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Abstract. We investigate changing precipitation patterns
in the Kangerlussuaq region of western central Greenland
during the Holocene thermal maximum (HTM), using a
new chronology of ice sheet terminus position through the
Holocene and a novel inverse modeling approach based on
the unscented transform (UT). The UT is applied to estimate
changes in annual precipitation in order to reduce the mis-
fit between modeled and observed terminus positions. We
demonstrate the effectiveness of the UT for time-dependent
data assimilation, highlighting its low computational cost
and trivial parallel implementation. Our results indicate that
Holocene warming coincided with elevated precipitation,
without which modeled retreat in the Kangerlussuaq region is
more rapid than suggested by observations. Less conclusive
is whether high temperatures during the HTM were specifi-
cally associated with a transient increase in precipitation, as
the results depend on the assumed temperature history. Our
results highlight the important role that changing precipita-
tion patterns had in controlling ice sheet extent during the
Holocene.

1 Introduction

During the early Holocene (∼ 11.7–8 ka), terrestrial and ma-
rine climate proxies from the Northern Hemisphere reveal a
warmer than present peak in temperature (Kaufman et al.,
2004; Marcott et al., 2013). This period of elevated temper-
atures, likely initiated by greater than modern insolation, is

referred to as the Holocene thermal maximum (HTM). Its
onset, duration, and severity were likely spatially variable
(Kaufman et al., 2004). Records of HTM warming can be
found in Greenland ice core records. For example, temper-
atures measured in the Dye-3 borehole show a pronounced
HTM signal occurring from 7 to 4 ka and having values
2.5◦C above present temperatures (Dahl-Jensen et al., 1998;
Miller et al., 2010), whereas at the GISP2 site, the HTM ap-
pears to occur slightly earlier, following the 8.2 ka cold event
(Kobashi et al., 2017) (Fig. 1).

While warming during the HTM is well established, less
is known about the regional changes in precipitation that ac-
companied increased temperatures. Ice core records provide
long-term estimates of accumulation (Alley et al., 1993), but
these point measurements near ice divides are not represen-
tative of the precipitation across the ice sheet, particularly
at lower elevations near the coast. Because the HTM was
accompanied by lower Arctic sea ice extent (Polyak et al.,
2010), it is possible that additional moisture was available
to the Greenland ice sheet (GrIS) from open Arctic waters.
This is supported by proxy evidence showing an increase
in winter precipitation in western Greenland coincident with
HTM warming (Thomas et al., 2016). However, temperature
is known with greater certainty than precipitation.

Understanding feedbacks between temperature and pre-
cipitation during the HTM has implications for the future
of the GrIS. Warming and declining sea ice are projected
to cause an increase in Arctic precipitation (Bintanja and
Selten, 2014; Singarayer et al., 2006). On a global scale,
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the moisture content of the atmosphere increases by around
7 % for every degree of warming, according to the Clausius–
Clapeyron relation. On a regional scale, declining Arctic sea
ice is expected to cause changes in atmospheric circulation,
bringing more moisture to the Arctic (Bintanja and Selten,
2014). While there are important differences between HTM
and modern climate, the history of retreat in western Green-
land may provide insights into how the GrIS will respond to
a warmer and possibly wetter future climate.

Modeling studies indicate that Holocene retreat in land-
terminating regions of the GrIS were controlled primarily
by surface mass balance rather than ice dynamics (Cuzzone
et al., 2019; Lecavalier et al., 2014). Given the primary im-
portance of surface mass balance in controlling modeled re-
treat, we explore the hypothesis that enhanced winter snow-
fall during the HTM may have slowed retreat by partially
offsetting increased surface melt (Thomas et al., 2016). We
investigate changes in precipitation in a land-terminating sec-
tor of the western central GrIS, near Kangerlussuaq, taking
advantage of a new chronology of ice sheet terminus position
(Young et al., 2020) and a novel inverse modeling approach
based on the unscented transform (UT) (Julier and Uhlmann,
1997). In particular, we use the UT to estimate changes in an-
nual precipitation during the Holocene by reducing the mis-
fit between modeled and observed terminus positions in an
isothermal flow line ice dynamics model (Brinkerhoff et al.,
2017) (Sect. 2.1).

