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S1 Separation between the calibration and the evaluation data 

The 91 sites of the dataset span a broad range of temperature and accumulation rate conditions (Table S1 and Fig. S1). 

As explained in the main text, our objective is to select the evaluation data (22 cores) randomly but still making it 

representative of (i) all climatic conditions and (ii) the ratio of GrIS to AIS sites of the dataset. We separate the 91 

observed cores in three tiers of lowest, middle and highest 𝑇𝑎𝑣 and we select randomly 7 cores in each tier for the 

evaluation data. We repeat this random selection until 5 to 10 out of the 21 cores are from GrIS, with the remainder 

from AIS. Finally, our dataset includes two sites that are climatic outliers with respect to the others (DML and 

spencer4 in Table S1) with high 𝑇𝑎𝑣 and �̇� values (Figure S1). We select randomly one of these for the evaluation 

data. Proceeding to the selection based on �̇� rather than 𝑇𝑎𝑣 would be similar given the strong correlation between 

both variables.  

S2 Application of random noise in the boundary conditions 

In order to let uncertainty in RACMO2 output affect the calibration process, we perturb the temperature and 

accumulation time series that serve as climatic forcing for the firn models. At each iteration (a round of simulations 

with a given parameter set at all the calibration sites) and for each individual calibration site, we randomly draw an 

individual climatic perturbation value 𝑐𝑝 from a standard Normal distribution (Eq. (S1)). As such, every calibration 

site has a specific 𝑐𝑝 value, which changes at each iteration. We use observed statistics of RACMO2 errors in 

temperature and Surface Mass Balance to determine the perturbation. For GrIS, Noël et al. (2019) report RMSE values 

with respect to field observations for temperature and surface mass balance flux of 2.1 K and 69 mm w.e. yr-1 

respectively (in their Supplementary Material). Each monthly value of the RACMO2 time series is therefore perturbed 

by the corresponding RMSE value scaled by 𝑐𝑝 (Eq. (S2), (S3), (S4)).  

 

We favour this approach rather than drawing a different random perturbation at each time step. The latter method 

would cause perturbations of opposite signs to occur on a very short timescale, which would result in unrealistic short 

term climatic variability (e.g. a very warm perturbation could be immediately followed by a very cold perturbation in 

the next month). Also, using the same 𝑐𝑝 value to quantify the magnitude of the perturbation for temperature and 

accumulation preserves the strong correlation between these variables. Warm (cold) temperature perturbations 

coincide with high (low) accumulation perturbations, which keeps our random perturbations physically plausible.  

 

The part of the total accumulation perturbation attributed to each monthly time step is weighted by the actual 

accumulation at that time step. This attributes larger absolute noise in accumulation to high-accumulation months and 

lower absolute noise to low-accumulation months (Eq. (S3), (S4)).  

 

Our approach is summarized in Eq. (S1), (S2), (S3) and (S4). These equations are applied at all iterations of the 

calibration process. 

 

 𝑐𝑝~𝑁(0,1)    at all calibration sites  (S1) 

𝑇𝑡
∗ = 𝑇𝑡 + 𝑐𝑝𝜎𝑇    at all 𝑡 (S2) 

�̇�𝑡𝑜𝑡
∗ = 𝑛𝑦𝑟𝑐𝑝𝜎𝑆𝑀𝐵  (S3) 

�̇�𝑡
∗ = �̇�𝑡 + �̇�𝑡𝑜𝑡

∗ �̇�𝑡

∑ �̇�𝑡𝑡
  (S4) 

 

where 𝑇𝑡 and �̇�𝑡 are temperature and accumulation rate as computed by RACMO2 at time step 𝑡 and the ∗ superscript 

denotes the perturbed quantity. 𝑛𝑦𝑟 is the total number of years in a given simulation, �̇�𝑡𝑜𝑡
∗  is the total accumulation 

perturbation applied for that simulation and 𝜎𝑇 and 𝜎𝑆𝑀𝐵 are the temperature and surface mass balance flux RMSE 

values (as mentioned above, 𝜎𝑇 = 2.1 K and 𝜎𝑆𝑀𝐵= 69 mm w.e. yr-1 for GrIS). Note that by using a RMSE value on 

the surface mass balance flux, we overestimate uncertainty because the observed RMSE is mostly driven by errors in 

melt amounts which do not apply at the sites of our dataset, all from the dry snow zone area. For AIS, we apply the 

exact same process for perturbing the temperature variables. We use the RMSE value reported by van Wessem et al. 

