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Abstract. We investigated the potential capability of the ran-
dom forest (RF) machine learning (ML) model to estimate
snow depth in this work. Four combinations composed of
critical predictor variables were used to train the RF model.
Then, we utilized three validation datasets from out-of-bag
(OOB) samples, a temporal subset, and a spatiotemporal sub-
set to verify the fitted RF algorithms. The results indicated
the following: (1) the accuracy of the RF model is greatly
influenced by geographic location, elevation, and land cover
fractions; (2) however, the redundant predictor variables (if
highly correlated) slightly affect the RF model; and (3) the
fitted RF algorithms perform better on temporal than spa-
tial scales, with unbiased root-mean-square errors (RMSEs)
of ∼ 4.4 and ∼ 7.3 cm, respectively. Finally, we used the
fitted RF2 algorithm to retrieve a consistent 32-year daily
snow depth dataset from 1987 to 2018. This product was
evaluated against the independent station observations during
the period 1987–2018. The mean unbiased RMSE and bias
were 7.1 and −0.05 cm, respectively, indicating better per-
formance than that of the former snow depth dataset (8.4 and
−1.20 cm) from the Environmental and Ecological Science
Data Center for West China (WESTDC). Although the RF
product was superior to the WESTDC dataset, it still under-
estimated deep snow cover (> 20 cm), with biases of −10.4,
−8.9, and −34.1 cm for northeast China (NEC), northern
Xinjiang (XJ), and the Qinghai–Tibetan Plateau (QTP), re-
spectively. Additionally, the long-term snow depth datasets

(station observations, RF estimates, and WESTDC product)
were analyzed in terms of temporal and spatial variations
over China. On a temporal scale, the ground truth snow depth
presented a significant increasing trend from 1987 to 2018,
especially in NEC. However, the RF and WESTDC prod-
ucts displayed no significant changing trends except on the
QTP. The WESTDC product presented a significant decreas-
ing trend on the QTP, with a correlation coefficient of−0.55,
whereas there were no significant trends for ground truth ob-
servations and the RF product. For the spatial characteristics,
similar trend patterns were observed for RF and WESTDC
products over China. These characteristics presented signifi-
cant decreasing trends in most areas and a significant increas-
ing trend in central NEC.

1 Introduction

Seasonal snow covers a considerable portion of the land sur-
face in the Northern Hemisphere during winter and has a sig-
nificant effect on the Earth’s radiation balance and surface–
atmosphere interaction due to its high albedo and low thermal
conductivity (Fernandes et al., 2009; Derksen and Brown,
2012; Kevin et al., 2017; Dorji et al., 2018; Bormann et al.,
2018). Snow depth is a crucial parameter for climate stud-
ies, hydrological applications, and weather forecasts (Foster
et al., 2011; Takala et al., 2017; Tedesco Jeyaratnam, 2016;
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Safavi et al., 2017). For these applications, long time se-
ries are needed to conduct meaningful statistics on trends
and variability. Fortunately, passive microwave (PMW) sig-
nals can penetrate snow cover and provide snow depth es-
timates through volume scattering of snow particles in dry
snow conditions. PMW remote sensing also has the advan-
tage of sensing without depending on solar illumination and
weather conditions (Chang et al., 1987; Foster et al., 2011).
In addition, there exists a long historical record of spaceborne
PMW data dating back to 1978, allowing us to study seasonal
snow climatological changes (Takala et al., 2011; Santi et al.,
2012). These advantages make snow depth estimation from
satellite PMW remote sensing an attractive option.

Diverse methods have been proposed to retrieve snow
depth from PMW observations. The most widely used in-
version algorithms were based on empirical relationships
between satellite brightness temperature (TB) gradient and
snow depth (Chang et al., 1987; Foster et al., 1997; Derksen
et al., 2005; Che et al., 2008; Kelly et al., 2003; Kelly, 2009;
Jiang et al., 2014). However, these algorithms are not always
reliable in all regions due to the fixed empirical constants
(Derksen et al., 2010; Davenport et al., 2012; Che et al.,
2016; Yang et al., 2019). Subsequently, more advanced algo-
rithms that use theoretical or semiempirical radiative trans-
fer models were developed (Jiang et al., 2007; Takala et al.,
2011; Picard et al., 2013; Lemmetyinen et al., 2015; Met-
sämäki et al., 2015; Tedesco and Jeyaratnam, 2016; Pan et
al., 2017; Saberi et al., 2017); however, these complicated
algorithms are computationally expensive and require com-
plex ancillary data to provide accurate predictions. These
factors restrict the applications of these algorithms on a
global scale. Improving the performance of PMW retrieval
algorithms through data assimilation has also been investi-
gated (Durand and Margulis, 2006; Tedesco and Narvekar,
2010; Che et al., 2014; Huang et al., 2017). The widely
used and operational assimilation system combines synop-
tic weather station data with satellite PMW radiometer mea-
surements through the snow forward model (Helsinki Uni-
versity of Technology snow emission model, HUT), and it
provides long-term snow water equivalent data from 1979
to the present in the Northern Hemisphere (> 35◦ N) (Pul-
liainen et al., 1999; Pulliainen, 2006; Takala et al., 2011).
However, the coverage of this product does not include the
Qinghai–Tibetan Plateau (QTP), which is one of three stable
snow cover areas in China.

