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Abstract. Combining multiple data sources with multi-
physics simulation frameworks offers new potential to extend
snow model inter-comparison efforts to the Himalaya. As
such, this study evaluates the sensitivity of simulated regional
snow cover and runoff dynamics to different snowpack pro-
cess representations. The evaluation is based on a spatially
distributed version of the Factorial Snowpack Model (FSM)
set up for the Astore catchment in the upper Indus basin. The
FSM multi-physics model was driven by climate fields from
the High Asia Refined Analysis (HAR) dynamical down-
scaling product. Ensemble performance was evaluated pri-
marily using MODIS remote sensing of snow-covered area,
albedo and land surface temperature. In line with previous
snow model inter-comparisons, no single FSM configuration
performs best in all of the years simulated. However, the re-
sults demonstrate that performance variation in this case is
at least partly related to inaccuracies in the sequencing of
inter-annual variation in HAR climate inputs, not just FSM
model limitations. Ensemble spread is dominated by interac-
tions between parameterisations of albedo, snowpack hydrol-
ogy and atmospheric stability effects on turbulent heat fluxes.
The resulting ensemble structure is similar in different years,
which leads to systematic divergence in ablation and mass
balance at high elevations. While ensemble spread and er-
rors are notably lower when viewed as anomalies, FSM con-
figurations show important differences in their absolute sen-
sitivity to climate variation. Comparison with observations
suggests that a subset of the ensemble should be retained for
climate change projections, namely those members including
prognostic albedo and liquid water retention, refreezing and
drainage processes.

1 Introduction

Snow plays a profound role in the climate system and sup-
ports water resources in many regions (Barnett et al., 2005;
Hall and Qu, 2006). As such, several applications depend on
process-based models that approximate snow physics while
solving mass and energy balances. These include coupled
land–atmosphere modelling, testing hypotheses about physi-
cal snow processes and catchment behaviour, and hydrologi-
cal projections in non-stationary climates. Given the number
of snow models in existence (e.g. Essery et al., 2013), under-
standing the relative skill of different models and their suit-
ability for various uses is essential. This is reflected by the
succession of snow model inter-comparison initiatives over
recent decades (Essery et al., 2009; Etchevers et al., 2004;
Krinner et al., 2018; Slater et al., 2001).

While snow models have been evaluated in various con-
texts, there has been little analysis of how different process-
based models perform in the Himalayan region. Yet, vast
populations downstream of these water towers are vulnerable
to climate change impacts on snowmelt-derived river flows
(Immerzeel et al., 2010; Viviroli et al., 2011). Snow model
analysis and inter-comparison would ultimately help to man-
age these risks, but model input and evaluation are severely
impeded by data paucity. Indeed, deriving consistent, multi-
variate climate input fields in largely unobserved and highly
variable mountain environments is a long-standing problem
(Klemeš, 1990; Raleigh et al., 2015, 2016). In part this ex-
plains the proliferation of simple snow modelling in the re-
gion, namely through (sometimes enhanced) temperature in-
dex methods (e.g. Armstrong et al., 2019; Lutz et al., 2014;
Ragettli et al., 2015; Stigter et al., 2017). There are a small
but growing number of offline process-based, energy bal-
ance model applications (i.e. not coupled to an atmospheric
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model), but these have focused only on single model struc-
tures, without detailed snow process evaluation (e.g. Brown
et al., 2014; Prasch et al., 2013; Shakoor and Ejaz, 2019;
Shrestha et al., 2015).

In the face of these data challenges, developments in high-
resolution regional climate modelling and remote sensing in-
creasingly offer partial solutions. Several studies have now
successfully used dynamical downscaling to provide offline
forcing for cryospheric and hydrological models in the Hi-
malaya and other contexts (e.g. Biskop et al., 2016; Havens
et al., 2019; Huintjes et al., 2015; Tarasova et al., 2016). Sim-
ilarly, the potential for remote sensing to support model eval-
uation by providing some constraints on both snow cover
dynamics and the surface energy balance has been demon-
strated (Collier et al., 2013, 2015; Essery, 2013; Finger et al.,
2011). Yet, studies combining these data sources for process-
based snow model applications are still few in number (see
e.g. Quéno et al., 2016; Revuelto et al., 2018), especially in
the Himalaya. Moreover, there has been little examination
of how such approaches could support snow model inter-
comparison for practical uses, such as water resource mod-
elling and management, as previous inter-comparisons have
focused primarily on site scales. More systematic studies are
needed to understand differences in snow model behaviour at
the larger scales relevant to water resource applications and
regional climate modelling (Essery et al., 2009; Krinner et
al., 2018).

Although regional climate modelling and remote sens-
ing offer increasing potential to support snow model inter-
comparison in data-sparse regions, identifying appropri-
ate model formulations remains challenging even in well-
instrumented contexts. In the SnowMIP and SnowMIP2
inter-comparison studies, no single model emerged as opti-
mal, with performance varying between locations and years
(Essery et al., 2009; Etchevers et al., 2004; Rutter et al.,
2009). Similarly, recent inter-comparisons using more sys-
tematic ensemble frameworks have found that different
model configurations tend to show consistently good, poor
or variable performance, with no single best model identifi-
able (Essery et al., 2013; Lafaysse et al., 2017; Magnusson
et al., 2015). Model complexity, in terms of the number of
processes represented and the associated number of parame-
ters, does not appear to be strongly (or necessarily positively)
related to skill or transferability in space and time (see also
Lute and Luce, 2017). Nevertheless, the systematic frame-
works underpinning recent inter-comparisons are an impor-
tant advance over earlier studies. By synthesising the array
of models in existence and eliminating implementation dif-
ferences, these frameworks permit better quantification of the
behaviour of different parameterisations and identification of
where improvements may be possible (Clark et al., 2015;
Krinner et al., 2018). The full potential of this approach has
not yet been realised, especially in data-sparse mountain re-
gions.

Therefore, this study uses recent progress in high-
resolution regional climate modelling, remote sensing and
ensemble-based snow modelling to assess snowpack model
formulations in a western Himalayan catchment. The study
proceeds by using the High Asia Refined Analysis (HAR;
Maussion et al., 2014) dynamical downscaling product to
drive the Factorial Snowpack Model (FSM) multi-physics
ensemble (Essery, 2015). The spatially distributed, high-
resolution FSM simulations are then evaluated using a com-
bination of multiple MODIS remote-sensing products and
local observations. The aim of the study is to evaluate the
sensitivity of simulated snow cover and runoff dynamics to
different snowpack process representations while also iden-
tifying possible causes and implications of model perfor-
mance variation. This contributes to the need for more large-
scale (basin-scale) model evaluations using unified frame-
works (Clark et al., 2015; Essery et al., 2013) in a context
where accurately simulating snow processes is essential for
understanding cryospheric, hydrological and water resource
trajectories in a changing climate.

