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Abstract. The Maxwell elasto-brittle (MEB) rheology is im-
plemented in the Eulerian finite-difference (FD) modeling
framework commonly used in classical viscous-plastic (VP)
models. The role of the damage parameterization, the cor-
nerstone of the MEB rheology, in the formation and collapse
of ice arches and ice bridges in a narrow channel is inves-
tigated. Ice bridge simulations are compared with observa-
tions to derive constraints on the mechanical properties of
landfast sea ice. Results show that the overall dynamical be-
havior documented in previous MEB models is reproduced in
the FD implementation, such as the localization of the dam-
age in space and time and the propagation of ice fractures
in space at very short timescales. In the simulations, an ice
arch is easily formed downstream of the channel, sustain-
ing an ice bridge upstream. The ice bridge collapses under
a critical surface forcing that depends on the material co-
hesion. Typical ice arch conditions observed in the Arctic
are best simulated using a material cohesion in the range of
5–10 kN m−2. Upstream of the channel, fracture lines along
which convergence (ridging) takes place are oriented at an
angle that depends on the angle of internal friction. Their ori-
entation, however, deviates from the Mohr–Coulomb theory.
The damage parameterization is found to cause instabilities
at large compressive stresses, which prevents the production
of longer-term simulations required for the formation of sta-
ble ice arches upstream of the channel between these lines
of fracture. Based on these results, we propose that the stress
correction scheme used in the damage parameterization be
modified to remove numerical instabilities.

1 Introduction

The term landfast ice designates sea ice that is attached to
the coastlines, acting as an immobile and seasonal extension
of the land. It starts to form in shallow water in the early
stages of the Arctic freeze-up (Barry et al., 1979; Reimnitz
et al., 1978) and grows throughout the Arctic winter, usually
reaching its maximum extent in early spring (Yu et al., 2014).
Typically, large landfast ice areas can form and remain sta-
ble due to the presence of islands or via the grounding of
ice keels on the ocean floor (Reimnitz et al., 1978; Mahoney
et al., 2007; Selyuzhenok et al., 2017). Where the water is too
deep for grounding, landfast ice can also form where ice floes
are jammed in narrow passages between islands or pieces of
grounded ice. In the Canadian Arctic Archipelago (CAA),
this type of ice is referred to as landlocked. The resulting ice
bridges, also called ice arches for their characteristic arching
edges (Fig. 1), can have a profound influence on sea ice cir-
culation, via the closure of gateways (Melling, 2002; Kwok,
2005), and on regional hydrography, via the formation of
winter polynyas downstream of the arches (Barber and Mas-
som, 2007; Dumont et al., 2010; Shroyer et al., 2015). Most
studies about ice arches focus on the Nares Strait (Fig. 1) and
Lincoln Sea ice bridges (Kozo, 1991; Dumont et al., 2008;
Dansereau et al., 2017; Moore and McNeil, 2018; Vincent,
2019), which affect the export of thick multi-year ice into
Baffin Bay (Kwok and Cunningham, 2010; Ryan and Mün-
chow, 2017). Ice arches, however, are a seasonal feature in
several locations of the Canadian Arctic Archipelago (Marko
and Thomson, 1977; Sodhi, 1997; Melling, 2002) and are
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Figure 1. NASA Worldview image of a stable landfast ice arch
in Nares Strait, from Moderate Resolution Imaging Spectrora-
diometer (MODIS)-corrected reflectance imagery (true color), on
1 May 2018. The orange curve indicates the position of the stable
ice in Dansereau et al. (2017).

also present in the Kara and Laptev seas (Divine et al., 2004;
Selyuzhenok et al., 2015; Olason, 2016), where they play a
role in the formation of extensive landfast ice covers.

Despite decades of observations (Melling, 2002; Kwok,
2005; Moore and McNeil, 2018; Ryan and Münchow, 2017),
the formation, persistence and breakup of ice arches remain
difficult to predict. It is, however, clear from modeling stud-
ies that the ability of sea ice to form arches relates to the
material properties of sea ice. A number of studies showed
that ice arches are produced if the rheology includes suffi-
cient material cohesion (Ip, 1993; Hibler et al., 2006; Du-
mont et al., 2008). Using the ellipse yield curve of Hibler
(1979), this can be achieved either by decreasing the yield
curve ellipse aspect ratio (Kubat et al., 2006; Dumont et al.,
2008) or by extending the ellipse towards larger isotropic
tensile strength (Beatty and Holland, 2010; Olason, 2016;
Lemieux et al., 2016). The range of parameter values that
are appropriate for the production of ice bridges varies be-
tween different numerical studies, suggesting that different
forcing or model implementations may influence the ice arch
formation (Olason, 2016; Lemieux et al., 2016, 2018).

In recent years, new rheologies were proposed to repro-
duce the observed characteristics of ice failure, such as the
preferred orientation of the lines of fracture (Wilchinsky and
Feltham, 2004; Schreyer et al., 2006) or the brittle behav-
ior of sea ice at small scales (Girard et al., 2011; Dansereau
et al., 2016). Among this effort, a brittle damage parame-

terization (Amitrano et al., 1999) was implemented in the
neXtSIM model (Rampal et al., 2016), as part of the elasto-
brittle (Girard et al., 2011, EB) and Maxwell elasto-brittle
(Dansereau et al., 2016, MEB) rheologies. The MEB rhe-
ology was shown to produce ice arches in the Nares Strait
region that remain stable for several days, and arch fractures
that are part of the landfast ice breakup process (Dansereau
et al., 2017). The simulated stable ice arches in Dansereau
et al. (2017) are located downstream of either Smith Sound
or Kennedy channel (see the orange curve in Fig. 1). These
locations differ from the observed ice arch positions in Nares
Strait upstream of these channels (see, e.g., Fig. 1) or in the
Lincoln Sea (Vincent, 2019), which are well reproduced by
standard VP or elastic viscous-plastic (EVP) models (e.g.,
Dumont et al., 2008; Rasmussen et al., 2010). Whether this
difference in behavior stems from the different physics of
MEB and VP rheologies or it is just due to the different
numerical framework used in both models remains an open
question.

The EB and MEB models have so far been implemented
using Lagrangian advection schemes and/or finite-element
methods (e.g., Rampal et al., 2016; Dansereau et al., 2017).
These numerical features, however, make it difficult to com-
pare the different MEB and EB physics with that of the stan-
dard VP or EVP rheologies of the modeling community, as
these are usually implemented on Eulerian finite-difference
(FD) numerical frameworks. In this paper, we present our
implementation of the MEB rheology on the FD numerical
framework of the McGill VP sea ice model (Tremblay and
Mysak, 1997; Lemieux et al., 2008; Lemieux et al., 2014). To
our knowledge, it is the first time the MEB rheology has been
implemented on the numerical platform of a VP model such
that its different physics can be assessed independently from
the numerical implementation. With this model, we investi-
gate the role of the damage parameterization and the mate-
rial strength parameters in the formation of ice arches, using
an idealized model domain capturing the basic features of
real-life geometries where ice arches are observed. We also
identify a numerical issue associated with the damage param-
eterization, which significantly impacts long simulations.

The paper is organized as follows. In Sect. 2, we present
the implementation of the Maxwell elasto-brittle rheology
in our FD numerical framework. A detailed analysis of the
breakup of the ice bridge simulated by the MEB rheology
is presented in Sect. 3, along with a sensitivity analysis of
the results with respect to the material parameters. The MEB
model performance in simulating compressive fractures is
discussed in Sect. 4, with summarized conclusions in Sect. 5.
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2 Maxwell elasto-brittle model

2.1 Momentum and continuity equations

The 2D momentum equation describing the motion of sea ice
is written as follows:

ρih
∂u

∂t
=∇ · σ + τ , (1)

where ρi is the ice density, h is the mean ice thickness, u
(= uî+ vĵ) is the ice velocity vector, σ is the vertically inte-
grated internal stress tensor, and τ (= τ a+τw) is the total ex-
ternal surface forcings from winds and ocean currents. Note
that we write the momentum equation in terms of the verti-
cally integrated internal sea ice stresses (i.e., ∇ · σ ) as stan-
dard in VP models (e.g., Hibler, 1979; Hunke and Dukow-
icz, 1997; Wilchinsky and Feltham, 2004), as opposed to the
mean internal sea ice stresses (i.e.,∇·σ ) used in previous im-
plementations of the MEB rheology (Dansereau et al., 2016;
Rampal et al., 2016). We assume no grounding of ice on the
ocean floor and neglect the Coriolis term. This omission is
appropriate for landfast ice but can result in small errors in
drifting ice (Turnbull et al., 2017). The advection of momen-
tum (which scales as ρiH [U ]

2/L, where H , [U ] and L are
the characteristic ice thickness, velocity, and length scales)
is 3 orders of magnitude smaller than characteristic air or
ocean surface stresses (Zhang and Hibler, 1997; Hunke and
Dukowicz, 1997). At the edge of an ice arch where a discon-
tinuity in sea ice drift is present at the grid scale (2 km in our
case), it remains 2 orders of magnitude smaller than other
terms in the momentum equation.

