errors of RACMO2 (Noël et al., 2019;
van Wessem et al., 2018 – see more details in the Supple-
ment). By introducing these perturbations, uncertainty inter-
vals on our parameter values encompass the range of values
that would result from using other model-based or observa-
tional climatic input.

In addition to the climatic forcing, another surface bound-
ary condition is the fresh snow density, ρ0. At each site, the
ρ0 value is taken in agreement with the shallow densities
measured in the corresponding core of the dataset. However,
measurements of fresh snow density are highly variable (e.g.
Fausto et al., 2018). We account for uncertainty in this pa-
rameter by adding normally distributed random noise with
standard deviation 25 kg m−3 to ρ0 at every model time step
(see Supplement). We prefer this approach to the use of avail-
able parameterizations of ρ0 (Helsen et al., 2008; Kuipers
Munneke et al., 2015) to avoid any error in the fresh snow
parameterization to affect the calibration process.

2.3 Firn densification models

We use the Community Firn Model (Stevens et al., 2020)
as the framework of our study because it incorporates the
formulations of all three densification models investigated:
HL (Herron and Langway, 1980), Ar (Arthern et al., 2010)
and LZ (Li and Zwally, 2011). The Robin hypothesis (Robin,
1958) constitutes the fundamental assumption of HL, Ar and
LZ. It states that any fractional decrease in the firn porosity,
ρi−ρ
ρi

, is proportional to an increment in overburden stress.
This translates into densification rates depending on a rate
coefficient c, assumed different for stage-1 and stage-2 den-
sification.{

dρ
dt = c0 (ρi − ρ), ρ ≤ 550kgm−3

dρ
dt = c1 (ρi − ρ), ρ > 550kgm−3 (3)

The formulations of the rate coefficients rely on calibration
and thus differ between the three models investigated.
HL c0 = ḃ

ak∗0 exp
(
−E0
RT

)
c1 = ḃ

bk∗1 exp
(
−E1
RT

) (4)

Ar c0 = ρwḃ
αkAr

0 g exp
(
−Ec
RT
+

Eg
RTav

)
c1 = ρwḃ

βkAr
1 g exp

(
−Ec
RT
+

Eg
RTav

) (5)
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LZ{
c0 = β0lza(273.15− T )lzb ḃ
c1 = β1lza(273.15− T )lzb ḃ

(6)

with{
β0 = lz11+ lz12ḃ+ lz13Tav

β1 = β0
(
lz21+ lz22ḃ+ lz23Tav

)−1

Here ḃ is the accumulation rate (m w.e. yr−1), T the temper-
ature (K), Tav the annual mean temperature, R the gas con-
stant, g gravity and ρw the water density (1000 kg m−3). All
remaining terms are model-specific tuning parameters. For ḃ,
we use the mean accumulation rate over the lifetime of each
specific firn layer because it better approximates the over-
burden stress than the annual mean (Li and Zwally, 2011).
HL and Ar use Arrhenius relationships with activation ener-
gies (E terms) capturing temperature sensitivity and expo-
nents characterizing the exponential proportionality of the
rate coefficients to the accumulation rate. Originally, Her-
ron and Langway (1980) inferred all values from calibra-
tion based on 17 firn cores, from which they inferred the
values for the six free parameters (Table 1) of HL. In con-
trast, Arthern et al. (2010) fixed the accumulation exponents
in advance (α = β = 1) and took activation energies (Ec,Eg)
from measurements of microscale mechanisms: Nabarro–
Herring creep for Ec and grain growth for Eg. Still, they
noted a mismatch with the activation energy fitting their data
best. The kAr

0 and kAr
1 parameters were tuned to three mea-

sured time series of strain rates collected in relatively warm
and high-accumulation locations of the AIS. Here, we con-
sider all five α, β, kAr

0 , kAr
1 and Eg as free parameters (Ta-

ble 1) but keep Ec fixed because of its strong correlation
with Eg; our use of monthly model time steps and depth–
density profiles as calibration data is not suitable for differ-
entiating effects of Eg

RTav
and Ec

RT
. Equation (6) shows that LZ

has eight free parameters (Table 1), all denoted by lz in this
paper. In contrast to our approach to Ar, we do not add ad-
ditional accumulation rate exponents to ḃ in Eq. (6) because
the dependence of c0 and c1 on ḃ also involves the coeffi-
cients lz12 and lz22 in the definition of β0 and β1. Li and
Zwally (2011) performed their calibration of Eq. (6) against
firn cores only from the GrIS. Later, Li and Zwally (2015)
developed a densification model calibrated for Antarctic firn.
The latter model uses the same governing equations as LZ
for c0 and c1 but different formulations for β0 and β1 (Eq. 6).
Since one of the goals of this study is to find a densification
formulation applicable to firn in both the GrIS and AIS, we
choose to apply our calibration method only to the formula-
tions of β0 and β1 specified in Li and Zwally (2011) (Eq. 6).
However, in our results’ analysis (Sect. 3), we also consider
the performance of the Li and Zwally (2015) model on the
AIS cores of our dataset.