2 Study area

The study focuses on the steep, mountainous Astore catch-
ment, a 3988 km2 gauged sub-basin of the upper Indus basin
(Fig. 1). The mean elevation of the catchment is around
4000 m a.s.l., with 57 % and 87 % of the area lying in the
elevation ranges 3500–4500 and 3000–5000 m a.s.l., respec-
tively. River flows are typically very low in winter, before
rising in spring and peaking in summer (June–July). Spring
and summer runoff is dominated by snowmelt, which is de-
rived primarily from orographically enhanced snowfall in
the preceding winter and early spring (Archer, 2003). Show-
ing notable spatial correlation at the seasonal scale, much
of this snowfall originates from synoptic-scale low-pressure
systems known as westerly disturbances (Archer and Fowler,
2004). Monsoon influences are small compared with the cen-
tral Himalaya. Together with the fact that glacier cover is
relatively limited, at around 6 % according to the Randolph
Glacier Inventory 5.0 (Arendt et al., 2015), the strong corre-
lation between winter precipitation and summer river flows
indicates that catchment runoff is primarily mass- rather than
energy-limited (Archer, 2003; Fowler and Archer, 2005).
However, energy constraints certainly affect intra-seasonal
variability. The perennial snowpack that persists through the
summer is confined to small areas of very high elevation,
while the glaciated extent is sufficient only to provide a mod-
est contribution to late-summer river flows (Forsythe et al.,
2012). The ESA GlobCover 2009 product (Arino et al., 2012)
indicates that vegetation cover is relatively sparse, with the
catchment dominated by a mixture of bare ground, herba-
ceous plants, and perennial snow and ice.

The Cryosphere, 14, 1225–1244, 2020 www.the-cryosphere.net/14/1225/2020/



D. M. W. Pritchard et al.: Multi-physics ensemble snow modelling in the western Himalaya 1227

Figure 1. Location of study area and local measurement points. The regional context is indicated in (a). The Astore catchment and observation
locations (with labels for the most important sites in this study) are shown with topography and glacier extent in (b). The SRTM 90 m DEM
v4.1© (Jarvis et al., 2008) and Randolph Glacier Inventory 5.0© (Arendt et al., 2015) datasets are both licenced under a Creative Commons
Attribution 4.0 International License (CC BY 4.0).

3 Data and methods

3.1 Model

3.1.1 Factorial Snowpack Model (FSM) overview

FSM is an intermediate-complexity, systematic framework
for evaluating alternative representations of snowpack pro-
cesses and their interactions (Essery, 2015). Constructed
around a coupled mass and energy balance scheme, FSM was
originally formulated as a one-dimensional column model
with up to three layers, depending on the total snow depth.
The model is based on the sequential solution of a set of
linearised equations at each time step. The surface energy
balance is solved first. Turbulent heat fluxes are estimated
using the bulk aerodynamic approach. Heat conduction be-
tween layers and to the substrate is calculated using an im-
plicit scheme before layer ice and water masses are updated
to account for simulated rainfall, melt, sublimation, refreez-
ing, drainage to successive layers and runoff from the base of
the snowpack. FSM then updates layer densities and thick-
nesses, accounting for snowfall and conservation of total ice
and liquid water masses as well as internal energy.

Within this framework, FSM offers alternative parameter-
isations of different snowpack processes. The five processes
are as follows: (1) albedo evolution; (2) thermal conductivity
variation; (3) snow density change by compaction; (4) adjust-
ment of turbulent heat fluxes for atmospheric stability; and
(5) liquid water retention, refreezing and drainage. With two
parameterisation options (0 or 1) for these five processes, the
FSM ensemble includes 32 possible model configurations.
Summarised in Table 1, the options synthesise approaches
found in a range of widely applied models. These include
CLASS (Verseghy, 1991), CLM (Oleson et al., 2013), Crocus

(Vionnet et al., 2012), HTESSEL (Dutra et al., 2010), ISBA
(Douville et al., 1995), JULES (Best et al., 2011), MOSES
(Cox et al., 1999) and Noah-MP (Niu et al., 2011). For each
process, the second option (1) may be considered generally
more physically realistic (i.e. more in line with conceptual
understanding of the physical processes governing snowpack
evolution) than the first option (0). For example, in the case of
snowpack hydraulic processes, it is more realistic to include
liquid water retention, refreezing and drainage via a bucket
model (option 1) than to permit instantaneous drainage of
liquid water instead (option 0).

Analyses of FSM to date have shown that it gives en-
semble performance and spread comparable to larger multi-
model ensembles (Essery, 2015). As such, it has been used
to support study design and inter-comparison in the ESM-
SnowMIP initiative (Krinner et al., 2018). Its value for test-
ing new process representations in forest environments has
also been demonstrated (Moeser et al., 2016), while Günther
et al. (2019) used FSM to delineate the influences of input
data errors, model structure and parameter values on simula-
tion performance at an Alpine site.

3.1.2 Adaptations and implementation

While the core FSM subroutines used in this study remain
as described in Essery (2015), the model was adapted to per-
form spatially distributed simulations on a regular grid, us-
ing climate inputs that vary in space and time. In this adap-
tation, each grid cell is treated as independent of all other
cells. Inter-cell mass and energy transfers are not consid-
ered, but the default parameterisation of sub-grid variabil-
ity of snow cover as a function of snow depth is retained.
In effect, each grid cell is considered to be a site for which
the original FSM formulation is run. The adapted version of
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Table 1. Summary of the process parameterisation options available in FSM. Full details are provided in Essery (2015). The short names and
abbreviations by which the processes are referred to in the text and figures are given.

Process description Short name Parameterisation 0 Parameterisation 1

Snow albedo variation Albedo (AL) Diagnostic – function
of surface temperature

Prognostic – decays with time and increases with
snowfall

Density of fresh snow and
snowpack density evolution

Density (DE) Constant Specified fresh snow density and compaction in-
creases with time

Liquid water storage,
drainage and refreezing

Liquid water (LW) Instant drainage,
no refreezing

Bucket model (drainage to layer below if liquid
holding capacity exceeded), with refreezing (and
latent heat release) accounted for

Atmospheric stability
adjustment for turbulent
heat fluxes

Stability (ST) No adjustment for
atmospheric stability

Stability factor is a function of the bulk Richard-
son number, which quantifies the extent to which
buoyancy suppresses shear production of turbu-
lent fluxes

Thermal conductivity for
heat conduction

Thermal conductivity
(TC)

Constant Function of density

the model is thus similar in principle to other widely applied,
distributed snow models when used without their snow trans-
port options (Lehning et al., 2006; Liston and Elder, 2006a;
Marks et al., 1999). In line with the focus on snow cover dy-
namics and snowpack processes, the model does not simulate
other aspects of catchment hydrology, such as evapotranspi-
ration from snow-free cells, the soil water balance or hydro-
logical routing (subsurface, overland and channel flows).

The simulations reported here use a 500 m horizontal res-
olution grid and an hourly time step. Topography is derived
from the Shuttle Radar Topography Mission (SRTM) 90 m
digital elevation model (DEM) v4.1 (Jarvis et al., 2008). The
500 m spatial resolution is representative of hydrological and
cryospheric modelling applications in the large basins of the
Himalaya (e.g. Lutz et al., 2016) as well as extremely high
resolution climate modelling (e.g. Bonekamp et al., 2018;
Collier and Immerzeel, 2015). It is also consistent with sev-
eral of the MODIS products used for evaluation (Sect. 3.3).
Spatial variation in land surface properties is ignored on the
basis that glacier and vegetation (including forest) cover is
low (Sect. 2) and information on substrate properties is un-
available. The simulations use the default FSM model pa-
rameters, which have been shown to reproduce much of the
spread in previous model inter-comparisons (Essery, 2015).