The total surface stress is defined in terms of an effective
stress (τLFI) that represents the combined wind and ocean
forces acting on the landfast ice and an additional water drag
term that only acts on the drifting ice. That is, using the stan-
dard bulk formula (with air and water turning angles set to
zero, McPhee, 1979), we have the following equations:

τ = ρaCda|ua|ua+ ρwCdw|uw−u|(uw−u), (2)
≈ ρaCda|ua|ua− ρwCdw|uw|uw− ρwCdw|u|u, (3)
≈ τLFI− ρwCdw|u|u, (4)

where ρa and ρw are the air and water densities, Cda and Cdw
are the air and water drag coefficients (see values in Table 2),
and ua and uw are the surface air and water velocities. Note
that the cross terms uwu have been neglected. This equa-
tion is therefore exact for landfast ice, the focus of this study,
and constitutes an approximation only for ice drifting over an
ocean current. Below, we specify τLFI and give the character-
istic wind speed and ocean current equivalent to this forcing
for reference.

The continuity equations used for the temporal evolution
of the mean ice thickness h (volume per grid cell area) and

concentration A (0<A< 1) are written as follows:

∂h

∂t
+∇ · (hu)= Sh, (5)

∂A

∂t
+∇ · (Au)= SA, (6)

where Sh and SA are thermodynamic sink and source terms
for ice thickness and compactness, respectively. As we are
only interested in the dynamical behavior of the sea ice
model, all thermodynamics are turned off so that Sh = 0
and SA = 0. Mechanical redistribution (i.e., ridging) is taken
into account by capping the ice concentration at 1 % (or
100 %) in convergence. As the mean ice thickness h is al-
lowed to grow, the capping increases the actual ice thickness
(Schulkes, 1995).

2.2 Rheology

2.2.1 Visco-elastic regime

Following Dansereau et al. (2016), we consider the ice as a
visco-elastic brittle material behaving like a stiff spring and
strong dashpot in series if the stresses are relatively small.
The corresponding stress–strain relation is that of a Maxwell
visco-elastic material:

∂σ

∂t
+

1
λ
σ = EC : ε̇, (7)

where λ is the viscous time relaxation (λ= η
E

, η being the
vertically integrated viscosity), E is the vertically integrated
elastic stiffness, C is the elastic modulus tensor and “:” de-
notes the double dot product of tensors. In generalized matrix
form, the tensors C and ε̇ are written as follows:

C=
1

1− ν2

 1 ν 0
ν 1 0
0 0 1− ν

=
 C1 C2 0
C2 C1 0
0 0 C3

 (8)

 ε̇11
ε̇22
ε̇12

=


∂u
∂x
∂v
∂y

1
2

(
∂u
∂y
+

∂v
∂x

)
.

 , (9)

where ν (= 0.33) is the Poisson ratio. The components of
the elastic modulus tensor C are derived using the plane
stress approximation (i.e., following the original assumption
that the vertical stress components are negligible; see Rice,
2010). Note that we neglect the advection of stress in the time
derivative of Eq. (7) as we focus on landfast ice.

The visco-elastic regime of the MEB model (before frac-
ture) is dominated by a fast and reversible elastic response
(first term on the left-hand side of Eq. 7), with a slow viscous
dissipation acting over longer timescales (second term on the
left-hand side). The reversibility of the elastic deformations
implies that the elastic strains return to zero if all loads are
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Table 1. Material strength parameters from observations.

Parameter Reference Parameter Value

Langleben (1962) Y 6.5–10 GN m−2

Young modulus Weeks and Assur (1967) 1–9 GN m−2

Tabata (1955) 7–18 GN m−2

Poisson ratio Weeks and Assur (1967) ν 0.33–0.4

Viscosity Tabata (1955) η0 0.6–2.4× 1012 kg m−1 s−1

Viscous relaxation time

Tabata (1955) a λ0 14–40 min
Weeks and Assur (1967) a 28–32 min
Sukhorukov (1996) a 66 h
Hata and Tremblay (2015b) 105 s

Angle of internal friction
Schulson et al. (2006) φ ∼ 42◦

Weiss et al. (2007) ∼ 44◦

Weiss et al. (2007) σc0 50 kN m−2

Tremblay and Hakakian (2006) b 30–100 kN m−2

Compressive strength Tucker and Perovich (1992) c 30 kN m−2

Richter-Menge et al. (2002) c 30–50 kN m−2

Richter-Menge and Elder (1998) c 100–200 kN m−2

Tensile strength

Weiss et al. (2007) σt0 50 kN m−2

Tremblay and Hakakian (2006) b 25–30 kN m−2

Tucker and Perovich (1992) c 30 kN m−2

Richter-Menge and Elder (1998) c 50 kN m−2

Cohesion
Sodhi (1997) b c0 1.99 N m−1

Weiss et al. (2007) 40 kN m−2

a From small-scale measurements in the field. b Estimate from satellite observations. c Observed peak stresses.

removed. This results from a memory of the previous elastic
stress and strain states given by the time derivative in Eq. (7).
The Maxwell viscosity term, although orders of magnitude
lower than the other terms in the visco-elastic regime, leads
to a slow viscous dissipation of this elastic stress memory
over long timescales determined by λ (days in our case).

While Eq. (7) is similar in form to the stress–strain rela-
tionship of the EVP model (Hunke, 2001), the elastic compo-
nent in the EVP model was introduced to improve the com-
putational efficiency of the VP model by allowing for an ex-
plicit numerical scheme and efficient parallelization (Hunke
and Dukowicz, 1997). In the MEB model, the elastic com-
ponent represents the elastic behavior of sea ice, while the
viscous relaxation component is introduced to dissipate the
elastic strains into permanent deformations. The use of a vis-
cous component is consistent with the observation of viscous
creep (Tabata, 1955; Weeks and Assur, 1967) and viscous
relaxation in field experiments (Tucker and Perovich, 1992;
Sukhorukov, 1996; Hata and Tremblay, 2015b). The viscous
relaxation term is also analogous to the viscous term in the
thermal stress models of Lewis (1993) and Hata and Trem-
blay (2015a).

2.2.2 Damage parameterization

In the MEB model, the brittle fracture is simulated using
a damage parameterization, which is based on progressive
damage models originally developed in the field of rock me-
chanics to reproduce the nonlinear (brittle) behavior in rock
deformation and seismicity (Cowie et al., 1993; Tang, 1997;
Amitrano and Helmstetter, 2006). In these models, the ma-
terial damage associated with microcracking is simulated by
altering the material properties (e.g., the Young modulus or
the material strength) at the model element (or local) scale. If
heterogeneity is present in the material, the damage parame-
terization simulates the self-organization of the microcracks
in a macroscopic line of fracture, as observed in laboratory
experiments. It was first used for large-scale sea ice modeling
by Girard et al. (2011) and is now implemented in the La-
grangian dynamic–thermodynamic sea ice model neXtSIM
(Rampal et al., 2019).

The sea ice deformations associated with the brittle frac-
tures are parameterized by a gradual decrease in the elas-
tic stiffness E and viscosity η at the local scale, and conse-
quently as a local increase in the magnitude of the deforma-
tion associated with a given stress state. The local increase in
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deformations results in the concentration of internal stresses
in adjacent grid cells, leading to the propagation of the frac-
tures in space. The decrease in elastic stiffness and viscosity
is set by a damage parameter d representing the weakening
of the ice upon fracturing (Bouillon and Rampal, 2015). The
damage parameter has a value of 0 for undamaged sea ice
and 1 for fully damaged ice.