The inverse problem is posed as a Bayesian inference
problem, and its solution involves estimating a non-Gaussian
posterior probability distribution. Markov chain Monte Carlo
(MCMC) methods, such as the Metropolis–Hastings method
(Chib and Greenberg, 1995), provide one means of solving
the inference problem by generating random samples from
the posterior distribution. Generating samples from the pos-
terior, however, requires repeatedly running the ice dynamics
model with different precipitation histories as input, which is
intractable even for a relatively computationally inexpensive
flow line model.

The unscented transform provides a computationally effi-
cient and trivially parallelizable alternative to MCMC meth-
ods. The basic idea of the unscented transform is to use a
small, fixed number of deterministic sample points in or-
der to estimate the statistical moments (e.g., mean and co-
variance) of the posterior distribution. Sigma points, each of
which represents a different precipitation history input to the
ice dynamics model, are generated a priori (Sect. 2.5.3). Con-
sequently, all model runs can be performed simultaneously in
parallel resulting in at least a 100-fold speed-up compared to
MCMC methods.

2 Numerical methods for inference

2.1 Ice sheet model

We use the 1D isothermal flow line model with higher-order
momentum balance described in Brinkerhoff et al. (2017).
The momentum conservation equations are simplified us-
ing the Blatter–Pattyn approximation, assuming hydrostatic
pressure and negligible vertical resistive stresses (Blatter,
1995; Pattyn, 2003). Default parameter values used in this
work are specified in Table 1.

We adopt a linear sliding law of the form

τb = β
2Nub, (1)

where τb is basal shear stress, β2 is a constant basal traction
parameter, N is effective pressure, and ub is sliding speed.
Based on borehole water pressure measurements in Wright
et al. (2016), basal water pressure Pw is assumed to be a fixed
fraction Pfrac = 0.85 of ice overburden pressure P0. Effective
pressure is therefore given by

N = P0−PfracP0. (2)

The basal traction parameter β2 is tuned to minimize the mis-
fit between modeled and observed surface velocities from
Mouginot et al. (2017) for present-day Isunnguata Sermia
values.

2.2 Flow line selection and moraine age constraints

To define the path followed by ice, we assume that flow fol-
lows the modern surface velocity field inland of the present-
day margin. In ice-free regions, the direction of ice flow is in-
ferred from bedrock topography (Fig. 1). Since the direction
of ice flow is unknown and time varying, we cannot directly
quantify the uncertainty introduced by errors in flow line se-
lection. To account for some of this uncertainty, we perform
inversions on two plausible adjacent paleo-flow lines in the
Kangerlussuaq area.

The rate of Holocene retreat on each flow line is estimated
using constraints on ice sheet terminus position from (Young
et al., 2020) (Fig. 1). Terminus position data in Young et al.
(2020) indicate that in the early Holocene (11.6 ka), the ice
sheet margin was tens of kilometers inland of the present-day
coastline. Although the moraine patterns are spatially com-
plex, generally speaking there was a period of moderate re-
treat (∼ 10 km on the northern flow line and ∼ 30 km on the
southern flow line) from 11.6 to 10.3 ka, followed by rapid
retreat (∼ 100 km on both flow lines) from 10.3 to 8.1 ka. By
8.1 ka, the margin position was within 20 km of its present
position on both flow lines (Fig. 5). The modern terminus po-
sition provides one additional constraint. Moraine ages have
uncertainties of up to ±400 years.

For modern bedrock geometry along the flow lines, we use
BedMachine v3 (Morlighem et al., 2017). Isostatic uplift and
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relative sea level changes are accounted for using a glacial
isostatic adjustment model (Caron et al., 2018). This model,
combined with the retreat chronology in Young et al. (2020),
indicates that ice remained grounded on both the northern
and southern flow lines from 11.6 ka onward.

2.3 Positive degree day model

Surface mass balance is estimated using a positive degree
day (PDD) model (Johannesson et al., 1995). Annual surface
mass balance is constructed in the PDD model using esti-
mates of average monthly precipitation and temperature. In-
puts into the PDD model include the unknown ice surface el-
evation S, modern monthly temperature Tm and precipitation
Pm along the flow lines, as well as the seasonal temperature
anomaly 1T . As in Cuzzone et al. (2019), modern tempera-
ture and precipitation are computed as 30-year averages from
1980 to 2010 using the method of Box (2013).

