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Abstract. Dry-snow slab avalanche release is preceded by
a fracture process within the snowpack. Recognizing weak-
layer collapse as an integral part of the fracture process is
crucial and explains phenomena such as whumpf sounds and
remote triggering of avalanches from low-angle terrain. In
this two-part work we propose a novel closed-form analytical
model for a snowpack under skier loading and a mixed-mode
failure criterion for the nucleation of weak-layer failure.

In the first part of this two-part series we introduce a
closed-form analytical model of a snowpack accounting for
the deformable layer. Despite the importance of persistent
weak layers for slab avalanche release, no simple analyti-
cal model considering weak-layer deformations is available.
The proposed model provides deformations of the snow slab,
weak-layer stresses and energy release rates of cracks within
the weak layer. It generally applies to skier-loaded slopes as
well as stability tests such as the propagation saw test. A val-
idation with a numerical reference model shows very good
agreement of the stress and energy release rate results in sev-
eral parametric studies including analyses of the bridging ef-
fect and slope angle dependence. The proposed model is used
to analyze 93 propagation saw tests. Computed weak-layer
fracture toughness values are physically meaningful and in
excellent agreement with finite element analyses.

In the second part of the series (Rosendahl and Weißgrae-
ber, 2020) we make use of the present mechanical model to
establish a novel failure criterion crack nucleation in weak
layers. The code used for the analyses in both parts is pub-

licly available under https://github.com/2phi/weac (last ac-
cess: 6 January 2020) (2phi, 2020).

1 Introduction

Dry-snow slab avalanches can release when a persistent weak
layer of, for example, surface hoar or depth hoar breaks (see
the well-known image of a partially collapsed weak layer by
Jamieson and Schweizer, 2000, shown in Fig. 1). Weak-layer
failure can be triggered by additional loads like a skier. If
the conditions allow for crack propagation, i.e., if the energy
release rate of a growing crack suffices, a triggered initial
defect may extend across slopes and eventually cause the slab
to fail and slide.

The earliest approaches to snowpack stability were so-
called stability indices. They consider snowpack loading ow-
ing to the weight of the snow slab and owing to additional
loading by a skier (Perla, 1977; Föhn, 1987). To account for
snow stratification improved stability index models were pro-
posed by Habermann et al. (2008) and Monti et al. (2015).
However, these local models are insufficient to describe the
stability of snowpacks across slopes (Bellaire and Schweizer,
2011). Many researchers suggested that stability indices are
incomplete as they do not account for the propagation of the
failure within the snowpack (van Herwijnen and Jamieson,
2007).

To evaluate stability indices or fracture mechanics crite-
ria, a model of the stress distribution within the snowpack
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Figure 1. Weak layer of buried surface hoar. Left of the vertical slab
fracture the weak layer has collapsed, whereas on the right-hand
side the porous weak layer is still intact. Reprinted from the Journal
of Glaciology (Jamieson and Schweizer, 2000) with permission of
the International Glaciological Society.

and especially the weak layer is needed. Using the exact
solution for a concentrated load on a homogeneous semi-
infinite plate, Föhn (1987) proposed a model for the stress
distribution below a skier. A first interface model with shear
for snowpacks with weak layers was proposed by McClung
(1979). Linear elastic finite element analyses have shown that
the effect of layering can play an important role (Schweizer,
1993; Habermann et al., 2008). This was accounted for in
the model of Monti et al. (2015) by using an equivalent ho-
mogenized snow layer with an effective uniform Young mod-
ulus and a modified total slab thickness. Shear-lag models
consider only the extensional stiffness of the slab above the
weak layer. Considering the complex microstructure of snow,
micromechanical models derive the macroscopic constitutive
behavior from representative volume elements (Nicot, 2004a,
b). Similarly, discrete element models assemble the contin-
uum from individual particles to model the effective struc-
tural response (Gaume et al., 2015, 2017). To account for
bending deformation, beam models using Euler–Bernoulli
beam kinematics (Heierli and Zaiser, 2006) and Timoshenko
beam kinematics (Heierli and Zaiser, 2008; Heierli et al.,
2008) were proposed. The latter accounts for shear defor-
mation of the slab and thus for the low shear stiffness of
cohesive snow. In such models, the slab bending stiffness
controls the load distribution. It increases in a cubic relation
with slab thickness, whereas the extensional stiffness consid-
ered in shear-lag models only changes proportionally with
slab thickness. Hence, beam models cover bridging effects
(Schweizer and Camponovo, 2001; Schweizer and Jamieson,
2003; Thumlert and Jamieson, 2014). Bridging effects show
that stiff and thick layers above a weak layer can distribute
loads more evenly, leading to smaller stresses in the weak
layer. However, the effect of weak-layer compliance in the

normal direction is unaccounted for in the aforementioned
beam models (Heierli and Zaiser, 2008). The snowpack is
assumed to rest on a rigid weak layer, and only slab defor-
mation in the region of the collapsed weak layer is modeled.
Yet, it is known that the deformation of the weak layer is cru-
cial for deformations and the local load transfer in the snow-
pack (Reiweger and Schweizer, 2010). Chiaia et al. (2008)
and Gaume et al. (2013) consider weak-layer deformability
only in shear.

In the first part of this two-part contribution, a novel mod-
eling approach for the description of weak-layer failure is
given. It aims at providing a model that fully accounts for
the weak layer’s effect on deformations and load transfer and
solutions to the mixed-mode energy release rates of cracks
within the weak layer. The model is validated using finite el-
ement analyses and field experiments. In the second part we
propose a new failure criterion that physically links stability
indices and fracture mechanics models. Here, the necessary
distinction of the strength of materials and fracture mechan-
ics approaches is highlighted and discussed.

2 Modeling approach

Deformation, stresses and consequently the energy release
rate of cracks within the weak layer are controlled by load-
ing and the complete stratigraphy of the snowpack. Defor-
mations of the slab and in particular of the weak layer must
be described in a sufficiently accurate manner. The slab is
loaded in local bending and stretching, which we account for
using beam and rod kinematics. As in the analysis by Heierli
et al. (2008) we model the slab as an elastic beam with bend-
ing and shear deformation. In order to account for weak-layer
deformations, the present model rests the beam on an elastic
foundation of an infinite set of springs with compressive and
shear stiffness commonly referred to as the Winkler founda-
tion. Base layers are assumed rigid. The model provides slab
deformations, weak-layer normal and shear stresses, and the
energy release rate of cracks. Skier penetration is not consid-
ered. Like other models given in the literature and discussed
above we employ linear elasticity and neglect, e.g., viscous
or plastic deformations. Consequential limitations are dis-
cussed in Sect. 4.