The damage increases when the stress state exceeds a criti-
cal stress, defined by the Mohr–Coulomb criterion. This yield
criterion is standard for granular materials and in agreement
with laboratory experiments (Schulson et al., 2006) and field
observations (Weiss et al., 2007). We also investigate the use
of a compressive cutoff to limit the uniaxial compression
(σ2 = σI− σII; see Fig. 2). In terms of the stress invariants
σI and σII, this can be written as follows:

F(σ )=


σII+µσI− c < 0
Mohr–Coulomb
σI− σII > σche

−C(1−A)

compression cutoff

, (10)

where

c = c0he
−a(1−A), (11)

σc = σc0he
−a(1−A). (12)

where σI is the isotropic normal stress (defined as negative in
compression), σII is the maximum shear stress, c is the verti-
cally integrated cohesion, µ (= sinφ) is the coefficient of in-
ternal friction of ice, φ is the angle of internal friction and σc
is the vertically integrated uniaxial compressive strength. The
parameterization of c and σc follows the form of the internal
sea ice pressure in the standard VP model with the ice con-
centration parameter a set to 20 (Hibler, 1979). The cohesion
c0 and compressive strength σc0 are the material properties
derived from in situ observations (see Table 1 for values and
references) and laboratory experiments (Timco and Weeks,
2010). Model parameters used in this and other studies are
listed in Tables 2 and 3.

Following Rampal et al. (2016), the introduction of dam-
age upon failure is proportional to the local stress in excess of
the yield criterion. A damage factor 9 (0<9 < 1) is used
to scale the stress back on the yield curve. It is defined as
follows (see Appendix A for the derivation 9):

σ f =9σ
′ with 9 =min

(
1,

c

σ ′II+µσ
′
I
,

σc

σ ′I − σ
′
II

)
, (13)

where σ f is the corrected stress lying on the yield curve and
σ ′ is the prior stress state that exceeds the yield criterion.
Note that the stress components are all scaled by the same
damage factor, such that the path of the stress correction in
stress invariant space follows a line from the uncorrected
stress state to the origin (see Fig. 2). The stress correction
path does not correspond to a flow rule: the magnitude of the
excess stress is only used to increase the damage parameter.

Figure 2. Yield criterion (Mohr–Coulomb and compressive cut-
off) in stress invariant space (σI, σII) with following the mechan-
ical strength parameters: compressive strength (σc), cohesion (c),
coefficient of internal friction (µ= sinφ, φ being the angle of in-
ternal friction), isotropic tensile strength (σt) and uniaxial tensile
strength (σ∗I , where the second principal stress invariant σ2 is zero
or σI = σII = σ

∗
I ). The stress before and after the correction (see

Eq. 13) is denoted by σ ′, and σf, respectively. The correction from
σ ′ to σf is done following a line going through the origin.

It determines the magnitude of the strain associated with a
stress state but otherwise does not change the visco-elastic
relationship in Eq. (7).

The temporal evolution of the damage parameter follows
a simple relaxation with a damage timescale Td (Dansereau
et al., 2016):

∂d

∂t
=
(1−9)(1− d)

Td
, (14)

where Td is set to the advective timescale associated with
the propagation of elastic waves in undamaged ice (i.e.,
Td =1x/ce, 1x being the spatial resolution of the model
and ce the elastic wave speed). Consequently, the damage
at any given time is a function of the previously accumu-
lated damage. No damage healing process was included in
this study as we focus on the breakup of ice bridges at small
timescales. For the same reason, the advection of damage is
neglected. The relaxation timescale (Td/(9− 1)) in Eq. (14)
is time step dependent via its dependency on the damage
factor 9. That is, a larger time step yields larger stress in-
crements and larger excess stresses at each time level, de-
creasing the timescale for the damage relaxation. The sen-
sitivity of the damage parameterization on the model time
step led Dansereau et al. (2016) to suggest that the model
time step be set to exactly Td, otherwise the damage could
travel faster than the elastic waves. We argue that while this
point is true when using a fixed damage reduction parame-
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Table 2. Default model parameters.

Parameter Definition Value

1x Spatial resolution 2 km
1t Time step 0.5 s
Td Damage timescale 2 s
Y Young modulus 1 GN m−2

ν Poisson ratio 0.3
λ0 Viscous relaxation time 105 s
φ Angle of internal friction 45◦

c0 Cohesion 10 kN m−2

σc0 Isotropic compressive strength 50 kN m−2

ρa Air density 1.3 kg m−3

ρi Sea ice density 9.0× 102 kg m−3

ρw Sea water density 1.026× 103 kg m−3

Cda Air drag coefficient 1.2× 10−3

Cdw Water drag coefficient 5.5× 10−3

ter (as in Amitrano et al., 1999; Girard et al., 2011), the use
of a damage factor 9 relates the damage parameter to the
rate of changes in the stress state, which is associated with
the propagation of elastic waves. The propagation of dam-
age in space is thus bounded by the elastic wave speed, and
a smaller time step (0.5 s in this study) should be used to
respect the Courant–Friedrichs–Lewy (CFL) criterion asso-
ciated to the elastic waves.

The elastic stiffness E and Maxwell viscosity η are writ-
ten as a nonlinear function of d , with a dependency on the
ice thickness and sea ice concentration inspired by the ice
strength parameterization of Hibler (1979):

E = Yhe−a(1−A)(1− d), (15)
η = η0h(1− d)α, (16)

where Y (= 1 GN m−2, smaller than in Bouillon and Rampal,
2015, and similar to Dansereau et al., 2016; see Table 3) is
the Young modulus of undeformed sea ice, η0 is the viscosity
of undeformed sea ice and α is an integer set to 4 that deter-
mines the smoothness of the transition from visco-elastic be-
havior to the post-fracture viscous behavior (Dansereau et al.,
2016). Note that E and η are defined as in previous imple-
mentations except for the linear dependence in ice thickness
required because of the use of vertically integrated stress σ .

The relaxation time constant λ in Eq. (7) is then written as
follows:

λ=
η

E
=
λ0(1− d)α−1

e−a(1−A)
, (17)

where λ0 (= η0/Y = 105 s, smaller than in Dansereau et al.,
2016, but in agreement with observations; see Table 1)
is a parameter that corresponds to the viscous relaxation
timescale in undamaged sea ice. In the limit when λ0 tends
to infinity, the MEB rheology tends to the elasto-brittle rhe-
ology (Girard et al., 2011).

Note that when a fracture is developing, the stress state is
constantly brought back to the yield curve while the dam-
age and the deformation increase. This is comparable to the
plastic regime of the standard VP model of Hibler (1979): in
the VP model, the nonlinear bulk and shear viscous coeffi-
cients reduce with increasing strain rates, such that the stress
state (the product of the two) remains on the yield curve
while the deformation increases. However, the plastic defor-
mations in the VP model are defined by a normal flow rule,
which also determines the orientation of the strain rate tensor
(Bouchat and Tremblay, 2017; Ringeisen et al., 2019). In the
MEB model, the large deformation associated to the damage
is governed by the visco-elastic relationship of Eq. (7) and
the yield curve does not directly determine the orientation
of the strain rate tensor. The two models also differ post-
fracturing: the VP model does not have a memory of past
deformations other than via the continuity equation and its
impact on the ice thickness and concentration. In the MEB
rheology, the damage corresponds to a material memory of
past deformations even if the thickness and concentration re-
main unchanged.

The nonlinear relationship of the viscous relaxation
timescale on d and A ensures that the viscous term is very
small in undamaged ice, and dominant in heavily damaged
ice (see Eq. 7, where λ appears in the denominator). In this
case, the deformations are large, irreversible and viscous.
This is different from the standard VP and EVP models in
which there is no change in the constitutive equation before
or after the ice fracture. The dependency of λ on the ice con-
centration also ensures that the total stress tends toward zero
for low concentration (i.e., in free drift) but not in a continu-
ous (A∼ 1) but heavily damaged ice.
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Table 3. Material properties used in sea ice models (VP, EVP and MEB).