To assess the sensitivity of modeled retreat history to tem-
perature, we perform experiments using temperature recon-
structions from both Buizert et al. (2018) and Dahl-Jensen
et al. (1998). For the spatially explicit Buizert et al. (2018) re-
construction, monthly temperature anomalies are computed
as averages along the flow lines. In contrast, Dahl-Jensen
et al. (1998) reconstruct temperature only at the GRIP and
Dye-3 borehole locations (Fig. 1). Since a full Holocene re-
construction is unavailable at the Dye-3 borehole site, which
is closer to Kangerlussuaq, we use the temperature recon-
struction at GRIP. The HTM is roughly 0.3 ◦C warmer and
1500 years later in Dahl-Jensen et al. (1998) than in Buizert
et al. (2018) (Fig. 6).

A limitation of the Dahl-Jensen et al. (1998) reconstruc-
tion is that it does not resolve seasonal temperatures. To ad-
dress this, we calculate the difference between monthly and
mean annual temperatures in Buizert et al. (2018) and apply
those offsets to the mean annual temperature at GRIP from
Dahl-Jensen et al. (1998).

Surface temperature T is computed monthly as

T = Tm+1T +α(S− Sm), (3)

where Sm is the modern surface elevation and α = 5◦C km−1

is the lapse rate (Abe-Ouchi et al., 2007). Following Ritz
et al. (2001) and Cuzzone et al. (2019), precipitation P along
the flow line is estimated based on the Clausius–Clapeyron
relation. In particular, precipitation is estimated by

P = PT +1P = Pm exp(λP (T − Tm))+1P. (4)

The term PT accounts for changes in precipitation solely due
to changes in temperature. Here λP = 0.07, which results in
a 7 % increase in precipitation for every 1 ◦C increase in tem-
perature above modern (Abe-Ouchi et al., 2007; Ritz et al.,
2001).

The term PT does not capture the effects of many un-
known climate factors that may have caused dynamic re-

gional changes in Holocene precipitation. Therefore, we in-
troduce a precipitation anomaly term 1P , analogous to the
temperature anomaly 1T . This time-dependent function,
which has units of meters water equivalent per annum (m w.e.
a−1), is used to adjust precipitation uniformly across a flow
line in order to reduce mismatch between modeled and ob-
served terminus positions. Unlike1T , which can be inferred
from ice cores, 1P will be used as a control variable to be
determined using the inverse methods detailed in Sect. 2.5.3.
Equations (3) and (4) provide a method of accounting for
elevation changes through time and downscaling inputs to
match the mesh resolution of the model (∼ 1 km).

Positive degree days and snowfall are computed month
by month based on mean monthly temperature and precip-
itation (Johannesson et al., 1995). Snow is melted first at
a rate of 5× 10−3 m w.e. ◦ d−1 followed by ice at a rate of
8× 10−3 m w.e. ◦ d−1. Snow melt is initially supposed to re-
freeze in the snowpack as superimposed ice. Runoff begins
when the superimposed ice reaches a given fraction (60 %) of
the snow cover (Reeh, 1991). A listing of ice flow and PDD
model parameters is provided in Table 1, and all data sets
used in the model are shown in Table 2.

2.4 Modeling limitations

A limitation of our modeling approach is that we do not ac-
count for potential ice dynamical effects caused by changes
in surface runoff or subglacial hydrology. Modeling melt wa-
ter runoff would be difficult in a flow line model due to flux
of melt water in and out of the path of ice flow. Another limi-
tation is that our model is isothermal. Unless ice temperature
is treated in a vertically averaged sense, resolving temper-
ature would require a 2D mesh, which would considerably
increase the computational cost of the model. We consider
the consequences of this simplification in Sect. 3.3, where
we test sensitivity to the ice hardness parameter.

The PDD scheme outlined in Sect. 2.3 does not account for
changes in surface mass balance due to orographic forcing
or other complex interactions between the ice sheet and cli-
mate system that could be captured by coupling the ice sheet
model to an Earth system model (Bahadory and Tarasov,
2018). Since our emphasis is on estimating precipitation and
surface mass balance using an inverse modeling approach,
we believe the computational cost of such an approach out-
weighs the benefits. Uncertainties related to feedbacks be-
tween ice dynamics and climate are assessed via extensive
sensitivity testing (Sect. 3.3).

