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Abstract. We explore the feasibility of an observation opera-
tor producing passive microwave brightness temperatures for
sea ice at a frequency of 6.9 GHz. We investigate the influ-
ence of simplifying assumptions for the representation of sea
ice vertical properties on the simulation of microwave bright-
ness temperatures. We do so in a one-dimensional setup, us-
ing a complex 1D thermodynamic sea ice model and a 1D
microwave emission model. We find that realistic brightness
temperatures can be simulated in cold conditions from a sim-
plified linear temperature profile and a simplified salinity
profile as a function of depth in the ice. These realistic bright-
ness temperatures can be obtained based on profiles interpo-
lated to as few as five layers. Most of the uncertainty resulting
from the simplifications is introduced by the simplification of
the salinity profiles. In warm conditions, the simplified salin-
ity profiles lead to brine volume fractions that are too high in
the subsurface layer. To overcome this limitation, we suggest
using a constant brightness temperature for the ice during
warm conditions and treating melt ponds as water surfaces.
Finally, in our setup, we cannot assess the effect of wet snow
properties. As periods of snow with intermediate moisture
content, typically occurring in spring and fall, locally last for
less than a month, our approach allows one to estimate real-
istic brightness temperatures at 6.9 GHz from climate model
output for most of the year.

1 Introduction

Sea ice concentration products are retrieved from passive
microwave brightness temperatures measured by satellites
and come with a non-negligible uncertainty (Ivanova et al.,
2015; Tonboe et al., 2016; Lavergne et al., 2019). This ob-
servational uncertainty hinders reliable climate model ini-
tialization (Bunzel et al., 2016) and model evaluation (Notz
et al., 2013). Additionally, it hinders a robust extrapolation
of the future sea ice evolution based on current observations.
For example, sea ice area is strongly coupled to changes
in the global-mean air temperature (Gregory et al., 2002;
Winton, 2011; Mahlstein and Knutti, 2012; Ridley et al.,
2012; Li et al., 2013) and thus to CO2 emissions (Notz and
Stroeve, 2016). The relationship between CO2 emissions,
global-mean air temperature, and sea ice provides the pos-
sibility to project the future Arctic sea ice evolution under
different forcing scenarios. However, Niederdrenk and Notz
(2018) showed that the observational uncertainty in sea ice
concentration translates into uncertainty in the sensitivity of
sea ice to changes in global-mean air temperature and there-
fore leads to uncertainty in the temperature at which an ice-
free Arctic in summer can be expected.

Observation operators are a current approach in climate
science to circumvent observational uncertainty and the
spread introduced by the use of retrieval algorithms on satel-
lite measurements (Flato et al., 2013; Eyring et al., 2019).
They directly simulate the observable quantity, in our case
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the brightness temperature, from the climate model output in-
stead of retrieving the simulated quantity, in our case the sea
ice concentration, from the satellite observations. A sea ice
observation operator reduces the uncertainty introduced by
assumptions used in retrieval algorithms regarding the state
of other climatic variables besides the sea ice concentration.
It takes advantage of knowing the consistent climate state in
time and space simulated by the climate model alongside the
sea ice. This knowledge allows a more comprehensive ap-
proach to climate model evaluation, as we can not only assess
the simulated sea ice concentration but also the simulated sea
ice temperature, snow cover, and sea ice type. The feasibility
and limitations of an observation operator applied to sea ice
simulated by a climate model have not been investigated yet.
This is the question we address here.

We investigate how important the complexity of the rep-
resentation of sea ice properties is for the simulation of sea
ice surface brightness temperatures emitted by different ice
types. Experiments using a model accounting for part of
the processes at work inside the sea ice combined with an
emission model have shown that knowing the vertical sea
ice properties is sufficient for generating realistic microwave
brightness temperatures (Tonboe, 2010; Tonboe et al., 2011).
We mainly concentrate on the vertical representation of tem-
perature and salinity inside the ice and snow, as they are the
main drivers of the brine volume fraction in the ice and liquid
water fraction in the snow, and thus of sea ice brightness tem-
peratures, especially at low microwave frequencies (Ulaby
et al., 1986). As most general circulation models (GCMs) do
not explicitly represent the time evolution of vertical profiles
of temperature and salinity in the ice and snow, we inves-
tigate the effect of simplified temperature and salinity pro-
files on the simulation of brightness temperatures. We do so
by comparing, on the one hand, reference profiles represent-
ing an estimate of reality and, on the other hand, simpli-
fied profiles representing GCM output in an idealized one-
dimensional setup using a complex thermodynamic sea ice
model and a microwave emission model.

We focus on the simulation of sea ice brightness temper-
atures at 6.9 GHz at vertical polarization as a first step. At
this frequency, the main driver of brightness temperatures is
the sea ice properties, while the contributions of the snow
and the atmosphere due to water vapor, cloud liquid water,
and temperature are small compared to the surface contri-
bution. The framework can, however, be extended to other
frequencies and polarizations in the future if the increasing
importance of the snow and atmospheric contribution with
increasing frequency is taken into account.

In Sect. 2, we provide the theoretical background about
drivers of sea ice brightness temperatures, and in Sect. 3 we
present our method and the sea ice and emission models used
for our experiments. In Sect. 4, we explore the influence of
simplifications in the temperature and salinity profiles on the
simulation of sea ice brightness temperatures to then explore
the effect of a reduced number of layers. Finally, we discuss

our results in Sect. 5 and conclude with suggestions for a
functional observation operator for sea ice in Sect. 6.

2 Theoretical background

The brightness temperature is a measure for the microwave
radiation emitted by one medium or a combination of media
and corresponds to the temperature of a blackbody emitting
the observed amount of radiation. It depends on the temper-
ature distribution in the medium and the transmission and
reflection affecting the path of the microwave radiation from
the emitting layer within the medium to the surface of the
medium. The transmission and reflection in turn depend on
the properties of the medium and on the frequency and po-
larization of the radiation.

Transmission and reflection of the microwave radiation
within an ice column are driven by the permittivity and the
dielectric loss of the different layers of the ice on the one
hand and scatterers present in the ice on the other hand. Sea
ice is a mixture of liquid brine and pure ice and the permit-
tivity and dielectric loss of liquid brine are orders of magni-
tude larger than the permittivity and dielectric loss of pure
ice (Ulaby et al., 1986; Shokr and Sinha, 2015b). Therefore,
the permittivity and dielectric loss inside a sea ice column
are mainly a function of the fraction and distribution of liq-
uid brine in the different layers of the ice. This means that,
looking at a vertical profile of the ice, ice layers with high
brine volume fractions have a lower transmissivity and larger
reflectivity than ice layers with low brine volume fractions.
The vertical distribution of the brine volume fraction in the
ice is a function of the vertical distribution of temperature
and salinity. Brine is present within the ice throughout its
first year. If the ice becomes multiyear ice, most of its brine
will have drained out and the brine volume fraction decreases
substantially compared to first-year ice.