Parameter Reference Parameter Value

Hunke (2001) E = ζ/T 1060 GN m−2

Bouillon and Rampal (2015) Y 9 GN m−2

Young modulus Dansereau et al. (2016) E0 0.585 GN m−2

Sulsky and Peterson (2011) E 1 MN m−2

Tran et al. (2015) E 1 MN m−2

Maximum viscosity

Olason (2016) ζmax 378× 1015 kg s−1

Dansereau et al. (2016) a η0 = 107E0 5.85× 1015 kg m−1 s−1

Hunke (2001) ζmax 1375× 1012 kg s−1

Tremblay and Mysak (1997) ηmax 1× 1012 kg s−1

Hibler (1979) ζmax 125× 109 kg s−1

Dumont et al. (2008) ζmax 4× 108 kg s−1

Compressive strength

Tran et al. (2015) f ′c 125 kN m−2

Sulsky and Peterson (2011) f ′c 125 kN m−2

Lemieux et al. (2016) a Pp 100 kN m−2

Olason (2016) p∗ 40 kN m−2

Dansereau et al. (2016) σc 48–96 kN m−2

Hunke (2001) a P 27.5× 104 kN m−2

Dumont et al. (2008) P ∗ 27.5 kN m−2

Bouillon and Rampal (2015) σNmin =−
5
2 c 1.25–20 kN m−2

Tremblay and Mysak (1997) Pmax 7 kN m−2

Hibler (1979) P ∗ 5.0 kN m−2

Shear strength

Hibler (1979) e 2
Hunke (2001) e 2
Dumont et al. (2008) e 1.2– 1.6
Lemieux et al. (2016) e 1.4–1.6
Olason (2016) e 1.3–2.1
Dansereau et al. (2016) C 25–50 kN m−2

Olason (2016)** σuc 16–22 kN m−2

Tran et al. (2015) τsf 15–75 kN m−2

Sulsky and Peterson (2011) τsf 15 kN m−2

Bouillon and Rampal (2015) c 0.5–8 kN m−2

Olason (2016) b Pkt 3.4–5 kN m−2

Lemieux et al. (2016) ktPp 10–20 kN m−2

Beatty and Holland (2010) kt 27.5 kN m−2

Tensile strength Dansereau et al. (2016) σt = 0.27σc 12.96–25.92 kN m−2

Tran et al. (2015) τnf 25 kN m−2

Sulsky and Peterson (2011) τnf 25 kN m−2

Bouillon and Rampal (2015) σNmax =
5
4 c 0.6–10 kN m−2

a For 1 m thick ice. b Using the Mohr–Coulomb curve with φ = 45◦.

2.3 Numerical approaches

This model was coded using an Eulerian FD implicit numeri-
cal scheme and is the first implementation of the MEB model
on the same numerical framework as the standard VP model.
This implementation was motivated by the need for a direct
comparison between the VP and the MEB rheologies inde-
pendent of the different numerical approaches. It presents a
significant change from previous implementations that use

finite-element methods with a triangular mesh (Rampal et al.,
2016; Dansereau et al., 2016) and/or Lagrangian advection
schemes (Rampal et al., 2016). In the standard VP numerical
framework, the stress components do not appear explicitly
in the momentum equation. Instead they are written in terms
of the nonlinear viscous coefficients and strain rates. For the
MEB model, this is accomplished by treating the stress mem-
ory term from the time derivation of Eq. (7) as an additional
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forcing term. The damage parameterization is therefore the
only new module to be coded.

2.3.1 Time discretization

The model equations are discretized in time using a semi-
implicit backward Euler scheme. The uncorrected stress at
time level n can then be written using Eq. (7) as follows:

σ ′
n
=

1
1+1t/λn

[
En1tC : ε̇n+ σ n−1]

= ξnC : ε̇n+ γ nσ n−1, (18)

where n− 1 is the previous time level and where

ξn = γ nEn1t;γ n = (1+1t/λn)−1. (19)

Note that σ ′n is a function of σ n−1, which we refer to as the
stress memory. Equation (18) is then substituted in the stress
divergence term of Eq. (1), so that the x and y components
of the momentum equation can be expanded as follows:

ρih
n u

n
− un−1

1t
=
∂

∂x

(
ξnC1ε

n
xx

)
+
∂

∂x

(
ξnC2ε

n
yy

)
+
∂

∂y

(
ξnC3ε

n
xy

)
+ τnx , (20)

ρih
n v

n
− vn−1

1t
=
∂

∂y

(
ξnC1ε

n
yy

)
+
∂

∂y

(
ξnC2ε

n
xx

)
+
∂

∂x

(
ξnC3ε

n
xy

)
+ τny , (21)

where C1, C2 and C3 are the components of the tensor C
(Eq. 8) and where the stress memory terms have been in-
cluded in the forcing, i.e.,

τnx =
∂
(
γ nσ n−1

xx

)
∂x

+
∂
(
γ nσ n−1

xy

)
∂y

+ τnax + τ
n
wx, (22)

τny =
∂
(
γ nσ n−1

yy

)
∂y

+
∂
(
γ nσ n−1

xy

)
∂x

+ τnay + τ
n
wy . (23)

The MEB rheology equations can then be implemented in
a VP model by setting the VP bulk and shear viscosity to
ζVP = ξ

C1+C2
2 and ηVP = ξC3, respectively, setting the pres-

sure term P = 0, and adding the stress memory terms.

The variables En and λn in Eq. (18) to (21) are discretized
explicitly as follows:

En = E0h
ndne−c(1−A

n), (24)

λn =
λ0(d

n)α−1

hne−C(1−A
n)
, (25)

using

hn = hn−1
+∇ · (vnhn−11t), (26)

An = An−1
+∇ · (vnAn−11t), (27)

dn = dn−1
+
dn−11t

Td
(9n− 1), (28)

9n =min
(
1,

cn

σ ′nII+µσ
′n
I
,

σ nc
σ ′nI − σ

′n
II

)
, (29)

cn = c0h
ne−C(1−A

n), (30)

σ nc = σc0h
ne−C(1−A

n), (31)

2.3.2 Space discretization

The model equations are discretized in space using a cen-
tered finite-difference scheme on an Arakawa C grid. In this
grid, the diagonal terms of the σ and ε̇ tensors are naturally
computed at the cell centers and the off-diagonal terms at the
grid nodes. The x component of the momentum equation is
written as follows:

ρih
n−1
i,j

uni,j − u
n−1
i,j

1t
= C1

(
ξn−1εnxx

)
i,j
−
(
ξn−1εnxx

)
i−1,j

1x

+C2

(
ξn−1εnyy

)
i,j
−
(
ξn−1εnyy

)
i−1,j

1x

+C3

(
ξn−1
z εnxy

)
i,j+1−

(
ξn−1
z εnxy

)
i,j

1y

+ τnx i,j ,

(32)

where

(ε̇nxx)i,j =
uni+1,j − u

n
i,j

1x
, (33)

(ε̇nyy)i,j =
vni,j+1− v

n
i,j

1y
, (34)

(ε̇nxy)i,j =
uni,j − u

n
i,j−1

21y
+
vni,j − v

n
i−1,j

21x
, (35)

τnx i,j =

(
γ n−1σ n−1

xx

)
i,j
−
(
γ n−1σ n−1

xx

)
i−1,j

1x

+

(
γ n−1
z σ n−1

xy

)
i,j+1−

(
γ n−1
z σ n−1

xy

)
i,j

1y

+ τnax i,j + τ
n
wx i,j . (36)
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The shear terms in Eqs. (32) and (36) (ε̇xy , ξz and γz) are
thus defined at the lower-left grid node rather than at the grid
center. The staggering of the stress components is unavoid-
able when using the C grid and requires node approximations
for the scalar values h, A and d (Losch et al., 2010). This is
treated on our Cartesian grid with square cells by approxi-
mating the scalar prognostic variables at the nodes (hz, Az
and dz) using a simple average of the neighboring cell cen-
ters, i.e.,

hz = hi,j =
hi,j +hi−1,j +hi,j−1+hi−1,j−1

4
, (37)

and similarly for Az and dz. The stress–strain coefficients ξz
and γz are then computed using (hz, Az and dz) in Eqs. (15),
(17) and (19).

The shear stress at the cell center must also be approxi-
mated when computing the stress invariants in the stress cor-
rection scheme (Eq. 13). Averaging the shear stress com-
ponents from the neighboring nodes (as in Eq. 37 for the
scalars) causes a checkerboard instability in the solution be-
cause of the staggered shear stress corrections and memories.
To avoid this, the mean shear stress at the cell center is de-
fined using an average of the neighboring shear stress incre-
ments (ξnz ε̇

n
xy), which are integrated in another shear stress

memory term, defined at the grid center, i.e.,

σ ′xy i,j
n
|C =

(
ξnz ε̇

n
xy

)
i,j
+ γ n−1σ n−1

xy i,j |C, (38)

where σ ′xy i,j
n
|C is the uncorrected shear stress at the grid

center,
(
ξnz ε̇

n
xy

)
i,j

is the shear stress increment averaged as in

Eq. (37) and σ n−1
xy i,j |C is the corrected shear stress at the grid

center from the previous time step. Note that the approxima-
tions in Eqs. (37) and (38) are required due to the use of a FD
scheme, a notable difference with the other MEB implemen-
tations using finite-element methods (Dansereau et al., 2016;
Rampal et al., 2019).