2.4 Bayesian calibration

In our approach, the free parameters of the firn models
are identified as the quantities of interest and we define
this parameter set as θ . Hereafter, “original model values”
refers to the values originally attributed by Herron and Lang-
way (1980), Arthern et al. (2010), and Li and Zwally (2011)
to their respective sets of free parameters θ . The calibration
process relies on Bayes’ theorem (Eq. 7), which allows the
update of a prior probability distribution P (θ) for θ based
on observed data Y .

P (θ |Y )=
P (Y |θ)P (θ)

P (Y )
(7)

We use normal and weakly informative priors centred about
the original model values so that the constraint of the prior
on P (θ |Y ) is minor (Table 1). As indicated by Morris and
Wingham (2014), in HL and Ar, the values of the Arrhenius
pre-exponential factors (k∗0 , k∗1 , kAr

0 and kAr
1 ) are correlated

with their corresponding activation energies (E0E1 and Eg).
At a given temperature, a change of the value in the pre-
exponential factor can be compensated for by adjusting the
activation energy to keep the densification rates constant. We
express our a priori knowledge of these correlations in the
prior distributions (see Supplement). No other pair of param-
eters in HL, Ar or LZ are clearly correlated a priori, but the
calibration process captures a posteriori correlations by con-
fronting the models with data. The data Y consist of the ob-
served DIP15 and DIPpc values of the calibration data. The
marginal likelihood, P (Y ), is a constant term independent
of θ and does not influence the calibration. We use a normal
likelihood function P (Y |θ), which quantifies the match of
the modelled DIP values with the observed:

P (Y |θ)∝ exp
[
−1
2
(X15−Y15)

T6−1
15 (X15−Y15)

−
1
2

(
Xpc−Ypc

)T
6−1

pc
(
Xpc−Ypc

)]
, (8)

where X15 and Y15 are vectors containing all modelled and
observed values for the calibration data of DIP15 respec-
tively, and similarly forXpc and Ypc. We use diagonal covari-
ance matrices 615 and 6pc with site-specific variances. The
variances determine the spread allowed for the model outputs
compared to the observed values and are calculated by tak-
ing 10 % and 20 % margins around DIP15 and DIPpc mea-
surements respectively. Allowing for such spread is neces-
sary because multiple causes may lead to model–observation
discrepancy such as firn model errors, measurement uncer-
tainties and discrepancies induced by the random perturba-
tions applied to RACMO2 forcing and to ρ0. This partic-
ular form of the likelihood function assumes independence
between model errors in DIP15 and in DIPpc, which is en-
sured by our calculation of DIPpc only from 15 m depth to
zpc (Eq. 2). It also assumes normally distributed model errors
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Table 1. Information for the free parameters of HL (a), Ar (b) and LZ (c). N(x,y) designates a normal distribution of mean x and variance
y. The variances in the prior distributions are taken to generate weakly informative distributions. Some prior correlation is prescribed for the
pairs (k∗0 , E0), (k∗1 , E1), (kAr

0 , Eg), (kAr
1 , Eg) and (kAr

0 , kAr
1 ) (see Supplement). MAP estimates and credible intervals are results from the

calibration process.

Parameter Value in original Prior distribution MAP 95 % credible
model interval

(a) k∗0 (m w.e.−a) 11 N(11,100) 17.4 7.58; 28.4
k∗1 (m w.e.−b) 575 N(575,9× 104) 524 260; 1060
E0 (J mol−1) 10 160 N(10160,4× 106) 10 840 9000; 12 290
E1 (J mol−1) 21 400 N(21400,4× 106) 20 800 18 900; 22 300
a (–) 1 N(1,0.4) 0.91 0.74; 1.02
b (–) 0.5 N(0.5,0.4) 0.63 0.54; 0.78

(b) kAr
0 (m w.e.−α) 0.07 N(0.07,4.9× 10−3) 0.077 0.046; 0.137
kAr

1 (m w.e.−β ) 0.03 N(0.03,9× 10−4) 0.025 0.015; 0.048
Ec (J mol−1) 60 000 Fixed: 60 000 – –
Eg (J mol−1) 42 400 N(42400,16× 106) 40 900 39 700; 42 000
α (–) 1 N(1,0.4) 0.80 0.66; 0.89
β (–) 1 N(1,0.4) 0.68 0.59; 0.81