The scattering within an ice column is a function of the
permittivity and the size of scatterers inside the ice. In first-
year ice, the main scatterers are brine pockets, while in mul-
tiyear ice the main scatterers are air bubbles, as most of the
brine will have drained out (Winebrenner et al., 1992; Ton-
boe et al., 2006; Shokr and Sinha, 2015a).

As brightness temperatures are usually not measured at
the ice surface but at the top of the atmosphere by satel-
lites, the microwave radiation emitted by the sea ice cover
can additionally be affected by transmissivity and reflectivity
of the snow and atmosphere on the path between the surface
and the satellite. For frequencies below 10 GHz, dry snow
is practically “transparent” (Hallikainen, 1989) and the at-
mosphere has a negligible influence. For frequencies higher
than 10 GHz, scattering occurs within a dry snowpack (Mät-
zler, 1987; Barber et al., 1998). In general, scattering affects
the brightness temperature measured from space over sea ice
surfaces increasingly when the frequency increases (Tonboe
et al., 2006) as the wavelength successively approaches the

The Cryosphere, 14, 2369–2386, 2020 https://doi.org/10.5194/tc-14-2369-2020



C. Burgard et al.: Sea ice brightness temperatures from climate model output 2371

size of brine pockets and air bubbles on the order of tenths
of a millimeter to millimeters, snow grains on the order of
hundreds of micrometers to millimeters, and atmospheric
aerosols and droplets on the order of micrometers.

If the snow becomes wet, as happens during melting peri-
ods and localized events of warm air advection that mainly
occur in spring and fall, the dielectric loss in the snow layers
increases substantially, leading to a reduction in the trans-
missivity of the snow layer to microwave radiation. This
may also happen when brine-wicking takes place in the low-
est layer of the snow, especially above first-year ice (Barber
et al., 1998; Shokr and Sinha, 2015b). However, we will not
attempt to investigate the effect of wet snow on the radiation
in detail in this study as our model setup does not allow us to
simulate detailed processes within the snowpack.

Sea ice concentration retrievals are based on satellite
measurements at frequencies ranging from 1.4 to 91 GHz
(Ivanova et al., 2014, 2015; Gabarro et al., 2017). In the fol-
lowing, we concentrate on radiation at 6.9 GHz and vertical
polarization. This frequency is advantageous as with a wave-
length of approx. 4.3 cm it is only slightly affected by scatter-
ing inside the ice, snow, and atmosphere. The brightness tem-
perature at 6.9 GHz therefore mainly depends on the proper-
ties affecting permittivity and dielectric loss of the different
layers inside the ice. This is why our focus lies on the prop-
erties of the sea ice column, rather than on the snow structure
or the state of the atmosphere. The penetration depth in ice at
6.9 GHz is around 20 cm for first-year ice and around 50 cm
for multiyear ice (Tonboe et al., 2006). Therefore, we inves-
tigate not only the properties of the ice surface but also the
properties of the whole sea ice column to be sure to capture
the main influences on the brightness temperature.

3 Methods and data

Although a few GCMs use detailed sea ice modules (Van-
coppenolle et al., 2009; Bailey et al., 2018), most GCMs use
very simple sea ice models that do not resolve the properties
driving microwave transmission and reflection inside the ice
and snow. Ideally, our observation operator would compute
brightness temperatures from such a GCM as well. However,
it is not clear yet how these simplifications affect a bright-
ness temperature simulated based on a simple representation
of the relevant properties.

As a basis to investigate the effect of using non-detailed
sea ice information, we assume that our input for the operator
would be output by the Max Planck Institute Earth System
Model (MPI-ESM, Wetzel et al., 2012). In MPI-ESM, sea
ice is represented as flat sea ice, with very simple sea ice
properties: a sea ice (bare ice) or snow (snow-covered ice)
surface temperature, a constant sea ice bottom temperature
at −1.8 ◦C, and a constant salinity of 5 g kg−1 regardless of
sea ice type or age (Notz et al., 2013).

Figure 1. Schematic of the steps of our simulation and comparison
method.

To explore the importance of the vertical distribution of
sea ice properties on the simulation of brightness tempera-
tures, we use an idealized one-dimensional setup. This one-
dimensional setup works as follows. On the one hand, we
use a one-dimensional thermodynamic sea ice model to sim-
ulate our reference profiles (see Sect. 3.1). It computes highly
resolved vertical sea ice profiles under a given atmospheric
forcing. On the other hand, we simplify these reference pro-
files to emulate profiles that could be inferred from informa-
tion given by MPI-ESM for the same conditions. These two
sets of profiles can be used to simulate two sets of bright-
ness temperatures with a microwave emission model (see
Sect. 3.2). The two sets of resulting brightness temperatures
can then be used to quantify the effect of the GCM simplifi-
cation on the brightness temperature simulation compared to
our reference (see Fig. 1, Sect. 3.3, and 3.4).

In this setup, we can quantify the influence of each param-
eter separately on the simulated brightness temperature. This
a necessary first step to understand fundamental drivers of the
brightness temperature before comparing brightness temper-
atures simulated on the basis of MPI-ESM output directly to
brightness temperatures measured by satellites, which we do
in Burgard et al. (2020).

3.1 SAMSIM

Our reference profiles are simulated by the 1D Semi-
Adaptive Multi-phase Sea Ice Model (SAMSIM, Griewank
and Notz, 2013, 2015). This is a complex thermodynamical
model simulating the evolution of a 1D sea ice column under
given surface forcing. It computes sea ice temperature, salin-
ity, and brine volume fraction profiles on a semi-adaptive
grid with a number of layers varying between 0 and 100.
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It includes most of the processes governing sea ice growth
and melt and interactions between the ice and, if existent, its
snow cover. It was developed to investigate the brine dynam-
ics inside the ice. A detailed description of underlying equa-
tions and represented processes can be found in Griewank
and Notz (2013) and Griewank and Notz (2015).

We force SAMSIM with 2 m air temperature, surface
downward longwave radiation, surface downward shortwave
radiation, and precipitation from the ERA-Interim reanaly-
sis (Dee et al., 2011) in the time period from July 2005 to
December 2009. This gives us insight into 4.5 annual cy-
cles, so that we can assess the interannual variability of the
growth and melt of sea ice and the evolution of its properties.
The ocean salinity is kept at 34 g kg−1 and the oceanic heat
flux at the bottom of the ice is derived from Surface Heat
Budget of the Arctic Ocean Experiment (SHEBA) measure-
ments, varying between 0 W m−2 in spring and 14 W m−2 in
autumn (Huwald et al., 2005; Griewank and Notz, 2015).