2.3.3 Numerical solution

With nx tracer points in the x direction and ny in the y di-
rection, the spatial discretization on our C grid leads to a sys-
tem of N = (ny(nx+ 1)+ nx(ny+ 1)) nonlinear equations
for the velocity components. By stacking all the u compo-
nents followed by the v ones, we form the vector u of sizeN .
The nonlinear system of equations (momentum) for un and
the other discretized equations (Eqs. 24–31) are solved si-
multaneously using an IMplicit–EXplicit (IMEX) approach
(Lemieux et al., 2014). As described in the algorithm be-
low, this procedure is based on a Picard solver (Lemieux
et al., 2008), which involves an outer loop (OL) iteration.
At each OL iteration k, the nonlinear system of equations is
linearized and solved using a preconditioned Flexible Gen-
eral Minimum RESidual method (FGMRES). The latest it-
erate uk is used to solve explicitly the damage and conti-
nuity equations. This iterative process is conducted until the

L2 norm of the solution residual falls below a set tolerance
of εres = 10−10 N m−2. The uncorrected stresses σ ′n is then
scaled by the damage factor9n and stored as the stress mem-
ory σ n for the following time step. This numerical scheme
differs from that of Dansereau et al. (2017), who solve the
equations using tracers (h,A, d) from the previous time level.

1. Start with initial iterate u0,
do k = 1, kmax;

2. Linearize the nonlinear system of equations by us-
ing un,k−1, hn,k−1, An,k−1, and dn,k−1;

3. Calculate un,k by solving the linear system of equa-
tions with FGMRES;

4. Calculate 9n,k = f (σ ′n,k);

5. Calculate hk,n = f (hn,k−1,un,k),
An,k = f (An,k−1,un,k),
dn,k = f (dn,k−1,un,k,9n,k);

6. Calculate Ek,n = f (dn,k,hn,k,An,k),
λn,k = f (dn,k,hn,k,An,k);

7. If the Picard solver converged to a residual < εres,
stop;

enddo

8. Update the stress memory σ n =9nσ ′n.

A simple upstream advection scheme is used for hk,n and
Ak,n in step 5. Note that steps 4, 5, 6 and 8 are performed for
all the grid points.

3 Results

In the following, we present a series of idealized simulations
to document the formation and break-up of ice arches with
the MEB rheology and their sensitivity to the choice of me-
chanical strength parameters. Results from these simulations
and observations are used to constrain the material parame-
ters used in sea ice models. Here, we define an ice arch as
the location of the discontinuity in the sea ice velocity (and
later in the ice thickness and concentration fields) and the ice
bridge as the landfast ice upstream of the ice arch.

Our model domain is 800 km ×200 km with a spatial res-
olution of 2 km (Fig. 3). The boundary conditions are peri-
odic on the left and right, closed on the top, and open on the
bottom. Two islands, separated by a narrow channel 200 km
long and 60 km wide, are located 300 km away from the
top and bottom boundaries. The initial conditions for sea ice
are zero ice velocity, uniform 1 m ice thickness, 100 % con-
centration and zero damage. A southward forcing τLFI (see
Eq. 4) is imposed on the ice surface and ramped up from 0 to
0.625 N m−2 (corresponding to 20 m s−1 winds or 0.33 m s−1

surface currents) in a 10 h period, a rate well below the ad-
justment timescale associated with elastic waves. The solu-
tion can therefore be considered as steady state at all times,
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Figure 3. Idealized domain with a solid wall to the north, open
boundary to the south, and periodic boundaries to the east and
west. The channel in the control simulation has a widthW = 60 km,
length L= 200 km, and fetch Fup and Fdown = 300 km in the up-
stream and downstream basins, respectively.

which allows us to determine the critical forcing associated
with a fracture event.

3.1 Control run

The breakup of landfast ice in our simulation proceeds
through a series of fracture events that are highly localized
in time (see Fig. 4) and space (see Figs. 5 and 6), separated
by periods of elastic stress buildup (low brittle failure ac-
tivity). Two major fracture events are seen in the simulation
(Stage B and Stage D in Fig. 4). The first corresponds to the
failure of ice in tension with the development of an ice arch
on the downstream side of the channel (Fig. 5). The dam-
age occurs on very short timescales (within minutes) and pre-
conditions the formation of an arching flaw lead downstream
of the ice bridge over longer timescales (Fig. 5b), in accor-
dance with results from Dansereau et al. (2017). The second
event corresponds to the collapse of the landfast ice bridge
with the breakup of ice within and upstream of the channel
(Fig. 6). As for the downstream ice arch, the lines of fractures
are formed on short timescales and precondition the location
of ridging on the advection timescale (Fig. 6b). The three
remaining periods during which few new brittle fractures oc-
cur correspond to an elastic landfast ice regime (Stage A); a
stable downstream ice arch regime (Stage C); and a drift ice

Figure 4. Time series of the domain-integrated brittle fracture ac-
tivity (∂d/∂t) for the control run simulation. Dashed lines indicate
the beginning and end of the simulation phases (A, B, C, D, E), and
numbers indicate the location of the damage field in Figs. 5 and 6.

regime when ice flows within, downstream, and upstream of
the channel (Stage E).

In the first stage of the simulation, elastic stress builds up
but remains inside the yield curve in the entire domain, such
that there is no brittle failure activity (Fig. 4, Stage A). The
sea ice in the elastic regime behaves as an elastic plate and
deformations are linearly related to the internal stresses. The
elastic stresses are determined by the orientation of the sur-
face forcing with respect to the coastlines: there are large
tensile stresses on the downstream coastlines, compressive
stresses on the upstream coastlines and shear stresses on the
four corners of the channel (Fig. 7). At the vertical line of
symmetry (away from channel openings, Fig. 7a, dashed blue
line), the simulated stress field is in good agreement with
the analytical solutions from a 1D version of the momentum
equation, giving us confidence in the numerical implemen-
tation of the model (see Appendix B and Fig. 8). Upstream
and downstream of the channel, both stress invariants are im-
portant, reaching a maximum in magnitude at the channel
corners and decreasing to a local minimum at the center of
the channel. In this configuration, the second principal stress
alignment (Fig. 7c) is along the x direction downstream of
the coastlines (where the ice is in uniaxial tension) and along
the y direction upstream of the coastlines (where the ice is
in uniaxial compression). In the downstream end of chan-
nel, the second principal stress alignment follows the shape
of an arch, transitioning to a vertical alignment towards the
upstream channel entrance.

3.1.1 Downstream ice arch

The formation of the downstream ice arch is initiated at a
surface forcing of ∼ 0.02 N m−2. The initial fractures are lo-
cated at the downstream corners of the channel where the
stress state reaches the critical shear strength for positive
(tensile) normal stresses. The fractures then propagate from
these locations and form an arch (see Fig. 5a). The progres-
sion of the fracture into an ice arch is helped by the concen-
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Figure 5. (a) Damage field at the surface forcing indicated by points
1, 2 and 3 in Fig. 4 during the formation of the downstream ice
arch. (b) Sea ice thickness and drift following the formation of the
downstream ice arch, while the ice bridge remains stable (Phase C).

Figure 6. (a) Damage field at the surface forcing indicated by points
4, 5 and 6 in Fig. 4 during the formation of the upstream lines of
fracture. (b) Sea ice thickness and drift following the ice bridge
collapse (Phase E).

tration of stresses at the channel corners and around the sub-
sequent damage. That is, the damage permanently decreases
the elastic stiffness, which leads to locally larger elastic de-
formations and increases the load in the surrounding areas,
leading to the propagation of the fractures in space through
regions where the internal stress state was originally subcrit-
ical. In the first order, the arching progression of the frac-
ture from the channel corners follows the second principal
stress direction (i.e., a failure in uniaxial tension on the plane
perpendicular to the maximum tensile stress; see Fig. 7c).
This differs from the expected angle of fracture in a Coulom-
bic material of θ =±(π/4−φ/2) from the second princi-
pal stress orientation (Ringeisen et al., 2019), as reported in
Dansereau et al. (2019).