3.2 Climate inputs

3.2.1 High Asia Refined Analysis (HAR)

Spatiotemporally varying input fields of rainfall, snowfall,
air temperature, relative humidity, wind speed, surface air
pressure, and incoming shortwave and longwave radiation
are based on the HAR (Maussion et al., 2014). The HAR
is a 14-year dynamical downscaling of coarser global anal-
ysis to 10 km over the Himalaya and Tibetan Plateau using

the Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2008). Although a seasonally varying cold bias
is present in the upper Indus basin, the HAR shows substan-
tial performance in capturing many spatial and temporal pat-
terns in the near-surface climatology (Maussion et al., 2014;
Pritchard et al., 2019). The HAR has also exhibited a good
representation of climate in several hydrological and glacio-
logical modelling studies in neighbouring regions (Biskop et
al., 2016; Huintjes et al., 2015; Tarasova et al., 2016).

3.2.2 Bias correction and downscaling

Near-surface air temperature fields were bias-corrected to
reduce the HAR’s cold bias in the study area. The mean
bias was estimated using quality-controlled local observa-
tions from stations in the Astore catchment (Fig. 1b), which
are maintained by the Pakistan Meteorological Department
(PMD) and the Water and Power Development Authority
(WAPDA). Typical of data-sparse high-mountain regions, the
available stations are situated in valley locations. The HAR
cold bias relative to these stations has been shown to be
closely related to issues in snow cover representation in the
WRF simulations underpinning the HAR (Pritchard et al.,
2019), but some influence of local meteorological processes
such as cold air drainage cannot be ruled out, at least at some
sites. More advanced bias correction approaches were tested,
including quantile-based methods, but these did not lead to
improvements either in cross validation at station locations
or model performance at the catchment scale. This is likely
due to the difficulty of fully characterising spatial and tem-
poral variation in biases based on limited observations, es-
pecially for less commonly measured variables. The mini-
mal approach taken thus represents a realistic application of
the data. It also has the advantage of retaining much of the
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physical consistency of the HAR fields in terms of both inter-
variable and spatiotemporal dependence structures.

For most of the climate variables, spatial disaggregation of
the 10 km HAR fields to the 500 m FSM grid was conducted
using methods similar to those in the MicroMet meteorolog-
ical pre-processor of SnowModel (Liston and Elder, 2006b)
and those used by Duethmann et al. (2013). Specifically,
for temperature, specific humidity, incoming longwave ra-
diation, pressure and (log-transformed) precipitation, linear
regression was used each time step to relate each variable to
elevation, based on all HAR grid cells within the catchment
(i.e. by regressing the simulated surface – or near-surface –
values against the elevations of the corresponding model grid
cells). If the gradient term in the regression was significant
at the 95 % confidence level, the values at each HAR cell
(10 km grid) were interpolated to a reference level using the
gradient. This spatial (horizontal) anomaly field was then in-
terpolated to the high-resolution FSM grid (500 m), and the
elevation signal was subsequently reintroduced using the re-
gression gradient. This approach thus differs from MicroMet
primarily by using gradients that can vary at each time step
rather than applying a single climatological gradient for each
calendar month. For time steps when the gradient term in the
regression was not statistically significant, simple interpola-
tion of the HAR field to the FSM grid was undertaken.

Due to the pronounced topography of the study area, clear-
sky shortwave radiation at the surface was estimated for the
500 m resolution DEM using a vectorial algebra approach
(Corripio, 2003). This approach accounts for the effects of
slope, aspect, hill-shading and sky view factor. It has been
successfully applied before in this region (e.g. Ragettli et al.,
2013) and was additionally checked against station measure-
ments. The calculated clear-sky shortwave radiation fields
were adjusted to account for HAR-simulated cloud cover
effects. The cloud cover effects were estimated by using
spatially interpolated ratios of all-sky to clear-sky incoming
shortwave radiation at the surface, with both quantities from
the HAR. This approach maintains consistency between vari-
ables while capturing topographic influences, although direct
and diffuse partitioning and cloud variability are simplified.
In addition, MicroMet itself was used to downscale wind
speed to the 500 m grid to take advantage of MicroMet’s
routines for modulating wind fields according to topographic
slope and curvature.

3.2.3 Uncertainty

Given the low density of climate observations, biases and
other errors undoubtedly remain in the climate input fields.
As such, two alternative input strategies were tested. The
first strategy uses the same approach outlined in Sect. 3.2.2
but simply forgoes bias correction of temperature. The sec-
ond strategy retains the same approaches for precipitation,
incoming shortwave radiation and wind speed, but local ob-
servations from the Astore and other catchments in the north-

western upper Indus basin (Fig. 1b) are used to estimate
fields for the other required variables (temperature, humid-
ity and incoming longwave radiation – see Sect. S1 in Sup-
plement). The purpose of these two alternative strategies is
to indicate whether the main conclusions reached on snow-
pack process representations are unduly affected by the ap-
proaches described in Sect. 3.2.2.

3.3 Model evaluation

The model evaluation focuses primarily on snow cover dy-
namics, with other variables considered to evaluate underly-
ing processes. Typical of the remote Himalaya, no local snow
measurements for site-scale evaluation were available. The
evaluation thus uses a number of MODIS remote-sensing
products (Collection 6) to assess the FSM ensemble over the
full simulation period (October 2000 to September 2014).
These include snow-covered area (SCA) derived from the
MOD10A1 daily snow cover product (Hall and Riggs, 2016).
Data with quality flags of 0 (best), 1 (good) and 2 (OK)
were retained, and the widely used cloud infilling method de-
veloped by Gafurov and Bárdossy (2009) was then applied.
The analysis focuses primarily on SCA corresponding with a
normalised difference snow index (NDSI) threshold of zero.
This indicates very limited or no snow cover in a pixel (Sa-
lomonson and Appel, 2004), which is consistent with the no-
snow threshold used to calculate modelled SCA.

In addition, comparisons with MOD11A1 land surface
temperature (LST) are undertaken. To extend previous val-
idations (e.g. Wan, 2014; Wan et al., 2004), an evaluation of
MOD11A1 at the Concordia site (Fig. 1b) in the neighbour-
ing Karakoram range is given in the Supplement (Sect. S2).
The evaluation shows that the product performs well com-
pared with observed surface temperatures, with a relatively
low mean bias of −0.55 ◦C. Spatial aggregates for LST were
only calculated when 90 % of pixels had satisfactory quality
retrievals, which are defined here as mandatory data quality
flags of 00 (good). Additional evaluation of the FSM albedo
parameterisations presented in the Supplement also draws on
the MCD43A3 and MOD10A1 surface albedo products, as
detailed in Sect. S3.