(c) lza 8.36 N(8.36,36) 7.31 3.93; 12.82
lzb −2.061 N(−2.061,2) −2.124 −2.319; −1.896
lz11 −9.788 N(−9.788,36) −14.710 −20.839; −5.469
lz12 8.996 N(8.996,36) 7.269 2.680; 17.724
lz13 −0.6165 N(−0.6165,1) −1.019 −1.389; −0.509
lz21 −2.0178 N(−2.0178,2) −1.513 −2.970; −0.258
lz22 8.4043 N(8.4043,36) 6.0203 4.911; 12.942
lz23 −0.0932 N(−0.0932,0.25) −0.0913 −0.133; −0.0460

with respect to the observed values. Both these aspects were
verified with preliminary assessments, along with our calcu-
lations for the covariance matrices615 and6pc, as discussed
in the Supplement. The posterior distribution P (θ |Y ) gives
a probability distribution over the parameter space of a given
model conditioned on the calibration data. In our case, with
weakly informative priors (Table 1), the distribution P (θ |Y )
is essentially governed by the likelihood function (Eq. 8).
We note here that extreme parameter combinations in the
LZ model can lead to negative densification rates. In such
cases, we set the modelled DIP values to 0, which leads to
extremely low values for the likelihood and for the posterior
probability of such parameter sets.

There is no analytical form of P (θ |Y ) and we must inves-
tigate the parameter space to generate an ensemble of θi ap-
proximating P (θ |Y ). Such an investigation is achieved effi-
ciently using Markov chain Monte Carlo (MCMC) methods.
We apply the well-known random walk Metropolis (RWM)
algorithm (Hastings, 1970) and summarize it in Fig. 2, on
which we base the brief following description. A given model
(HL, Ar or LZ) starts with the original model parameter val-
ues and simulates firn profiles at all the calibration sites.
Its DIP15 and DIPpc results are compared with observa-
tions, and the general performance of the model is quanti-
fied by the likelihood. From there and with the prior distri-

butions assumed, the posterior probability is computed fol-
lowing Eq. (7). At this point, the RWM algorithm starts and
the state of the chain, θi (Fig. 2a), is set to the original model
values, and its posterior probability is saved as P (θi |Y ). It
should be noted that the i subscript designates the iteration
number, which is equal to 0 at this initial step. The RWM al-
gorithm then proposes a new θ∗i from a proposal distribution
(Fig. 2b). For the latter, we use the symmetric multivariate
normal (MVN) distribution which is centred about θi . This
implies that the random choice of θ∗i depends only on the
current state θi and on the proposal covariance in the MVN
distribution, 6prop, which is discussed below. Using the pa-
rameter combination θ∗i , the model simulates profiles at all
calibration sites again (Fig. 2c) and P

(
θ∗i |Y

)
is computed

(Fig. 2d). From there, we either accept or reject the proposed
θ∗i in the ensemble approximating P (θ |Y ). By using the pre-
viously computed P (θi |Y ), the probability of accepting θ∗i
depends on the ratio P

(
θ∗i |Y

)
/P (θi |Y ) (Fig. 2e). The set

saved in the ensemble (Fig. 2g) is θ∗i if accepted or θi if θ∗i
was rejected. The saved set becomes the updated current sta-
tus for the next iteration θi+1 (Fig. 2a) with its associated
posterior probability, P (θi+1|Y ). The algorithm iterates this
process and reaches a final posterior distribution over θ . The
RWM algorithm has the property that the chain will ulti-
mately converge to a stationary distribution that represents
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Figure 2. Implementation of the random walk Metropolis algorithm. θ represents a parameter combination of any given firn densification
model investigated.

the posterior P (θ |Y ). Thus, after a sufficiently high number
of iterations of the algorithm, the ensemble of parameter sets
is representative of P (θ |Y ). We verify adequate convergence
using a number of tests, which are shown in the Supplement.
The proposal covariance 6prop must account for dependence
between the different components of θ ; i.e. the value of one
free parameter can influence the value of another free param-
eter for the model to reach a good match with the observed
data. 6prop can capture this dependence between parameters
and, for optimality, it is updated every given number of iter-
ations (100 in our study) using Eq. (9) (Rosenthal, 2011):

6prop =
2.382

p
6cov, (9)

where 6cov is the covariance matrix between the free param-
eters of the model at this stage of the iterative chain, and p is
the number of free parameters.