2.5 Data assimilation approach

In order to assess the initial mismatch between modeled
and observed retreat histories, we perform a reference ex-
periment with 1P = 0 and 1T estimates from both Buizert
et al. (2018) and Dahl-Jensen et al. (1998). To improve the
fit to observations, we assimilate terminus position data to
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Figure 1. K marks the position of Kangerlussuaq, while D and G mark the locations of the Dye-3 and GISP2 boreholes, respectively. Northern
and southern paleo-flow lines are shown as blue and red lines running left to right. The inset shows a detailed view of the modeled region.
Modern bedrock elevation is expressed in meters above sea level. Historical moraines dating from 11.6 to 7.2 ka are indicated by labeled
lines.

obtain improved estimates of Holocene precipitation anoma-
lies. Previous modeling studies indicate that Holocene re-
treat in land-terminating sectors of the GrIS were dominated
by surface mass balance rather than ice dynamics (Cuzzone
et al., 2019; Lecavalier et al., 2014). Uncertainty in Holocene
climate, and consequently surface mass balance, is therefore
likely the primary cause of discrepancies between modeled
and observed terminus positions.

In principle, 1P , 1T , or both could be tuned to improve
the fit between modeled and observed terminus positions. We
focus on precipitation because it is more poorly constrained
than temperature. In the upcoming sections, we introduce a
framework for time-dependent data assimilation based on the
unscented transform (UT). Sections 2.5.1–2.5.2 outline the
basic tenets of the UT. Sections 2.5.3–2.5.7 outline how the
UT can be applied to estimate precipitation anomalies.

2.5.1 Overview of the unscented transform

In what follows, the notation x ∼N (x0, Px) means that x is
a normally distributed random variable with mean vector x0
and covariance matrix Px . Suppose that x ∼N (x0,Px), and
F : Rn

→ Rm is a nonlinear function. We would like to esti-
mate the distribution of the non-Gaussian random variable

y = F(x)+ ε, (5)

where ε ∼N (0,R) is the measurement noise.
In general, the non-Gaussian probability distribution for

y can be approximated using Markov chain Monte Carlo
(MCMC) methods such as the Metropolis–Hastings algo-
rithm (Chib and Greenberg, 1995). However, if the nonlin-
ear function is time-consuming to compute, generating thou-
sands of MCMC samples is often intractable. As a compu-
tationally efficient alternative to MCMC methods, Julier and
Uhlmann (1997) introduced a method for approximating the
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Table 1. Summary of primary model parameters used in this work.
Default values are provided where applicable.

Description Symbol Value Units

PDD model parameters

SD σ 5.5 C
SD, accumulation σa 5 C
Ablation rate, snow λs 5× 10−3 m w.e. C−1 d−1

Ablation rate, ice λi 8× 10−3 m w.e. C−1 d−1

Precipitation param. λP 7× 10−2 C−1

Superimposed ice fraction pmax 0.6 –

Ice flow parameters

Rate factor A 3.5× 10−25 s−1 Pa−3

Basal traction β2 1.2× 10−3 Pa a m−1

Water pressure fraction Pfrac 0.85 –

Precipitation prior

Prior kernel variance σ 2
P

5×10−4 –
Prior timescale τ 8× 103 –

Measurement prior

Prior kernel variance σ 2
`

1× 106 –

mean and covariance of y called the unscented transform
(UT) 1.

The term unscented transform has been applied somewhat
broadly to a family of methods that approximate the statis-
tical moments of a non-Gaussian random variable using a
small, deterministic set of sample points called sigma points.
It is known primarily in the context of the unscented Kalman
filter. However, the UT can be applied more generally as an
alternative to traditional MCMC methods. Sigma points and
weight sets are designed to accurately estimate moments of
a transformed random variable using a minimal number of
function evaluations.