2.1 Governing equations

Consider the snowpack model on an inclined slope of an-
gle ϕ depicted in Fig. 2a. The plane strain beam representing
the snow slab has an out-of-plane thickness b, height h and
length l. The weak-layer thickness is denoted by t . The slab is
assumed to be homogeneous with Young’s modulus E, Pois-
son’s ratio ν and density ρ. The snow slab is loaded by its
own weight prescribed as distributed loads qt = ρghb sin(ϕ)
in the tangential x direction and qn = ρghb cos(ϕ) in the nor-
mal z direction, where g is the acceleration of gravity. Addi-
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Figure 2. Snowpack modeled (a) as a beam on an elastic founda-
tion of an infinite set of shear and compressive springs (b) using
Timoshenko beam kinematics.

tional loading (e.g., by the weight force of the mass m of a
skier, snowmobile or others) is represented by a concentrated
force F =mgb/lo, where lo is the effective out-of-plane
length of the object such as the length of skis. F is split into
normal and tangential concentrated forces Fn = F cos(ϕ)
and Ft = F sin(ϕ), respectively. The weak layer of thickness
t consists of an infinite set of springs with compressive stiff-
ness kn = Eweakb/t and shear stiffness kt =Gweakb/t with
the shear modulus Gweak = Eweak/(2(1+ ν)). Cracks within
the weak layer are modeled by removing the support of the
beam on the crack length a.

Timoshenko kinematics for the beam allow for shear de-
formation. Initially plane beam cross sections may rotate by
an angle ψ (see Fig. 2b) yet remain plane during deforma-
tion, which yields the general deformation kinematics of the
beam:

uz(x,z)= u(x)+ zψ(x), wz(x,z)= w(x), (1)

where u is the horizontal displacement and w the vertical de-
flection of the beam middle plane, respectively. The index z
is introduced to distinguish between midplane deformations
u(x) and w(x) and the actual displacement fields uz(x,z)
and wz(x,z).

Enforcing equilibrium of forces and moments and using
the laws of elasticity allows for deriving a set of ordinary
differential equations (ODEs) with constant coefficients that
describe the deformation of the snow slab (see Appendix A).
The horizontal displacement u is obtained from

EAu′′(x)− ktu(x)+ qt = 0, (2)

where A= hb is the snow slab cross section. The vertical
beam deflection w and the rotation of the beam cross section
ψ are described by

w′′′′(x)−
kn

κGA
w′′(x)+

kn

EI
w(x)=

qn

EI
, (3)

Figure 3. Snowpack configurations assembled from beam segments
with boundary and transmission conditions: (a) PST, (b) skier load
on the intact weak layer, (c) skier load on the weak layer with a
crack. Weak-layer cracks are modeled by removing the support of
the beam. For the sake of clarity only vertical loads are shown.

ψ(x)=−
EI

κGA
w′′′(x)+

(
EI kn

(κGA)2
− 1

)
w′(x), (4)

where κ = 5/6 is the shear correction factor for rectangular
cross sections and I = bh3/12 is the moment of inertia with
respect to the y axis.

The general solution of ODE (2) for the horizontal dis-
placement is given by

u(x)= c1 cosh(µx)+ c2 sinh(µx)+
qt

kt
, (5)

with the eigenvalue

µ=

√
kt

EA
. (6)

The free constants c1 and c2 must be determined from bound-
ary conditions. The solution of the coupled ODEs (Eqs. 3 and
4) is of an exponential type as well. Depending on the mate-
rial parameters, the eigenvalues of this solution may become
real or complex. When knEI ≥

(
4(κGA)2

)
, the eigenvalues

are real numbers,

λ1,2 =
1
√

2

√√√√ kn

κGA
±

√(
kn

κGA

)2

−
4kn

EI
, (7)

and the general solution is given by

w(x)= c3 cosh(λ1x)+ c4 sinh(λ1x)

+ c5 cosh(λ2x)+ c6 sinh(λ2x)+
qn

kn
. (8)

If knEI <
(
4(κGA)2

)
, the eigenvalues are complex and read

λ∗1,2 =

√√
kn

4EI
±

kn

4κGA
. (9)

In this case the general solution of the normal deflection is
given by

w(x)= eλ
∗

1x
(
c3 cos(λ∗2x)+ c4 sin(λ∗2x)

)
+ e−λ

∗

1x
(
c5 cos(λ∗2x)+ c6 sin(λ∗2x)

)
+
qn

kn
. (10)
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Again, the constants c3 to c6 must be determined from
boundary conditions.

For regions without the elastic foundation, e.g., above a
crack or when modeling propagation saw tests (PSTs), we
obtain kt = kn = 0, and the differential equations simplify to

EAu′′(x)+ qt = 0, (11)
EIw′′′′(x)= qn, (12)

ψ(x)=−
EI

κGA
w′′′(x)−w′(x). (13)

The corresponding solutions are given by

u(x)= c7+ c8x−
qt

2EA
x2, (14)

w(x)= c9+ c10x+ c11x
2
+ c12x

3
+

qn

24EI
x4. (15)

As before, the free constants must be determined from
boundary conditions which are defined by the final assem-
bly of the solution.

2.2 Assembling the solution

The present model readily applies to an inclined skier-loaded
snowpack with or without a crack in the weak layer as well as
to propagation saw tests. For this purpose, considered snow-
pack configurations must be assembled from general solu-
tions of beam segments with or without the elastic foundation
given above. The free constants are determined from bound-
ary and transmission conditions.

To model a propagation saw test two beam segments are
required as shown in Fig. 3a. The left part of the snow slab
rests on an elastic foundation representing the intact weak
layer. The right part is a cantilever beam where cutting has
removed the weak-layer support. The slab is loaded by its
own weight qn and qt. Free left and right ends require van-
ishing section forces and moments. Using the expressions

M = EIψ ′, Q= κGA
(
w′+ψ

)
, N = EAu′, (16)

for the bending moment M , the lateral shear force Q and the
normal force N yields

u′ = 0, ψ ′ = 0, w′+ψ = 0 (17)

at free ends. At the transition between the unsupported and
supported segments of displacements, cross-section rotation,
section forces and moments must be C0-continuous. This
yields

ul = ur, wl = wr, ϕl = ϕr,

u′l = u
′
r, w

′

l = w
′
r, ϕ
′

l = ϕ
′
r, (18)

where the indices l and r denote quantities left and right of
the discontinuity, respectively.

In skier-loaded snowpacks (Fig. 3b and c) the skier point
load adds discontinuities of normal and transverse shear

Figure 4. Graphical representation of the mode I crack opening in-
tegral. An uncracked snowpack can be represented by removing a
part of the weak layer and applying virtual stresses to both the slab
and the removed weak-layer segment such that they are deformed as
in the original configuration (w0). Reducing the virtual stresses to
zero quasi-statically increases the beam deformation (wb

1), relaxes
the weak layer (wk

1) and finally yields the cracked configuration.
The work done by the virtual stresses (integral of σ1w on1a) cor-
responds to the total potential energy difference between uncracked
and cracked configurations.

forces, and the solution is assembled from two or four re-
gions. Skier-loaded slopes extend far beyond the influence
zone of local skier loading. Hence, we have chosen a length
of 25 times the thickness of the slab (l = 25h) to avoid any
edge effects. Of course, shorter slabs can also be modeled
to account for the resulting edge effects on the mechanical
response if necessary. Again, at either end of the assem-
bly, boundary conditions of vanishing section forces hold.
At crack tips the continuity conditions Eq. (18) hold. At the
concentrated skier load the transmission conditions must be
modified according to

u′l = u
′
r+

Ft

EA
, w′l = w

′

3r +
Fn

κGA
. (19)

The boundary and transmission conditions for the respec-
tive load case provide a linear system of equations with up to
24 unknown constants. The system can be solved easily us-
ing any mathematical toolbox. Closed-form solutions for u,
w and ψ can then be given in piecewise form.