From the posterior probability distributions, we can infer
the maximum a posteriori (MAP) estimates of each model
(MAPHL, MAPAr, MAPLZ). These are the modes of the
multi-dimensional distributions over the space of free pa-
rameters and have been identified as the most likely sets by
the RWM algorithm. The MAP estimates can be compared
to the corresponding original model values of the parame-
ters. The posterior distributions additionally incorporate the

uncertainty in the parameter values. By performing poste-
rior predictive simulations on the evaluation data, we can as-
sess this remaining uncertainty (Gelman et al., 2013). More
specifically, we can assume that a large (500) random sample
of the ensemble of accepted θ is representative of the pos-
terior distribution. As such, model results computed with all
sets of this sample inform about model performance account-
ing for uncertainty. Intuitively, a large spread in results from
500 random samples would indicate a large range of possi-
ble sets for the free parameters and thus a high uncertainty in
parameter values.

Since there is no analytical form of our posterior distri-
butions, and to facilitate future firn model uncertainty as-
sessments, we can approximate the posterior distributions
with MVN distributions whose means and covariances are
set to the posterior means and posterior covariance matrices
of the calibration. This allows straightforward sampling of
random parameter sets instead of relying on posterior sam-
ples of the MCMC. We provide information about the normal
approximations and assess their validity in the Supplement.
Such normal approximations are asymptotically exact and
are commonly applied to analytically intractable Bayesian
posterior distributions (Gelman et al., 2013).
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3 Results

We present the results of the calibration process after 15 000
algorithm iterations and compare the MAP and original mod-
els’ performances against the 22 evaluation cores. We also
evaluate the uncertainty of the posterior distributions and
compare performances between the different MAP models.
All the evaluation simulations are performed without cli-
matic and surface density noise in order to make the eval-
uation fully deterministic.

For HL and even more so for Ar, the posterior distributions
for the parameters demonstrate some strong disagreements
with the original values (Fig. 3a, b). The 95 % credible in-
tervals for each parameter (Table 1) incorporate 95 % of the
marginal probability density in the posterior. Two original
parameter values of HL (a, b) and three of Ar (Eg, α, β) lie
in the tails of the posterior distributions (Fig. 3a, b) and even
outside these intervals in the case of b,Eg, α and β. This indi-
cates that our analysis provides strong evidence against these
original values. The strongest disagreements relate to the ac-
cumulation exponents of both models (a, b, α, β). In contrast,
the original LZ values agree better with the posterior distri-
bution and all lie within the 95 % credible intervals (Table 1
and Fig. 3c). The posterior distributions show some strong
correlation between certain pairs of parameters (Fig. 3). No-
table examples are the pre-exponential factors and their cor-
responding activation energy in HL and Ar, for which the
posterior correlations are even stronger than in the prior dis-
tributions. The complete correlation matrices and a detailed
analysis of all posterior correlation features are provided in
the Supplement.

We use the original models and the MAP estimates to sim-
ulate firn profiles at the evaluation sites and we compare DIP
results with the observed values. This is an effective way to
assess possible improvements in parameter estimates reached
through our method since the evaluation sites were not used
in the calibration process. The match between observations
and the model is improved for MAPHL (Fig. 4a) and even
more for MAPAr (Fig. 4b), with the original Ar strongly un-
derestimating DIP values. These improvements translate into
significantly reduced root-mean-squared errors (RMSEs) in
modelled values of both DIP15 (−24 % for HL and −45 %
for Ar) and DIPpc (−22 % and −61 %) (Table 2).

For LZ, the relative performance of the MAPLZ model
for both DIP15 and DIPpc is worse (+2 % and +24 % in
RMSE), but differences are of smaller magnitude (Table 2
and Fig. 4c). Parameter values of MAPLZ and the original
LZ are closer, which explains more moderate differences in
RMSE compared to HL and Ar. Comparing modelled and
observed depth–density profiles of evaluation data illustrates
the differences in performance visually (e.g. Fig. 5). Profiles
of the original models of HL and Ar frequently lie outside the
credible intervals of their respective MAP models. In con-
trast, profiles of MAPLZ and of the original LZ tend to be
close together. At the climatic outlier of our evaluation data

Table 2. Model results on the evaluation data. The root-mean-
squared errors (RMSEs) are calculated with respect to the obser-
vations of depth-integrated porosity until 15 m depth and until pore
close-off.

Model RMSE RMSE
(DIP15) (m) (DIPpc) (m)

HL original 0.503 2.395
HL MAP 0.382 1.862
HL 500 random samples 0.396 1.899

Ar original 0.772 4.566
Ar MAP 0.426 1.780
Ar 500 random samples 0.448 1.889

LZ original 0.452 1.812
LZ dual 0.505 3.883
LZ MAP 0.463 2.392
LZ 500 random samples 0.486 2.296

IMAU-FDM 0.418 2.681

(DML in Fig. 5), improvements are reached for the three
MAP models (Fig. 5g, h, i). This demonstrates benefits of
this method even at the limits of the calibration range. How-
ever, at a majority of the evaluation sites, the 95 % credible
intervals computed for the three models do not include the
observed value (Fig. 4). This highlights that the governing
equations of the models, which intend to capture densifica-
tion physics, require improvement and that parameter cali-
bration in itself cannot overcome this shortcoming.