A set of vectors, called sigma points, are chosen with the
same weighted sample mean and weighted covariance struc-
ture as x. There are many algorithms for generating sigma
points sets with different numbers of points and orders of ac-
curacy. A commonly used set of 2n+1 sigma points is given
by

χ i =


x0 i = 0

x0−
√
n+ κ[

√
Px]i i = 1, . . .,n

x0+
√
n+ κ[

√
Px]i i = n+ 1, . . .,2n

, (6)

with corresponding mean and covariance weights given by

w
(m)
i = w

(c)
i =

{
κ/(n+ κ) i = 0

1/2(n+ κ) otherwise
. (7)

The notation
[√

Px
]
i

refers to the ith row of a matrix square
root (typically computed by Cholesky factorization) of Px ,

1According to Jeffrey Uhlmann, the creator of the UT, the term
“unscented” was inspired by a stick of deodorant and has no tech-
nical significance (Julier and Uhlmann, 1997).

Table 2. Citations for the primary data sets used in this work.

Data Citation

Terminus position chronology Young et al. (2020)
Bedrock elevation Morlighem et al. (2017)
Modern ice surface velocity Mouginot et al. (2017)
Modern precipitation Box (2013)
Temperature reconstructions Buizert et al. (2018)

Dahl-Jensen et al. (1998)
Glacial isostatic adjustment Caron et al. (2018)

and κ is a free parameter controlling the scaling of the sigma
points around the mean. Julier and Uhlmann (1997) recom-
mend a default value of κ = 3− n. However, κ can be fine-
tuned to reduce prediction errors for a given problem.

The nonlinear function F is applied to each sigma point to
yield a set of transformed points

Y i = F(χ i). (8)

The mean y and covariance matrix Py of y are then estimated
as weighted sums.

y =

2n∑
i=0

w
(m)
i Y i (9)

Py =
2n∑
i=0

w
(c)
i (Y i − y)(Y i − y)

T
+R (10)

A visual example of this algorithm is shown in Fig. 2.

2.5.2 Bayesian inference using the UT

Given a measurement of yo, we would like to estimate the
posterior distribution

P(x|yo)∝ P(y|x)P(x). (11)

Using an approach called statistical linearization (Särkkä,
2013) the joint distribution for [x, y]T can be approximated
by[
x

y

]
∼N

([
x

µ

]
,

[
Px Pxy
PTxy Py

])
, (12)

with

µ=
∑
i

w
(m)
i Y i, (13)

Py =
∑
i

w
(c)
i (Y i −µ)(Y i −µ)

T
+R, (14)

Pxy =
∑
i

w
(c)
i (X i − x0)(Y i −µ)

T . (15)

Here, X i and Y i = F(X i) are sigma points and transformed
sigma points, respectively. Matrices Py and Pxy are known
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Figure 2. (a) White points are samples from a 2D Gaussian distribution x ∼N (0,I ). The red ellipse represents the covariance of the
distribution, while red points are sigma points χ i used for the unscented transform (UT). (b) White points are samples from the transformed,
non-Gaussian distribution for y = F(x)+ ε with ε ∼N (0,R). Red points are transformed sigma points Yi = F(χ i ). UT approximations
of the mean y and covariance Py of y are estimated via weighted sums of transformed sigma points.

as the measurement covariance and cross covariance, respec-
tively.

Given a measurement y0, the joint distribution then easily
yields a Gaussian approximation of the posterior distribution.
Using the following equation:

K= PxyP−1
y , (16)

we have

x′
= xo+K

[
yo−µ

]
, (17)

P′ = Px −KPyKT , (18)

where x′ and P′ are approximations of the posterior mean
and covariance, respectively. Readers familiar with Kalman
filters might recognize that x′ and P′ are computed using a
Kalman “update” step given a measurement yo and Kalman
gain K (Särkkä, 2013).

2.5.3 Assimilating glacier length observations

Time-dependent data assimilation using the UT involves run-
ning the ice sheet model with a set of different precipitation
anomaly histories, each corresponding to a different sigma
point. This is followed by a post-processing step, which in-
corporates the ice sheet terminus chronology data via a cor-
rection of the prior mean vector and covariance matrix. Im-
plementation of the unscented transform is straightforward
and easily parallelizable since each model run is indepen-
dent. In the following section, we outline the mathematical
details of this process.