The study also uses quality-controlled daily river flows
over the period October 2000 to September 2010 recorded at
the Doyian gauging station by WAPDA (Fig. 1b). These data
are used to provide some context on the volume, timing and
variability of catchment runoff. As the adapted FSM model
does not simulate full catchment hydrology (Sect. 3.1.2), the
use of the observed data is restricted to two cases: (1) an
indication of the timing of the rising limb of the annual
hydrograph (and thus the timing of early snowpack runoff)
for context and (2) an indication of the sensitivity of runoff
to climate variability in the snow-dominated earliest part of
the melt season (April), when flow pathways from the low-
elevation melting snowpack to the main channels are short,
travel times are low and the influence of evapotranspiration

www.the-cryosphere.net/14/1225/2020/ The Cryosphere, 14, 1225–1244, 2020



1230 D. M. W. Pritchard et al.: Multi-physics ensemble snow modelling in the western Himalaya

Figure 2. Mean cumulative snowpack runoff for the high-flow season for each of the 32 ensemble members. In (a) each ensemble member
is coloured according to the combination of albedo (AL) and liquid water (LW) parameterisations it uses. In (b) each ensemble member is
coloured by its stability adjustment (ST) option. Observed total runoff (OBS; black dashed line) is shown for reference only (it is not directly
comparable with snowpack runoff – see Sect. 3.3).

is relatively small (Lundquist et al., 2005; Naden, 1992). The
modelled quantity considered is termed snowpack runoff,
which is defined as runoff from the base of the snowpack. It is
thus different to surface melt, which may be subject to stor-
age and refreezing processes before leaving the snowpack.
Snowpack runoff is aggregated across all grid cells in the
catchment (or across subsets of the cells for selected analy-
ses) without any routing.

4 Results

4.1 Mean ensemble structure

4.1.1 Snowpack runoff

The evaluation begins by considering how the FSM ensemble
is structured on average at the catchment scale. For snowpack
runoff (as defined in Sect. 3.3), the ensemble shows notable
spread, which takes the form of groupings of ensemble mem-
bers (Fig. 2). Three groups of cumulative snowpack runoff
curves are distinguishable early in the melt season (April and
early May) in Fig. 2, but the groups split and their spread
increases to varying degrees thereafter, as melt rates acceler-
ate. Differences in snowpack runoff timing between groups
are substantial, with variation of around 1 month in the date
at which the 25th, 50th and 75th percentiles of total seasonal
snowpack runoff are exceeded.

Figure 2a indicates that the development of groups in the
ensemble is primarily controlled by interactions between pa-
rameterisations of albedo and liquid water processes within
the snowpack. The earliest, most rapid snowpack runoff oc-
curs for members combining diagnostic albedo with instanta-
neous liquid water drainage (grey in Fig. 2a). In contrast, the
slowest-responding members (purple in Fig. 2a) use prognos-

tic albedo and apply the parameterisation of liquid water re-
tention, refreezing and drainage processes (hereafter referred
to as the liquid water parameterisation). The remaining two
combinations of albedo and liquid water representations re-
sult in similar cumulative runoff curves, especially early in
the season (orange and green in Fig. 2a). This indicates that
a propensity for earlier, more rapid runoff when applying di-
agnostic albedo is offset by a delaying effect of the liquid wa-
ter parameterisation. Conversely, a tendency to delay runoff
in the prognostic albedo parameterisation is counteracted by
faster runoff due to instantaneous drainage. Interactions be-
tween the albedo and liquid water parameterisations thus ap-
pear to govern whether a given option’s tendency to acceler-
ate or slow snowpack runoff is compensated for or exacer-
bated.

The next most important determinant of ensemble struc-
ture for snowpack runoff is the stability adjustment option,
whose significance increases later in the melt season, es-
pecially in July. As noted above, Fig. 2a indicates that the
spread in the ensemble groups increases with time. Cross-
referencing this with Fig. 2b illustrates that the stability ad-
justment is the main driver of the divergence. The separa-
tion is particularly pronounced for the slowest-responding
ensemble members (purple in Fig. 2a). In this case, not ap-
plying a stability adjustment leads to more rapid snowpack
runoff from mid-June and earlier convergence with the other
ensemble members, as evident from comparing the lower-
most orange and blue curves in Fig. 2b. In contrast, the
adjustment effect is much less pronounced for the faster-
responding groups of ensemble members in Fig. 2a (grey
curves). Therefore, sensitivity to the stability adjustment not
only varies notably through the melt season but is also a func-
tion of the choices of albedo and liquid water parameterisa-
tions.
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Figure 3. Similar to Fig. 2 but for catchment snow-covered area (SCA). The two MODIS MOD10A1 series shown are based on normalised
difference snow index (NDSI) thresholds of 0.0 (solid line) and 0.4 (dotted line).

4.1.2 Snow-covered area (SCA)

Figure 3 indicates that the albedo, liquid water and sta-
bility adjustment parameterisations are also the main influ-
ences on mean ensemble spread and structure in SCA. How-
ever, the dominance of albedo and liquid water processes is
lesser compared with snowpack runoff, especially later in
the melt season. By the annual SCA minimum in August,
the stability adjustment comes to control ensemble structure
(Fig. 3b). Model configurations applying the adjustment ex-
hibit a markedly slower decline in SCA over the melt sea-
son, which leads to an annual SCA minimum approximately
5 % higher. Spatially, this difference is largely found at high
elevations (not shown), which could have substantial impli-
cations for modelling the evolution of ice mass in the catch-
ment over longer periods. However, these high-elevation ar-
eas are also particularly subject to the influences of blowing-
snow processes and avalanching, which typically alter high-
elevation snow cover patterns (see discussion in Sect. 5.2).

For much of the melt season, the model configurations
most closely matching MODIS SCA (using an NDSI thresh-
old of zero – see Sect. 3.3) apply prognostic albedo, along
with either no liquid water representation but a stability ad-
justment or the liquid water parameterisation but no stabil-
ity adjustment. The similar responses of these two combi-
nations of liquid water and stability adjustment parameteri-
sations again reflect compensatory effects in the ensemble.
Switching on the liquid water representation slows the rate
of SCA decline, while turning off the stability adjustment
speeds it up, and vice versa. Therefore, turning off the stabil-
ity adjustment compensates for the tendency for slower SCA
decay when using the liquid water parameterisation, whereas
turning on the stability adjustment compensates for the ten-
dency for faster SCA decline when assuming instantaneous
drainage of liquid water from the snowpack. For most of the
other ensemble members, the SCA curves exhibit a relatively
rapid snow cover decline during the melt season compared

with MODIS (NDSI threshold of zero). Section S4 in the
Supplement explores how differential SCA errors could re-
late to differences in the timing of early-season simulated
snowpack runoff and observed total runoff as well as what
this could imply about the hydrological behaviour of the
catchment.

4.2 Process evaluation

The analysis now explores the processes behind the struc-
ture of ensemble spread identified in Sect. 4.1 as well as how
far they can be assessed with independent data. This assess-
ment is based in part on Table 2, which summarises the mean
influences of albedo, liquid water and stability adjustment
parameterisation choices on key catchment-scale states and
fluxes in selected months. The influences are delineated as
the monthly mean differences between those ensemble mem-
bers applying one option for a given process (e.g. prognostic
albedo) and those members applying the other option (e.g.
diagnostic albedo). Density and thermal conductivity param-
eterisations are not considered, as it can be inferred from
Sect. 4.1 that their effects are comparatively minor for the
foci of this study, namely SCA and snowpack runoff.