We conduct our analysis using atmospheric forcing from
two random points in the Arctic Ocean as input for SAM-
SIM. At the first point, the combined forcing of the ERA-
Interim atmospheric variables and the SHEBA oceanic flux
leads to complete melting of the simulated ice in summer
each year, resulting in several cycles of first-year ice. At the
second point, the combination of the atmospheric forcing
and oceanic heat flux leads to a simulated ice cover present
throughout the year, resulting in several cycles of multiyear
ice (Fig. 2). This way, we capture potential differences in
the brightness temperature simulation depending on the ice
type. To ensure that the conclusions we draw from these two
random points are robust, we have conducted the same anal-
ysis on five additional random points distributed in the Arctic
Ocean and find that the results support our conclusions.

3.2 MEMLS

The simulation of sea ice brightness temperatures is con-
ducted with a slightly modified version of the Microwave
Emission Model for Layered Snowpacks (MEMLS) ex-
tended to sea ice (Tonboe et al., 2006). MEMLS was first de-
veloped by Wiesmann and Mätzler (1999) to simulate bright-
ness temperatures emitted by a snowpack composed of sev-
eral layers and was later extended to sea ice (Tonboe et al.,
2006). MEMLS uses the information of the properties of the
ice and snow layers to simulate the path of microwave radia-
tion from the bottom to the surface of the ice and, if present,
snow. It uses the thickness, the temperature, the salinity, the
density, the correlation length (a measure for the scatterer
size), the wetness, the brine pocket form, and information
about the type of medium (snow, first-year ice, and multi-
year ice) of the different sea ice and snow layers to compute
transmission and reflection of the radiation along the path.
This then results in a brightness temperature emitted at the
surface of the ice or snow.

We do not take into account the atmosphere in our analy-
sis, as its effect is relatively small at 6.9 GHz. The use of the
term “brightness temperatures” in the following is therefore
equivalent to the use of “brightness temperatures emitted at
the surface of the ice and snow column”.

3.3 General simulation setup

The temperature and salinity profiles produced by SAMSIM
are used as input for MEMLS for the simulation of bright-
ness temperatures. Additionally, density profiles are derived
from temperature and salinity using relationships given by
Notz (2005) (see Eq. A5). Next to the temperature, salinity,
and density profiles, other variables, which are not computed
by SAMSIM, have to be provided to MEMLS. These are the
correlation length, the brine pocket form, the incidence an-
gle, the ocean temperature, the incoming microwave radia-
tion from the atmosphere (i.e., the cosmic background radi-
ation and the radiation reflected and emitted by properties
of the atmosphere), and the ice ocean reflectivity for verti-
cal polarization. They are set to constants, which are listed in
Table 1.

Additionally, except for snow thickness and temperature,
snow properties are resolved neither in SAMSIM nor in MPI-
ESM. Although a dry snow cover is practically transparent at
frequencies lower than 10 GHz (Hallikainen, 1989), we still
need to account for its presence due to one indirect and one
direct effect on the brightness temperature. On the one hand,
the snow cover leads to the thermal insulation of the ice col-
umn and therefore affects the temperature profile inside the
ice, which in turn affects the brightness temperature. On the
other hand, the difference in density between ice, snow, and
atmosphere leads to refraction of the radiation at the interface
between ice and snow and between snow and atmosphere.
The former effect is taken into account through the use of
the SAMSIM snow thickness and snow temperature evolu-
tion, and the latter is taken into account through the snow
thickness and by using a low density for snow compared to
ice. We therefore set all snow properties, except the snow
temperature and snow thickness, to constants, also listed in
Table 1.

The effect of wet snow on the brightness temperature is
larger and depends on the snow wetness, brine-wicking, and
snow metamorphism. As neither SAMSIM nor MPI-ESM re-
solve these properties in the snow, we set the snow wetness
to zero in this idealized study. However, when comparing re-
sults of a possible observation operator based on this study
to actual observations, we strongly recommend not consider-
ing periods of wet snow during melting periods and events of
warm air advection, as setting the snow wetness to zero will
lead to implausible brightness temperatures in these periods.

Our input for the emission model, e.g., salinity, correla-
tion length, and brine pocket form, comes with uncertain-
ties. These are mainly caused by a partial or complete lack
of in situ observations of these small-scale properties and
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Figure 2. Evolution of sea ice (solid line) and snow (dashed line) thickness as simulated by SAMSIM under ERA-Interim forcing between
July 2005 and December 2009. We use ERA-Interim forcing from 75◦ N, 0◦W for the first-year ice and from 90◦ N for multiyear ice. Note
that to avoid unrealistic model artifacts in the ice thickness, we have masked out the few timesteps following the final phase of the melting
of the snow cover. Also note that the same analysis was conducted using atmospheric forcing from the points 74◦ N, 170◦ E; 77◦ N, 39◦ E;
80◦ N, 160◦W; 82◦ N, 120◦W; and 85◦ N, 50◦W (not shown) to ensure the robustness of our results.

Table 1. MEMLS constant input details and properties of the snow layer. The incidence angle is from AMSR-E and AMSR2, which are
passive microwave sensors measuring at 6.9 GHz (NASDA, 2003; JAXA, 2011). The ocean temperature and snow density are the constant
values used in a GCM such as MPI-ESM (Wetzel et al., 2012; Giorgetta et al., 2013). The incoming microwave radiation from the atmosphere
is set to 0 K because we want to focus on the effect of sea ice properties on the emitted radiation. Correlation lengths are based on past
experiments conducted by Rasmus T. Tonboe.

Incidence angle 55◦

Ocean temperature −1.8 ◦C
Incoming microwave radiation from the atmosphere 0 K
Ice ocean reflectivity for V polarization 0.25
Brine pocket form spherical
Correlation length first-year ice 0.35 mm for depth < 20 cm,

0.25 mm for depth > 20 cm
Correlation length multiyear ice 1.5 mm

Snow thickness as computed by SAMSIM
Snow density 300 kg m−3

Snow correlation length 0.15 mm
Snow salinity 0 g kg−1

Snow temperature as computed by SAMSIM

the resulting low understanding of their evolution. We there-
fore recommend more observations of the ice properties, ide-
ally combined with concurrent microwave radiation mea-
surements. A few such observations exist already, from both
laboratory and in situ settings, but they mainly focus on fre-
quencies higher than 6.9 GHz (e.g., Grenfell et al., 1998;
Jezek et al., 1998; Perovich et al., 1998; Hwang et al., 2007).
With more combined observations at lower frequencies, we
expect that the uncertainty in the brightness temperature sim-
ulation can be reduced in the future through further research
and better understanding of the components introducing the
uncertainty.