We seek to find 1P histories that match the observed re-
treat history on both flow lines. An optimal solution should
reproduce the observed retreat history within uncertainty
while not overfitting the data. We discretize the problem
by estimating the precipitation anomaly at times t1, t2, . . ., tn
ranging from 11.6 to 0 ka. In practice, we use a regular
grid of 44 points, spaced roughly 250 years apart. Precip-
itation anomaly values at these time points are denoted by
1p1,1p2, . . .,1pn, respectively, and assembled in a vector

1p = [1p1,1p2, . . .,1pn]
T . (19)

Given a multivariate Gaussian prior 1p ∼N (1p0,P0),
which encodes assumptions about the structure of the pre-
cipitation anomaly (Sect. 2.5.4), we would like to estimate
the mean and covariance of the posterior distribution

P(1p|`0)∝ P(`0|1p)P (1p). (20)

Here, the measurement vector

`0 = [`1,`2, . . .,`m]
T , (21)

contains measured glacier lengths at discrete points in time.
Our procedure for defining the measurement mean yo and
covariance R are discussed in Sect. 2.5.5.

We can think of the ice sheet model as a function that maps
precipitation anomaly inputs to glacier length outputs with
some additive observation noise

`= F(1p)+ ε. (22)
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Discrete precipitation anomaly values are linearly interpo-
lated for input into the ice dynamics model, which has time
steps on the order of months. The function F returns glacier
lengths at the same m discrete times as in `0.

To predict the posterior distribution, we use the methods
outlined in Sect. 2.5.1 and 2.5.2. First, sigma points are gen-
erated based on the prior distribution for1p. To reduce com-
putational costs, we use a minimal set of n+ 1= 45 sigma
points P i with corresponding weights w(m)i = w

(c)
i gener-

ated using the method presented in Menegaz et al. (2011).
Their method includes one free parameter 0<w0 < 1, which
can be tuned to reduce prediction errors. While this method
has a lower order of accuracy than other methods, we find it
often produces comparable results to other larger sigma point
sets in practice.

Sigma points are propagated through the model to ob-
tain transformed points Li = F(P i). In this context, sigma
points P i correspond to different time-dependent precipita-
tion anomaly histories, while the transformed points Li cor-
respond to the resulting glacier length histories when those
precipitation anomalies are used as inputs (Fig. 3). The struc-
ture of the sigma points reflects the mathematical formulation
of the Menegaz et al. (2011) sigma points. Hence, they are
not merely random samples from the prior distribution.

Transformed sigma points are computed simultaneously
in parallel, using one core per sigma point. After all trans-
formed sigma points have been computed, the mean and co-
variance of the posterior distribution are estimated as out-
lined in Sect. 2.5.2. In parallel, this procedure takes roughly
the same amount of time as a single forward model run.
Unlike a standard filtering approach to data assimilation,
all measurement data are incorporated simultaneously rather
than time step by time step. For that reason, the Kalman up-
date step corrects the entire time-dependent precipitation his-
tory at once. Moreover, unlike in Kalman smoothing, we ap-
proximate the full posterior distribution rather than the prob-
ability distributions

P(1pi |`0) i = 1, . . .,n. (23)

Note that the variables 1pk with k 6= i are marginalized out
of the Kalman smoothing distributions. The use of time-
dependent sigma points distinguishes our approach from
standard Kalman filtering or Kalman smoothing approaches,
and does not rely on the assumptions that states (1pi) and
measurements (`i) satisfy the Markov property.

2.5.4 Gaussian process prior for regularization

We adopt a Gaussian process prior (Rasmussen, 2004) to
control the temporal smoothness of 1P . A Gaussian pro-
cess can be thought of as a distribution over functions. That
is, random samples from a Gaussian process are functions
rather than individual points or vectors. A collection of ran-
dom variables {f (t) : t ∈ T } is said to be drawn from a Gaus-
sian process with mean function m(·) and covariance func-

tion k(·, ·) if, for any finite set of elements t1, . . ., tn ∈ T , the
random variables f (t1), . . .,f (tn) have the distribution

f ∼N (m,K) , (24)

with

f = [f (t1),f (t2), . . .,f (tn)]
T , (25)

m= [m(t1),m(t2), . . .,m(tn)]
T , (26)

and

K=

k(t1, t1) . . . k(t1, tn)
...

. . .
...

k(tn, t1) . . . k(tn, tn)

 . (27)

The set T is called the index set, and specifies the domain of
the Gaussian process. Here, the index set represents points in
time.