Machine learning (ML) has attained outstanding results in
the regression estimation of land surface parameters from re-
motely sensed observations at local and global scales over the
past decade (Reichstein et al., 2019). The random forest (RF)
is an ensemble method whereby multiple trees are grown
from random subsets of predictors, producing a weighted en-
semble of trees (Breiman, 2001). RF is also robust against
overfitting in the presence of large datasets and increases pre-
dictive accuracies over single decision trees (Biau and Scor-
net, 2016; Tyralis et al., 2019b). Over the last 2 decades, RF

has been one of the most successful ML algorithms for prac-
tical applications due to its proven accuracy, stability, speed
of processing, and ease of use (Rodriguez-Galiano et al.,
2012; Belgiu and Lucian, 2016; Maxwell et al., 2018; Bair
et al., 2018; Qu et al., 2019; Reichstein et al., 2019; Tyralis
et al., 2019a). Although the RF model can present good re-
sults in many research areas, studies on the spatiotemporal
prediction of snow depth are few and the potential utility of
RF in such studies is unknown.

The primary objectives of this study are to assess the fea-
sibility of the RF model in estimating snow depth, to deter-
mine whether the inclusion of auxiliary information (geolo-
cation, elevation, and land cover fraction) contributes to the
improvement of RF, and eventually to develop a time series
(1987 to 2018) of snow depth data in China and analyze the
trends in annual mean snow depth. To complete the feasibil-
ity study of the RF model, we designed four RF algorithms
trained with different combinations of predictor variables and
validated them using temporally and spatially independent
reference data. To the best of our knowledge, this type of as-
sessment of RF algorithm performance has not been made to
date for China. The data and methodology are described in
Sect. 2. Section 3 presents the results regarding the feasibil-
ity study of the RF model, the validation of the snow depth
product reconstructed with the RF algorithm, and the trend
analysis of snow depth. The results are discussed in Sect. 4,
and conclusions are given in Sect. 5.

2 Data and methodology

2.1 Data

(1) Satellite passive microwave measurements

The series of Special Sensor Microwave/Imager (SSM/I)
and Special Sensor Microwave Imager Sounder (SSMIS)
instruments has provided continuous TB measurements at
19.35, 23.235, 37, 85.5, and 91.655 GHz since July 1987.
The data are available from the National Snow and Ice Cen-
ter (https://daacdata.apps.nsidc.org/pub/DATASETS, last ac-
cess: 21 March 2020). The SSM/I and SSMIS sensors are
suitable for producing a consistent long-term snow depth
dataset due to their similar configurations and intersensor cal-
ibrations (Armstrong et al., 1994). To avoid the influence of
wet snow, only ascending (F08) and descending (F11, F13,
and F17) overpass data were used (Table 1). In this study,
the difference between 19.35 (36.5) GHz and 18.7 (37) GHz
was ignored (hereafter referred to as 19 and 37 GHz, respec-
tively).

(2) In situ measurements

The daily weather station data in China from 1987 to 2018
were provided by the National Meteorological Information
Centre, China Meteorology Administration (CMA, http://
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Table 1. Summary of the main passive microwave remote sensing sensors.

Sensor SSM/I SSMIS

Satellite DMSP-F08 DMSP-F11 DMSP-F13 DMSP-F17

On orbit time 1987–1991 1991–1995 1995–2008 2006–present

Passing time A: 06:20 A: 17:17 A: 17:58 A: 17:31
D: 18:20 D: 05:17 D: 05:58 D: 05:31

19.35: 45× 68 19.35: 42× 70
Frequency & footprint 23.235: 40× 60 23.235: 42× 70
(GHz): (km× km) 37: 24× 36 37: 28× 44

85.5: 11× 16 91.655: 13× 15

data.cma.cn/en, last access: 21 January 2020). The geograph-
ical locations of the meteorological stations and the three
stable snow cover areas are shown in Fig. 1. The recorded
variables include the site name, observation time, geoloca-
tion (latitude and longitude), altitude (m), near-surface soil
temperature (measured at a 5 cm depth, ◦C), and snow depth
(cm). The sites are not distributed homogeneously, and few
are located in inaccessible regions with extreme climates and
complex terrain conditions, e.g., the western part of the QTP
(Fig. 1).

Quality control was conducted prior to using the data for
developing and validating the retrieval algorithm. The first
step was to select the records where the near-surface soil
temperature was lower than 0 ◦C. The second step was to
remove the sites if the areal fraction of the open water ex-
ceeded 30 % within a satellite pixel. Finally, the 683 stations
were randomly divided into two roughly equal-sized parts
(Fig. 1). The snow depth observations from training stations
(342 sites) together with satellite TB and other auxiliary data
can be used to train the RF model. The measurements from
validation stations (341 sites), as independent data spatially,
can be applied to validate the fitted RF algorithm. Figure 2
shows the histograms of snow depth observations from train-
ing and validation stations during the period 2012–2018. A
total of about 90 % of the samples range from 1 to 25 cm.
The maximum values of the snow depth extend to approxi-
mately 50 cm. However, the number of such cases is small
and is therefore not evident in Fig. 2.

(3) Land cover fraction

A 1 km land use and land cover (LULC) map derived from
the 30 m Thematic Mapper (TM) imagery classification was
provided by the Data Center for Resources and Environ-
mental Sciences, Chinese Academy of Sciences (http://www.
resdc.cn/, last access: 21 May 2019). The map was recalcu-
lated as the areal percentages of each land cover type in the
25 km grid cells. In this study, the fractions of grassland, bare
land, cropland, forest, and shrubland were calculated as pre-
dictor variables of the RF model. To avoid the influence of

water bodies and construction, the record was used only if
the total fraction was greater than 60 %.