Compared to the original HL, MAPHL reaches improve-
ments in DIP15 for 12 of the 22 evaluation cores and in
DIPpc for 5 of the 11 evaluation cores (Fig. 6a). Generally,
MAPHL performs better at AIS sites and worse at GrIS sites.
An analysis of the improvement of MAPHL as a function of
climatic variables (Fig. 6a) shows that the original HL gives
better results in a narrow range of Tav: from −30 to −25◦.
As such, the better performance at the GrIS evaluation sites
of the original HL is likely due to its parameterization being
better suited for the particular temperature range correspond-
ing to the conditions of the latter sites. In contrast, MAPHL
seems more appropriate for covering a wider range of cli-
matic conditions. For Ar, the original model shows better per-
formance than MAPAr at few evaluation sites (six for DIP15
and two for DIPpc) which are only in AIS and confined to
low-accumulation conditions (Fig. 6b). This is counterintu-
itive given that Arthern et al. (2010) tuned the original Ar to
measurements from high-accumulation sites of the AIS. Fi-
nally, the original LZ performs better than MAPLZ at most
GrIS sites (Fig. 6c), which is unsurprising given that its orig-
inal calibration was GrIS-specific. Again, this seems related
to the original LZ performing significantly better in the same
narrow range of temperatures as for HL. In total, MAPLZ per-
forms better for 10 of the 22 DIP15 and 4 of the 11 DIPpc
evaluation measurements.
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Figure 3. Posterior probability distributions, shown for pairs of parameters, for (a) HL, (b) Ar and (c) LZ. Where possible, correlated
parameters share the same graph (see Supplement for full correlation matrices). The posterior samples are 500 randomly selected parameter
combinations from the posterior ensembles of each model (HL, Ar, LZ).

Figure 4. Comparison of evaluation data DIP with model results. The 95 % credible intervals are computed from results of 500 randomly
selected parameter combinations from the posterior ensembles of each model (HL, Ar, LZ). Similar scatter plots for the LZ dual and IMAU
results are shown in the Supplement (Fig. S6).

As explained in Sect. 2.3, the original LZ model was de-
veloped for GrIS firn only (Li and Zwally, 2011) and later
complemented by an AIS-specific model (Li and Zwally,
2015). We compute results at the AIS and GrIS evaluation
sites using the Li and Zwally (2015) model for the AIS and

the Li and Zwally (2011) model for the GrIS, so that both
models are applied to the ice sheet for which they were orig-
inally developed. We call this pairing of models LZ dual and
evaluate its general performance. The RMSE for DIP15 of
LZ dual is slightly larger (+8 %) than that of MAPLZ and
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Figure 5. Depth–density profiles at three evaluation sites. DML is a climatic outlier of our dataset with particularly high temperatures
and accumulation rates. The 95 % credible intervals are computed from results of 500 randomly selected parameter combinations from the
posterior ensembles of each model (HL, Ar, LZ).

significantly larger (+38 %) for DIPpc (Table 2). We note
that the higher RMSE values of LZ dual are strongly affected
by its densification scheme performing very poorly at the cli-
matic outlier of the evaluation data, with conditions that are
outside of the calibration range of Li and Zwally (2015).

We also compare MAP results with the IMAU firn den-
sification model (IMAU-FDM), which has been used fre-
quently in recent mass balance assessments from altimetry
(Pritchard et al., 2012; Babonis et al., 2016; McMillan et
al., 2016; Shepherd et al., 2019). IMAU-FDM was devel-
oped by adding two tuning parameters to both densifica-
tion stages of Ar. All four extra parameters are different for
the AIS (Ligtenberg et al., 2011) and for the GrIS (Kuipers
Munneke et al., 2015), thus also resulting in two separate
models. For the evaluation data, the performance of IMAU-
FDM for DIP15 is slightly better than MAPAr and MAPLZ
but worse than MAPHL, and its performance for DIPpc is
significantly worse than all three MAP models (Table 2).