4.2.1 Albedo

Table 2 shows that prognostic albedo in FSM tends to be
higher than diagnostic albedo in the first part of the melt
season. The mean difference between the two albedo op-
tions ranges from 0.12 to 0.15 between April and June at
solar noon. The resulting difference in net shortwave radia-
tion helps to explain why prognostic albedo initially delays
and slows melt, snowpack runoff and SCA decline relative to
diagnostic albedo, which ultimately permits more snowpack
runoff later in the season (see Sect. 4.1 and Table 2). One fac-
tor in the faster melt in spring and early summer using diag-
nostic albedo is its pronounced diurnal range. This is linked
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Table 2. Catchment-scale mean differences (option 1 minus option 0) for key states and fluxes in selected months. Differences are calculated
separately for the albedo (AL), liquid water (LW) and stability adjustment (ST) parameterisations. Albedo differences are at solar noon, and
average snowpack temperatures are weighted by snow depth.

Month/process

Variable April May June July

AL LW ST AL LW ST AL LW ST AL LW ST

Albedo (–) 0.12 0.00 0.00 0.15 0.00 0.00 0.12 0.00 0.00 0.07 0.00 0.00
Melt (mm d−1) −3.5 1.0 0.2 −5.2 1.9 −0.3 −4.3 2.7 −4.6 −0.1 3.5 −7.7
Snowpack runoff (mm d−1) −2.2 −1.9 0.0 −2.7 −1.6 −0.2 0.0 0.6 −1.0 2.8 1.4 0.1
SCA (–) 0.04 0.02 0.02 0.08 0.04 0.04 0.12 0.06 0.07 0.10 0.05 0.09
Snowpack temperature (◦C) −0.6 3.5 −1.9 −0.4 6.3 −1.6 0.1 7.3 −1.5 0.3 8.1 −1.1
Surface temperature (◦C) 0.1 0.9 −2.9 0.3 1.4 −3.2 0.4 1.5 −3.9 0.5 1.3 −3.6
Sensible heat flux (W m−2) 0.6 −1.2 −22.0 0.8 −1.6 −25.9 1.5 −0.7 −46.6 3.1 0.4 −49.4
Net turbulent fluxes (W m−2) 1.2 −2.4 −16.0 1.3 −3.0 −18.9 2.0 −1.8 −36.8 4.4 −0.3 −52.7
Net radiation (W m−2) −13.0 −1.8 12.3 −20.1 −2.9 13.8 −18.1 −2.0 16.2 −3.7 0.3 20.0

to the diurnal surface temperature cycle, partly through a pos-
itive feedback. The mean diurnal range in albedo for daylight
hours rises from 0.18 to 0.27 between April and June when
using the diagnostic parameterisation, whereas the equivalent
range for the prognostic parameterisation stays much lower,
at around 0.02. While albedo does vary diurnally with solar
zenith angle, it does not necessarily follow that the diagnostic
parameterisation captures the magnitude of variation appro-
priately. Section S3 in the Supplement demonstrates that the
prognostic parameterisation agrees better with the MODIS
albedo products than the diagnostic option, as might be ex-
pected from previous studies (e.g. Essery et al., 2013).

4.2.2 Liquid water retention, refreezing and drainage

Table 2 shows that the net effect of switching on the liq-
uid water parameterisation is to delay snowpack runoff even
though it accelerates surface melt rates. For example, in
April (May), snowpack runoff is on average 1.9 mm d−1

(1.6 mm d−1) lower when using the liquid water parameteri-
sation, even though surface melt is 1.0 mm d−1 (1.9 mm d−1)
higher. With the option on, liquid water from melting is al-
lowed to refreeze, leading to latent heat release, which main-
tains a higher snowpack temperature (for example by 3.5 ◦C
in April). Retention and delayed release of liquid water in
storage are part of the reason why these higher temperatures
lead to higher melt rates but not higher snowpack runoff rates
initially. However, multiple diurnal cycles of melting and re-
freezing may also be required before a given unit of snow is
entirely converted to snowpack runoff. At any rate, the delay-
ing effect of switching on the liquid water option outweighs
its tendency to increase melt rates in this setting. By allowing
snow to persist for longer, this enhanced storage ultimately
leads to higher melt and runoff rates later in the season (by
July), as later-lying snow becomes subject to increasing en-
ergy inputs (e.g. Musselman et al., 2017).

4.2.3 Stability adjustment

Table 2 also demonstrates that switching on the stability ad-
justment leads to lower melt rates later in the season, pri-
marily due to a smaller sensible heat flux towards the snow
surface in stable atmospheric conditions. During the early
part of the season (e.g. April), the differences in net tur-
bulent fluxes arising from the stability adjustment choice
(16 W m−2) are largely offset by differences in net radiation
(12.3 W m−2). The larger sensible heat flux to the surface
with no stability adjustment leads to a higher surface tem-
perature (by 2.9 ◦C in April) and thus higher outgoing long-
wave radiation, which incurs lower net longwave radiation.
However, as the gradients between the snow surface (limited
to 0 ◦C) and near-surface air temperatures increase in spring
and summer, the differences in net turbulent fluxes ultimately
drive differences in the surface energy balance and melt rates.
By June and July, the differences in net radiation (16 and
20 W m−2) no longer offset the differences in net turbulent
fluxes (36.8 and 52.7 W m−2). Yet, Table 2 also indicates
that the resulting differences in melt rates do not necessarily
alter snowpack runoff on average. This reinforces the point
that modelled snowpack runoff sensitivity to the stability ad-
justment is contingent on the representations of other pro-
cesses, namely albedo and liquid water retention, refreezing,
and drainage (Sect. 4.1.1). It is also noteworthy that switch-
ing on the stability adjustment approximately halves average
sublimation from 80 to 45 mm yr−1, which corresponds with
around 8 % and 4 % of total catchment snow ablation, respec-
tively.

While data to evaluate turbulent fluxes directly are not
available, Fig. 4 shows that switching off the stability adjust-
ment leads to higher LST, which is in fact in closer agreement
with MODIS LST. This is somewhat counter to initial expec-
tations, as applying a stability adjustment would typically be
considered more physically realistic. The largest differences
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Figure 4. Comparison of modelled seasonal mean elevation profiles of LST with MODIS MOD11A1 remote sensing. The ensemble members
are grouped by stability adjustment option (mean and range of groups shown). The top (a–d) and bottom (e–h) rows show night-time and
day-time temperatures, respectively. Model results correspond with the closest model time step to the Terra platform overpass times as well
as only days for which MODIS retrievals are available (i.e. clear-sky conditions).

in vertical LST profiles occur at night and increase with ele-
vation for the clear-sky conditions when MODIS retrievals
are available. These differences may suggest too strong a
suppression of turbulent fluxes under stable conditions using
the bulk Richardson number correction. Such suppression
may well contribute to the slow SCA decline when combin-
ing the stability adjustment with the otherwise realistic con-
figuration of prognostic albedo and the parameterisation of
liquid water processes (Sect. 4.1). Ensemble spread in day-
time LST is smaller and generally in good agreement with
MODIS, although the extent and influence of sub-pixel snow
cover variation on MODIS LST likely increases during melt-
ing periods, giving it some positive bias in summer (Sect. S2
in Supplement).