2.3 Weak-layer stresses

Since the weak layer is represented as an elastic Winkler
foundation, also known as the weak interface model (Lenci,
2001), it is not modeled as a complete continuum. Instead,
it only transfers compressive and lateral shear loads. In this
simplified continuum, the stress interaction is simplified and
compressive and shear stresses are uncoupled. Using calcu-
lated slab displacementsw in the normal and u in the tangen-
tial direction, stresses are obtained from

σ(x)=−
kn

b
w(x), τ (x)=

kt

b
u(x). (20)
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Weak interface approaches are well established in structural
analysis (Krenk, 1992; Selvadurai, 1979), in particular when
strong elastic contrasts are present. Stress solutions are gen-
erally of good quality. However, highly localized effects such
as stress singularities cannot be captured. The effect of this
limitation is discussed in Part 2 of this work.

2.4 Fracture mechanical quantities

Fracture mechanics (Broberg, 1999; Anderson, 2017) is con-
cerned with the behavior of cracks in continua. Propagation
of existing cracks can be described in terms of energy con-
siderations which allow for an assessment of the stability of
cracks. If the change in total potential energy d5 with an
infinitesimal crack advance da (denoted as the differential
energy release rate) equals the fracture toughness

G =−
d5
bda
= Gc, (21)

the crack will grow. This fundamental condition is called
the Griffith criterion. The fracture toughness describes the
energy required for formation of a new crack surface of
unit area. It comprises surface energy as well as dissipa-
tive energy terms. The latter render fracture processes irre-
versible. The fracture toughness is defined within the contin-
uum framework. That is, it efficiently covers all local failure
mechanisms on the microscale – even for complex and het-
erogeneous materials.1

Within the framework of weak interface models the energy
release rate corresponding to infinitesimal crack growth can
be obtained from the local strain energy (see Krenk, 1992).
For mode I and mode II, contributions to the energy release
rate

GI =
kn

2b
w(a)2, GII =

kt

2b
u(a)2 (22)

hold. Here, w(a) and u(a) correspond to displacements at
the crack tip. Again, this simplified framework typically pro-
vides good results, but it does not capture certain effects such
as the energy release rate of vanishing crack lengths (see dis-
cussion in Fig. 4).

We distinguish different crack opening modes. Mode I
loading is a crack opening mode normal to the crack faces.
Strictly speaking this comprises only symmetric deforma-
tions, which typically does not hold for cracks along mate-
rial discontinuities with different stiffnesses. Mode II and III
are shear crack modes with tangential displacements of the
two crack faces. In this work only modes I and II are consid-
ered. Following the concept of anticracks (Heierli and Zaiser,

1In linear elastic materials the Griffith criterion may be reformu-
lated using stress intensity factors K which describe the asymptotic
crack tip stress field. Both the critical energy release rate Gc and the
critical stress intensity factor Kc are denoted as fracture toughness.
The units of these two quantities are different but can be converted
using the material’s elastic modulus.

2008) we extend the mode I definition to general deforma-
tion normal to the crack faces. Normal deformations include
tearing deformations of the crack faces away from each. Ad-
ditionally, they comprise collapse deformations where crack
faces move towards each other. Since the microstructural
failure mechanisms are of course very different for tearing
and collapse, the magnitude of the associated fracture tough-
nesses will also be different. Hence, we must distinguish be-
tween mode I fracture toughness for tearing G+Ic and mode I
fracture toughness for collapse G−Ic .

Loading which causes any combination of the three crack
opening modes is called mixed-mode loading. Then mixed-
mode failure criteria must be used to account for the different
contributions to the total energy release and the required en-
ergy to extend a crack under mixed-mode conditions. This
will be a subject in Part 2 of this work.

In order to extend the scope of fracture mechanics, which
is only applicable to infinitesimal crack growth da, Hashin
(1996) considers finite differences in crack length 1a. Then
the so-called incremental energy release rate describes the
difference in total potential energy 15 for a finite crack in-
crement 1a. The incremental energy release rate can also
be obtained by integrating the differential energy release rate
over the finite crack advance 1a:

G =−
15

b1a
=

1
1a

∫
1a

Gda. (23)

The total differential energy release rate is the sum of contri-
butions from different crack opening modes:

G = GI+GII. (24)

Equivalently, the total incremental energy release rate can
be split into contributions from crack opening (mode I) and
crack sliding (mode II):

G = GI+GII =−
15I

b1a
−
15II

b1a
. (25)

The total potential energy difference 15=15I+15II
between a cracked and an uncracked configuration can be
calculated efficiently using the crack opening integral. The
change in potential energy corresponds to the work done by
stresses on crack flanks when reduced quasi-statically to zero
as detailed in Fig. 4. The mode I and II contributions amount
to

15I =−
1
2

∫
1A

σ1w dA=−
b

2

∫
1a

− σ(x)w1(x)da,

15II =−
1
2

∫
1A

τ1udA=−
b

2

∫
1a

τ(x)u1(x)da. (26)
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Table 1. Material properties used throughout the present work.

Property Symbol Value

Skier weight m 80 kg
Slope angle ϕ 0◦

Slab thickness∗ h 40 cm
Weak-layer thickness∗ t 2 cm
Effective out-of-plane ski length lo 100 cm
Young’s modulus slab Eslab 5.23 MPa
Young’s modulus weak layer Eweak 0.25 MPa
Poisson’s ratio slab and weak layer ν 0.25
Slab density ρ 240 kgm−3

Length of PST block lPST 120 cm

∗ Thicknesses are slope normal.

Using the stress-to-displacement relation (20) obtained from
the snowpack model and Eq. 23 yields

GI =
1

2b1a

l+1a
2∫

l−1a
2

knw1(x)w0(x)dx,

GII =
1

2b1a

l+1a
2∫

l−1a
2

ktu1(x)u0(x)dx, (27)

where the indices 0 and 1 refer to uncracked and cracked
configurations, respectively. Computing the incremental en-
ergy release rate for a crack of length 1a requires knowl-
edge of the deformations of the uncracked and correspond-
ing cracked configurations. These expressions of the incre-
mental energy release rate can be evaluated readily using the
displacement solutions of the model presented above.

3 Validation of the mechanical model

The present model provides slab displacements, weak-layer
stresses and energy release rates for cracks within the weak
layer as closed-form analytical expressions. In order to val-
idate the model, stresses and energy release rates are com-
pared against detailed finite element analyses (FEAs) and
existing models. Results of several parametric studies are
shown in detail. Further, we compute the fracture toughness
corresponding to critical cut lengths in propagation saw tests
for a comprehensive set of 93 field experiments provided
by Gaume et al. (2017) to investigate the capabilities of the
present model.