(2018) and set 𝜎𝑇 = 1.3 K. The accumulation conditions of AIS forces the use of a slightly different method for 

perturbing the accumulation rate. In terms of magnitude, RACMO2 errors are much larger in coastal areas, where 

accumulation rates are high. In contrast, in the dry interior of the ice sheet where most of the cores of our dataset come 

from, the magnitude of RACMO2 errors is small due to low accumulation rates. As such, applying noise based on the 

ice sheet wide RMSE value would result in noise signals larger than actual accumulation values at most of our dry 



sites. We thus use the average RACMO surface mass balance bias of 5% (van Wessem et al., 2018) as a proxy for one 

standard deviation. For AIS, Eq. (S3) and (S4) are replaced by Eq. (S5). 

�̇�𝑡
∗ = �̇�𝑡 + 0.05 𝑐𝑝 �̇�𝑡  (S5) 

 

As explained in Sect. 2.2, we also let uncertainty in fresh snow density, 𝜌0, affect the calibration process by applying 

random perturbations to each 𝜌0
𝑡 . In contrast to the climatic perturbation, the perturbation in 𝜌0 can be specific to each 

single time step 𝑡, and the perturbation thus varies throughout the duration of a firn model simulation. Indeed, it is not 

unrealistic that a month with anomalously low fresh snow density is immediately followed by a month of anomalously 

high fresh snow density for example. We determine surface density values at each site from the firn cores of our 

dataset, 𝜌0
𝑐𝑜𝑟𝑒, and we perturb these values based on a standard deviation of 25 kg m-3. This value goes in line with a 

typical window of local variability of 50 kg m-3 for 𝜌0 (Reeh et al., 2005). As such, adding noise to 𝜌0 simplifies to 

Eq. (S6). 

𝜌0,𝑡
∗  ~𝑁(𝜌0

𝑐𝑜𝑟𝑒 , 25)  (S6) 

We emphasize that the aim of this study is not to conduct a complete sensitivity analysis of firn densification to 

climatic forcing and to fresh snow density. The objective of the perturbations is to let reasonable estimates of errors in 

those fields to be accounted for in the calibration process. 

S3 Prior correlations in HL and Ar 

The Arrhenius form of HL and Ar (Eq. (4) and (5)) allows us to include some correlation in the prior distributions 

over the parameters of these models. The values of the Arrhenius pre-exponential factors (𝑘0
∗ , 𝑘1

∗ , 𝑘
0

𝐴𝑟
 and 𝑘1

𝐴𝑟
) are 

correlated with their corresponding activation energies (𝐸0, 𝐸1 and 𝐸𝑔). For any given constant temperature, modelled 

densification rates, 
𝑑𝜌

𝑑𝑡
 , can be kept constant despite a change in the pre-exponential factor if the corresponding 

activation energy is changed accordingly and vice versa. As such, changes in these parameters can potentially 

compensate in the calculation of 𝐷𝐼𝑃 values and of the likelihood function (Eq. (8)).  

By enforcing constant 
𝑑𝜌

𝑑𝑡
, exact compensation is ensured by the following equalities: 

𝑘0,𝑚𝑣
∗ = 𝑘0,𝐻𝐿

∗ exp (
𝐸0,𝑚𝑣−𝐸0,𝐻𝐿

𝑅 𝑇
)  (S7) 

𝑘1,𝑚𝑣
∗ = 𝑘1,𝐻𝐿

∗ exp (
𝐸1,𝑚𝑣−𝐸1,𝐻𝐿

𝑅 𝑇
)  (S8) 

𝑘0,𝑚𝑣
𝐴𝑟 = 𝑘0,𝐴𝑟

𝐴𝑟 exp (
𝐸𝑔,𝐴𝑟−𝐸𝑔,𝑚𝑣

𝑅 𝑇
)  (S9) 

𝑘1,𝑚𝑣
𝐴𝑟 = 𝑘1,𝐴𝑟

𝐴𝑟 exp (
𝐸𝑔,𝐴𝑟−𝐸𝑔,𝑚𝑣

𝑅 𝑇
)  (S10) 

where 𝐻𝐿 and 𝐴𝑟 subscripts denote the values from the original publications of the HL and Ar models, and the 𝑚𝑣 

subscript denotes a modified value of the parameter. Firstly, we generate 10000 random values of temperature 𝑇 in the 

range of annual mean temperatures covered by our dataset. Secondly, for each random temperature, we generate 

random values of 𝐸0,𝑚𝑣, 𝐸1,𝑚𝑣 and 𝐸𝑔,𝑚𝑣 in an interval of ±500 J mol-1 around the original values. Thirdly, we 

calculate the corresponding values in the pre-exponential factors from Eq. (S7), (S8), (S9) and (S10). This results in 