For example, a better understanding of the sea ice salinity
evolution would be of advantage. The salinity parametriza-

tion used in Sect. 4.2.2 is based on an “L shape” of the salin-
ity profile, while the sea ice salinity profile often resembles
a “C shape” or even a “0 shape” when cold temperatures
prevail (Nakawo and Sinha, 1981; Shokr and Sinha, 2015a).
Another parameter of uncertainty is the correlation length.
Although it is a variable that is quite well understood and
quantifiable for snow (Mätzler, 2002; Proksch et al., 2015;
Lemmetyinen et al., 2018), its quantification in sea ice is
not clear and its values not well known. On a similar note,
MEMLS uses assumptions about the form of the brine pock-
ets. Here, we assume spherical brine pockets. However, it is
known that the brine pocket form depends highly on the ini-
tial formation process of the ice, which is not simulated. In
any case, we assume that the choice of brine pocket form will
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not affect our result substantially because scattering within
the ice is negligible at 6.9 GHz.

Another limitation in the input data for MEMLS is the
snow information. We investigated the indirect effect of the
snow cover on the simulated brightness temperature, e.g., the
radiative effect (as opposed to the thermal insulation effect),
and found that the brightness temperature decreases by ap-
proximately 0.13 K for every centimeter of snow present on
the ice column. Therefore, although the snow is expected
to be ”transparent” at less than 10 GHz, lack of information
about the snow structure besides snow temperature and thick-
ness might still lead to uncertainties of up to a few kelvin in
the presence of a thick snow cover.

Finally, the use of MEMLS as a sea ice emission model
is a source of uncertainty as well. Here again, the lack of
measurements of the parameters needed for the brightness
temperature simulation and of microwave radiation itself has
inhibited a comprehensive evaluation of the sea ice version
of MEMLS simulations against reality. Still, it is accepted
as one of the main tools for sea ice brightness temperature
simulations and has shown its strength in several previous
studies (Tonboe, 2010; Tonboe et al., 2011; Willmes et al.,
2014; Lee et al., 2017).

However, the uncertainties listed above only have a lim-
ited impact on the present study. We concentrate on a rela-
tive comparison, where we change temperature and salinity
in the ice to understand their impact on the brightness tem-
perature, but assumptions about the snow and ice correlation
length, the form of brine pockets, and the snow density are
the same in our reference and our simplified brightness tem-
perature simulations. The uncertainties will therefore not im-
pact the difference between the two sets of brightness tem-
peratures. Additionally, in regard to the absolute values, Bur-
gard et al. (2020) show that realistic brightness temperatures
can be simulated by MEMLS using the above-mentioned un-
certain assumptions with slight tuning. The effect of the un-
certainties therefore remains small when considering large
scales.

3.4 Experiments

The aim of this study is to assess if realistic brightness tem-
peratures can be simulated for 6.9 GHz vertical polarization,
using the limited information about sea ice properties pro-
vided by a GCM such as MPI-ESM. This assessment is con-
ducted through a range of experiments. In a first step (see
Sect. 4.1), we investigate the influence of the ice surface and
subsurface properties on the radiation emitted by the snow–
ice column. We examine in which conditions information
about the vertical profile is needed for realistic brightness
temperatures to be simulated and in which conditions infor-
mation about surface and subsurface properties is sufficient.

In a second step (see Sect. 4.2), we examine the effect of
assuming a linear temperature profile and of different as-
sumptions for the simplification of the salinity profile on

the simulated brightness temperature. In this set of experi-
ments, we compare brightness temperatures simulated based
on SAMSIM profiles (referred to in the following as refer-
ence profiles) and brightness temperatures simulated based
on the simplified profiles. The simplified input profiles are
interpolated to the same number of layers as the reference
profiles (ranging from 1 to 100 layers, depending on the ice
thickness).

In a third step (see Sect. 4.3), we examine the effect of
reducing the vertical resolution on the simulated brightness
temperature. To do so, we interpolate the vertical properties
on fewer layers than the reference profiles.

4 Results

4.1 Subsurface properties vs. vertical profile

Sea ice brightness temperatures at 6.9 GHz are mainly driven
by the distribution of liquid brine inside the ice, as the per-
mittivity and dielectric loss of the ice layers play a larger role
than scattering at this frequency. We compute the brine vol-
ume fraction with Eq. (A4) based on the ice temperature and
salinity profiles given by SAMSIM. Comparing the ice sub-
surface brine volume fraction, i.e., in the top ice layer (upper
1 cm) of the profiles, with the simulated reference brightness
temperatures, the relationship between brine volume fraction
and brightness temperature is clearly visible. The brightness
temperatures show a strong dependence on the ice subsurface
brine volume fraction (Fig. 3, top row). If we concentrate the
brightness temperature simulation on the ice layers, i.e., us-
ing only the properties of the ice layers of the snow and ice
column as input to MEMLS, the slight offset in the bright-
ness temperature introduced by the refraction due to the snow
cover is removed and the relationship is even clearer (Fig. 3,
bottom row).

When the ice subsurface brine volume fraction is higher
than 0.2, the brightness temperature from the ice column is
linearly related to the ice subsurface brine volume fraction
(Fig. 3, bottom row). This means that no radiation signal
from below the subsurface layer influences the brightness
temperature and that only the brine volume fraction in the
upper centimeters of ice matters. The brightness temperature
varies roughly linearly between brightness temperatures typ-
ical for ice (≈ 260 K) at an ice subsurface brine volume frac-
tion of 0.2 and brightness temperatures typical for open water
(≈ 160 K) at an ice subsurface brine volume fraction of 1. In
our SAMSIM profiles, these high subsurface brine volume
fractions occur predominantly in warm conditions, i.e., from
April to September, during the melting period and in the be-
ginning of the freezing season. We therefore suggest that an
ice subsurface brine volume fraction above 0.2 can be inter-
preted both as very wet ice or as a measure for the melt pond
fraction. This strong relationship means that, when the brine
volume fraction is above 0.2, the subsurface properties play
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Figure 3. Reference brightness temperatures at 6.9 GHz vertical polarization, simulated based on properties simulated by SAMSIM for the
ice and snow column (a, b) and on the ice column only (c, d), as a function of the reference ice subsurface brine volume fraction for first
year-ice (a, c) and multiyear ice (b, d). Blue represents cold conditions (October to March), and red represents warm conditions (April to
September). R is the correlation coefficient between the brightness temperature and the ice subsurface brine volume fraction.

the main role for the brightness temperature simulation and
vertical properties are not necessarily needed.

In some multiyear ice cases during warm conditions, the
brightness temperature drops below 240 K at near-zero sub-
surface brine volume fractions. These low brightness temper-
atures occur in September, in the first two or three weeks in
which ice growth sets in again. In these cases, the ice col-
umn used as input for MEMLS has a brine volume fraction
of zero over the whole column, except in the bottom layer.
We therefore suggest that the simulated brightness tempera-
ture is mainly influenced by the very saline bottom layer at
the interface between ice and ocean in these cases, leading to
low brightness temperatures. This behavior is not necessar-
ily realistic and the conditions leading to these input salinity
profiles might need further investigation.