2.2 Methodology

2.2.1 Random forest

RF is an ensemble ML algorithm proposed by Breiman in
2001. It combines several randomized decision trees and ag-
gregates their predictions by averaging in regression (Biau
and Scornet, 2016). Generally, approximately two-thirds of
the samples (in-bag samples) are used to train the trees and
the remaining one-third (out-of-bag samples, OOB) are used
to estimate how well the fitted RF algorithm performs. A few
user-defined parameters are generally required to optimize
the algorithm, such as the number of trees in the ensemble
(ntree) and the number of random variables at each node
(mtry). The ntree is set equal to 1000 in the present study
since the gain in the predictive performance of the algorithm
would be small with the addition of more trees (Probst and
Boulesteix, 2018). The default value ofmtry is determined by
the number of input prediction variables, usually one-third
for regression tasks (Biau and Scornet, 2016). The RF re-
gression is insensitive to the quality of training samples and
to overfitting due to the large number of decision trees pro-
duced by randomly selecting a subset of training samples and
a subset of variables for splitting at each tree node (Maxwell
et al., 2018). In addition, RF provides an assessment of the
relative importance of predictor variables, which have proven
to be useful for evaluating the relative contribution of input
variables (Tyralis et al., 2019b). Furthermore, the RF model
can be rapidly trained and is easy to use. In this paper, the
randomForest R package (version 4.6–14) is used for regres-
sion (Liaw and Wiener, 2002; Breiman et al., 2018).

2.2.2 Feasibility study of the RF model

(1) Selection of predictor variables

The possible predictor variables used include geographic lo-
cation (longitude, latitude), elevation, land cover fractions
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Figure 1. Spatial distribution of the weather stations and land cover types in the study area. There are three stable snow cover areas in China:
northeast China (NEC), northern Xinjiang (XJ), and the Qinghai–Tibetan Plateau (QTP).

Figure 2. Histograms of snow depth observations from (a) training and (b) validation stations. The average values (black dashed lines) are
equal to 10.5 and 9.8 cm, respectively.

(grassland, cropland, bare land, shrubland, and forest), and
multichannel brightness temperatures. All available channels
on the SSM/I and SSMIS are listed in Table 1. The 23 GHz
channel is sensitive to water vapor and not surface scatter-
ing, which introduces uncertainty to the estimation process
(Ji et al., 2017). The 85 (91) GHz channel is seriously in-
fluenced by the atmosphere (Kelly, 2009; Xue and Froman,
2017). Typically, the lower frequency (19 GHz) is used to
provide a background TB against which the channels sen-
sitive to higher-frequency (37 GHz) scattering are used to
retrieve snow depth. The mixed-pixel problem is the domi-
nant limitation on snow depth estimation accuracy (Derksen
et al., 2005; Jiang et al., 2014; Roy et al., 2014; Cai et al.,
2017; Li and Kelly, 2017). The satellite pixel usually cov-
ers several land cover types due to a coarse footprint. Thus,
the land cover fractions were included as possible predictor
variables. Previous studies have shown that geographic loca-

tion and elevation indeed contribute to improving ML model
performance (Bair et al., 2018; Qu et al., 2019).

To determine a suitable selection rule for training sam-
ples, we selected four combinations of predictor variables
from training stations (Fig. 1) during the period 2012–2014
to train the RF algorithms. Table 2 presents a detailed de-
scription of the four selection rules of training samples. The
correlations between the predictor variables and the variable
importance metrics are shown in Fig. 3. The TB measure-
ments at horizontal polarization (H-pol) are highly correlated
(correlations higher than 0.9) with observations at vertical
polarization (V-pol). Moreover, according to their ranking of
the predictor variables, the channels of V-pol are more rele-
vant to the independent variable (snow depth) than are the H-
pol channels. Therefore, the RF1 algorithm was trained with
only two channels’ TB measurements at V-pol. The rank-
ing of variables’ importance in Fig. 3 indicates that the ge-
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Table 2. A detailed description of the input predictor variables based on four selection rules of the training sample.

Name Predictor variables Target Note

RF1 TB19V, TB37V land cover types:
RF2 TB19V, TB37V, latitude, longitude snow grassland, cropland,
RF3 TB19V, TB37V, latitude, longitude, elevation depth bare land, shrubland,
RF4 TB19V, TB37V, latitude, longitude, elevation, land cover fraction forest

Table 3. Summary of three tests of the fitted RF algorithms in Table 2.

Name Test1 (OOB) Test2 (temporal subset) Test3 (spatiotemporal subset)

Training
training stations 2012–2014 training stations 2012–2014 training stations 2012–2014
samples 28 602 samples 28 602 samples 28 602

Validation
training stations 2012–2014 training stations 2015–2018 validation stations 2015–2018
samples 14 301 samples 34 684 samples 25 879

ographic location is more important than elevation to snow
depth. Thus, the geographic location and elevation were in-
cluded in the predictor variables of RF2 and RF3, respec-
tively. Figure 3 also shows that the correlations between TB
and land cover fraction are relatively low. Thus, we will val-
idate whether the inclusion of land cover fraction would in-
crease the performance of the fitted RF4 algorithm.