3.1 Reference solution

Reference stress solutions and energy release rates are com-
puted using the plane strain FEA model shown in Fig. 5. Like
the reference models used by Sigrist and Schweizer (2007)

Figure 5. Finite element model used for validation. Discretization
of a snowpack with slab and weak layer. Cracks are introduced by
removing all weak-layer elements. Skier loads are applied as ver-
tical concentrated forces. Here, the case of a propagation saw test
is shown as an example. The rigid base below the weak layer has a
Young modulus of Ebase = 1012 MPa.

and Habermann et al. (2008) it considers an inclined snow-
pack consisting of a homogeneous slab and a weak layer. The
slab is loaded with a vertical volume gravity load. The weak
layer is clamped at its bottom side. Cracks are introduced by
removing all weak-layer elements on the crack length a. The
mesh of biquadratic eight-node elements with reduced inte-
gration is refined towards stress concentrations. Mesh con-
vergence of the FEA solutions has been controlled. The FEA
total energy release rate of a crack of length 1a is computed
according to

G(1a)= G(1a)+1a
∂G(1a)
∂1a

, (28)

where the incremental energy release rate G(1a) is deter-
mined using Eq. (23). In order to calculate the derivative of
G(1a), the incremental energy release rate G is evaluated for
four different crack lengths closely around 1a. The deriva-
tive G(1a)/∂1a is then obtained by differentiating the inter-
polating cubic spline of the four G values at 1a.

For the following considerations, the Young modulus is
calculated from density ρ using an empirical power law fit to
the data of Scapozza (2004) in plane strain conditions

E =
1

1− ν2 5.07× 103
(
ρ

ρ0

)5.13

MPa, (29)

with the density of ice ρ0 = 917 kgm−3. Note that Ger-
ling et al. (2017) provide a different equation that is cross-
validated using two different experimental methods and,
therefore, likely more reliable. However, we chose Eq. (29)
for comparability with previously published models.

A weak-layer Young modulus of Eweak = 0.25MPa is
chosen based on the findings of Köchle and Schneebeli
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Figure 6. Normal and shear stresses owing to pure vertical and
pure horizontal combined skier and slab weight loading, respec-
tively. Comparison of the present model (blue) and the Föhn (1987)
model (red) to FEA results (circles). Model parameters other than
h= 20 cm, t = 1 cm, Eslab = 5 MPa, Eweak = 0.15 MPa and ρ =
200 kgm−3 are chosen as given in Fig. 1.

(2014), who report an average ratio of the weak-layer to
slab Young modulusEweak/Eslab = 1/20. Assuming Eq. (29)
to be applicable to weak layers as well, Eweak = 0.25 MPa
corresponds to a weak-layer density of ρweak ≈ 135 kgm−3.
This agrees with density measurements of surface hoar lay-
ers by Föhn (2001), who reports densities (i) between 44 and
215 kgm−3 with a mean of 102.5 kgm−3 and (ii) between
75 and 252 kgm−3 with a mean of 132.4 kgm−3 using two
different measurement techniques.

With reference to Jamieson and Schweizer (2000), who
report weak-layer thicknesses between 0.2 and 3 cm, we
chose t = 2 cm. Further parameter choices are summarized
in Fig. 1.

3.2 Results

Figure 6 shows weak-layer compressive and shear stresses
owing to pure vertical and pure horizontal combined skier
and slab weight loading, respectively. Stresses calculated us-
ing FEA, the solution by Föhn (1987) and the present model
are shown. Föhn’s solution for a force acting on an elastic
half plane agrees particularly well with the shown FEA re-
sults in terms of normal stress. The present model agrees al-
most equally well and deviates only in a small region around
the load point. Considering shear stress, Föhn provides an
exact solution for transverse shear stresses in a homogeneous
body. These stresses are zero directly below the concentrated
force and peak to the left and right of it as seen in Fig. 6.
Additional shear stresses arise from a horizontal displace-
ment of the beam, which also strains the weak layer. Lat-
eral shear stresses originating from this effect peak below

Figure 7. Bridging effect evident in weak-layer normal stresses
depending on the slab thickness. Peak stresses and the width of
the skier-loaded snowpack changes with different slab thicknesses.
Model results (solid lines) are compared against the reference solu-
tion (markers ©, 1, �). Model parameters are chosen as given in
Fig. 1.

the load point. Superimposing both components yields the
total weak-layer shear stress obtained in FEAs. Note that lat-
eral shear stresses owing to slope-parallel concentrated force
components do not change their sign left and right of the load
point as shown in Fig. 6. This is in contrast to transverse
shear stresses owing to normal concentrated forces, which
do change their sign. However, as discussed in Fig. 4, trans-
verse weak-layer shear stresses are not accounted for in the
present model. It considers only lateral shear where its agree-
ment with FEA results is better than Föhn’s transverse shear
solution.

The bridging effect of stiff slabs is studied in Fig. 7. The
results show that with thicker slabs the local loading of a
skier is transferred on a wider area of the weak layer. This
dependence on the slab thickness is very pronounced as the
bending stiffness of the slab increases in cubic dependence
with the slab thickness2. Because the weight of the slab is
proportional to the slab thickness, the stress level distant
from the skier increases.

Figure 8 shows the effect of the weak-layer thickness on
normal stresses in the weak layer. Two different weak-layer
thicknesses are compared. For the thin weak layer we ob-
serve strong localization and high peak values, while the
thick weak layer allows for point load distribution over a
larger area. In comparison to FEA data, a very good agree-
ment of the present model is evident for either thickness.

2The effective rigidity of a Timoshenko beam against vertical
deflections is composed of bending stiffness EI ∝ h3 and shear
stiffness κGA∝ h. Hence, its dependence on h is slightly smaller
than cubic.
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Figure 8. Effect of the weak-layer thickness on local weak-layer
normal stresses. The weak-layer thickness changes the size of the
skier-load-affected part of the weak layer and also the peak value of
the stress. Thicker, more compliant weak layers distribute the load
on a larger area and lead to lower peak stresses. Model results (solid
lines) are compared against the reference solution (markers©, �).
Model parameters are chosen as given in Fig. 1.

Figure 9. Total, mode I and mode II energy release rates in prop-
agation saw tests of different slope angles ϕ with crack length
a = 30 cm. Comparison of the present model using Timoshenko
beam kinematics accounting for shear deformation of the slab and
the classical Euler–Bernoulli beam model. The latter is recovered in
the limit case of infinite shear stiffness of the beam (κGA→∞).
Model parameters other than Eweak = 0.15 MPa and t = 5 cm are
chosen as given in Fig. 1.

Very local deviations just below the point load are observed.
The Föhn (1987) model is shown for comparison. As it does
not account for layering, its normal stress distribution is in-
dependent of the weak-layer thickness.