Otherwise, for subsurface brine volume fractions below
0.2, occurring in both cold and warm conditions, the bright-
ness temperatures vary by 10 to 15 K around 260 K for sim-
ilar ice subsurface brine volume fractions. For these low ice
subsurface brine volume fractions, the brightness tempera-
tures are driven by the distribution of brine further inside
the ice, which is a function of the temperature and salinity
distribution. Unfortunately, for these brightness temperatures
around 260 K at low ice subsurface brine volume fractions,
we could not infer a direct relationship between the bright-
ness temperature and a given layer or a given brine volume
fraction inside the ice from our data. This implies that in-
formation about the vertical distribution of temperature and

salinity (and consequently brine volume fraction) throughout
the ice column is necessary to simulate realistic brightness
temperatures.

From this first look at the relationship between ice prop-
erties and simulated brightness temperatures, we conclude
that information about the vertical profiles of brine volume
fraction are necessary for the simulation of brightness tem-
peratures for cold conditions and for parts of the warm con-
ditions. The effect of describing the brine volume fraction
profiles through simplified temperature and salinity profiles
on the brightness temperature simulation is what we investi-
gate in the next step.

4.2 Simplifying the temperature and salinity profile

The brightness temperature emitted by a snow and ice col-
umn is mainly driven by the distribution of the brine volume
fraction in the ice column. As the brine volume fraction can
be described as a function of temperature and salinity, we
now investigate the effect of reduced information availability
about these profiles, as would be the case in GCM output, on
the simulated brightness temperatures.

4.2.1 Simplifying the temperature profile

We start by investigating the brightness temperature simu-
lated based on a temperature profile as could be inferred from
MPI-ESM output. We call this experiment SIMPLETEMP.
MPI-ESM computes a sea ice (bare ice) or snow (snow-
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Figure 4. Brightness temperatures at 6.9 GHz vertical polarization,
simulated based on linear temperature profiles and reference salin-
ity profiles (experiment SIMPLETEMP), as a function of reference
brightness temperatures: (a, c) first-year ice and (b, d) multiyear
ice in (a, b) cold conditions (October to March) and (c, d) warm
conditions (April to September). Note that the axes for cold condi-
tions are limited to the range between 240 to 275 K for clarity. The
remaining brightness temperatures are scattered between 165 and
240 K and represent around 2 % of the simplified data and 0.4 % of
the reference data.

covered ice) surface temperature and a constant sea ice bot-
tom temperature at −1.8 ◦C. Therefore, we suggest using
a two-step linear profile through snow and ice. We use the
snow surface temperature as simulated by SAMSIM and in-
fer the ice temperature at the interface between ice and snow
from it, following Eq. (A6). From this ice surface tempera-
ture, we interpolate the temperature profile linearly to the ice
bottom layer, which has a temperature of −1.8 ◦C.

The influence of the simplifications is clearly different de-
pending on the season. We therefore divide our results into
cold conditions (October to March; see Fig. 4, top row) and
warm conditions (April to September, see Fig. 4, bottom
row). In cold conditions, the absolute difference between
brightness temperatures simulated from simplified profiles
and brightness temperatures simulated from reference pro-
files remains small for both first-year ice (2.2± 5.8 K) and
multiyear ice (1.2±1.3 K). In warm conditions, this absolute
difference increases by approximately an order of magnitude
to 14.9±23.8 K (first-year ice) and 10.7±21.3 K (multiyear

Figure 5. Salinity profiles used for the simplified profiles in
Sect. 4.2.2. The dashed lines represent the constant salinity profiles
and the solid lines represent the salinity profiles as a function of
depth. The colors represent the different ice types.

ice). The assumption of a two-step linear temperature profile
in the snow and ice therefore does not introduce large un-
certainties in the brightness temperature simulation in cold
conditions but should be used with care in warm conditions.

4.2.2 Simplifying the salinity profile

In the experiment SIMPLESALCONST, we explore the ef-
fect of a constant salinity profile on the simulated bright-
ness temperature. MPI-ESM assumes a constant salinity of
5 g kg−1 regardless of sea ice type or age. As this is clearly
too high for multiyear ice (Ulaby et al., 1986), we assume a
constant salinity of 5 g kg−1 for first-year ice and a constant
salinity of 1 g kg−1 for multiyear ice throughout the ice col-
umn in our simplified salinity profiles (see dashed lines in
Fig. 5).

In the parallel experiment SIMPLESALFUNC, we ex-
plore an alternative approach to simplify salinity profiles. We
use a parametrization representing salinity as a function of
depth (Griewank and Notz, 2015). This parametrization as-
sumes an L-shaped profile, with low salinity near the sur-
face and a rapidly increasing salinity in the lower ice layers
(see solid lines in Fig. 5 and Table B1). This parametriza-
tion has been evaluated against observations (Griewank and
Notz, 2015). In both SIMPLESALCONST and SIMPLE-
SALFUNC, we use the reference temperature profiles sim-
ulated by SAMSIM.

Again, we divide the results depending on the season.
While, for first-year in cold conditions, the effect of using
a constant salinity (SIMPLESALCONST) is as low as us-
ing a linear temperature profile, with an absolute difference
between the brightness temperatures based on simplified pro-
files and the reference brightness temperature of 2.5±6.5 K,
the absolute difference reaches 6.6± 4.3 K for multiyear ice
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Figure 6. Brightness temperatures at 6.9 GHz vertical polarization, simulated based on reference temperature profiles and (a) constant salinity
profiles (experiment SIMPLESALCONST) or (b) salinity profiles as a function of depth (experiment SIMPLESALFUNC) as a function of
reference brightness temperatures. The first and third columns show first-year ice. The second and fourth columns show multiyear ice. The
upper row shows cold conditions (October to March), and the lower row shows warm conditions (April to September). Note that the axes for
cold conditions are limited to the range between 240 to 275 K for clarity. The remaining brightness temperatures are scattered between 165
and 240 K and represent around 2 % of the simplified data and 0.4 % of the reference data.

(Fig. 6a, top row). In warm conditions, the mean absolute
differences are an order of magnitude higher, 43.0± 44.4 K
for first-year ice and 40.6±45.5 K for multiyear ice (Fig. 6a,
bottom row).