10000 pairs of (𝑘0,𝑚𝑣
∗ , 𝐸0,𝑚𝑣), (𝑘1,𝑚𝑣

∗ , 𝐸1,𝑚𝑣), (𝑘0,𝑚𝑣
𝐴𝑟 , 𝐸𝑔,𝑚𝑣) and (𝑘1,𝑚𝑣

𝐴𝑟 , 𝐸𝑔,𝑚𝑣), from which we calculate correlation 

coefficients. The absolute values of all four correlation coefficients lie in the interval [0.75; 0.78]. We decide to fix all 

prior correlation coefficients to -0.75 (HL parameters, negatively correlated) and 0.75 (Ar parameters, positively 

correlated). The process described necessarily results in perfectly correlated 𝑘0,𝑚𝑣
𝐴𝑟  and 𝑘1,𝑚𝑣

𝐴𝑟 . We also set the prior 

correlation between these parameters to 0.75.  

We emphasize here that any other pair of a priori uncorrelated parameters can certainly be correlated a posteriori if 

the calibration process identifies such quantitative behaviour when the observed data is considered. This is highlighted 

and further discussed in Sect. S7. 

S4 The likelihood function, Eq. (8) 

The covariance matrices 𝛴15 and 𝛴𝑝𝑐 that appear in Eq. (8) are diagonal matrices with the site-specific variances on 

the diagonal. At each site, we take 10% of the observed 𝐷𝐼𝑃15 and 20% of the observed 𝐷𝐼𝑃𝑝𝑐 as the standard 

deviation, and the variance value is the square of the standard deviation. We take the higher value of 20% for 𝐷𝐼𝑃𝑝𝑐 

because density errors propagate in firn models. Equation (3) shows that densification rates depend on the density 

value itself, resulting in error propagation through time. As such, if a model shows an offset compared to observations 

at 15 m depth, it is likely to show an even stronger offset at 𝑧𝑝𝑐. Taking a higher variance alleviates the strength of this 

effect on the likelihood calculations by allowing a larger spread of model results compared to observed 𝐷𝐼𝑃𝑝𝑐 values. 



The form of Eq. (8) corresponds to a normal likelihood function. This assumes that model 𝐷𝐼𝑃 results are normally 

distributed around the observed values. To support this assumption, we conducted a preliminary verification of errors 

in 𝐷𝐼𝑃15 (𝑋15 − 𝑌15) and 𝐷𝐼𝑃𝑝𝑐 (𝑋𝑝𝑐 − 𝑌𝑝𝑐) computed with the three original models (HL, Ar, LZ) on the entire 

dataset. We compute a basic Kolmogorov-Smirnov test for both sets of errors: residuals in 𝐷𝐼𝑃15 and in 𝐷𝐼𝑃𝑝𝑐. The 

resulting p-values are very large: 0.94 and 0.86 respectively. The distributions of these errors are thus in line with a 

normal distribution. We show the Quantiles-Quantiles plots for both sets of residuals in Figure S2. As explained in the 

main text, the form of Eq. (8) also assumes independence between errors in 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐, which is the reason 

why 𝐷𝐼𝑃𝑝𝑐 is calculated only from depths below 15 m. As such, observations-model discrepancies are essentially 

governed by parameter values of stage-1 densification for 𝐷𝐼𝑃15 and by parameter values of stage-2 densification for 

𝐷𝐼𝑃𝑝𝑐, with little interaction between both. The same preliminary verification as mentioned above allows us to 

evaluate the correlation between 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 errors for all three original models on the entire dataset. This 

yields correlation coefficients of 0.13, 0.60 and -0.01 for the original models HL, Ar and LZ respectively. S5 

Convergence diagnostics 

For convergence of the RWM algorithm, the chain must traverse between the peaks of the target posterior distribution 

multiple times. Simply examining the trace of the RWM algorithm for each parameter provides an effective way to 

verify this criterion. The trace is the history of accepted parameter values over the entire chain. We show this sampling 

history in Fig. S3. The fuzzy appearance for each parameter of each model indicates an efficient exploration of the 

parameter space as the samples from RWM algorithm oscillate around the posterior mode. 