The prior distribution for 1p has mean vector 1p0 and
covariance matrix P0 =K of the form shown in Eq. (27). We
use a squared exponential covariance function

k(t, t ′)= σ 2
P exp

(
(t − t ′)2

2τ 2

)
, (28)

where σ 2 is a scaling constant and τ is a characteristic
timescale. Variables1pi and1pk are more highly correlated
the closer they are in time. In effect, this acts as a form of
temporal regularization, in which smooth precipitation his-
tory functions are preferred over less smooth ones. We dis-
cuss the choice of the mean 1p0 in Sect. 3.2.

2.5.5 Measurement mean and variance

Observations of terminus position are available roughly ev-
ery 1000 years between 11.6 and 7.2 ka, with a gap from
7.2 ka to present. In contrast, model time steps are on the
order of months. Due to these disparate timescales, we use
the following procedure to estimate the measurement mean
`0 and covariance matrix R on a timescale more appropriate
for the ice sheet model.

We define a Gaussian process prior of “candidate” glacier
length histories `P (t) as follows. The mean function ̂̀P (t) is
obtained by linearly interpolating between glacier length ob-
servations. The Brownian covariance kernel for the Gaussian
process is defined by

kP (t, t
′)= σ 2

` min(t, t ′). (29)

Candidate retreat histories are generated by drawing random
samples from the Gaussian process. The Brownian covari-
ance kernel results in random glacier length histories that
are somewhat noisy but correlated over shorter timescales
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Figure 3. (a) A subset of 6 out of a total of 45 Menegaz et al. (2011)
sigma points P i representing different precipitation anomaly his-
tories. (b) Six corresponding glacier length histories Li or trans-
formed sigma points obtained by inputting the sigma points P i into
the ice dynamics model F .

(Fig. 4). Candidate length histories are resampled so that the
mean moraine formation times and uncertainties match the
observations in Young et al. (2020). Hence, highly implausi-
ble candidate histories are rejected. The average length and
variance of this culled set of samples is computed at a series
of time slices to obtain a plausible measurement mean `0 and
diagonal measurement covariance matrix R (Fig. 4).

2.5.6 Iterative optimization procedure

Optimizations are conducted in multiple passes. In the first
pass, the measurement covariance matrix R is multiplied by a
factor of 0.25 so that the measurements are initially weighted
more than the prior. This produces a reasonable fit to the
data, even given a poor initial estimate of 1P . The optimal
precipitation anomaly from a given iteration is used as the
prior mean in the next iteration. We use the same prior co-
variance matrix P0 for regularization in each iteration. After
two to three iterations, modeled and observed terminus po-
sitions match within measurement uncertainty (Sect. 3). In
our experience, the results of iteration are not dependent on
the choice of prior mean in the first iteration, but we find that
convergence can be improved by choosing a sensible initial
guess, as in Sect. 3.2.

2.5.7 Approach to sensitivity testing

As described, the data assimilation method accounts for mea-
surement but not model uncertainty. It can easily be extended
to account for uncertainties in the ice flow and PDD model
parameters. We define an augmented state vector

u= [1p, θ ]T , (30)

Figure 4. The measurement mean `0 (solid black line) and 95 %
confidence bands (gray shaded region) for the northern flow line
are estimated by generating random retreat histories with the same
mean moraine formation ages and variances as the observations.
The green, blue, and orange lines represent four random plausible
retreat histories. Red dots denote the estimated mean moraine for-
mation ages, while red lines show 95 % confidence intervals.

where θ is a vector of scalar parameters including the nat-
ural logarithm of the rate factor for ice, the basal traction
parameter, a parameter controlling precipitation scaling with
temperature, and the PDD melt rate parameters for ice and
snow

θ = [ln(A), β2, λP , λi, λs]
T . (31)

The prior distribution for the augmented state vector is given
by

u∼N
([
1po
θ0

]
,

[
P0 0
0 2

])
, (32)

where θ0 is the parameter mean vector and 2 is a diagonal
matrix containing parameter variances.

The unscented transform is applied to the augmented func-
tion

`= F̂(u)+ ε, (33)

to obtain estimates of the joint distribution for [1p, θ , `]T

and the conditional distribution for [1p, θ ]T | `0. Since pa-
rameters are included as state variables, sigma points reflect a
variety of precipitation histories and parameter sets. A model
run for a particular sigma point is initialized from an appro-
priate steady state using the parameter set for that point.