To assess the uncertainty captured by the Bayesian poste-
rior distributions, we compute results on the evaluation data
with the 500 parameter sets randomly selected from each of
the three posterior ensembles. For all three models, the av-
erage performance of their random sample is similar to the
corresponding MAP performance, with a maximum RMSE
change of 6 % (Table 2). This demonstrates a low uncertainty
in the optimal parameter combinations identified by calibra-
tion. Furthermore, the best-performing 95th percentile of the
random selection allows the construction of the uncertainty
intervals shown in Figs. 4 and 5. Of the original models, LZ
reaches the lowest RMSE values. Of all models, MAPHL per-
forms best in DIP15 and MAPAr in DIPpc (Table 2). MAPLZ
performs worse than the other MAP models even when ac-
counting for uncertainty by using the 500-sample random se-
lections (Table 2).
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Figure 6. Improvements of the MAP models with respect to the original models for the evaluation data. The ratios indicate the ratios of cores
for which an improvement is achieved by the corresponding MAP. Panels (a)–(c) display the mean annual temperature on the x axis and
panels (d)–(f) display the mean annual accumulation rate.

4 Discussion

This calibration method is potentially applicable to models
of similar complexity in a broad range of research fields. We
exploit it here to investigate the parameter space of HL, Ar
and LZ and to re-estimate optimal parameter values condi-
tioned on observed calibration data; no further complexity is
introduced since the number of empirical parameters remains
the same. We treat the accumulation exponents of Ar (α, β)
as free parameters, whereas Arthern et al. (2010) decided to
fix their values to 1. Analogous to a and b in HL, these ex-
ponents capture the mathematical relationship between den-
sification rates and the accumulation rate, used as a proxy
for load increase on any specific firn layer. No physical argu-
ment favours a linear proportionality between densification
and load increase, and any prescribed value for these expo-
nents is a choice of the model designer. Unlike Arthern et
al. (2010), Herron and Langway (1980) previously inferred
a = 1 and b = 0.5. Our calibration data show strong evidence
against both these pairs of values; all four are in the extreme
tails of the posterior distributions (Fig. 3a, b). Our results of
stage-1 exponents (a, α) smaller than 1 indicate a weaker in-
crease in densification rates with pressure than assumed in
the original versions of Ar and HL. In firn, the load is sup-
ported at the contact area between the grains, which increases
on average due to grain rearrangement (in stage 1) and grain
growth. As such, firn strengthens in time and the actual stress

on ice grains increases more slowly than the total load (An-
derson and Benson, 1963). Morris and Wingham (2014) in-
corporated this by including a temperature-history function,
causing slower densification of firn previously exposed to
higher temperatures. This is consistent with both grain re-
arrangement and grain growth because these processes are
enhanced at higher temperatures (Alley, 1987; Gow et al.,
2004). Lower values of the stage-2 exponents (b, β) illus-
trate the larger strength of high-density firn with larger con-
tact areas between grains. The difference in sensitivities of
stage-1 and stage-2 densification to accumulation also holds
in the LZ model, as illustrated by the posterior correlation
between its free parameters. The correlation coefficient be-
tween the accumulation-related parameters of both stages,
lz12 and lz22, is significantly positive (0.74, Fig. S5 in the
Supplement). High values of lz12 make β0 more sensitive to
ḃ (Eq. 6). However, β0 appears in the numerator of the β1
calculation (Eq. 6), and higher values of lz22 thus moderate
the sensitivity of stage-2 densification to ḃ. As such, posi-
tively correlated lz12 and lz22 provide further evidence that
stage-1 densification rates are more sensitive to accumula-
tion rates. This example demonstrates how posterior corre-
lations provide insights into model behaviour. The posterior
correlations of all three models are further discussed in the
Supplement.

In the IMAU model introduced in Sect. 3, tuning param-
eters have been added to Ar in order to reduce its sensitiv-
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ity to accumulation rates (Ligtenberg et al., 2011; Kuipers
Munneke et al., 2015). The calibration method presented in
this study detects and adjusts for this over-sensitivity in Ar
without the need for more tuning parameters in the govern-
ing densification equations. The sensitivity of stage-1 densi-
fication to ḃ can be computed from the derivative of the rate
coefficient:

∂c0

∂ḃ
= ρwk

Ar
0 g exp

(
−Ec

RT
+

Eg

RTav

)
αḃα−1. (10)

Similarly, the derivative ∂c1
∂ḃ

is obtained by replacing kAr
0 and

α with kAr
1 and β. Our calibration process strongly favours

smaller values of α, β andEg with respect to the original val-
ues (Fig. 3b). We can compare the magnitudes of the deriva-
tives under the original Ar parameterization and under the
MAP parameterization. The magnitudes vary for particular
combinations of Tav and ḃ. Under all the annual mean cli-
matic regimes of our dataset, the MAP parameters result in
a decreased sensitivity of both stage-1 and stage-2 densifica-
tion rates to ḃ.