In addition to this, we compute the Gelman-Rubin statistic, which provides a numerical test for convergence (Gelman 

et al., 2013). The motivation behind this test is that if each chain (run independently) converges to the same posterior 

distribution, then the variances within each chain should be approximately the same. For each model (HL, Ar, LZ), we 

launch three different chains from different initial parameter values. For each parameter of each model, we calculate 

the mean within sample variance 𝑊: 

𝑊 =
𝑠1
2+𝑠2

2+𝑠3
2

3
  (S1) 

where 𝑠2 denotes the variance of an individual chain. We then calculate the between sample variance: 

𝐵 =
𝑛

3−1
∑ (�̅�𝑖 − �̿�)

23
𝑖=1  (S2) 

where 𝑛 denotes the number of iterations within each chain, �̅�𝑖 the mean parameter value within each chain and �̿� is 

the mean of (�̅�1, �̅�2, �̅�3). From there, the estimate of the variance of the posterior distribution is given by: 

  𝜎2 =
𝑛−1

𝑛
𝑊 +

1

𝑛
𝐵 (S3) 

And the Gelman-Rubin statistic is defined as: 

𝑅 = √
�̂�2

𝑊
 (S4) 

Large values of 𝑅 indicate that estimates of 𝜃 values between the different chains are significantly different. With 

more iterations, the chains progressively converge to the same stationary distributions and the estimates of 𝜃 become 

similar, resulting in values of 𝑅 close to 1. We reach 𝑅 < 1.1 for all parameters, which proves adequate convergence 

(Gelman et al., 2013). Two parameters of the LZ model needed a larger number of iterations to reach 𝑅 < 1.1. 

S6 Normal approximation to the posterior 

The ensembles of parameter combinations obtained for each model provide large samples, representative of the 

posterior probability distributions over their respective parameter space. The most efficient way to assess parameter-

related uncertainty is to run a model with a high number of random parameter combinations from these ensembles, 

which is demonstrated in Sect. 3. However, this means that for any firn modelling study, access must be easy to such 

posterior ensembles or an MCMC algorithm must be re-executed. To circumvent these practical difficulties, it is 

approximately correct to sample random parameter combinations from a multivariate normal distribution centred 

about the mean of the posterior ensemble and with covariance matrix set to the posterior ensemble covariance matrix. 

This is commonly referred to as a normal approximation to the posterior (Gelman et al., 2013). Table S2 provides both 

the posterior mean and posterior covariance for the HL, Ar and LZ models. 

We assess how random samples from the normal approximations compare to samples from the posterior ensembles in 

Fig. S4. Posterior samples and the normal approximations are very similar, with correlations only slightly less well 

captured in the tails of the distributions. As a consequence, the normal approximation results in a slight overestimation 

of uncertainty and thus conservative estimates of uncertainty. This has been confirmed by additional model 

simulations with values sampled from the normal approximations (not shown). 

 



S7 Posterior correlation between parameters 

The joint posterior distributions for the parameters of each model also allow us to analyse the models' internal 

structure, i.e. the correlation between their different parameters. The full correlation matrices are given in Fig. S5. In 

HL, the strongest correlation coefficients 𝑟 are unsurprisingly found for the pairs of pre-exponential factor and 

activation energy governing densification in stage-1 (𝑘0
∗ and 𝐸0) and in stage-2 (𝑘1

∗ and 𝐸1) with 𝑟 of 0.91 and 0.92 

respectively. Higher activation energies (𝐸0 and 𝐸1) imply stronger thermal barriers to the densification process and 

thus slower densification, and the pre-exponential factors (𝑘0
∗ and 𝑘1

∗) counter-balance the effect to still match 

observed 𝐷𝐼𝑃 values. In the same way, the activation energies are negatively correlated with their respective 

accumulation rate exponent (𝑎 and 𝑏), but more moderately (𝑟 values of approximately -0.5). The negative correlation 

of -0.28 between 𝑎 and 𝑏 themselves might be linked to the density at 15 m being the lower boundary and the upper 

boundary condition for the calculation of 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 respectively. Higher values of 𝑎 tend to cause lighter firn 

at 15 m depth. Lower 𝐸0 values compensate for this effect on 𝐷𝐼𝑃15 because the shallow firn densifies faster due to 

its greater sensitivity to temperature variations. The lighter 15 m depth density also affects 𝐷𝐼𝑃𝑝𝑐, and lower values of 

𝑏 compensate for this by enhancing the densification rate, which explains the negative correlation between 𝑎 and 𝑏. In 

Ar, the interpretation is more challenging due to the use of a same activation energy in both stages. There is a strong 

correlation between the activation energy 𝐸𝑔 and both pre-exponential factors 𝑘0
𝐴𝑟 (𝑟 = -0.89) and 𝑘1

𝐴𝑟 (𝑟 = -0.90), for 

the same reason as in HL. As such, this induces a strong positive correlation between the latter parameters (𝑟 = 0.76). 