Let us consider the energy release rate solution. Figure 9
shows the differential mode I and II energy release rates as

Figure 10. Mixed-mode energy release rates of propagation saw
test (PST) configurations. The mode I (collapse) and mode II
(shear) contributions of the energy release rates of a cut length
a = 30 cm are shown as a function of the slab thickness. Energy
release rates are normalized with the respective initial value at
h= 15 cm: G15◦

I = 0.805, G15◦
II = 0.007, G30◦

I = 0.770 and G30◦
II =

0.028. Model parameters other than Eweak = 0.15 MPa and t =

5 cm are chosen as given in Fig. 1.

a function of slope angle. Besides the implemented Timo-
shenko kinematics, the limit case of Euler–Bernoulli beam
theory is shown. In the numerical reference model only the
total incremental energy release rate is evaluated. The com-
parison shows that for moderate slope angles the present
model provides an excellent prediction of the energy release
rate. While the mode I contribution of the energy release rate
decreases for higher slope angles, the mode II contribution
increases monotonously. Using Euler–Bernoulli beam theory
underestimates the mode I contribution and hence the total
energy release rate. The mode II energy release rate is a re-
sult of tangential displacements and thus unaffected by the
choice of beam kinematics.

In Fig. 10 a PST experiment is studied. The mode I and
mode II energy release rates are shown depending on the
thickness of the slab above the weak layer. Two different
slope inclinations are considered. Energy release rate results
are normalized to account for the different orders of magni-
tude of both crack opening modes. For both angles the mode
II contribution has a stronger dependence on the slab thick-
ness than the mode I contribution as they are governed by
different deformation mechanisms. Hence, the mode mix-
ity changes towards a mode-II-dominated loading of the
PST. No mode III contribution exists when PSTs are cut
downsloping and no lateral loading occurs.

Figure 11 compares energy release rates for PSTs in flat
terrain computed using FEAs, the anticrack model by Heierli
(2008) and the present model. Different weak-layer thick-
nesses are shown. FEA energy release rates are computed
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Figure 11. Energy release rate G in propagation saw tests (PSTs)
in flat terrain. Comparison of the present model (blue lines), Heierli
(2008) model (red line) and FEA results (gray circles). Both models
agree well with FEA data for short crack lengths and stiff (i.e., thin)
weak layers. The model by Heierli (2008) cannot reproduce varying
weak-layer properties and provides a lower bound of the energy re-
lease rate corresponding to vanishing weak-layer thickness. Except
for h= 30 cm, model parameters are chosen as given in Fig. 1.

Figure 12. Impact of model assumptions on slab deformations.
Heierli (2008) considers only the unsupported section of the slab
and, hence, does not account for deformations of the beam segment
resting on the intact weak layer, which contributes to the total stored
energy.

Figure 13. Boundary conditions in PST experiments: (a) slope-
normal and (b) vertical upslope and downslope faces.

using Eq. (28). Heierli (2008) models only the unsupported
segment of the slab above a failed weak layer (Fig. 12). De-
formations of the intact weak layer and the beam segment
resting on the intact weak layer are not accounted for. That
is, the intact weak layer in Heierli’s model can be envisaged

Figure 14. Fracture toughness G−c = G(ac) determined from 93
field PST experiments reported by Gaume et al. (2017). (a) Com-
parison of model and FEA results with corresponding linear regres-
sions and coefficients of determination R2 for the present model
(blue) and the model by Heierli (2008) (red). (b) Histogram with
logarithmic bin size 100.25 and median of the 93 fracture tough-
nesses calculated using the present model. Data not given in Gaume
et al. (2017) are assumed as given in Table 1.

as rigid, i.e., indefinitely thin. For short cracks and thin weak
layers Heierli’s model agrees well with FEA results.

PST experiments can be conducted in one of two ways
as depicted in Fig. 13. The upslope and downslope faces
may be cut slope-normally (Fig. 13a) or vertically (Fig. 13b),
which has to be accounted for when using beam models. A
beam model collapses the slab onto its lower edge resting on
smeared springs. Considering vertically cut PSTs, the verti-
cal gravity load of the slab acts entirely on the beam and is
transferred into the weak layer. In the case of slope-normal
faces, the right end of the gravity-loaded slab extends past the
right end of its lower edge, i.e., the beam. Hence, the beam
is loaded not only by a distributed load representing gravity
loading but also force boundary conditions representing the
section forces and moments resulting from the overhanging
mass. The resulting weight force of the overhanging part of
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the slab amounts to F+ = 1
2ρgbh

2 tan(ϕ). The correspond-
ing section forces applied at the PST beam model boundary
are N = F+ sin(ϕ), V = F+ cos(ϕ) and M = 1

3F+hsin(ϕ).
Please note that this is PST-specific. Considering inclined
skier-loaded snowpacks with center cracks does not require
such boundary conditions because no interaction between
boundary effects and skier loading is present.

Figure 14 correlates model predictions for the weak-layer
fracture toughness to data obtained using detailed FEAs and
Eq. (28). The FE model features slope-normal faces such
that the corresponding section force boundary conditions dis-
cussed above are applied to the beam model. Fracture tough-
nesses G−c are determined from critical cut lengths ac mea-
sured in 93 PST field experiments (Gaume et al., 2017). Mea-
sured cut lengths correspond to critical lengths required for
crack propagation. No case in the data set showed maximum
deflections exceeding the weak-layer thickness which would
indicate a base-touching slab. According to the fundamen-
tal Griffith criterion of fracture mechanics, Eq. (21), the en-
ergy release rate corresponding to the critical cut length is
the fracture toughness of the weak layer. We will denote it as
G−c to emphasize the difference between the fracture tough-
ness of a collapsing weak layer G−c and a tearing fracture
toughness G+c . The difference between the two will be dis-
cussed in Fig. 4. Please note that here only the total energy
release rate is considered and no mode-mixity dependence
is assumed. The 93 PST measurements allow for a model
validation against the reference solution, and we can obtain
actual weak-layer fracture toughnesses. For comparison, the
closed-form analytical expression for the energy release rate
derived by Schweizer et al. (2011) from the model of Heierli
(2008) is shown. In the notation of the present work the ex-
pression reads

G−c =
h

2Eslab

(
w0+w1

ac

h
+w2

(ac

h

)2

+w3

(ac

h

)3
+w4

(ac

h

)4
)
, (30)

with w0 to w4 given in Appendix B. Schweizer et al. (2011)
obtain this expression by differentiating the total strain en-
ergy of the anticrack model of Heierli (2008) with respect to
the crack length.