(2) Training sample size

One of the advantages of the RF model is that it can effec-
tively handle small sample sizes (Biau and Scornet et al.,
2016). A test was conducted to demonstrate the insensitiv-
ity of the RF model to the training sample size. The input
predictor variables include geographic location and TB (Ta-
ble 2, RF2). The flowchart of the test process is shown in
Fig. 4. To ensure a sufficient number of samples, all sta-
tion records (approximately 100 000 samples) from 1987 to
2006 were used to analyze the sensitivity of the RF model
to the training sample size. A total of 5000 to 80 000 (with
a step of 5000) samples selected randomly from data during
the period 1987–2004 were used to respectively train the RF
models, and a 2-year stand-alone dataset from 2005 to 2006
was applied to assess the performance of the trained models.
We consider three evaluating indicators (the unbiased root-
mean-square error (RMSE), bias, and correlation coefficient)
to illustrate the sensitivity of the RF model to the training
sample size.

(3) Validation datasets of the fitted RF algorithms

We conducted three tests to verify the fitted RF algorithms
(Table 3). The same training samples (same algorithms) were
used for the three tests but with different validation datasets.
In Test1, the validation data were from OOB samples. This
preliminary assessment generally offers a simple way to ad-
just the parameters of the RF model. However, the OOB

errors should be used with caution because its samples are
not independent at temporal and spatial scales. In Test2, we
applied independent reference data during the period 2015–
2018 to assess the accuracy of the temporal prediction of
fitted algorithms. Although this dataset is composed of ob-
servations from training stations in Fig. 1, it is temporally
independent of the training samples (2012–2014). Generally,
the RF model cannot extrapolate outside the training range
(Hengl et al., 2018). Thus, in Test3, a spatially independent
dataset from validation stations during the period 2015–2018
was used to assess the accuracy of spatiotemporal predic-
tion. The unbiased RMSE, bias, and correlation coefficient
are used for the assessment of the predictive performance of
the fitted algorithms.

2.2.3 Validation of reconstructed snow depth product
and trend analysis

The reconstructed long-term snow depth dataset was eval-
uated by the stand-alone ground truth measurements over
the period 1987–2018 from the validation stations (Fig. 1).
The reconstructed product was also compared with the static
linear-fitting algorithm developed by fitting 19 and 37 GHz
with the snow depth measurements with a constant empir-
ical coefficient over China (Che et al., 2008). The daily
snow depth data were obtained from the Environmental
and Ecological Science Data Center for West China (http:
//data.casnw.net/portal/, last access: 21 March 2020) (here-
after WESTDC product). Then, the spatiotemporal patterns
of snow depth were analyzed in northeast China (NEC),
northern Xinjiang (XJ), and the QTP. The slope method (re-
gression) was employed to analyze the snow depth variation
trend at the temporal scale (Huang et al., 2019). To show
the spatial distribution of snow depth variation, the Mann–
Kendall test (significance levels of α = 0.05) was used to an-
alyze the trends of changes in China (Mann, 1945; Kendall,
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Figure 3. Correlations between the predictor variables (a) and the ranking of variable importance (b). The importance of variables, referred
to as mean decrease accuracy (MDA) in the RF model, is obtained by averaging the difference in out-of-bag error estimation before and after
the permutation over all trees. The larger the MDA, the greater the importance of the variable is.

Figure 4. The test process flowchart for the sensitivity of the RF
model to the training sample size.

1975; Milan and Slavisa, 2013). To ensure the presence of
dry snow cover, the reconstruction periods are the main snow
winter season (January, February, March, November, and De-
cember).

3 Results

3.1 Sensitivity to training sample size

The sensitivity of the RF model toward the training sam-
ple size was evaluated to confirm the appropriate number of
training samples. Figure 5 displays the accuracy according
to unbiased RMSE, bias, and correlation coefficient. These
accuracy indexes show slight fluctuations when the number
of training samples increases from 5000 to 80 000. Figure 5a
shows that the unbiased RMSE ranges from 5.1 to 5.5 cm
with increasing training samples. Figure 5c shows that the
correlation coefficient is as high as 0.79 and becomes stable
when the samples are up to 30 000. According to the sensi-
tivity analysis, the number of training samples has less influ-
ence on the prediction accuracy of the RF model. This test
is very helpful for us to determine the number of training
samples because of the limited number of training samples
over the period 2012–2014. We selected all available sam-
ples (28 602) from training stations (Fig. 1) during the period
2012–2014 to train the RF models in Table 2.

3.2 Validation of the fitted RF algorithms

The fitted RF algorithms were evaluated by three valida-
tion datasets as shown in Table 3. The color–density scatter-
plots of the measured snow depth versus the retrieved snow
depth are presented in Fig. 6. For all fitted RF algorithms
(RF1, RF2, RF3, and RF4), notable differences in accuracy
were revealed through the validation of three datasets (Ta-
ble 4). Generally, the validation with OOB samples presented
higher overall accuracy than the other two datasets. This re-
sult, however, does not demonstrate that the fitted RF algo-
rithm performs well in snow depth estimation. The assess-
ments in Test2 (temporal subset) and Test3 (spatiotemporal
subset) demonstrate that the temporal prediction of the RF
model outperforms the spatiotemporal prediction, with unbi-
ased RMSEs of 4.4–5.4 cm and 7.2–7.9 cm, respectively.