The negative correlation between 𝛼 and 𝑘1
𝐴𝑟 (𝑟 = -0.41) is more surprising because these parameters apply to different 

stages, but it reveals an interesting pattern. Higher temperatures raise densification rates at warmer sites, where 

accumulation rates are also higher thus further amplifying this effect. Higher accumulation rates nevertheless cause 

light recently deposited firn to be buried rapidly, which may cause lower density firn governed by the fast stage-1 

densification to extend below 15 m. To avoid underestimation of 𝐷𝐼𝑃𝑝𝑐 at such sites, stage-1 densification rates must 

remain low enough but there is no possibility for adjusting a stage-1 specific activation energy. Lower 𝛼 values 

generate this effect while only marginally affecting densification at colder low-accumulation sites. Thus, high 𝑘1
𝐴𝑟 

without a complementary lower 𝛼 would cause 𝐷𝐼𝑃𝑝𝑐 underestimation at warm and high accumulation sites. We note 

here that, through the calibration process, the data enhanced the prior correlations we assigned in the HL and Ar 

models. Analysis of correlation coefficients in LZ is less straightforward because its governing equations, Eq. (6), are 

less interpretable than the plain Arrhenius relationship of HL and Ar. Still, we highlight some correlated pairs of 

parameters. As could be expected from Eq. (6), 𝑙𝑧𝑎 and 𝑙𝑧𝑏 are negatively correlated (𝑟 = -0.80). Also, the 

independent term of stage-1 densification 𝑙𝑧11 is strongly correlated with the corresponding temperature-related 

parameter (𝑙𝑧13, 𝑟 = 0.94). The same is valid for stage-2 densification between 𝑙𝑧21 and 𝑙𝑧23 (𝑟 = 0.90). The positive 

correlation between 𝑙𝑧12 and 𝑙𝑧22 (𝑟 = 0.74) is discussed in the main text.  

  



 

Tables 

Site Lat Lon 

Core 

depth 

[m] 

Year Mean �̇� 

[m w.e. yr-1] 

Mean T 

[℃] 

𝜌0 

[kg/m3] 

𝐷𝐼𝑃15 

[m] 

Var 

𝐷𝐼𝑃15 

[m2] 

𝐷𝐼𝑃𝑝𝑐 

[m] 

Var 

𝐷𝐼𝑃𝑝𝑐 

[m2] 