HL, Ar and LZ only use temperature and accumulation
rates as input variables. Other models use additional vari-
ables hypothesized to affect densification rates. These in-
clude the temperature history mentioned above (Morris and
Wingham, 2014), firn grain size (Arthern et al., 2010), im-
purity content (Freitag et al., 2013), and a transition region
between stage-1 and stage-2 densification (Morris, 2018).
Other models are explicitly based on micro-scale deforma-
tion mechanisms (Alley, 1987; Arthern and Wingham, 1998;
Arnaud et al., 2000). These efforts undoubtedly contribute
to progressing towards physically based models. A poten-
tial problem with such approaches is overfitting calibration
data by adding parameters to model formulations while de-
tailed firn data remain scarce. As long as more firn data are
not available to appropriately constrain the role of each vari-
able in model formulations, we favour the use of parsimo-
nious models relying on few input variables. It is notewor-
thy that MAPLZ, which relies on eight free parameters, per-
forms worse on the evaluation data than MAPHL and MAPAr
with two fewer free parameters. This highlights that gains
in model accuracy should rely not only on better calibra-
tion of parameters but also on a reconsideration of the gov-
erning densification equations. Additionally, firn core data
invoke the assumption of a steady-state depth–density pro-
file. As such, parameter calibration poorly captures seasonal
climatic effects on densification. Comprehensive datasets of
depth–density profiles (Koenig and Montgomery, 2019) are
very valuable to model development. Efforts in collecting
and publishing strain rate measurements from the field (Haw-
ley and Waddington, 2011; Medley et al., 2015; Morris et
al., 2017), and possibly from laboratory experiments (Schleef
and Löwe, 2013), can further benefit model calibration and
the progress towards more representative equations.

In order to quantify the consequences of our calibration,
we investigate two aspects for which firn models are of com-
mon use: calculating firn compaction rates and predicting
the age of firn at zpc depth, agepc (years). At every site i
of our dataset, we compute the 2000–2017 total compaction
anomaly, cmpan, i (m) and the agepc,i value with each of the
500 parameter sets randomly drawn from the posterior en-
sembles of the three different models (HL, Ar, LZ). This al-
lows evaluation of both parameter-related and model-related
uncertainty. Total compaction anomaly (cmpan) – calculated
as the cumulative anomaly in surface elevation change due
only to firn compaction changes during the 2000–2017 pe-
riod with respect to the climatic reference period – is given
by

cmpan,i = cmp00–17
tot,i − 17cmpyr

ref,i, (11)

where cmp00–17
tot (m) is the total firn compaction over 2000–

2017, and cmpyr
ref (m yr−1) is the annual mean compaction

over the reference period (see Sect. 2.2). At all sites, we
compute the coefficients of variation (CVs) for both cmpan
and agepc from the 500 simulations with each model, and
we average the CVs across all sites. CV is the ratio of the
standard deviation to the mean and provides an effective as-
sessment of relative dispersion of model results. Because low
mean values of cmpan can inflate its CV, we consider only
half of the sites at which the mean computed cmpan is high-
est. For all three models, the CV values for both cmpan and
agepc lie between 5.5 % and 7.5 % (Table 3). These values
give typical uncertainty in firn model output related to uncer-
tain parameter values. Proceeding to the same calculations
but using all three models, i.e. an inter-model ensemble of
1500 simulations at each site, gives an overview of the com-
bined parameter- and model-related uncertainty. The CVs are
19.5 % for cmpan and 7.5 % for agepc, demonstrating larger
inter-model disagreement on cmpan calculations (Table 3).
By using the CV values, we can calculate reasonable uncer-
tainty estimates for cmpan and agepc. For instance, in the dry
snow zone of GrIS, simulated compaction anomalies are typ-
ically around 20 cm over 2000–2017 and thus come with an
uncertainty of the order of ±4 cm. Since pore close-off age
here is around 250 years, a reasonable uncertainty range on
this value is ±19 years. In contrast, on the drier AIS, pore
close-off age is about 1000 years; thus this range increases
to ±75 years. Compaction anomalies hover around 0 cm on
most of the dry zone of the AIS because it has not experi-
enced the strong recent surface warming of the GrIS. Ab-
solute uncertainty is thus reduced but still critical given the
large area of the AIS over which uncertainties are aggre-
gated when mass balance trends are evaluated. The uncer-
tainty ranges calculated from the CV values provide an order
of magnitude of errors in firn model outputs that must be ac-
counted for in altimetry-based mass balance assessments and
in ice core studies.
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Figure 7. Monthly time series of compaction anomalies at two sites on the GrIS. Insets show details for particular intervals of the time
series. Mean climatic anomalies are calculated as a difference between mean climatic values over the period 2000–2017 with respect to the
reference period 1960–1979, and based on RACMO2 values.