If the brightness temperature is simulated based on ref-
erence temperature profiles and on the salinity profiles as
a function of depth (SIMPLESALFUNC, Fig. 6b), the un-
certainty is similar to the uncertainty introduced by using a
constant salinity profile for first-year ice (2.4± 5.9 K in cold
conditions and 43.0±44.1 K in warm conditions). However,
for multiyear ice, the uncertainty introduced by using salinity
profiles as a function of depth is lower than the uncertainty
introduced by assuming that the salinity is constant through-
out depth (2.3± 2.6 K in cold conditions and 28.7± 36.5 K
in warm conditions). We therefore recommend using an ice
salinity profile as a function of depth rather than a constant
salinity profile as a simplification.

4.2.3 Combining simplified temperature and salinity
profiles

In the experiments SIMPLETEMP, SIMPLESALCONST,
and SIMPLESALFUNC, we learned about the individual ef-

fects of using simple temperature and salinity profiles on the
brightness temperature simulation. To confirm the conclu-
sion that using both a linear temperature profile and a salinity
profile as a function of depth will lead to realistic brightness
temperatures, we conduct two additional experiments, com-
bining our simplifications. In the experiment SIMPLEALL-
CONST, we combine a linear temperature profile and a con-
stant salinity profile. In the experiment SIMPLEALLFUNC,
we combine a linear temperature profile and a salinity profile
as a function of depth.

The results confirm the findings from the previous experi-
ments. In cold conditions, the combination of simplified tem-
perature and salinity profiles leads to brightness temperatures
close to reference brightness temperatures for first-year ice,
with the set of profiles using the salinity as a function of
depth introducing slightly less uncertainty (3.1±6.8 K) than
the set using constant salinity (3.4± 7.8 K) (Fig. 7, first and
third columns). For multiyear ice, the mean absolute differ-
ence between the brightness temperatures simulated based on
the simplifications and the reference brightness temperatures
is clearly lower when using profiles with a salinity as func-
tion of depth (2.5± 2.7 K) than when using constant salinity
profiles (7.0± 4.9 K).
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Figure 7. Brightness temperatures at 6.9 GHz vertical polarization, simulated based on two-step linear temperature profiles and (a) constant
salinity profiles (experiment SIMPLEALLCONST) or (b) salinity profiles as a function of depth (experiment SIMPLEALLFUNC), as a
function of reference brightness temperatures. The first and third columns show first-year ice. The second and fourth columns show multiyear
ice. The top row shows cold conditions (October to March), and the bottom row shows warm conditions (April to September). Note that
the axes for cold conditions are limited to the range between 240 and 275 K for clarity. The remaining brightness temperatures are scattered
between 165 and 240 K and represent around 2 % of the simplified data and 0.4 % of the reference data.

In warm conditions, mean absolute differences are an or-
der of magnitude higher than in cold conditions, and simi-
lar for first-year ice with both salinity assumptions (43.4±
43.9 K using constant salinity and 43.0± 44.1 K using salin-
ity as a function of depth). For multiyear ice, the uncertainty
is again clearly lower when using profiles with a salinity as
function of depth (10.5± 21.7 K) than when using constant
salinity profiles (43.0± 45.7 K) (Fig. 7, second and fourth
columns). Reference brightness temperatures and brightness
temperatures simulated based on simplified profiles remain
clearly different in warm conditions.

In particular, the brightness temperature based on sim-
plified profiles is close or equal to 160 K, i.e., open-water
brightness temperatures, at most of the time steps in warm
conditions. This is because, in warm conditions, the physi-
cal temperature of the ice surface approaches 0 ◦C, and the
closer it gets to 0 ◦C, the lower the salinity must be in or-
der for dry ice to exist rather than slush. At high tempera-
tures and subsurface salinities above 0 g kg−1, as is the case
in both salinity simplifications for first-year ice and in the
constant salinity simplification for multiyear ice (see Fig. 5),
the subsurface brine volume fraction therefore approaches 1
very quickly. At subsurface brine volume fractions near 1,

the brightness temperature approaches the brightness temper-
ature of open water, as shown in Sect. 4.1.

Through these experiments, we investigated the effect of
the simplification of temperature and salinity profiles on the
simulated brightness temperature. A summary of the setup
and results of the different experiments can be found in Ta-
ble 2. In conclusion, we recommend using a two-step lin-
ear temperature profile in snow and ice and an ice salinity
profile as a function of depth when simulating brightness
temperatures based on GCM output for cold conditions. For
warmer and wet subsurface conditions, we recommend ex-
ploring possibilities to describe surface and subsurface prop-
erties as accurately as possible because the ice subsurface
brine volume fraction is the main driver of the simulated
brightness temperature.

As the effect of temperature and salinity distribution is
now clearer, we turn to another characteristic of GCMs, the
limited vertical resolution owing to computational efficiency.
Indeed, computing vertical temperature and salinity profiles
based on the surface temperature and sea ice thickness given
by a GCM adds a vertical dimension to a two-dimensional
output. This means that the computation time and power
needed by an operator applied to a GCM will be much higher
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Table 2. Summary of the results of the experiments investigating the effect of simplifying temperature and salinity profiles on the brightness
temperature simulation. See Sect. 4.2 for more information.

Experiment Profiles used Tools used for profiles Mean absolute difference between reference
and simplified brightness temperatures [K]

Cold conditions Warm conditions

FYI MYI FYI MYI

SIMPLETEMP Linear temperature surface temperature as 2.2± 5.8 1.2± 1.3 14.9± 23.8 10.7± 21.3
computed by SAMSIM
and Eq. (A6)

Reference salinity as computed by SAMSIM

SIMPLESALCONST Reference temperature as computed by SAMSIM 2.5± 6.6 6.6± 4.3 43.0± 44.4 40.6± 45.5
Constant salinity 5 g kg−1 for FYI

1 g kg−1 for MYI

SIMPLESALFUNC Reference temperature as computed by SAMSIM 2.4± 5.9 2.3± 2.6 43.0± 44.1 28.7± 36.5
Salinity as see Table B1
function of depth

SIMPLEALLCONST Linear temperature see SIMPLETEMP 3.4± 7.8 7.0± 4.9 43.4± 43.9 43.0± 45.7
Constant salinity see SIMPLESALCONST

SIMPLEALLFUNC Linear temperature see SIMPLETEMP 3.1± 6.8 2.5± 2.7 43.2± 44.1 10.5± 21.7
Salinity as see SIMPLESALFUNC
function of depth

than a one-dimensional setup. We therefore investigate the
importance of the vertical resolution in a next step.

4.3 Reducing the vertical resolution

Applying an emission model to a GCM consumes a lot of
computational power, as the input profiles must be prepared
and the emission model has to be applied to many grid cells.
In the case of the Arctic Ocean at the MPI-ESM low atmo-
spheric resolution of 1.9◦, this would mean, for example,
≈ 4000 data points per time step. As ocean components in
GCMs often have higher horizontal resolution than the at-
mosphere, this would mean even more computational power
is needed when using oceanic variables. Reducing the num-
ber of layers for the brightness temperature simulation is a
possible aspect that could reduce the computation time. This
is the issue we explore in the following.