EGRIP 75.63 -35.98 20.1 2017 0.113 -29.0 285 7.816 0.611 / / 

Summit * 72.58 -38.47 22.1 2017 0.205 -28.4 330 7.500 0.562 / / 

id359 73.94 -37.63 102.4 1993 0.124 -28.8 240 6.708 0.450 11.456 5.250 

id369 75.00 -30.00 19.9 1997 0.135 -27.6 335 7.454 0.556 / / 

id373 75.25 -37.62 100.8 1993 0.106 -29.5 275 7.826 0.612 12.372 6.123 

id385 76.00 -43.49 109.8 1995 0.124 -29.3 315 7.857 0.617 13.186 6.955 

id423 * 76.62 -36.40 143.2 1993 0.093 -29.1 310 7.716 0.595 10.666 4.550 

id514 77.25 -49.22 119.6 1995 0.163 -28.3 300 7.575 0.574 13.217 6.987 

id531 * 77.45 -51.06 75.0 2009 0.198 -27.4 320 7.434 0.553 / / 

id534 80.00 -41.14 96.0 1994 0.105 -28.4 335 7.811 0.610 11.345 5.148 

Basin8 69.80 -36.49 29.8 2003 0.350 -25.6 300 7.396 0.547 / / 

D2 71.80 -46.34 101.3 2003 0.421 -23.4 370 7.051 0.497 14.097 7.949 

D4 71.39 -43.94 143.9 2003 0.390 -24.6 300 7.394 0.547 12.770 6.523 

HumboldtM * 78.47 -56.98 141.9 1995 0.384 -24.8 280 8.062 0.650 10.947 4.794 

NASAE1 * 74.98 -29.97 19.9 1997 0.135 -27.6 340 7.394 0.547 / / 

spencer6 * 72.57 -37.62 82.3 1994 0.176 -29.0 360 4.889 0.239 / / 

spencer16 71.75 -40.75 15.0 1954 0.289 -27.0 340 7.216 0.521 / / 

spencer17 77.95 -39.18 60.0 1973 0.080 -29.3 300 5.002 0.250 7.781 2.421 

spencer66 * 70.75 -35.96 109.0 1987 0.247 -27.3 300 7.340 0.539 14.852 8.823 

spencer67 70.63 -35.83 128.6 1988 0.262 -27.0 325 7.098 0.504 14.114 7.968 

spencer68 * 70.65 -37.48 105.6 1988 0.263 -26.9 325 7.172 0.514 14.505 8.416 

spencer69 70.67 -38.79 24.8 1988 0.252 -27.1 305 7.184 0.516 / / 

spencer70 70.64 -39.62 100.1 1988 0.262 -27.0 290 6.772 0.459 14.026 7.869 

spencer71 71.76 -35.87 77.8 1988 0.203 -28.2 275 7.043 0.496 13.094 6.858 

spencer72 71.48 -35.88 25.7 1988 0.207 -28.0 330 7.223 0.522 / / 

spencer73 71.15 -35.85 70.8 1988 0.214 -27.7 340 7.230 0.523 / / 

spencer74 70.85 -35.85 26.2 1988 0.264 -26.9 330 7.087 0.502 / / 

SouthPole -90.00 0.00 122.9 2001 0.055 -47.8 325 7.613 0.580 22.312 19.913 

Newall -77.58 162.50 111.1 1989 0.043 -31.2 305 7.160 0.513 4.132 0.683 

Berkner * -79.61 -45.72 178.2 1995 0.124 -28.3 345 6.255 0.391 9.658 3.731 

DML * -71.41 -9.92 78.2 2007 0.902 -20.6 410 6.037 0.364 10.228 4.185 

id9 -76.77 -101.74 111.6 2012 0.313 -24.7 470 6.194 0.384 12.119 5.875 



id10 -76.95 -121.22 62.0 2011 0.213 -28.4 355 6.947 0.483 / / 

id11 -77.06 -89.14 114.5 2001 0.346 -26.5 415 5.879 0.346 11.201 5.019 

id12 -77.61 -92.25 67.8 2001 0.301 -27.8 350 6.019 0.362 / / 

id13 -77.68 -124.00 59.3 2000 0.155 -28.2 350 6.411 0.411 / / 

id14 -77.76 153.38 97.1 2006 0.048 -44.6 360 6.833 0.467 17.516 12.272 

id15 * -77.84 -102.91 70.7 2001 0.486 -25.1 415 5.853 0.343 / / 

id17 -77.88 158.46 98.5 2006 0.058 -41.1 350 6.419 0.412 11.687 5.464 

id18 -77.96 -95.96 57.4 2010 0.354 -28.0 335 6.752 0.456 / / 

id19 -78.08 -120.08 57.8 2000 0.171 -27.7 315 6.253 0.391 / / 

id20 -78.12 -95.65 70.5 2001 0.324 -27.7 385 6.265 0.393 / / 

id22 * -78.33 -124.48 59.9 2000 0.152 -27.7 285 6.509 0.424 8.989 3.232 

id24 -78.43 -115.92 59.8 2000 0.318 -27.8 390 6.295 0.396 / / 

id26 -78.73 -111.50 60.7 2000 0.329 -27.8 350 6.427 0.413 / / 

id28 -79.04 149.68 100.1 2006 0.040 -44.6 405 6.703 0.449 15.584 9.714 

id29 * -79.13 -122.27 63.1 2000 0.127 -27.8 300 6.507 0.423 9.926 3.941 

id30 -79.16 -104.97 72.7 2001 0.306 -28.7 400 5.921 0.351 / / 

id33 -79.38 -111.24 104.8 2000 0.239 -28.2 370 6.159 0.379 12.943 6.701 

id35 * -79.48 -112.09 160.0 2011 0.162 -28.0 460 6.181 0.382 11.824 5.592 

id39 -80.62 -122.63 57.5 1999 0.094 -25.9 370 6.253 0.391 / / 