Predictions of the present model are found within a narrow
range around the one-to-one line, indicating excellent agree-
ment (R2

= 0.99) with FEAs for this comprehensive set of
real-world parameters. The Heierli solution significantly un-
derestimates the energy release rates as already seen in pre-
vious analyses of the influence of the weak-layer thickness.
The comparison to the FEA reference solution shows poor
correlation (R2

= 0.04).
The values of the obtained fracture toughness are within

3 orders of magnitude. A total of 61 % of the values are
within 1 order of magnitude around the median value of
G̃−c = 2.16 Jm−2. To individually show most of the data

Figure 15. Incremental energy release rate of cracks below a skier
for three different slab thicknesses. The slab is locally loaded by
a skier and by the weight load of the slab. The slab is modeled to
have a length of 25 times the slab thickness, guaranteeing vanishing
boundary effects. Model parameters other than Eweak = 0.15 MPa
and t = 5 cm are chosen as given in Fig. 1.

points, Fig. 14a only shows a region with values below
20 Jm−2. As shown in Fig. 14b, 11 data points are above
this value. The mean relative error for all 93 data points
is 13.0 %. Values with G−c > 20 Jm−2 outside the domain
shown in Fig. 14a exhibit an increased mean relative error
amounting to 19.3 %. The relative error of the predicted frac-
ture toughness and the numerical reference model is between
−28.3 % and +68.3 %. A total of 50 % of the values have an
error of less than 9.0 %. The maximum value of the fracture
toughness3 calculated is 124.0 Jm−2, with a relative error of
2.48 % in the comparison to the reference model.

The previously given results of the energy release rate as
given by the model show differential energy release rates G
describing the growth of initial cracks introduced by the saw.
In order to study crack initiation, it is important to consider
the incremental energy release rate G of cracks of finite size;
see Eq. (23). In Fig. 15 the incremental energy release rate of
finite cracks in the weak layer of a skier-loaded snowpack is
shown. Besides the local load the weight load of the slab is
also considered. As an example the effects of slab and weak-
layer thicknesses are studied. The incremental energy release
rate is given as a function of the size of the finite cracks.
Of course, the incremental energy release rate increases with
crack length. It also increases with slab thickness and with
increasing weak-layer thickness.

3This maximum is obtained for the following configuration: h=
81 cm, ϕ = 20◦, ρ = 269 kgm−3, t = 2 cm and ac = 67.1 cm.
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4 Discussion

The presented closed-form analytical model of the snowpack
contains two different levels of abstraction. The first level is
the treatment of the snowpack as a linear elastic continuum.
This is common for models of skier-triggered avalanches
(Schweizer and Camponovo, 2001; Schweizer et al., 2003)
and agrees with the fact that the brittle failure process of
dry-snow slab avalanches occurs within very short timescales
(Narita, 1980). Further, van Herwijnen et al. (2016) have
shown a good agreement of displacements measured using
particle tracking in field measurements with linear elastic
models. Such models are insufficient to study long-term ef-
fects within a snowpack, such as temporal compaction or
sintering/metamorphic processes (Capelli et al., 2018; Mu-
lak and Gaume, 2019). At first glance, the propagation saw
test seems governed by the rather slow saw movement. How-
ever, the fracture process itself is associated with high strain
rates (Reiweger and Schweizer, 2010).

The second layer of abstraction is the simplification of het-
erogeneous media to continua and engineering structures like
elastic foundations or deformable rods and beams. If cho-
sen correctly, accurate representations of the deformation and
stress fields within the continua can be recovered with such
elements of structural analysis, which are well established in
civil and mechanical engineering (Gross et al., 2014). Using
appropriate simplifications, numerical models can be avoided
and closed-form analytical solutions are obtained. Compar-
isons to finite element analyses (FEAs) (see Fig. 9) with con-
tinuum elements show that the first-order shear deformation
theory is needed to account for the low shear stiffness of the
slab. The Euler–Bernoulli beam theory does not suffice and
the present work uses the Timoshenko beam theory.

The studies shown in Figs. 6 and 8 assess the quality of the
stress solution. The present model shows very good agree-
ment with FEA reference solutions, with relative errors be-
low 2 %–5 % outside the stress localization domain just be-
low the point load. We exclude this domain from our discus-
sion because considering a localized distributed load instead
would resolve this typical problem of concentrated loads and
weak interface models. Moreover, the effect of the point load
limitation on the results of failure models is discussed in de-
tail in Part 2. Stiffer weak layers yield smaller errors. For
thicker weak layers, stress concentrations below a skier load
are less pronounced with larger areas of load transfer (see
Fig. 8). Hence, the peak stresses in the weak layer are re-
duced with increasing thickness of that layer. This result of
the stress solution is in line with the FEA reference solution
but cannot be captured by the Föhn (1987) solution, which
makes use of the elastic half-space solution. This model de-
ficiency is discussed in detail by Gaume et al. (2017). How-
ever, the effect of reduced local load contradicts observations
that thicker weak layers are more likely to fracture and that
avalanches are easier to trigger when the weak layer under
the slab is thicker (Gaume et al., 2013). The failure analy-

sis presented in Part 2 of this work is able to correctly re-
cover this effect by additionally considering the energy re-
lease rate as a requirement for failure. Figure 7 investigates
the bridging effect. This effect describes the ability to dis-
tribute external loads on the slab on a wider area of the weak
layer (Thumlert and Jamieson, 2014) as the slab thickness
increases. The present model is able to capture the overall
stress level due to the increased slab weight as well as the
load distribution on a wider area in very good agreement with
the numerical reference solution. The load transfer area in-
creases by a factor of approximately 5 for a change in slab
thickness from h= 10 to h= 80 cm. Although not shown,
the classical solution by Föhn (1987) is capable of render-
ing this bridging effect correctly. Schweizer and Jamieson
(2003) have introduced a bridging index as the product of
slab hardness and thickness. The results of the present analy-
sis show that this is a good estimate, but the local stresses de-
crease overproportionally with the slab thickness. This is due
to the bending deformation which is controlled by the bend-
ing stiffness of the slab, which in turn is proportional to h3.
The effect of the elastic contrast of the stiffnesses of the weak
layer and slab on this bridging behavior has been addressed
by Monti et al. (2015). They proposed to scale the effective
slab thickness with the cubic root of the elastic contrast of
the slab and weak layer. The bridging effect is very important
and explains why thicker slabs can sustain higher loads be-
fore weak-layer failure occurs (Schweizer and Camponovo,
2001). However, propagation of cracks is more likely be-
low thicker slabs (van Herwijnen and Jamieson, 2007). This
change in parameter effect is addressed in the failure model
presented in the second part of this work.

The energy release rate of cracks within the weak layer is
studied in detail in the validation studies shown in Figs. 9–14.
The effect of slope angle (Fig. 9) on the energy release rates
shows that both mode I and mode II contributions strongly
depend on the slope angle. While the angle dependence of
the stress solution mainly stems from the split in normal and
tangential force contributions, the angle dependence of the
energy release rate also depends on the deformations of the
slab above the cracked weak layer (see Fig. 4). Therefore, the
angle dependence of simplified models like McClung (1981)
or Heierli et al. (2011) is insufficient. The present model is in
very good agreement with the numerical reference solution,
which is carefully set up to identify these important fracture
mechanical quantities.