Comparing the validation results of RF1, RF2, RF3, and
RF4, we find that the inclusion of auxiliary information in-
deed improved the performance of the fitted RF algorithms
(Fig. 6). For Test1(OOB), the unbiased RMSE decreased
from 6.4 to 3.9 cm with increasing predictor variables of aux-
iliary information, while the correlation coefficient increased
from 0.72 to 0.90 (Table 4). For Test2 (temporal subset), the
unbiased RMSE decreased from 5.4 to 4.4 cm and the corre-
lation coefficient increased from 0.77 to 0.85 (Table 4). There
was a slight improvement in spatiotemporal prediction when
including the auxiliary information, with the unbiased RMSE
ranging from 7.9 to 7.3 cm (Table 4).

3.3 Validation of the reconstructed snow depth product

According to the results in Fig. 6 and Table 4, there are no no-
table differences in accuracy among the RF2, RF3, and RF4
algorithms. In this study, we selected the RF2 algorithm to
reconstruct a long-term snow depth dataset (1987 to 2018).
We used the independent in situ measurements over the pe-
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Figure 5. Trends of (a) unbiased RMSE, (b) bias, and (c) correlation coefficient with increasing training sample size.

Figure 6. The color–density scatterplots of the estimated snow depth with four fitted RF algorithms and the ground truth snow depth. The
four trained RF algorithms (RF1, RF2, RF3, RF4) were evaluated with three validation datasets (Test1, Test2, Test3).
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Table 4. Accuracy of four snow-depth retrieval models with unbiased RMSE, bias and correlation coefficient.

Name Test1 (OOB) Test2 (temporal subset) Test3 (spatiotemporal subset)

unRMSE bias corr.coe unRMSE bias corr.coe unRMSE bias corr.coe

RF1 6.4 −0.01 0.72 5.4 0.12 0.77 7.9 −0.76 0.57
RF2 4.1 0.07 0.90 4.5 0.27 0.85 7.2 −0.97 0.66
RF3 3.9 0.08 0.90 4.5 0.24 0.85 7.3 −0.83 0.66
RF4 3.9 0.03 0.91 4.4 0.21 0.85 7.3 −0.40 0.65

Table 5. Comparison between RF estimates and WESTDC product in three stable snow cover areas for deep (> 20 cm) and shallow (≤ 20 cm)
snow cover.

RF product

Regions QTP NEC Northern XJ

Snow depth (cm) <= 20 > 20 <= 20 > 20 <= 20 > 20
corr.coe 0.30 0.06 0.49 0.17 0.48 0.31
bias (cm) 0.59 −34.12 1.79 −10.38 2.52 −8.85
unRMSE (cm) 3.43 20.70 5.36 7.00 6.12 9.62
Samples 15 503 (96.4 %) 583 (3.6 %) 151 939 (87.3 %) 22 168 (12.7 %) 32 468 (69.8 %) 14 051 (30.2 %)

WESTDC product

Regions QTP NEC Northern XJ

Snow depth (cm) <= 20 > 20 <= 20 > 20 <= 20 > 20
corr.coe 0.16 −0.18 0.37 0.03 0.34 0.16
bias (cm) 4.02 −33.78 0.47 −11.75 −0.39 −13.22
unRMSE (cm) 5.60 21.62 6.47 9.10 7.35 11.30
Samples 15 503 (96.4 %) 583 (3.6 %) 151 939 (87.3 %) 22 168 (12.7 %) 32 468 (69.8 %) 14 051 (30.2 %)

riod 1987–2018 from validation stations (Fig. 1) to evaluate
this product (hereafter RF product). Figure 7 shows the scat-
ter diagrams of estimated vs. measured values for RF and
WESTDC products. The overall accuracy of the RF prod-
uct is higher than that of the WESTDC estimates, with unbi-
ased RMSEs of 7.1 and 8.5 cm, respectively (Fig. 7a and b).
The correlation coefficient is 0.65, which is larger than the
WESTDC’s coefficient of 0.49. Both products particularly
underestimate snow depth when snowpack is thicker than
20 cm. The error bar shows that the WESTDC product tends
to more seriously underestimate snow depth than do the RF
estimates.

To determine the interannual variability in the uncertainty,
the time series of assessment indexes, including the unbi-
ased RMSE, bias, and correlation coefficient, are shown in
Fig. 8. The results show that the RF estimates outperform
the WESTDC product with respect to unbiased RMSE and
correlation coefficient from season to season. The bias also
fluctuates from season to season, ranging from −8 to 3 cm
(Fig. 8c). There is a slight overestimation during the period
1987–2000, whereas it presents a notable underestimation
since 2006. Snow depth estimates with PMW data are usu-
ally challenged by the snow metamorphism (e.g., snow grain
size). In particular, the large diurnal temperature range in the

late snow season leads to a rapid snow grain growth (Dai
et al., 2012). Figure 9 presents the monthly performances of
both RF and WESTDC products. The RF estimates outper-
form the WESTDC product in terms of correlation, overall
bias, and unbiased RMSE. WESTDC estimates tend to be
underestimated in November, December, and March, while
the RF product is superior to the WESTDC data. Due to the
influence of the seasonal evolution of snowpack, the unbi-
ased RMSEs of both products present increasing trends from
November to March during the snow seasons. The correla-
tion coefficient in January is the highest among snow season
months, which is attributed to stable snow cover.