id43 -81.20 -126.17 48.3 1999 0.070 -24.5 325 6.268 0.393 4.975 0.990 

id46 -82.00 -110.01 62.2 2002 0.180 -27.8 340 6.161 0.380 / / 

id48 -83.50 -104.99 61.7 2002 0.220 -31.0 360 6.098 0.372 / / 

id49 * -84.40 140.63 50.1 2007 0.023 -45.4 340 6.886 0.474 / / 

id50 -85.00 -105.00 44.9 2002 0.157 -36.3 360 6.422 0.412 / / 

id51 -85.78 145.72 41.7 2007 0.033 -46.1 310 6.767 0.458 / / 

id52 * -86.50 -107.99 71.6 2002 0.147 -38.8 340 6.882 0.474 / / 

id53 -86.84 95.31 20.8 2003 0.042 -53.3 355 6.535 0.427 / / 

id54 * -88.00 -107.98 54.1 2002 0.133 -41.4 355 7.009 0.491 / / 

id55 -88.51 178.53 99.3 2007 0.081 -48.2 320 6.880 0.473 / / 

id56 -89.93 144.39 139.5 2002 0.080 -48.6 345 6.319 0.399 25.046 25.092 

spencer1 -80.00 -120.00 307.0 1968 0.120 -27.2 350 6.987 0.488 10.314 4.255 

spencer4 -66.72 113.18 200.9 1989 1.060 -22.0 380 7.848 0.616 12.847 6.602 

spencer5 -74.50 123.17 49.5 1980 0.037 -51.8 345 8.262 0.683 / / 

spencer7 -85.25 166.50 79.9 19997 0.028 -39.7 305 7.003 0.490 8.202 2.691 

spencer8 -66.77 112.80 180.0 1997 0.488 -22.7 385 7.385 0.545 10.640 4.528 

spencer22 -73.60 -12.43 25.5 1996 0.220 -22.5 380 3.920 0.154 / / 

spencer25 -74.02 -12.02 26.5 1996 0.171 -30.7 390 5.412 0.293 / / 



spencer29 * -75.00 2.00 20.6 1996 0.072 -42.9 320 7.602 0.578 / / 

spencer33 -70.68 44.32 123.5 1978 0.114 -33.1 385 6.385 0.408 7.022 1.972 

spencer34 * -70.68 44.32 109.0 1978 0.114 -33.1 375 6.161 0.380 6.909 1.909 

spencer61 -73.10 39.75 99.7 1978 0.069 -42.3 360 7.005 0.491 16.245 10.556 

spencer62 * -71.18 45.97 100.2 1997 0.091 -38.2 395 7.049 0.497 16.344 10.686 

spencer76 -90.00 0.00 122.1 1997 0.055 -47.8 360 4.906 0.241 25.586 26.185 

spencer77 -75.00 147.00 15.8 1961 0.042 -46.1 385 7.184 0.516 / / 

spencer78 * -74.00 143.00 16.0 1961 0.043 -45.5 375 7.205 0.519 / / 

spencer79 -73.00 142.00 15.7 1961 0.057 -44.0 325 7.148 0.511 / / 

spencer80 -73.00 141.00 16.0 1961 0.057 -44.0 355 6.876 0.473 / / 

spencer81 -72.00 140.00 16.9 1961 0.080 -42.7 335 6.936 0.481 / / 

spencer82 * -71.00 139.00 15.6 1961 0.120 -41.6 375 6.848 0.469 / / 

spencer83 -72.00 143.00 15.7 1961 0.087 -41.3 405 6.796 0.462 / / 

spencer84 -72.00 146.00 16.2 1961 0.086 -40.9 410 6.876 0.473 / / 

spencer85 -72.00 148.00 15.9 1961 0.096 -40.2 360 6.745 0.455 / / 

spencer86 -72.00 151.00 15.8 1961 0.103 -39.7 400 6.963 0.485 / / 

spencer87 -72.00 154.00 15.9 1961 0.130 -38.0 355 6.430 0.414 / / 

spencer88 -72.00 156.00 15.7 1961 0.130 -37.6 395 7.050 0.497 / / 

spencer89 -72.00 159.00 15.7 1961 0.115 -35.7 370 6.665 0.444 / / 

spencer90 -83.47 138.80 340.5 1994 0.020 -45.2 420 / / 10.046 4.037 

spencer91 -83.47 -138.80 47.0 1987 0.058 -27.1 295 7.037 0.495 3.530 0.499 

spencer92 -78.47 106.80 179.3 1996 0.022 -54.6 360 8.790 0.773 20.368 16.594 

Table S1. The 91 firn core dataset used in this study. * symbols indicate the core is part of the evaluation data. Lat and Lon designate latitude 

and longitude respectively. Year indicates the year of drilling of the core. �̇� is the accumulation rate. T is the temperature. Values for both �̇� and 

T are computed from the RACMO2 model. 𝜌0 is the surface density boundary condition that was derived individually for each core by 

extrapolating density measurements until the surface (random noise is added to 𝜌0 as discussed in Sect. S2). Var designates the site-specific 

variance used for the terms of 𝛴15 and 𝛴𝑝𝑐 (see Text S4 for their calculation). The core spencer90 has only a single density measurement above 

15 m depth and its 𝐷𝐼𝑃15 is discarded. 