Table 3. Coefficients of variation for the 2000–2017 cumulative
compaction anomaly (cmpan) and firn age at pore close-off depth
(agepc). Values are computed from results of 500 randomly se-
lected parameter combinations from the posterior ensembles of each
model (HL, Ar, LZ). Coefficients of variation are averaged across
all sites of the dataset.

Coefficient of HL Ar LZ Combined
variation (HL, Ar, LZ)

cmpan 5.8 % 5.8 % 6.5 % 19.5 %
agepc 6.5 % 5.8 % 7.5 % 7.5 %

We further investigate how using different models and dif-
ferent parameterizations leads to discrepancies in the mod-
elled compaction. We compute monthly values of com-
paction anomalies over the 2000–2017 period with the orig-
inal and MAP models of HL, Ar and LZ (Fig. 7). Ar shows
the strongest sensitivity to climatic conditions diverging from
these of the reference period; compaction responds strongly
to the general increases in GrIS in temperature and accumu-
lation rate, especially in late summer. Due to its lower val-
ues for α, β and Eg, MAPAr exhibits fewer extreme com-
paction anomalies than the original Ar and thus less sea-
sonal variability. In sharp contrast to Ar, HL-computed com-

paction rates remain relatively stable, due to low activation
energy values that smooth out the seasonal variability. Firn
core observations provide little information and constraints
on seasonal patterns of densification. However, it is notewor-
thy that MAPAr and MAPLZ tend to show comparable short-
timescale sensitivities (insets in Fig. 7), despite structural dif-
ferences in the models’ governing equations. This might in-
dicate that these models fare relatively well in capturing sea-
sonal fluctuations of densification rates and their sensitivity
to climate shifts.

5 Conclusion

We have implemented a Bayesian calibration method to es-
timate optimal parameter combinations applicable to GrIS
and AIS firn for three benchmark firn densification models
(HL, Ar, LZ). An extensive dataset of 91 firn cores was sep-
arated into calibration and independent evaluation data. Two
optimized models (MAPHL, MAPAr) showed significant im-
provement against the evaluation data, while MAPLZ reached
results close to, but slightly worse, than its original version
and inferior to MAPHL and MAPAr. When compared to other
models of greater complexity, the MAP models showed com-
parable or even improved performances. Furthermore, the
Bayesian approach provides a robust way to evaluate the un-
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certainty related to parameter value choice, which is a ma-
jor deficiency of current models. By introducing realistic cli-
matic perturbations in the calibration process, the uncertainty
intervals obtained account for the effects of an uncertain cli-
matic forcing. However, at most sites where we evaluated,
all three models’ uncertainty intervals do not cover observed
DIP values. As such, although model results can be im-
proved by re-calibration methods, model tuning alone is in-
sufficient to reach exact fidelity of firn densification models.
The formulation of models’ governing equations impacts the
remaining errors with respect to observations, which high-
lights deficiencies in our understanding of dry firn densi-
fication. Developing a well-constrained physically detailed
model is challenging given the number of mechanisms affect-
ing densification rates and their dependency on microstruc-
tural properties of firn, which are difficult to observe. Our
study demonstrates that, despite these observational limita-
tions, thorough calibration methods relying only on climatic
variables can substantially improve firn model accuracy, and
constrain uncertainties.

Data availability. In total 41 of the 91 firn cores are from the
SUMup dataset (2019 release), which is publicly available from
the Arctic Data Center (https://doi.org/10.18739/A26D5PB2S,
Koenig and Montgomery, 2019). A total of 41 of the 91
firn cores are from the dataset compiled by Matt Spencer
(Spencer et al., 2001), which is available upon request. Five
of the 91 firn cores were provided by Joe McConnell and
Ellen Mosley-Thompson and are available on request through
PKM. Two of the 91 cores are available via the PANGAEA
website (https://doi.org/10.1594/PANGAEA.227732, Gerland and
Wilhelms, 1999; https://doi.org/10.1594/PANGAEA.615238, Wil-
helms, 2007). One of the 91 cores is available via the
NOAA website (https://www.ncdc.noaa.gov/paleo-search/study/
2427, Mayewski et al., 1995, 2020). One of the 91 cores is avail-
able via the USAP website (https://doi.org/10.7265/N5CR5R88,
Cole-Dai, 2004). All Antarctic RACMO2.3p2 climate data
used are available on request through JMVW. All Green-
land RACMO2.3p2 climate data used are available on re-
quest through BN, and yearly SMB and components are free
to download (https://doi.org/10.1594/PANGAEA.904428, Noël,
2019). The Community Firn Model is available for download on
GitHub (https://github.com/UWGlaciology/CommunityFirnModel;
https://doi.org/10.5281/zenodo.3585884, Stevens, 2019).
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