The simplified profiles used for sensitivity experiments in
Sect. 4.2 are interpolated to the same number of layers as the
reference profiles, i.e., a variable number of layers depending
on the ice thickness between 1 and 100 layers. We now run
the brightness temperature simulation with the recommended
simplified profile, i.e., linear temperature and salinity as a
function of depth, interpolated on 10, 7, 5, and 3 equidistant
layers, and compare the results to the reference brightness
temperatures. We also include the brightness temperatures
from the experiment SIMPLEALLFUNC, which is interpo-
lated to the same number of layers as the reference profiles,
as an indicator for the minimal simplified uncertainty in the

comparison. We concentrate on cold conditions (October to
March), as we have shown that the uncertainty in warm con-
ditions is already very large at high vertical resolution and
mainly depends directly on the upper centimeters rather than
on properties further inside the ice.

We find that the difference in uncertainty remains small
between the reference simplification between 1 and 100 lay-
ers and the interpolation on 10, 7, or 5 layers, with the mean
uncertainty staying constant at 3.1 K for first-year ice and
varying between 2.4 and 2.5 K for multiyear ice (see Table 3).
Using three layers, the uncertainty increases slightly by 0.2 K
for the former and by 0.8 K for the latter but still remains
small. We therefore argue that using as few as 5 layers is as
reasonable as using 100 layers for the simulation of simpli-
fied brightness temperatures.

5 Summary and discussion

5.1 Brightness temperatures for cold conditions

We showed that in cold conditions (October to March), we
can reproduce realistic sea ice surface brightness tempera-
tures at 6.9 GHz vertical polarization using a two-step linear
temperature profile in ice and snow and an ice salinity as a
function of depth as input for an emission model. The re-
maining uncertainty is mainly driven by the simplification
of the sea ice salinity distribution. These realistic brightness
temperatures can be reproduced with similar uncertainty us-
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Table 3. Absolute mean difference and standard deviation (K) between simplified brightness temperatures simulated based on profiles
interpolated on different number of layers and reference brightness temperatures simulated based on profiles covering 1 to 100 layers,
depending on the thickness of the ice. These values only represent cold conditions (October to March).

3 layers 5 layers 7 layers 10 layers 1 to 100 layers

First-year ice 3.3± 6.9 3.1± 6.8 3.1± 6.8 3.1± 6.8 3.1± 6.8
Multiyear ice 3.3± 2.7 2.4± 2.7 2.4± 2.7 2.4± 2.7 2.5± 2.7

ing as few as five layers. A very high vertical resolution of
the ice properties is therefore not needed.

This study was motivated by the fact that observational
uncertainty could be reduced by the approach of an obser-
vational operator. It is, however, not trivial to evaluate this
proposition based on our results. To compare the uncertainty
(K) introduced by the brightness temperature simulation to
uncertainties (%) introduced by a sea ice concentration re-
trieval algorithm, we translate the uncertainty in brightness
temperature into uncertainty in sea ice concentration.

A simple retrieval algorithm to retrieve sea ice concentra-
tion SIC is given by

SIC=
TB−TBw

TBi−TBw
, (1)

with TB the total brightness temperature (ice and open wa-
ter combined), TBw a typical open-water brightness temper-
ature, and TBi a typical sea ice brightness temperature. If
we introduce uncertainties 1SIC and 1TB into the previous
equation, this leads to

SIC+1SIC=
TB+1TB−TBw

TBi−TBw
, (2)

resulting in

1SIC=
1TB

TBi−TBw
. (3)

In our study, we only simulated brightness temperatures of
the snow and ice column. To infer an example for TBi and
TBw from our results, we use our finding from Sect. 4.1
that the simulated brightness temperature for ice with low
subsurface brine volume fraction is representative of a dry
snow and ice column and the simulated brightness tempera-
ture for ice with very high subsurface brine volume fraction
is comparable to the brightness temperature for open water.
From these results we can therefore infer a TBi, here the
simulated brightness temperature for ice with low subsurface
brine volume fraction, varying around 263 K (263.8± 3.6 K
for first-year ice and 263.7± 4.3 K for multiyear ice), and a
TBw, here the simulated brightness temperatures at very high
subsurface brine volume fractions, varying around 166 K
(166.1± 0.7 K for first-year ice and 165.9± 0.1 K for mul-
tiyear ice). Following Eq. (3), in this range spanning approx-
imately 100 K, an uncertainty of 1 K in brightness tempera-
ture at 6.9 GHz vertical polarization therefore approximately

translates into 1 % of absolute uncertainty in sea ice concen-
tration. The observational uncertainty of sea ice concentra-
tion in cold conditions is up to 2.5 % in consolidated ice and
up to 12 % for marginal ice zones (Ivanova et al., 2015). The
uncertainty of the simulated brightness temperatures trans-
lates to a similar range. This might, at first glance, not appear
as a solution to drastically reduce the observational uncer-
tainty. However, an observational operator is consistent in
time and space and therefore allows a process understand-
ing of the uncertainties in brightness temperature simulations
and, in a possible next step, in retrieval algorithms.

5.2 Brightness temperatures for warm conditions

In warm conditions (April to September), we cannot repro-
duce realistic sea ice surface brightness temperatures due
to the very high sensitivity of the subsurface brine volume
fraction to small changes in salinity near 0 ◦C. We therefore
recommend using another approach to simulate brightness
temperatures for warm conditions. We suggest assuming that
the brightness temperature of warm bare ice is similar all
over the Arctic, as temperatures are near 0 ◦C. The surface
brightness temperature is a linear combination of the bare ice
brightness temperature and the brightness temperature of the
melt ponds covering the ice. Therefore, this constant bright-
ness temperature can be combined with open-water bright-
ness temperature, weighted by the fraction of melt ponds
forming throughout the warm months. This approach is sim-
ple. We have, however, not found any other approach that
could come closer to reality as the sensitivities are very high
near 0 ◦C.

Another problematic component when surface tempera-
tures increase towards warm conditions is the snow. While
the detailed profile of dry snow is not necessarily needed as
long as its presence is taken into account for the thermal in-
sulation of the ice and for the refraction of the radiation, the
influence of wet snow on microwave radiation is much larger.
Because in the case of melting snow very precise informa-
tion about the wetness distribution in the snow is needed, we
cannot come close to simulating realistic brightness tempera-
tures from GCM output. In our experiments we have ignored
this effect by setting the snow wetness to zero at all times.
However, for a year-round realistic simulation of brightness
temperatures, we suggest excluding data containing melting
snow from the brightness temperature simulation. As periods
of wet snow due to melting or advection of warm air are typ-
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ically locally limited in time, we argue that our suggestions
enable the simulation of brightness temperature simulations
over a large amount of the year.