4.3 Spatial variation in process sensitivity

Figure 5 examines how the tendencies identified in Sect. 4.1–
4.2 are manifest spatially as well as how the influence of
different processes depends on both space and time. Spa-
tial (vertical) and temporal (monthly) differences in simu-

lated snowpack runoff due to albedo, liquid water processes
and stability option choices are shown. The differences are
calculated as option 1 minus option 0 for each process,
with the former being generally considered more realistic
(Sect. 3.1.1). The lines in Fig. 5 show mean differences,
while ranges denote inter-annual variability. Monthly mean
freezing isotherm elevations for daily minimum, mean and
maximum temperatures are shown to help interpret the verti-
cal patterns.

Figure 5 shows that S-shaped vertical profiles of snowpack
runoff differences develop and migrate upwards as the melt
season progresses. The profiles take this form because the 0
options in FSM for albedo, liquid water and stability adjust-
ment parameterisations all lead to earlier and larger snow-
pack runoff and snow water equivalent (SWE) depletion rel-
ative to the 1 options (see Table 1 and Sect. 4.1–4.2). This
gives negative differences earlier in the season at higher el-
evations when energy availability exerts more control over
melt rates. However, it also means that the 1 options (i.e.
prognostic albedo, liquid water processes represented and
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Figure 5. Spatial (vertical) and temporal (monthly) differences in simulated snowpack runoff as a result of albedo (AL), liquid water (LW) and
stability option (ST) choices. The differences are calculated as option 1 minus option 0 for each process. Lines show mean differences, while
ranges denote inter-annual variability. Monthly mean freezing isotherm elevations for daily minimum, mean and maximum temperatures are
also shown.

stability adjustment applied) are associated with larger SWE
later in the season, allowing more runoff at lower elevations
(positive differences in Fig. 5 increasing through the season).
This is consistent with the catchment responses described
above, although the inter-annual variation in the magnitude
of differences is notable.

The S-shaped profiles for the different processes migrate
upwards through the melt season in sequence. The profile for
(negative) differences due to liquid water processes peaks
at the highest elevations, followed by the albedo and then
the stability adjustment profiles. The choice of liquid wa-
ter option is particularly critical around the freezing isotherm
for daily maximum temperatures, determining whether early
melt is released from the snowpack or subject to storage
through refreezing–melting cycles (Sect. 4.2.2). In compari-
son, the lower elevation of peak negative differences caused
by the albedo parameterisation reflects the sensitivity of the
diagnostic option to the higher snow surface temperature
found under higher daily mean air temperatures. The peak
negative differences due to the stability adjustment option

are found at lower elevations again, reflecting their depen-
dence on the development of large near-surface temperature
gradients (Sect. 4.2.3). Notably, for both albedo and particu-
larly liquid water processes, differences in snowpack runoff
are present up to the highest elevations. Therefore, how these
processes are represented is critical for simulating the fate of
high-elevation perennial snow and ice.

4.4 Temporal variation in ensemble structure and
performance

Figure 6a shows time series of absolute catchment SCA er-
rors (calculated as FSM minus MODIS). This series demon-
strates that the best-performing group of configurations
varies both between and within years but that the structure of
the ensemble remains fundamentally similar between years.
Specifically, while the groups of FSM configurations all con-
verge in winter, their divergence in spring and summer fol-
lows a similar pattern each year. The group using prognostic
albedo and the liquid water parameterisation is consistently
the uppermost series in Fig. 6a, while the group using diag-
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Figure 6. Comparison of model SCA performance in absolute and anomaly space with climate inputs. Monthly time series show (a) SCA
errors relative to MOD10A1 (FSM minus MODIS) and (b) anomalies (subtracting monthly means from absolute SCA) after aggregating the
ensemble by the combinations of albedo and liquid water parameterisations. Standardised seasonal precipitation and temperature anomalies
based on observations aggregated from the climate stations in Fig. 1b and the HAR are given in (c).

nostic albedo and no liquid water parameterisation is consis-
tently the lowermost. The rank order of the groups remains
the same through time, although the magnitude of divergence
varies notably between years. In some years, fast-responding
combinations (Sect. 4.1) exhibit the lowest overall errors in at
least part of the melt season (for example 2001, 2002, 2005
and 2007). Autumn convergence of groups is often associ-
ated with larger SCA errors due to limitations of the climate
inputs in capturing specific snowfall and melt events.

Despite these patterns of divergence and variation in ab-
solute errors, Fig. 6b indicates that, when transformed to
anomaly series, the different FSM configurations are gener-
ally much more consistent, both with each other and with re-
mote sensing. Anomalies were calculated by subtracting the
mean SCA for each month from the absolute SCA separately
for MODIS and the ensemble groups (Sect. 3.3). The sign

and magnitude of SCA anomalies are generally well simu-
lated, and the range in anomalies shown in Fig. 6b is clearly
much smaller than the range of absolute errors during spring
and summer in different configurations (Fig. 6a). While the
focus here is on SCA, as the comparison with MODIS is
fairly direct, similar findings are also evident for snowpack
runoff and LST, as shown in the Supplement (Sect. S5). With
potentially important implications for seasonal forecasting,
this reflects the critical role of climatic drivers in shaping the
response of diverse snow models.

However, Fig. 6b also shows that there are some in-
stances where errors are still large in anomaly space. To ex-
plore whether these errors could be due to climate inputs,
rather than model response, Fig. 6c provides time series of
seasonal precipitation and temperature anomalies from the
HAR input data product and local observations. As noted in
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Table 3. Assessment of SCA time series errors in Fig. 6 and their relationships with climate anomalies. Error IDs correspond with Fig. 6.

Error ID SCA errors Explanation

i Underestimation of the negative
spring/summer SCA anomaly
in 2001.

The contemporaneous and preceding (negative) precipitation anomalies are reasonable,
but the HAR does not capture the strongly positive temperature anomalies. Under these
erroneously cool simulated conditions, the faster-responding configurations result in
lower errors than the more physically realistic, slower-responding configurations (i.e.
prognostic albedo and a representation of liquid water processes).

ii Positive simulated SCA
anomaly in summer 2002
exceeds the neutral anomaly
suggested by MODIS.

The HAR inputs provide a positive spring precipitation anomaly that far exceeds the ob-
served anomaly, while again offering too negative a temperature anomaly. These condi-
tions are conducive to slow melt of the excessive spring snowfall, which helps to explain
the poorer performance of the slower-responding configurations.

iii Positive simulated
SCA anomaly in late-
summer/autumn 2005 contrasts
with a negative anomaly from
MODIS.

This is likely due at least partly to HAR overestimation of precipitation in the preceding
winter and spring as well as potentially in the concurrent summer. The HAR may also
underestimate the temperature anomaly in the crucial summer months.

iv Positive late-summer/autumn
SCA anomaly in 2008 in
MODIS is not reproduced by
the model.

The magnitude of the positive precipitation anomaly at this time seems to be under-
estimated by the HAR, which also provides too positive a temperature anomaly. This
would be conducive to melt of early snowfall and underestimation of the positive SCA
anomaly. Unlike the summer examples, the resulting absolute errors are similar for all
configurations, which reflects persistent challenges in simulating the timing of early
autumn/winter snowfall.

vi The magnitude of the strong
positive summer SCA anomaly
in 2010 is underestimated.

This coincides with the largest spread in simulated anomalies in the series. Precipitation
anomalies in the preceding winter and spring are underestimated, along with the large
summer anomaly, which coincided with devastating floods in Pakistan. Summer tem-
perature anomalies are notably overestimated. All configurations underestimate summer
SCA by varying degrees.