  



 

 Parameters Posterior mean Posterior covariance matrix 

HL 
𝑘0

∗ , 𝑘1
∗, 𝐸0, 

𝐸1, 𝑎, 𝑏 
[
16.7, 649, 10760,
 21000, 0.88, 0.66

] 

[
 
 
 
 
 

34.4 40.2 4500 324 −0.0685 −0.0195
40.2 44000 618 161000 1.087 −3.670
4502 618 710000 7080 −29.95 1.94
324 1610000 7080 694000 7.86 −27.51

−0.0685 1.087 −29.95 7.86 0.0051 −0.0012
−0.0195 −3.670 1.94 −27.51 −0.0012 0.0036 ]

 
 
 
 
 

 

Ar 
𝑘0

𝐴𝑟, 𝑘1
𝐴𝑟 , 𝐸𝑔, 

𝛼, 𝛽 
[
0.080, 0.028, 40900,

  0.78, 0.69
] 

[
 
 
 
 

5.62 × 10−4 1.55 × 10−4 −12.66 9.65 × 10−5 −3.23 × 10−4

1.55 × 10−4 7.41 × 10−5 −4.64 −2.04 × 10−4 1.05 × 10−4

−12.66 −4.64 360000 11.0 4.67
9.65 × 10−5 −2.04 × 10−4 11.0 0.00330 −0.00101

−3.23 × 10−4 1.05 × 10−4 4.67 −0.00101 0.00312 ]
 
 
 
 

 

LZ 

𝑙𝑧𝑎 , 𝑙𝑧𝑏 , 𝑙𝑧11, 
𝑙𝑧12, 𝑙𝑧13, 𝑙𝑧21, 

𝑙𝑧22, 𝑙𝑧23 

 

[
7.56,−2.091,−14.71,

  7.269,−1.019,−1.513,
6.0203,−0.09127

] 

[
 
 
 
 
 
 
 

5.27 −0.198 −1.20 −1.68 −0.0239 0.00553 −0.0606 0.00413
−0.198 0.0116 0.218 −0.0612 0.0134 −0.0158 −0.00229 −7.37 × 10−4

−1.20 0.218 14.6 −3.96 0.801 0.368 0.354 0.0129
−1.68 −0.0612 −3.96 13.3 −0.309 −0.0850 5.40 0.0166

−0.0239 0.0134 0.801 −0.309 −0.0502 −0.0173 0.0252 −4.42 × 10−4

0.00553 −0.0158 0.368 −0.0850 −0.0173 0.446 −0.429 0.0131
−0.0606 −0.00229 0.354 5.40 0.0252 −0.429 3.94 −2.59 × 10−4

0.00413 −7.37 × 10−4 0.0129 0.0166 −4.42 × 10−4 0.0131 −2.59 × 10−4 4.80 × 10−4 ]
 
 
 
 
 
 
 

 

Table S2. The posterior means and covariance matrices for the free parameters of HL, Ar and LZ. These statistics can be used to generate 

random parameter combinations following a normal approximation. 

 

  



Figures 

 
Figure S1. Climatic conditions at the 91 sites of the dataset 

 

 
Figure S2. Quantiles-Quantiles plots for the errors of the three original models (HL, Ar, LZ) computed on the entire dataset. The alignment of 

the points along the red line informs about the fit to a normal distribution. 

 

 

 



 
Figure S3. Sampling chains of each parameter for (a) HL, (b) Ar, (c) LZ. The x-axis displays the iteration number, the y-axis displays the 

parameter value. The dashed pink line shows the value of the original model, which is also the starting point of each chain. 

 

 
Figure S4. Evaluation of the normal approximations to the posterior distributions for (a) HL, (b) Ar, (c) LZ. Where possible, correlated 

parameters share a same graph. 
 



 
Figure S5. Posterior correlation matrices. 

 

 

 
Figure S6. Comparison of evaluation data 𝐷𝐼𝑃 with model results for the LZ dual and IMAU models.  
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