The assessment of snow depth product was performed in
three snow cover areas of China. As shown in Fig. 10a, the
RF data are superior to the WESTDC estimates, with the
unbiased RMSEs of 8.3, 6.8, and 8.8 cm in the QTP, NEC,
and northern XJ for the RF product, respectively. Figure 10b
shows a notable underestimation and overestimation for the
WESTDC product in northern XJ and the QTP, respectively.
For the RF product, the bias is close to zero and fluctuates
across a relatively narrow range in the three snow cover ar-
eas.

Based on the results in Fig. 7, we selected 20 cm as a
threshold to assess the performances in deep (> 20 cm) and
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Figure 7. Scatterplots of the estimated snow depth and the ground truth observation for (a) RF and (b) WESTDC products.

Figure 8. Time series of (a) unbiased RMSE (unRMSE), (b) corre-
lation coefficient (corr.coe), and (c) bias for RF and WESTDC prod-
ucts. The colorful dashed lines represent mean values of assessment
indexes.

shallow (≤ 20 cm) snow cover. The percentage of shallow
snow conditions to total samples was approximately 90 %.
Table 5 displays the comparison between RF estimates and
the WESTDC product in the three snow cover areas. The
“Samples” row in Table 5 shows the number of samples and
the corresponding percentage in each region. Both products
present notable underestimation of deep snow cover, with
biases of −34.1 and −33.8 cm on the QTP for the RF and
WESTDC products, respectively. The biases are −10.4 and
−8.9 cm for the RF product in NEC and northern XJ, respec-
tively, whereas the same biases are −11.8 and −13.2 cm for
the WESTDC data. Moreover, the correlation is very poor in
deep snow cover, even negative (−0.18) in the QTP for the
WESTDC product. For shallow snow cover, the RF product
is superior to the WESTDC estimates in the QTP, with un-
biased RMSEs of 3.4 cm (RF) and 5.6 cm (WESTDC). Fur-

Figure 9. The validation of RF and WESTDC snow depth products
in three stable snow cover areas over China with respect to (a) the
unbiased RMSE, (b) bias, and correlation coefficient.

Figure 10. Monthly performances of (a) RF and (b) WESTDC
snow depth products. Nov: November; Dec: December; Jan: Jan-
uary; Feb: February; Mar: March.

thermore, the WESTDC product presents overestimation in
the QTP, with a bias of 4.0 cm that is much higher than the
RF’s bias of 0.6 cm. The unbiased RMSEs of the RF product
are 5.4 and 6.1 cm in NEC and northern XJ for shallow snow
cover, respectively, lower than the WESTDC’s values of 6.5
and 7.4 cm. However, the RF product tends to overestimate
snow depth relative to WESTDC estimates, with higher bi-
ases of 1.8 and 2.5 cm than WESTDC’s 0.5 and −0.4 cm in
NEC and northern XJ, respectively.

3.4 Spatial–temporal analysis of snow depth in three
snow cover areas

The trend analysis of snow depth was conducted based on
ground truth observations, the RF dataset, and the WESTDC
product during the period 1987–2018. The time series of
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yearly mean snow depth in different regions over China is
shown in Fig. 11. The red, green, and blue solid lines rep-
resent yearly mean snow depth in northern XJ, NEC, and
the QTP, respectively. The black solid line displays the over-
all mean snow depth in China. Figure 11a shows that the
ground truth snow depth in China presents a significant in-
creasing trend from 1987 to 2018, with a correlation coef-
ficient of 0.57. The trend in NEC is highly consistent with
the overall trend over China, with a correlation coefficient
of 0.64 (Fig. 11a). Although there are increasing trends in
northern XJ and the QTP, the correlation coefficients are
lower than 0.40, not significant (Fig. 11a). Figure 11b and c
show the time series of yearly mean snow depth from the RF
and WESTDC products, respectively. Neither of these values
present significant trends. In the QTP, the WESTDC product
presents a significant decreasing trend, with a correlation co-
efficient of −0.55 (Fig. 11c). Snow depth in northern XJ is
the greatest among three snow cover areas, and snow cover
in the QTP is very shallow, approximately 5 cm (Fig. 11a
and b). With respect to magnitude and change trends, the
ground truth observations and RF estimates in this study are
consistent.

Figure 12 shows the spatial patterns of snow depth vari-
ation based on the RF and WESTDC products. Only the
area with continuous snow depth measurements from 1987
to 2018 is shown in Fig. 12. The two products show similar
patterns in most areas over China. There are notable trend
differences between RF and WESTDC products in the north-
east of the QTP and western NEC. The RF product presents
an increasing trend in the northeast of the QTP, whereas a
significant decreasing trend is presented for the WESTDC
product (Fig. 12a and b). In western NEC, there is a signif-
icant increasing trend for the RF product but no significant
trend for WESTDC data.

Based on the comparison of trends in Fig. 12 and available
station observations in Fig. 1, we selected two specific areas
(black and green grids in Fig. 12) to test the changing trend.
Figure 13 shows the trends of snow depth based on the sta-
tion observations (black solid line), RF estimates (red solid
line), and WESTDC product (blue solid line). The ground
truth snow depth presents a significant increasing trend in
the specific area of NEC, with a high correlation coefficient
of 0.75 (Fig. 13a). The RF product shows a significant in-
creasing trend, which is consistent with the ground truth data
(Figs. 12a and 13a). Figure 13b shows that the WESTDC
product displays a decreasing trend in the selected area of the
QTP, while station observations and RF estimates present no
significant trends.