Sect. 2, local observations show strong spatial correlation at
the seasonal scale (Archer and Fowler, 2004; Archer, 2004).
While the HAR provides reasonable climatological perfor-
mance in many respects (Sect. 3.2.1), Fig. 6c suggests that its
agreement with observed seasonal climate anomalies is quite
variable. Taking the underestimation of the negative SCA
anomaly in spring–summer 2001 in Fig. 6b as an example
(labelled as (i) in Fig. 6), Fig. 6c indicates that HAR precipi-
tation anomalies in the (preceding) winter and (contempora-
neous) spring and summer are reasonable but that the positive
observed temperature anomalies are substantially underesti-
mated by the HAR. The erroneously cool conditions would
be conducive to relatively slow simulated melt rates. This
helps to explain the anomaly error as well as the large ab-
solute SCA error in the slower-responding, more physically
realistic configurations in Fig. 6a (i.e. prognostic albedo with
representation of liquid water processes).

Table 3 details more such examples. Together, these cases
strongly suggest that the larger discrepancies between mod-
elled and remotely sensed SCA anomalies may be related to
issues with the sequences of climate input anomalies. Impor-
tantly, the examples also generally imply that nudging the
climate anomalies towards observations would lead to re-
duction of absolute errors for the more physically realistic

configurations, similar to example (i) discussed above. Thus,
there is evidence that errors in climate input anomalies are a
substantial factor in performance variation for FSM configu-
rations in the Astore catchment, which partly explains poor
performance of more realistic models in some years.

4.5 Climate sensitivity

While simulating specific sequences of climate anomalies
and snowpack response is critical for applications such as
forecasting, correctly representing the overall sensitivity of
snow processes to climate variations and perturbations is cru-
cial for offline and online climate change projections. Given
the limitations in the climate input anomaly sequencing iden-
tified in Sect. 4.4, this section makes some inferences about
the climate sensitivity of FSM configurations on the basis of
inter-annual variability. The focus here is on snowpack runoff
in the early part of the melt season (April), when snow is typ-
ically abundant, such that runoff is primarily constrained by
energy rather than mass availability (Sect. 2) and dominated
by snowmelt (see also Sects. 3.3, 4.1 and 4.3).

Figure 7 shows the relationship between simulated 10 d
air temperature and snowpack runoff anomalies for the four
combinations of albedo and liquid water parameterisations.

The Cryosphere, 14, 1225–1244, 2020 www.the-cryosphere.net/14/1225/2020/



D. M. W. Pritchard et al.: Multi-physics ensemble snow modelling in the western Himalaya 1237

Figure 7. Sensitivity of simulated snowpack runoff (and observed total runoff) in April to temperature anomalies for combinations of albedo
and liquid water process options (split across two panels for clarity). Points represent 10 d anomalies and lines are from linear regression.

The equivalent relationship using observed temperatures and
total runoff is also shown. Figure 7 indicates that the sensi-
tivity of snowpack runoff to climate (temperature) anoma-
lies varies significantly for different model configurations.
While scatter in the relationships is notable, likely reflect-
ing the significant influence of other climate variables on the
surface energy balance, the relationships are reasonably well
approximated by linear regression (all with positive and sta-
tistically significant gradients at the 95 % confidence inter-
val). Notably, the shallowest gradient, which is associated
with configurations using prognostic albedo and the liquid
water parameterisation, agrees best with observations. The
consistency of the ranking of the four groups (and observa-
tions) can be confirmed with bootstrapping, which shows that
77 % of realisations have the same order as in Fig. 7 (89 %–
98 % of realisations if looking at consecutive groups in terms
of pairwise rankings). While the multivariate relationships
between snow model response and other climate variables
could be explored, the example in Fig. 7 demonstrates how
fundamental differences in absolute climate sensitivity can
be inferred and assessed from (observable) variability.

5 Discussion

5.1 Comparison with previous snow model evaluations

Using multiple remote-sensing products to augment sparse
local observations, the results in this study support the con-
sensus from previous site-based inter-comparisons that no
single snow model configuration performs best in all con-
ditions but that subsets of typically better performing models
are identifiable (Essery et al., 2013; Lafaysse et al., 2017;
Magnusson et al., 2015). Yet, given both the structural simi-
larity in the FSM ensemble between years and the close en-
semble agreement on simulated anomalies, there is a strong

indication that errors in the sequencing of climate input
anomalies are part of the reason for year-to-year variabil-
ity in catchment-scale performance in this study. As such,
analysing the climate sensitivity of model configurations,
based on their responses to historical climate variability, of-
fers a complementary approach to traditional model evalu-
ation methods, especially at scales where climate inputs are
subject to large uncertainties. Such an approach could be use-
ful in snow model inter-comparisons such as ESM-SnowMIP
(Krinner et al., 2018) as well as for interpreting projections
of snow dynamics and their wide-ranging implications in a
warming world (e.g. Musselman et al., 2017; Palazzi et al.,
2017; Pepin et al., 2015).

In agreement with previous studies, the cold bias in simu-
lated night-time LST provides evidence that turbulent heat
fluxes can be overly suppressed under stable atmospheric
conditions when using a stability adjustment based on the
bulk Richardson number (e.g. Andreadis et al., 2009; An-
dreas, 2002; Slater et al., 2001). Long-standing and funda-
mental questions thus remain over the validity of current the-
ories of turbulent exchange under stable conditions, espe-
cially in complex terrain. Therefore in future work it would
be useful to test alternative or amended stability adjustment
options, such as the introduction of a minimum conductance
(or maximum flux dampening) parameter (e.g. Collier et al.,
2015; Lapo et al., 2019). These tests would ideally be done
after adding into FSM other processes omitted in this study
that could influence the surface energy balance. These in-
clude terrain enhancement of longwave radiation (Sicart et
al., 2006), refined treatment of sub-grid variability (Clark et
al., 2011), and sensible and latent heat advection (Harder et
al., 2017). Although additional processes increase the po-
tential for error compensation, the results in this study rein-
force the importance of understanding interactions between
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snow process parameterisations (e.g. Günther et al., 2019;
Lafaysse et al., 2017) and how they vary in time and space.

5.2 Blowing-snow processes and avalanching

Two important influences on snow dynamics in high-
mountain catchments are avalanching and blowing-snow
processes. The latter includes snow redistribution by wind
and associated sublimation during turbulent suspension. In
conjunction with orographic precipitation and preferential
deposition of snowfall, these processes have been shown to
be important for local patterns of snow accumulation and
subsequent ablation, especially in high-elevation areas char-
acterised by ridges, crests and steep slopes (e.g. Bernhardt
and Schulz, 2010; Grünewald et al., 2010, 2014; MacDonald
et al., 2010; Mott et al., 2010, 2014, 2018; Musselman et al.,
2015; Strasser et al., 2008; Vionnet et al., 2017).