5.3 Outlook

The evaluation framework in this study can be used to ex-
plore simulated brightness temperatures at higher frequen-
cies, nearer to the most used operational frequencies. How-
ever, snow is a limiting factor in this case. While the radiative
effect of a dry snow cover is small at 6.9 GHz, its impact in-
creases with increasing frequency. It therefore becomes more
important to know the snow structure, e.g., snow density,
snow temperature, and snow scatterer structure. This infor-
mation is lacking in GCMs. As the snow structure is more dy-
namic and changes faster than the ice structure, parametriza-
tion for the snow structure do not exist yet to our knowledge.
It would be of high interest to explore the evolution of snow
on sea ice in more detail and perform sensitivity studies to
identify possible simplifications. These could eventually lead
to realistic brightness temperatures simulated based on GCM
output at higher frequencies than 6.9 GHz.

Finally, our analysis focuses on the simulation of bright-
ness temperatures based on output from a GCM that simu-
lates sea ice with a very simple sea ice model. The use of
output from GCMs that simulate sea ice with more complex
sea ice models might yield lower uncertainty in the bright-
ness temperature simulation. However, although these mod-
els compute many physical properties inside the ice, they do
not necessarily store them for each time step. Using the more
complex properties of these models would therefore require
one to build the emission model into the model code, instead
of applying an “external” operator to model output that has
already produced.

6 Conclusions

With the help of a one-dimensional thermodynamic sea ice
model and a one-dimensional emission model, we inves-
tigated if realistic sea ice brightness temperatures can be
simulated based on GCM output at a frequency of 6.9 GHz
with vertical polarization. We conclude that it is possible to
simulate realistic sea ice brightness temperatures if the time
of year and boundary conditions are taken into account. We
propose the following structure for an observational operator
for sea ice at 6.9 GHz vertical polarization.

Periods of cold conditions.

– Use the temperature profile provided by the GCM if it
exists. Otherwise, use the simulated snow surface tem-
perature and ocean temperature at the bottom of the ice
to infer a two-step linear temperature profile through the
snow and ice.

– Use the salinity profile provided by the GCM if it exists.
Otherwise, interpolate the salinity profile as a function
of depth, following the functions given by Griewank and
Notz (2015).

– Apply an emission model, e.g., MEMLS, to these
profiles, combined with information about correlation
length, sea ice type, etc.

– Use sea ice concentration and atmospheric properties
provided by the GCM.

– Apply a simple ocean emission model and atmospheric
radiative transfer model to account for the influence of
open water when the sea ice concentration is below
100 % and for the influence of the atmosphere on the
brightness temperature measurements by satellites from
space.

Periods of bare ice near 0 ◦C.

– Use a constant brightness temperature for the ice sur-
faces. Burgard et al. (2020) derive a warm conditions
sea ice surface brightness temperature of 266.78 K from
observational estimates. This represents a brightness
temperature at the top of the atmosphere of 262.29 K
corrected by the mean atmospheric effect of 4.49 K in
their simulations.

– Use sea ice concentration, melt pond fraction, and at-
mospheric properties provided by the GCM.

– Apply a simple ocean emission model and atmospheric
radiative transfer model to account for the influence of
open water when the sea ice concentration is below
100 % or when melt ponds are present on the ice and
for the influence of the atmosphere on the brightness
temperature measurements by satellites from space. If it
does not exist yet, include a routine accounting for the
effect of melt ponds in addition to the effect of open-
ocean surfaces in the surface emission model.

Periods of melting snow.

– Identify periods and locations of reduction in snow
thickness at temperatures near 0 ◦C in the GCM output.

– Ignore these points in the analysis. The GCM output
does not provide enough information about the snow
properties, and wet snow strongly affects the brightness
temperature.

The observational operator structure we present here al-
lows us to simulate brightness temperatures from two-
dimensional output by a GCM that can be compared with
brightness temperatures measured by satellites. This opens
new possibilities and perspectives for model-to-observation
comparison in the Arctic Ocean.
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Appendix A: Retrieving sea ice properties from
temperature and salinity

The following formulas were used to compute the ice density
ρi and brine volume fraction8l profiles from the ice temper-
ature T and salinity S profiles:

ρ0 = 916.18− 0.1403T , (A1)

where ρ0 is the density of pure ice (Pounder, 1965).

Sb =



508.18+ 14.535T + 0.2018T 2

if T ∈ [−43.2 ◦C,−36.8 ◦C]
[Eq. (39) in Vant et al. (1978)]

242.94+ 1.5299T + 0.04529T 2

if T ∈ [−36.8 ◦C,−22.9 ◦C]
[Eq. (39) in Vant et al. (1978)]

−1.20− 21.8T − 0.919T 2

if T ∈]− 22.9 ◦C,−8.0 ◦C[
[Eq. (3.4) in Notz (2005)]

1/(0.001− (0.05411/T ))
if T ∈ [−8.0 ◦C,0 ◦C[
[Eq. (3.5) in Notz (2005)]

0 if T = 0

, (A2)

where Sb is the brine salinity.

ρw = 1000.3+ 0.78237Sb+ 2.8008 · 10−4S2
b , (A3)

where ρw is the density of seawater at 0 ◦C (Eq. 3.8 in Notz,
2005).

8l =

{
S/Sb if Sb > 0 [Eq. (1.5) in Notz (2005)]

1 if Sb = 0
(A4)

ρi =8l · ρw+ (1−8l) · ρ0 (A5)

The following formula was used to infer the ice surface tem-
perature Tice,surf from the snow surface temperature Tsnow,surf:

Tice,surf =
Tsnow,surf ·

ks
hs
+ Tbottom ·

ki
hi

ks
hs
+

ki
hi

, (A6)

where ks is the thermal conductivity of snow (=
0.31 WK−1 m−1), ki is the thermal conductivity of ice (=
2.17 WK−1 m−1), hs is the snow thickness, hi is the ice thick-
ness, and Tbottom is the temperature at the bottom of the ice,
which is set to −1.8 ◦C.
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Appendix B: Salinity parametrization as a function of
depth

Table B1. Formulas describing salinity as a function of depth, from Griewank and Notz (2015), as shown in the solid lines in Fig. 5.

Ice type Salinity parametrization Constants needed
as a function of depth z

First-year ice Sfy
z

a+bz
+ c a = 1.0964, b =−1.0552,

c = 4.41272

Multiyear ice Smy
z
a + (

z
b
)1/c a = 0.17083, b = 0.92762,

c = 0.024516

Transition (1− t) · Smy(z)+ t · Sfy(z) t = 0 at start of melt season and
first-year to t = 1 at start of freezing season
multiyear ice
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