4 Discussion

4.1 Disadvantages of the RF model

The RF technique is already used to generate temporal and
spatial predictions. Generally, the RF model cannot extrapo-
late outside the training range (Hengl et al., 2018). Figure 6
and Table 4 indicate that the spatial predictions of fitted RF
algorithms are more biased than are the temporal predictions.
Thus, the transferability of a fitted RF algorithm to other ar-
eas is in question. Several studies (Prasad et al., 2006; Hengl
et al., 2017; Vaysse and Lagacherie, 2015; Nussbaum et al.,
2018) have proven that RF is a promising technique for spa-
tial prediction; however, these studies aim to obtain spatial
predictions of elements of stationarity in the Earth system,
e.g., soil types and soil properties.

The Earth system is interesting because it is nonstationary
(especially concerning snow parameters). Generally, snow
depth increases at the beginning of winter and then de-
creases in spring due to melting. Moreover, snow cover has
different spatial patterns in various regions, such as gener-
ally deep snow in high-latitude and high-elevation areas. In
China, there are five climatological snow classes according
to the classification by Sturm et al. (1995). Each snow class
is defined by an ensemble of snow stratigraphic character-
istics, including snow density, grain size, and crystal mor-
phology, which influences the snowpack’s microwave signa-
ture (Sturm and Wagner, 2010). These dynamic properties of
snow will lead to many cases in which the same satellite TB
corresponds to different snow depths, while the same snow
depth is associated with various TB observations, rendering
the fitted RF algorithm suboptimal. Physical snow evolution
models, e.g., the Snow Thermal Model (SNTHERM) (Jor-
dan, 1991), SNOWPACK (Lehning et al., 2002a, b), and Cro-
cus (Brun et al., 1989; Vionnet et al., 2012), can be used to
simulate snow parameters (e.g., grain size, density) relatively
accurately. Thus, integrating a priori knowledge of snowpack
into ML techniques has the potential to overcome many lim-
itations that have hindered a more widespread adoption of
ML approaches.

4.2 Influence of predictor variables on the RF model

Figure 6 and Table 4 indicate that the inclusion of corre-
lated predictor variables has a very slight influence in the
predictive performance. Geographic location contributes to
improving the RF model’s temporal and spatiotemporal es-
timates, and the inclusion of both elevation and land cover
fraction does not further improve the performance of the fit-
ted models (Fig. 6). This is because elevation is highly corre-
lated (correlations higher than 0.9) with geographic location
(Fig. 3). Figure 3 also indicates that the correlation between
longitude or elevation and land cover type (e.g., grassland,
cropland, forest, and bare land) is significant. However, this
correlation does not mean that the effects of elevation and
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Figure 11. Trend analysis of snow depth based on (a) station observations, (b) RF estimates, and (c) WESTDC product in three stable snow
cover areas of China. The correlation is statistically significant at the 0.05 level.

Figure 12. Trend analysis of snow depth during the period 1987–2018: (a) RF product; (b) WESTDC data. Light red and light blue represent
no significant trend changes.

land cover fraction on fitted RF model can be ignored. We
tested the RF algorithms trained with TB and elevation or
land cover fraction data. The results (not shown here) indi-
cate that these auxiliary data do improve the performance
of the fitted algorithms. Strongly correlated variables have
a very slight influence on the predictive performance of the
RF model (Boulesteix et al., 2012). Therefore, in some cases,
a few representative predictor variables should be selected.

4.3 Potential errors of the reconstructed snow depth

Figure 7 indicates that the RF model does not fully solve
the overestimation and underestimation problems. For deep
snow (> 20 cm), the biases are up to −8.9 and −10.4 cm
in NEC and northern XJ, respectively. Deep snow condi-
tions account for approximately 10 % of all training samples
(Fig. 2). The estimates for deep snow cover in the QTP ex-
hibit a large bias of −34.1 cm. Figure 6 also illustrates that
the fitted RF algorithms have no predictive ability for ex-
tremely deep snow conditions, especially in the QTP. We
checked the training data and found that the extreme high
snow depth data (> 60 cm) occurred in the QTP. However,
the number of such cases is very small. In addition, the sta-
tion measurements are point values while the satellite grids
have a spatial resolution of 25km× 25km. Thus, the repre-

sentativeness of these data is questionable. Snow depth es-
timation in the mountains remains a challenge (Lettenmaier
et al., 2015; Dozier et al., 2016; Dahri et al., 2018). Numer-
ous studies have been conducted on the snow cover over the
QTP and have indicated that the snow cover in the Himalayas
is higher than elsewhere, ranging from 80 % to 100 % dur-
ing the winter (Basang et al., 2017; Hao et al., 2018). Ad-
ditionally, Dai et al. (2018) showed that deep snow (greater
than 20 cm) was mainly distributed in the Himalayas, Pamir,
and southeastern mountains. Thus, the RF product produced
in this paper has poor performance in the QTP for the deep
snow cover.