However, evidence for the influence of these processes at
larger scales is mixed. Some studies have suggested that ac-
counting for them leads to improvements in catchment-scale
model performance (e.g. Brauchli et al., 2017; Winstral et
al., 2013). Yet, when considered together and when larger
scales are examined, other results have indicated that these
processes may have limited influence on the overall water
balance and runoff dynamics (e.g. Bernhardt et al., 2012;
Groot Zwaaftink et al., 2013; Vionnet et al., 2014; Warscher
et al., 2013). The role of these processes thus appears to de-
pend on the timescales and space scales analysed as well as
perhaps the states and fluxes under consideration.

Initial testing showed the overall results of this study to be
relatively insensitive to the SnowSlide avalanching parame-
terisation (Bernhardt and Schulz, 2010). Yet, it is likely that
blowing-snow processes need to be considered at the same
time to truly capture the relevant interactions (Bernhardt et
al., 2012). Therefore not including both avalanching and
blowing-snow processes together is a limitation of this study,
which focuses instead on the sensitivity of snow cover and
runoff dynamics to snowpack process representations. Simi-
lar to other mountain regions (e.g. Freudiger et al., 2017), the
large mismatch in scale between available HAR climate forc-
ing data and the requirements of blowing-snow simulations
makes it difficult to conduct such modelling at present, espe-
cially for catchments the size of the Astore. However, very
high resolution dynamical downscaling represents a promis-
ing avenue to resolve this problem, at least on an event basis
(e.g. Bonekamp et al., 2018; Vionnet et al., 2014). This will
be an important area for further work.

5.3 Uncertainty in data and parameters

Input data biases and other errors inevitably limit model
performance to some extent in such a data-sparse context
(Raleigh et al., 2016). However, Sect. S6 in the Supple-
ment indicates that the structure of the ensemble and over-
all performance variation remain similar if two alternative

input strategies are applied (see also Sects. 3.2.3 and S1).
Although the distinction of groupings in the ensemble does
reduce when using the more observation-based input strategy
(Fig. S7 in the Supplement), this may well be the least accu-
rate approach due to the small number of stations available.
The results therefore show some robustness to alternative,
commonly applied methods for deriving climate input fields
in mountain regions for practical applications. Section 4.4
also shows how the larger of the possible input anomaly er-
rors may be identified, which facilitates a better understand-
ing of the occasional performance drops for more physically
realistic, typically well performing model configurations (i.e.
identification of potential input rather than structural errors,
such as underestimation of the warm temperature anomaly
in the 2001 ablation season – Sect. 4.4). Further work could
attempt a more quantitative uncertainty analysis, but defin-
ing meaningful bias ranges and error distributions to test is
challenging given currently available local observations.

The FSM parameter defaults appear reasonable for the As-
tore catchment based on the performance of more physically
plausible model configurations across multiple variables in
both absolute and normalised and anomaly terms. Further
work could undertake calibration and sensitivity analyses,
but this would need to guard against overfitting, error com-
pensation and potentially unphysical behaviour given local
data limitations, especially for less realistic parameterisa-
tions. In any case, recent work suggests that parameter choice
in FSM may be of lower importance than both input errors
and process parameterisations (Günther et al., 2019).

6 Conclusion

This study demonstrates that combining local observations,
dynamical downscaling and remote-sensing products with
multi-physics ensemble frameworks facilitates the identifi-
cation of skilful process-based snow model configurations in
the western Himalaya. Although the importance of different
snowpack processes varies with time, space and other model
options, the results show that the structure of the FSM ensem-
ble is fundamentally similar between years. Different pro-
cess parameterisations consistently act to accelerate or de-
lay snowpack runoff and SCA decay. These tendencies lead
to notable differences in vertical patterns of snowpack ab-
lation up to very high elevations, with substantial implica-
tions for understanding and modelling the evolution of the
perennial cryosphere. In agreement with other studies, the
results indicate that the prognostic albedo parameterisation
should be preferred (Essery et al., 2013; Magnusson et al.,
2015). Representation of liquid water retention, refreezing
and drainage in the snowpack is also generally required, un-
less compensatory effects are introduced by other aspects of
model configuration, especially the atmospheric stability ad-
justment option. However, there is evidence that turbulent
fluxes are overly suppressed in some conditions by applying
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the stability adjustment based on the bulk Richardson num-
ber implemented in FSM. Correctly simulating these fluxes
is a major ongoing challenge in land surface modelling (Lapo
et al., 2019), especially in complex terrain.

While no model configuration performs best in all years,
the results suggest that errors in climate input anomalies play
a key role in this, not just model structural limitations. Model
snow cover dynamics and runoff responses to climate varia-
tions are more consistent after being transformed to anoma-
lies, which may be useful in forecasting applications, but
there is substantial spread within the ensemble in terms of
absolute climate sensitivity. This variation in climate sensi-
tivity is critical for model selection in both offline and on-
line simulations supporting climate change impact projec-
tions. Together, these points suggest that an ensemble mod-
elling approach should be used in applications where possi-
ble. However, a subset of the full FSM ensemble could be
taken forward, namely those members which use prognostic
albedo and account for snowpack hydrology. Further work
could examine input uncertainties in more detail as well as
alternative process parameterisations (especially for the sta-
bility adjustment), parameter value sensitivity and additional
unrepresented processes (such as avalanching and blowing-
snow processes). In the complex terrain of the western Hi-
malaya, these tasks would all benefit from higher-resolution
dynamical downscaling products to help drive snow models.
Advances in these areas could ultimately lead to improved
modelling tools to support water resource management in the
Himalaya and other mountain regions in a changing climate.

Code availability. The open-source FSM model code (Essery,
2015) is available here: https://github.com/RichardEssery/FSM
(last access: 14 March 2020). An extended version with additional
physics and options for multi-site simulations (see Mazzotti et al.
2020) is found at https://github.com/RichardEssery/FSM2 (last ac-
cess: 14 March 2020). The scripts used to prepare climate inputs
and conduct spatially distributed simulations can be requested from
the corresponding author.

Data availability. The HAR data product (Maussion et al. 2014) is
publicly available at this site: http://www.klima-ds.tu-berlin.de/har/
(last access: 30 June 2019). MODIS data are also publicly avail-
able; instructions for downloading the MODIS products used in
this study can be obtained from https://lpdaac.usgs.gov/products/
mcd43a3v006/ (last access: 30 June 2019) for MCD43A3 (Schaaf
and Wang, 2015), https://lpdaac.usgs.gov/products/mod11a1v006/
(last access: 30 June 2019) for MOD11A1 (Wan et al., 2015)
and https://nsidc.org/data/mod10a1 (last access: 30 June 2019) for
MOD10A1 (Hall and Riggs, 2016). The observed climate and river
flow data sourced from PMD and WAPDA are not currently in a
public repository due to data licence restrictions, but these data
may be requested from PMD (http://www.pmd.gov.pk/en/, last ac-
cess: 26 February 2020) and WAPDA (http://www.wapda.gov.pk/,
last access: 26 February 2020). In addition, tables summarising
the metadata (including coordinates and record periods) and cli-

matology (including long-term averages, annual cycles and vari-
ability) for the PMD and WAPDA climate and river flow stations
used in this study are available in various publications (e.g. Archer
and Fowler, 2004; Archer, 2003; Mukhopadhyay and Khan, 2016;
Sharif et al., 2013; Waqas and Athar, 2018). The climate data from
the Concordia site run by EvK2CNR can be downloaded from
http://share.evk2cnr.org/ (last access: 30 June 2019).
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