The effect of the slab thickness on the energy release rate
obtained for PST experiments is shown in Fig. 10. As mode I
and mode II are associated with very different failure modes
of collapse and shear failure of the weak layer, the corre-
sponding energy release rates can be of different magnitudes
and at the same time both be relevant for the mixed-mode
failure. This has been studied in the comprehensive exper-
imental work of Birkeland et al. (2019). They performed
PST experiments in which the slab thickness was changed
in order to assess the change in failure behavior at hand of
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the measured critical cut lengths. The results of the present
model show different ratios of mode I and II contributions
when the slab thickness changes. This may allow for identi-
fying a comprehensive mixed-mode fracture envelope using
these extended PST experiments. The present model could
also help to identify relevant geometric parameter ranges to
be studied within experimental campaigns.

As pointed out by Reiweger and Schweizer (2010) up to
90 % of the total deformation of snowpacks is concentrated in
the weak layer because of its considerably low stiffness. It is
evident that, in order to capture snowpack deformations ade-
quately, a mechanical model must consider the weak layer.

Increasing the thickness of the weak layer while keeping
all other geometry and material properties constant increases
its compliance. That is, Heierli’s assumption of rigidity leads
to increasing discrepancies as the weak-layer thickness in-
creases. This is reflected in Fig. 11. The importance of con-
sidering the compliance of the weak layer below the slab
is also evident in Fig. 14. The thickness of the weak layer
(which influences its compliance linearly) has a pronounced
effect on the energy release rate obtained for these cases. The
model by Heierli and Zaiser (2008), which neglects the com-
pliance of the weak layer and renders it as rigid, is shown in
comparison. It is a lower bound of the energy release rate for
vanishing weak-layer thickness. Van Herwijnen et al. 2016
also showed the insufficient approximation for longer cracks
and resorted to using a numerical correction factor obtained
from finite element analyses (FEAs). The energy release rate
predicted by the present model, which accounts for weak-
layer deformation, is in good agreement with the numerical
reference. Figure 9 indicates that with slope angles above 35◦

the agreement of the present solution and reference solution
would decrease by a few percent. However, the overall effect
of the weak-layer thickness (Fig. 11) remains the same.

The analysis of 93 PST data points (Fig. 14) provides in-
sight into the analysis of the energy release rate. The 93 data
points show a wide span of the input parameters slab density
(factor 4.6), slab thickness (factor 3.9), weak-layer thickness
(factor 44) and slope angle (from 0 to 44◦). They provide a
realistic overview on possible configurations along with cor-
responding measurements of the critical cut length. Apply-
ing the model to these data points now not only provides a
comprehensive overview on the model’s capabilities by com-
paring it to the numerical reference model but also provides
insight into the fracture toughness of a multitude of weak
layers. The comparison to the numerical reference model
shows that the present model provides a good prediction of
the energy release rate for most of the configurations. Only
10 (10.75 %) data points deviate by more than 30 % from
the numerical reference. Since the energy release rate has
a quadratic dependence on (skier) loading, this constitutes
an error in crack propagation analyses below 14 %. Because
Heierli’s model neglects weak-layer deformations, it under-
estimates the fracture toughness significantly (see Fig. 11). It
neither shows a satisfactory slope of the linear regression nor

a reasonable coefficient of determination R2. The fracture
toughness values that are obtained in the analysis of these 93
data points spans several decades. However, 75 % of the val-
ues are between G−c = 0.3 Jm−2 and 6.0 Jm−2 with a median
of 2.16 Jm−2. This range of values reflects the heterogeneity
of weak-layer structures of persistent weak layers. Complex
and divers microstructures are observed for weak layers of
faceted crystals or buried surface hoar (Hagenmuller et al.,
2014; Schweizer et al., 2003). Possible thickness dependence
or layering effects are neither considered in the present nor
in the numerical reference model. However, because of the
quadratic load dependence of the energy release rate, the
range of orders of magnitudes of the corresponding crack
driving forces is halved when investigating crack initiation
and crack propagation.

In the framework of continuum mechanics the PST must
be considered a fracture mechanical experiment aimed at
identifying the fracture toughness. The fracture toughness is
the energy required to form a new surface on the idealized
plane of fracture. This energy comprises the dissipative pro-
cesses at the microscale. These processes are very different
between crack growth under tension and under compression
with a collapse of the weak layer. In the latter case local dis-
sipative damage processes are much more pronounced, lead-
ing to a significantly higher value of the (effective) fracture
toughness in compression G−c than in tension G+c . This has
been in observed in lab experiments of cracks on glass foams
leading to critical energy release rates 2 orders of magnitude
higher in compression than in tension (Heierli et al., 2012)4.
For such porous materials with a thin microstructure, local
stability failure contributes significantly to the local damage
process. Sigrist (2006) and McClung (2007) show that typi-
cal values of the fracture toughness in tension are between
10−1 and 100 Jm−2, which provides the same relation of
tensile and compression fracture toughness as in the exper-
iments by Heierli et al. (2012). The tensile fracture tough-
ness of ice (G+c ) is on the order of 100 Jm−2 (Dempsey,
1991). This is, of course, larger than the fracture toughness
of snow in tension. However, the fracture toughness for the
present case of mode I in compression may lie well above this
value as the corresponding failure process of collapse dissi-
pates significantly more energy than a simple tensile bond
breaking. Compared to temperature- and time-driven trans-
formation processes of snow, PSTs represent rather fast ex-
periments with little or no impact of viscous effects. Hence,
material properties determined from PSTs may be used for
analyses of skier-triggered snowpack instability, which is as-
sociated with fast loading and high strain rates.

As pointed out by Gaume et al. (2017), fracture parame-
ters obtained from experimental results are always linked to
the failure mode that is considered in the model employed

4In their study Heierli et al. (2012) use critical stress intensity
factors, which relate to the critical energy release rate through G =
K2
I
/E, and report a K−c 1 order of magnitude larger than K+c .
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to evaluate the data. Hence, fracture energies obtained under
the assumption of a rigid weak layer (Heierli et al., 2010) or
in pure shear models (McClung, 1979) will always be differ-
ent from models that take into account weak deformation and
mixed-mode fracture. If the failure mode is modeled insuffi-
ciently, the obtained failure parameters are not true material
parameters and hence not consistent.

Figure 15 shows the result of the incremental energy re-
lease rate of cracks of finite size (as opposed to infinitesimal
crack growth). These effects are very similar to those of the
previously discussed case of the differential energy release
rate. When differential energy release rates can be calculated
as a function of the crack length, incremental energy release
rates can always be obtained from integration. The integra-
tion is highly efficient using closed-form analytical solutions
and established (numerical) integration schemes. However,
computational effort can be reduced even further by employ-
ing the crack opening integral. While integrating the differ-
ential energy release rate requires its evaluation for several
crack lengths, the crack opening integral only needs data
from the uncracked configuration and the configuration with
the final crack length. It computes the difference in total po-
tential energy between an uncracked state and a configuration
with a finite crack from the work done by stresses as the crack
opens. Similar to differential energy release rates, incremen-
tal energy release rates increase with increasing crack length
(Fig. 15). More importantly, they also increase with both
weak-layer thickness and slab thickness. Maximum deflec-
tions of the slabs considered in Fig. 15 are smaller than half
the weak-layer thickness even for the longest cracks. At first
glance, Figs. 7 and 15 demonstrate a contradiction: thicker
slabs distribute loads more evenly over the weak layer, re-
duce local stress peaks and should be more difficult to trig-
ger. However, they release more energy, favoring crack prop-
agation. A failure criterion using both stress and incremental
energy release rates to assess the nucleation of finite cracks
within the weak layer resolving this contradiction will be in-
troduced in Part 2 of this work.