Table 5 indicates that there is overestimation in NEC and
northern XJ for shallow snow cover, which may be due to
the following reasons. First, the PMW signals are insensi-
tive to thin snow cover (< 5 cm), especially for fresh snow
with low snow density and snow grain size, which gener-
ally results in underestimation (Foster et al., 2005). In con-
trast, it tends to overestimate snow depth for shallow old
snow in the late snow season due to the seasonal evolution of
snowpack. For example, the large diurnal temperature range
in the late snow season tends to subject the snowpack to
frequent freeze–thaw cycles and leads to rapid snow grain
(∼ 2 mm) and snow density (200–350 kg m−3) growth and
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Figure 13. Comparison of changing trends of snow depth between RF estimates and the WESTDC product in specific areas of (a) NEC and
(b) the QTP.

Table 6. Summary of monthly performances of the RF product in NEC and northern XJ.

NEC

Month November December January February March

corr.coe 0.32 0.41 0.40 0.23 0.08
bias (cm) 2.33 2.19 2.93 4.74 7.97
unRMSE (cm) 3.66 3.69 4.16 5.24 6.16

Northern XJ

Month November December January February March

corr.coe 0.20 0.27 0.40 0.20 0.08
bias (cm) 3.68 3.35 2.97 5.65 10.60
unRMSE (cm) 4.49 4.77 4.61 6.83 7.09

consequently a high TB difference (Meløysund et al., 2007;
Durand et al., 2008; Yang et al., 2015; Dai et al., 2017).
Thus, the overall bias and unbiased RMSE for shallow snow-
packs (< 10 cm) present increasing trends from November
to March in NEC and northern XJ (Table 6). Second, frozen
soil reduces the accuracy of estimates. Both snow and frozen
ground are volume-scattering materials, and they have sim-
ilar microwave radiation characteristics, making them diffi-
cult to distinguish. Third, a limiting factor in estimating snow
depth for PMW remote sensing is the presence of liquid wa-
ter. In this study, a snow cover detection method is used to fil-
ter out wet snow cover; however, there are still misclassifica-
tion errors, especially at the end of the winter season (Grody
and Basist, 1996; Liu et al., 2018a). In such cases, satellite
observations are mainly associated with the emissions from
the wet surface of the snowpack. Therefore, in wet snow con-
ditions, snow depth retrieval is not possible (Derksen et al.,
2010; Tedesco and Jeyaratnam, 2016).

5 Conclusions

The present study analyzed the application of the RF model
to snow depth estimation at temporal and spatial scales. Tem-
porally and spatially independent datasets were applied to
verify the fitted RF algorithms. The results suggested that
the accuracy of fitted RF algorithms was greatly influenced
by auxiliary data, especially the geographic location. How-
ever, the inclusion of strongly correlated predictor variables
(elevation and land cover fraction) did not further improve
the RF estimates. Therefore, in some cases, a few represen-
tative predictor variables should be selected. Due to naive
extrapolation outside the training range, the transferability of
a fitted RF algorithm at the temporal scale was better than
that in spatial terms, e.g., with unbiased RMSEs of 4.5 and
7.2 cm for the RF2 algorithm, respectively.

In this study, the fitted RF2 algorithm was used to re-
trieve a consistent 32-year daily snow depth dataset from
1987 to 2018. Then, an evaluation was carried out using in-
dependent reference data from the validation stations dur-
ing the period 1987–2018. The overall unbiased RMSE and
bias were 7.1 and −0.05 cm, respectively, outperforming the
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WESTDC product (8.4 and−1.20 cm). In the QTP, the unbi-
ased RMSE and bias of RF estimates for shallow (≤ 20 cm)
snow cover were 3.4 and 0.59 cm, respectively, much lower
than WESTDC’s 5.6 and 4.02 cm. In NEC and northern XJ,
RF estimates were superior to the WESTDC product but still
presented an underestimation for deep snow (> 20 cm), with
biases of −10.4 and −8.9 cm, respectively.

Three long-term (1987–2018) datasets, including ground
truth observations, RF estimates, and the WESTDC product,
were applied to analyze the trends of snow depth variation
in China. The results suggested that there existed different
trends among the three datasets. The overall trend of snow
depth in China presented a significant increasing based on
the ground truth observations, with a correlation coefficient
of 0.57. Moreover, the trend in NEC was highly consistent
with the overall trend in China, with a correlation coefficient
of 0.64. Neither the WESTDC nor the RF product presented
significant trends except in the QTP. The WESTDC product
showed a significant decreasing trend in the QTP, with a cor-
relation coefficient of −0.55, whereas there were no signifi-
cant trends for ground truth observations and the RF product.

As discussed in Sect. 4, our reconstructed snow depth esti-
mates are still challenged by several problems, e.g., underes-
timation for deep snow. Additional prior knowledge of snow
cover, such as snow cover fraction, snow density, and snow
grain size, is necessary to improve the RF model. Combin-
ing the physical snow evolution model (e.g., SNOWPACK)
with the ML method will be the focus of future work. Fur-
thermore, the mass balance approaches, e.g., the parallel en-
ergy balance model, will be used to improve the snow depth
retrievals in high-altitude areas. In addition, although our re-
sults indicate that the RF method is a promising potential tool
for snow depth estimation, there are a few pitfalls such as the
risk of naive extrapolation and poor transferability in spatial
terms limiting its application in spatiotemporal dynamics. It
is in addressing these shortcomings that the techniques of
deep learning promise breakthroughs. We are attempting to
operate the deep neural networks (DNNs) model to overcome
the limitations of traditional ML approaches.
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measurements are available for download from
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