A second period of low brittle fracture activity follows the
formation of the ice arch (period C in Fig. 4). In this stage,
the ice downstream of the ice arch is detached from the land
boundaries and starts to drift. The nonzero brittle fracture ac-
tivity in this stage is due to the increased damage in regions
of already damaged ice; since the local stress state lies on
the yield curve, the increasing forcing constantly increases
the stress states beyond the yield criterion, leading to further

Figure 7. Stress fields in landfast ice during Phase A. (a) Normal
stress invariant (σI) with colored dashed lines to indicate the ver-
tical transects used in Fig. 8, (b) shear stress invariant (σII) with
colored lines to indicate the horizontal transects used in Fig. 8 and
the (c) orientation of the second principal stress component.

Figure 8. Stress invariants (σI, σII) along the transects of corre-
sponding colors in Fig. 7: (a) transects running along the y direction
and (b) transects running along the x direction. Solid black lines in-
dicate the analytic solutions. The grey area indicates the position of
the islands.

damage. Upstream of the ice arch, the elastic stresses show
little change from Stage A, except for their increase in mag-
nitude due to higher forcing (Fig. 9). As the yield parameters
(c, σc) are not a function of the damage, tensile fracturing
does not reduce the critical stress. This results in large ten-
sile and shear stresses persisting along and north of the ice
arch after its formation. The formation of a stress-free sur-
face could be obtained by modifying the formulations of c
and σc0 such that they depend on the damage.
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Figure 9. Stress fields during Phase C. (a) Normal stress invariant
(σI), (b) shear stress invariant (σI) and (c) orientation of the second
principal stress component.

3.1.2 Ice bridge collapse

The second break-up event (Stage D in Fig. 4) corresponds
to the fracture of ice upstream of the channel and the col-
lapse of the ice bridge. The fractures are initiated at a surface
forcing of 0.13 N m−2 on the upstream corners of the islands
where the internal stress reaches the critical shear strength
for negative (compressive) normal stresses. The propagation
of damage from these locations is composed of two sepa-
rate fractures (see Fig. 6a). First, a shear fracture progresses
downstream along the channel walls, resulting in the decohe-
sion of the landfast ice in the channel from the channel walls.
The decohesion of the ice bridge increases the load on the
downstream ice arch and on the landfast ice upstream of the
channel. Second, a shear fracture propagates upstream from
the channel corners at an angle 58◦ from the coastline. The
shear fracture orientation corresponds to an angle θ = 32◦

from the second principal stress orientation (Fig. 7c), which
also deviates from the theoretical 22.5◦ in a granular material
with φ = 45◦ (Ringeisen et al., 2019).

Once the lines of fracture are completed, the ice bridge
collapses and the ice in the channel starts to drift (Stage E).
In this stage, landfast ice only remains in two wedges of un-
deformed ice upstream from the islands in which high com-
pressive stress remains present (see Fig. 10a). The remain-
ing continuous areas of undamaged ice drift downward into
the funnel as a solid body with uniform velocity, with ridges
building at the fracture lines. The ridge building is highly
localized (see Fig. 6b) but slowly expands in the direction
perpendicular to the lines of fracture. This follows from the
increase in material strength with ice thickness, resulting in
larger compressive stresses along the ridge such that the ice
fracture occurs in the neighboring thinner ice, in a succes-
sion of fracture events that are localized in time (see peaks in
Stage E in Fig. 4).

Figure 10. Stress fields during Phase E. (a) Normal stress invariant
(σI), (b) shear stress invariant (σI) and (c) orientation of the second
principal stress component.

Figure 11. Critical surface forcing associated with the second frac-
ture event (Stage D) as a function of cohesion and channel width
(dots). Dashed lines indicate the analytic solution from the 1D equa-
tions.

3.2 Sensitivity to mechanical strength parameters

The Mohr–Coulomb yield criterion defines the shear strength
of sea ice as a linear function of the normal stress on the frac-
ture plane. In stress invariant coordinates (σI, σII), this can be
written in terms of two material parameters: the cohesion c
and the coefficient of internal friction µ= sinφ (Fig. 2). The
isotropic tensile strength (i.e., the tip of the yield curve) is
then a linear function of the two (σt = c/µ). In this section,
we investigate the influence of these material parameters and
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of the use of a uniaxial compressive strength criterion on the
simulated ice bridge.

3.2.1 Cohesion

Changing only the cohesion c0 (with a fixed internal angle
of friction φ) moves the entire yield curve along the first
stress invariant (σI) axis. For example, a higher cohesion in-
creases the isotropic tensile strength σt0 = c0/sinφ and also
increases the shear strength uniformly for all normal stress
conditions. In the ice bridge simulations, the choice of co-
hesion influences the critical surface forcing associated with
the different stages of the simulations but does not change
the series of events described in Sect. 3.1 or the orientation
of the ice fractures. This is in agreement with results from
Dansereau et al. (2017).

The critical surface forcing associated with the ice bridge
breakup can be related to the cohesion using the 1D steady-
state momentum equation (see Appendix B for details). As-
suming an infinite channel running in the y direction, the
shear stress along the channel walls (σxy) is given by

|σxy | = σII =
τLFIW

2
, (39)

where W is the channel width (see Fig. 3). Using the yield
criterion (Eq. 10) with σI = 0 (i.e., σII = c), the maximum
sustainable surface forcing τLFIc can be related to the cohe-
sion as follows:

τac =
2c
W
. (40)

In the simulations, the critical forcing for the complete de-
cohesion of ice bridges (point 5 in Figs. 4 and 6) with dif-
ferent widths follows the simple 1D model (Fig. 11). This
indicates that although the fracture is initiated at a weaker
forcing due to the concentration of stress at the channel cor-
ners, the ice arch sustains the increasing load such that the
ice bridge remains stable.

Given that ice bridges and arches with a width of ∼ 60 km
are frequent in the CAA (e.g., Nares Strait, Lancaster Sound
or Prince Regent Inlet) and that the surface stresses regularly
exceed 0.15 N m−2 (e.g., corresponding to a wind speed of
10 m s−1 or a tidal current of ∼ 0.15 m s−1), this suggests a
lower bound on the cohesion of sea ice of at least 5 kN m−1

(see yellow curve in Fig. 11). Similarly, the fact that the ice
bridges are rarely larger than 100 km (some are seen intermit-
tently in the Kara Sea, Divine et al., 2004) indicates that the
cohesion of sea ice should be smaller than 10 kN m−1 (see
red curve in Fig. 11). This range (5–10 kN m−1) is lower than
records from ice stress buoys measurements, which mea-
sure both thermal and mechanical internal stresses at smaller
scales (40 kN m−2, Weiss et al., 2007) but agree with esti-
mates from ice arch observations (Sodhi, 1997). Note that
higher forcing may be frequent in areas associated with
strong tides, although these locations correspond to unsta-
ble landfast ice areas and recurrent polynyas (Hannah et al.,

2009). Our estimates therefore provide a meaningful bound
to be used in sea ice models.

3.2.2 Angle of internal friction

The angle of internal friction φ, analogous to the static fric-
tion between two solids, determines the constant of propor-
tionality between the shear strength and the normal stress
(µ= sinφ; see Eq. 10 and Fig. 2). Varying the angle of in-
ternal friction changes the shear strength of ice under tensile
and compressive stresses in opposite ways: when increasing
the angle of internal friction, the shear strength of ice in ten-
sion is reduced while that of ice in compression is increased
(and vice versa). This affects the critical forcing associated
with the downstream and upstream ice fractures. When de-
creasing φ, the downstream ice arch (Stage B) forms under a
stronger forcing, and a weaker forcing is required for the de-
velopment of the upstream lines of fracture. As such, while
the cohesion determines the stability of the landfast ice in the
channel, the collapse of the ice bridge also requires the uniax-
ial fracture of ice upstream of the channel, which is sensitive
to the angle of internal friction. The angle of internal friction
also determines the shape of the ice fractures: decreasing φ
leads to an increase in the curvature of the downstream ice
arch and intensifies the departure of the upstream lines of
fracture from the y axis (see Fig. 12). The simulated orien-
tations of the fracture lines (32 and 45◦ for φ = 20 and 45◦)
differ from the orientations of 35 and 22.5◦ predicted by the
Mohr–Coulomb theory and do not vary linearly with the in-
ternal angle of friction.