The present model does not account for layering of the
slab above the weak layer. It is well known that the layering
can have a significant effect (e.g., Schweizer, 1993; van Her-
wijnen and Jamieson, 2007; Habermann et al., 2008; Reuter
et al., 2015). It influences the load distribution, the fracture
process of the weak layer and also the bridging effect. Monti
et al. (2015) have proposed a stability index based on the
Föhn solution that accounts for layering by using adapted
values of the thickness and the stiffness of the slab. In the
present work, rigid base layers are assumed. However, as
shown by Jones et al. (2006) and Habermann et al. (2008),
substratum elasticity is not negligible. The elastic founda-
tion should not only account for weak-layer compliance but
also for deformable base layers. Future research is required
to make use of these considerations in a refined version of
the present model to combine the capabilities.

Penetration depths leading to forces acting not on top of
the slab but well within the slab are not considered at this
point. To understand loading scenarios where the penetration
depth is high, e.g., because of a soft top layer of snow or a
highly localized load (recreationist by foot or a snowmobile),
further modeling and experimental effort is needed.

In this work, interaction of shear and compression is lim-
ited. Slab extension causes only tangential and slab de-
flection causes only normal weak-layer deformations. This
modeling strategy can be pictured as weak-layer springs at-
tached to the midsurface of the beam. With this simplifica-
tion the governing system of equations is uncoupled and can
be solved independently for tangential and normal displace-
ments, respectively. Of course, the weak layer does not inter-
act with the midsurface of the slab but with its bottom side.
Tangential displacements on the slab bottom side are caused
by both slab extension and the rotation of beam cross sec-
tions, which in turn depends on the slab deflection. Hence,
the rotation of beam cross sections couples tangential and
normal displacements. This will increase the solution effort
but simultaneously provide improved accuracy, in particular
concerning weak-layer shear stresses and mode II energy re-
lease rates (see, e.g., Fig. 6).

5 Conclusions

By considering a deformable weak layer the present work
provides a simple but comprehensive closed-form analytical
model for snowpack deformations, weak-layer stresses and
energy release rates of cracks within weak layers:

1. The model applies to skier-loaded slopes as well as PST
experiments.

2. Providing closed-form solutions, the present analysis
framework is highly efficient and evaluates in real time.

3. Comparisons with numerical reference solutions indi-
cate good agreement of weak-layer stress and energy
release rates.

4. The model renders physical effects such as the bridging
effect of thick slabs, the influence of slope inclination
and most importantly the impact of weak-layer compli-
ance. Evaluating a comprehensive set of 93 PSTs, frac-
ture toughnesses of a multitude of weak layers are ana-
lyzed and discussed.

5. Providing weak-layer stress and energy release rates of
cracks within the weak layer, the present framework
allows for evaluating comprehensive criteria for skier-
triggered crack nucleation and crack propagation in the
weak layer, which will be discussed in Part 2 of this
two-part work.
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Appendix A: Derivation of governing equations

The set of differential equations governing the present prob-
lem can be derived from the equilibrium of forces and mo-
ments of a beam element and elasticity laws for the bend-
ing moment M , the transverse shear force Q and the normal
force N . The latter read (Timoshenko and Goodier, 1951)

N = EAu′, (A1)
Q= κGA

(
w′+ψ

)
, (A2)

M = EIψ ′, (A3)

where A= hb is the snow slab cross section, κ = 5/6 is the
shear correction factor for rectangular cross sections and I =
bh3/12 is the moment of inertia with respect to the y axis. In
the limit κGA→∞ we obtain the classical Euler–Bernoulli
beam theory. Equilibrium of forces and moments of a beam
element yields

N ′ = ktu− qt, (A4)
Q′ = knw− qn, (A5)
M ′ =Q, (A6)

where ktu and knw are distributed reaction forces acting on
the beam, which originate from the elastic foundation. There-
fore, they depend on the normal and tangential displacements
along the top of the weak layer and its normal and lateral
shear stiffnesses kn and kt.

Preliminary studies showed that two-parameter foundation
models like Pasternak or Vlazov foundations (Selvadurai,
1979), which consider additional stiffnesses such as a trans-
verse foundation shear stiffness, do not have a significant ef-
fect on the outcome of the analysis.

The ODE governing horizontal displacements, i.e., the de-
formations of an elastically bedded rod, is obtained by insert-
ing the derivative of Eq. (A1) into Eq. (A4). The following
rearrangements are necessary to obtain differential equations
of the deflection w and the curvature ψ of a Timoshenko
beam on an elastic foundation: plugging the derivative of
Eq. (A2) into Eq. (A5) yields

κGA
(
w′′+ψ ′

)
= knw− qn. (A7)

Adding 0= EIw′′−EIw′′ to the balance of moments
(Eq. A6), differentiating twice and plugging the result into
the first derivative of Eq. (A6) yields

Q′ =M ′′ = EI
(
w′′′′+ψ ′′′

)
−EIw′′′′. (A8)

Now we use the third derivative of the elasticity law of shear
deformations (Eq. A2) to substitute the first term of the right-
hand side and obtain

Q′ =
EI

κGA
Q′′′+EIw′′′′. (A9)

Substituting Q′ using Eq. (A5) and Q′′′ using the second
derivative of Eq. (A5) yields the ODE of the beam deflec-
tion:

qn = EIw
′′′′
−
EIkn

κGA
w′′+ knw. (A10)

In order to obtain the ODE of the rotation of normals to the
beam midsurface, we insert Eq. (A2) and the derivative of
Eq. (A3) into Eq. (A6), which yields

EIψ ′′ = κGA(w′′+ψ). (A11)

Plugging the derivative of Eq. (A7) into Eq. (A11) and rear-
ranging for ψ yields

ψ =

(
EI kn

(κGA)2
− 1

)
w′−

EI

κGA
w′′′. (A12)

Appendix B: Constants of Heierli’s solution

With normal and shear loading qn =−ρghcosϕ and q t =

ρghsinϕ, respectively, the constants w0 to w4 of Eq. (30)
read

w0 =
3η
4
q2

t , (B1)

w1 =

(
πγ +

3η
2

)
q2

t + 3η2qnq t+πγ q
2
n, (B2)

w2 = q
2
t +

9
2
ηqnq t+ 3ηq2

n, (B3)

w3 = 3ηq2
n, (B4)

w4 = 3q2
n, (B5)

in the notation of the present work, where γ ≈ 1 and η =
√

4(1+ ν)/5 are constants.
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