3.2.3 Tensile strength

The yield curve modifications discussed above (varying c0
and φ) also change the tensile strength (both uniaxial and
isotropic) of ice. The tensile strength determines the mag-
nitude of the critical surface forcing necessary for the for-
mation of the downstream ice arch (Stage B). The tensile
stresses downstream from the islands can be approximated
using the 1D version of the momentum equation as a function
of the fetch distance Fdown (see Fig. 3) from the islands to the
bottom boundary of the domain (derivation in Appendix B):

σyy = τLFIFdown. (41)

This can be written as a function of the material parameters
using a simplified Mohr–Coulomb criterion (Eq. 10) for the
1D case (Appendix B):

σII+µσI =
1+ 2µ

3
σyy < c, (42)

where ν = 1/3 was used. Substituting σyy from Eq. (41) into
Eq. (42), the yield criterion can be written in terms of the
surface forcing and the material parameters:

τLFI <
3c

Fdown(2µ+ 1)
. (43)

https://doi.org/10.5194/tc-14-2137-2020 The Cryosphere, 14, 2137–2157, 2020



2150 M. Plante et al.: The MEB model and landfast ice material properties

Figure 12. The shape of the lines of fracture using different angles of internal friction: (a) for the downstream ice arches and (b) for the
upstream lines of fracture (the yellow and purple lines are superposed).

Using our cohesion estimates (5< c < 10 kN m−1), an-
gles of internal friction in the range of observations (30 and
45◦) and a typical surface forcing of 0.15 N m−2, this would
suggest stable bands of landfast ice of extent Fdown ∼ 6–
13 km to be sustainable. This is similar to observations in
the Arctic, where bands of landfast ice rarely exceed tens
of kilometers unless anchor points are provided by stamukhi
(Mahoney et al., 2014).

3.2.4 Compressive strength criterion

While not used in other MEB implementations (Dansereau
et al., 2016, 2017), the compressive cutoff offers a limit
on the simulated uniaxial compression, which can reach
unrealistically large values and cause numerical instabili-
ties (see Sect. 4). Including a compressive strength crite-
rion (σI− σII > σc) can modify the upstream fracture event
(Stage D) via the development of uniaxial compression frac-
tures along the upstream coast of the islands if the uniaxial
compressive stress upstream of the islands exceeds the ice
strength typically observed in the field (∼ 40 kN m−2; see Ta-
ble 1). The critical surface forcing for the development of a
compressive fracture can be approximated using the 1D ver-
sion of the momentum equation. The maximum normal stress
at the upstream coast of the islands is as follows:

σyy = τLFIFup, (44)

where Fup is the distance between the top boundary of the
domain and the upstream coasts of the islands (see Fig. 3).
In the ideal case, the compression strength criterion is as fol-
lows:

σI− σII = νσyy > σc. (45)

The compression criterion can thus be written as a function
of the surface forcing as follows:

τLFI >
σc

νFup
. (46)

Whether the ice will fail in shear (Mohr–Coulomb criterion)
or in compression can be evaluated by substituting τLFI from

Eq. (39) into Eq. 46, yielding the following criterion:

2νFupc

W
> σc. (47)

If this condition is met, the compression strength criterion
does not influence the simulation, and the upstream shear
fracture lines develop as in the control simulation (Fig. 13a).
If the left-hand side of Eq. (47) is much smaller that σc, a
compression fracture occurs before the ice bridge breakup
and a ridge forms along the upstream coastlines, propagating
in the channel entrance, while the ice in the channel remains
landfast (Fig. 13b). If the terms are of a similar order, the de-
cohesion of the ice bridge and the compression fractures are
initiated simultaneously, such that the compression fracture
occurs along the upstream coastlines but not in the channel
entrance, as the ice starts to drift in and upstream of the chan-
nel (Fig. 13c).

4 Discussion

In the Arctic, ice arches are commonly observed upstream of
narrow channels, where granular floes jam when forced into
the narrowing passage. This requires the ice to not to be land-
fast in the channel itself (Vincent, 2019), as opposed to the
simulations presented above where the ice is initially land-
fast in the model domain. Contrary to results presented in
Dansereau et al. (2017) where the presence of floes is simu-
lated by a random seeding of weaknesses in the initial ice
field, unstable ice arches upstream of the channel are not
present in our simulations. Instead, our experiment simulates
the propagation of ice fractures through the landfast ice up-
stream of a channel, which are akin to a failure in uniaxial
compression (Dansereau et al., 2016; Ringeisen et al., 2019).

In theory, the angle of internal friction governs the inter-
section angle between lines of fracture (Marko and Thom-
son, 1977; Pritchard, 1988; Wang, 2007; Ringeisen et al.,
2019). That is, the lines of fracture are oriented at an angle
θ(= π/2−φ/4) with the second principal stress direction,
where the ratio of shear to normal stress is largest. In our
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Figure 13. Spatial distribution of the damage field at the end of Stage D (left panels) and the sea ice thickness and velocity fields at
the end of the simulation (right panels) for different compressive strength criteria: (a) σc0 = 100.0 kN m−1, (b) σc0 = 5.0 kN m−1 and
(c) σc0 = 25.0 kN m−1.

simulations, the angles of fracture, although sensitive to the
angle of internal friction, do not follow this theory. The fact
that different angles of internal friction yield the same frac-
ture orientation (e.g., for φ = 20◦ and φ = 30◦; see Fig. 12)
indicates that the orientation is not directly associated to the
yield criterion in the MEB rheology (there is no flow rule in
the MEB rheology). However, the orientation of the lines of
fracture do have a sensitivity to the angle of internal fric-
tion, which suggests that the deformations are at least in-
directly influenced by the yield criterion. This is in accord
with previous results showing that the fracture orientation is
determined by the concentration of stress along lines dam-
age instability (Dansereau et al., 2019). This raises the ques-
tion whether the lines of fracture may be influenced by the
stress correction path used in the damage parameterization,
which determines the stress state associated with the frac-
tures. These questions are left for future work and will be
addressed using a simple uniaxial loading numerical experi-
ments (e.g., Ringeisen et al., 2019).

We speculate that in a longer simulation, ice would even-
tually jam between the upstream lines of fracture, resulting
in the formation of a stable ice arch upstream of the chan-
nel. This is suggested by the orientation of the second prin-
cipal stress component upstream of the channel (Fig. 10c).
Longer-term simulations, however, are prevented by the pres-
ence of numerical instabilities associated with the current
damage parameterization. As the integration progresses, the
simulated fields lose their longitudinal symmetry at about
the center line of the domain. This loss of symmetry occurs
more rapidly as the residual norm increases (Fig. 14) and is
not due to a difficulty in solving the equations: the nonlin-
ear solver converges rapidly, within six iterations, given the
small time step required by the CFL criterion to resolve the
elastic waves. The errors are instead related to the integra-
tion of the residual norms in the model memory terms in the
constitutive equation. The integrated error is only dissipated

Figure 14. (a) Asymmetries dominating the damage fields after the
ice bridge collapse (Stage E) in Fig. 4. (b) Evolution of normalized,
domain-integrated asymmetries in the σI field when using different
residual tolerance εres on the solution. Dashed lines indicate the
beginning and end of the simulation phases (A, B, C, D, E).

over a large number of time steps, such that the error in the
solution is orders of magnitude larger than the set residual
norm tolerance. This limits the current analysis to short-term
simulations in which this issue remains negligible.

An error propagation analysis shows that the instabilities
are largely attributed to the stress correction scheme and the
computation of the damage factor9 (Eq. 13). Assuming that
the model is iterated to convergence such that the uncorrected
stress state has a relative error ε, the error on the corrected
stress is as follows (see derivation in Appendix C):

εM = ε
√

1+R, (48)

where

R =
σ ′II

2
+µ2σ ′I

2

(σ ′II+µσ
′
I )

2 . (49)

If σ ′I > 0 (tensile stress state), 0<R < 1 (triangle inequal-
ity) and the error on the memory terms (εM) is of the same
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order as that of the uncorrected stress state (ε ≤ εM ≤
√

2ε).
If σ ′I < 0 (compressive stress state), we have R ≥ 1, the error
on the stress memory can become orders of magnitude larger
than that of the uncorrected stress state, and the model accu-
racy and convergence properties are greatly reduced. These
errors are stored in the memory terms and accumulate at
each fracture event. Note that as the elastic stress memory
is dissipated over the viscous relaxation timescale, and this
issue could be mitigated by decreasing the viscous coeffi-
cients η0. Using a compressive strength cutoff capping also
offers a limit to the uniaxial compression and reduces this
instability. Another solution could be using a nonlinear yield
curve which converges to the Tresca criterion (σII = const)
for large compressive stresses (e.g., the yield criterion of
Schreyer et al., 2006). We, however, argue that this issue in
the damage parameterization should be treated by bringing
the stress back onto the yield curve along a different path
(e.g., following a line perpendicular to the curve). It might
also be possible to use a different stress correction path to
constrain the orientation of the lines of fractures to the yield
criterion. This will be assessed in future work.

5 Conclusions

The MEB rheology is implemented in the Eulerian FD nu-
merical framework of the McGill sea ice model. We show
that the discretized Maxwell stress–strain relationship can be
written in a form that resembles that of the VP model, with
an additional memory term. The MEB rheology is then sim-
ply implemented by redefining the VP viscous coefficients
in terms of the MEB parameters and by adding the damage
parameterization in a separate module. To our knowledge, it
is the first time the MEB rheology has been implemented in
the same framework as a VP or EVP model. This will allow
direct comparison of these models using the same numerical
platform in future work.

In idealized ice bridge simulations, we show that the dam-
age parameterization allows the ice fractures in the MEB
model to propagate over large distances at short timescales.
This process relies on the memory of the past deforma-
tions included in the model, which causes a concentration
of stresses close to the preexisting damage. We also show
that while the choice of yield curve influences the local-
ization and orientation of the ice fractures, the angles of
fracture propagation differ from those expected from the
Mohr–Coulomb theory. This is consistent with results from
Dansereau et al. (2019) that show that the fracture orientation
is determined by the planes of damage instability. Prelimi-
nary results suggest that the orientation of the fracture lines
are influenced by the stress correction scheme. This will be
the subject of future work.

The stress correction scheme in the damage parameteri-
zation (Rampal et al., 2016) is also found to cause a prob-
lematic increase in the numerical errors in the stress memory
terms. The growth of errors depends on the magnitude of the
compressive stress associated with the ice failure. These er-
rors accumulate in the memory term at each fracture event,
creating numerical artifacts that dominate the solutions over
time. We argue that this weakness of the damage parameter-
ization should be treated as a numerical issue. In previous
MEB implementations, asymmetries are expected due to ei-
ther the asymmetric coastlines and forcing (Rampal et al.,
2016) or the material heterogeneity used to initialize the
model (Dansereau et al., 2016), such that this instability dif-
ficult to detect. A possible solution to this problem would be
to use a nonlinear yield curve that converges to the Tresca
criterion for large compressive stresses (e.g., the yield cri-
terion of Schreyer et al., 2006). It may also be possible to
eliminate this numerical noise by using a different stress cor-
rection scheme that does not follow a path to the origin. This
will be assessed in future work.

The simulated breakup of the landfast ice bridge occurs
with two main fracture events. First, an ice arch develops at
the downstream end of the channel, shaping the edge of the
ice bridge in the channel. This ice arch forms in all simula-
tions and is stable in shape as long as the ice bridge remains
in place, with a curvature that increases for smaller angles
of internal friction. Second, shear fractures are formed at the
upstream end of the channel, resulting in the decohesion of
the channel ice bridge and the formation of landfast wedges
upstream of the islands. Based on the simulation results, we
determined that the parameterized cohesion most consistent
to the observed ice bridges in the Arctic is in the range of
5–10 kN m−2, lower than stress buoys that measure both dy-
namical and thermal stresses at smaller scales but in the range
of values previously associated to ice arch observations.
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Appendix A: Damage factor 9

Let σ ′I and σ ′II be the stress invariant at time level n before the
correction is applied and σIf and σIIf be the corrected stress
invariant lying on the yield curve. Following Bouillon and
Rampal (2015), we use a damage factor 9 (0<9 < 1) to
reduce the elastic stiffness and bring the stress state onto the
yield curve, i.e.,

σIf =9σ
′
I ;σIIf =9σ

′
II. (A1)

Substituting these relations into the Mohr–Coulomb crite-
rion (σIIf+µσIf = c), we solve for 9:

9 =
c

σ ′II+µσ
′
I
. (A2)

Note that this relation implies that the stress correction is
done following a line from the stress state (σ ′I , σ ′II) to the ori-
gin (see Fig. 2). This scheme stems from applying the dam-
age factor to each individual stress component. Other paths
could be used for the correction (e.g., following a vertical or
horizontal line) but would require the use of a different stress
factor for the different components of the stress tensor. This
could be used to cure the error propagation problem when
large compressive stresses are present (see Appendix C).

Appendix B: Analytical solutions of the 1D momentum
equation

Considering an infinite channel of landfast ice (u= 0) along
the y direction with forcing τLFY = τy , we write the 1D
steady-state momentum equation as follows:

∂σxy

∂x
+ τy = 0, (B1)

where we have neglected the ∂/∂y terms. In this case, the
normal stress is zero in the entire channel and the stress in-
variants are σI = 0, σII = σxy . The shear stress at any arbi-
trary point x across the channel can be determined by inte-
grating Eq. (B1) from the channel center (x = 0) to x:

σxy =−τyx. (B2)

By symmetry, the maximum shear stresses in the channel
are located at the channel walls at x =±W2 , where W is the
width of the channel. The maximum shear stress invariant on
the channel walls is then

σII =
Wτy

2
. (B3)

Similarly, we find the analytical solution for the normal
stresses in a band of landfast ice with width Ly along an in-
finite coastline running in the x direction with a surface forc-
ing τLFI = τy , by integrating the 1D momentum equation in

which the ∂/∂x terms are neglected, i.e.,

∂σyy

∂y
+ τy = 0, (B4)

σyy =−τyy. (B5)

Placing the landfast ice edge (where σyy = 0) at y = 0, the
largest compressive stresses will be located along the coast,
at y =−Ly . Note that in this case, shear stress is zero in the
entire landfast ice and the stress invariants are function of
both σxx and σyy :

σyy = EC1εyy, (B6)
σxx = EC2εyy = νσyy, (B7)

σI =
σxx + σyy

2
=
(1+ ν)σyy

2
, (B8)

σII =

√
(
σyy − σxx

2
)2 =

(1− ν)σyy
2

. (B9)

This allows us to write the Mohr–Coulomb criterion in terms
of σyy :

σII+ sinφσI =
1+ 2sinφ

3
σyy < c. (B10)

Appendix C: Error propagation analysis

The error δF associated with a function F(X,Y,Z, . . .) with
uncertainties (δx,δy,δz, . . .) is given by

δF =

√(∂F
∂X

)2
δx2
+
(∂F
∂Y

)2
δy2
+
(∂F
∂Z

)2
δz2
+ . . .. (C1)

In the damage parameterization, the components of the
corrected stress tensor used as the memory terms (σ ijM) can
be written in terms of the uncorrected stress tensor (σ ′ij ) and
the damage factor 9 (Eq. 13):

σ ijM =9σ
′

ij . (C2)

Using Eq. (A2), this can be rewritten in terms of the un-
corrected stress invariants (σ ′I , σ ′II):

σ ijM(σ
′

ij ,σ
′
I ,σ
′
II)=

c σ ′ij

σ ′II+µσ
′
I
. (C3)

Assuming that the model has converged to a solution
within an error on the stresses δσ ′ij = εσ

′

ij , δσ ′I = εσ
′
I , δσ ′II =

εσ ′II, where ε is a small number, the model convergence error
propagates on the stress memory with an error of

δσ ijM

=

√(∂σ ijM

∂σ ′ij

)2
δσ ′ij

2
+
(∂σ ijM

∂σ ′I

)2
δσ ′I

2
+
(∂σ ijM

∂σ ′II

)2
δσ ′II

2
. (C4)
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Substituting (δσ ′ij , δσ ′I , δσ ′II) for ε and using Eq. (C3), we
obtain

δσ ijM =

√√√√ c2

(σ ′II+µσ
′I)2

ε2σ ′ij
2
+

c2σ ′
2
ijµ

2

(σ ′II+µσ
′
I )

4 ε
2σ ′I

2
,

+
c2σ ′

2
ij

(σ ′II+µσ ′I)4
ε2σ ′II

2
,

(C5)

or

δσ ijM = εσ ijM

√
1+

σ ′II
2
+µ2σ ′I

2

(σ ′II+µσ
′
I )

2 . (C6)

Assuming that the error on the stress memory components
(εM) has the form δσ ijM = εMσ ijM, we can express the rel-
ative error of the stress memory components as a function of
the stress invariants as follows:

εM = ε
√

1+R, (C7)

where

R =
σ ′II

2
+µ2σ ′I

2

(σ ′II+µσ
′
I )

2 . (C8)
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