2.6 Model initialization

Model runs are initialized by tuning the precipitation
anomaly to obtain a steady state at 12.6 ka, with a margin po-
sition 5 km beyond the 11.6 ka moraine. We invert for a pre-
cipitation anomaly time series that forces a retreat of 5 km
over 1000 years to obtain an initial ice sheet configuration
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Figure 5. Initial ice sheet configurations for the northern (a) and
southern (b) paleo-flow lines. Solid black and blue lines represent
the bedrock elevation and ice surface, respectively. Moraine po-
sitions are indicated by arrows with associated ages expressed in
thousands of years before present.

with the correct terminus position at 11.6 ka (Fig. 5). This
initialization procedure is intended to ease the ice sheet out
of steady state in order to avoid strong transient effects at the
beginning of model runs.

3 Results

3.1 Reference experiment

To assess the initial misfit between modeled and observed
Holocene retreat, the model is forced with 1T reconstruc-
tions from Buizert et al. (2018) and Dahl-Jensen et al. (1998)
and a zero precipitation anomaly. Precipitation is scaled with
temperature according to Eq. (4), neglecting possible influ-
ences from changing Arctic sea ice cover, atmospheric circu-
lation, or other unknown climate factors. Modeled ice retreat
is far more rapid than observed on both flow lines (Fig. 8).
Colder temperatures during the early Holocene (Fig. 8a) lead
to a somewhat more plausible retreat history using the Dahl-
Jensen et al. (1998) temperature forcing versus the Buizert
et al. (2018) forcing. However, by 8 ka, ice has retreated in-
land of the present-day margin in both reconstructions.

3.2 Precipitation anomaly inversions

We estimate precipitation anomalies on the northern and
southern flow lines using both the Buizert et al. (2018) and
Dahl-Jensen et al. (1998) temperature reconstructions. Given
the rapid retreat in the reference experiment, we expect that a
positive precipitation anomaly will be required to match ob-
served terminus positions in the early Holocene. Therefore,
in the first round of optimization, we assume a prior mean of

the form

1P =
1
2
(1− τ̂ ), (34)

where τ̂ is a rescaled time variable that increases from zero at
11.6 ka to one at 0 ka. The results of the iterative optimization
procedure are insensitive to the prior mean selected in the
first iteration. Using a sigma point scaling parameter w0 =

0.5 for the Menegaz et al. (2011) sigma point set ensures that
a wide region around the mean is explored in each iteration.

Positive precipitation anomalies are predicted throughout
most of the Holocene for both temperature reconstructions
(Fig. 6). While differences between the northern and south-
ern flow lines are relatively minor, there are significant dif-
ferences in precipitation between the Buizert et al. (2018)
and Dahl-Jensen et al. (1998) inversions. In the Buizert et al.
(2018) inversion, the largest precipitation anomalies (up to
1 m w.e. a−1) occur during the early Holocene. Precipitation
remains relatively high during the HTM (10–6 ka) but dips
before the 8.2 ka cold event. For the Dahl-Jensen et al. (1998)
inversion, 1P is relatively low during the early Holocene
but increases during the HTM (8.5–3 ka). Unlike the Buiz-
ert et al. (2018) inversion, there is an evident trend between
HTM warming and increased snowfall (Fig. 9).

Forcing the model with mean estimated precipitation
anomalies yields plausible retreat histories on both flow
lines. Modeled and observed retreat chronologies match
within uncertainty (Fig. 8). A significant fraction of
Holocene precipitation (typically> 90 %) falls as snow.
Hence, a positive precipitation anomaly can be interpreted
directly as additional snowfall and snow accumulation. Av-
erage HTM snowfall is around 35 % higher than modern in
both temperature reconstructions (Fig. 9). However, overall
trends in Holocene snowfall differ between reconstructions.

3.3 Sensitivity testing

We assess the sensitivity of Holocene precipitation anomalies
to modeling uncertainties by performing an HTM inversion
using the methodology described in Sect. 2.5.7. To obtain
accurate uncertainty estimates, we use a fifth-order accurate
sigma point set based on Li et al. (2017) (Appendix A), as
we find that the second-order Menegaz et al. (2011) set likely
underestimates covariance. Inversions are performed on the
northern flow line using the Buizert et al. (2018) temperature
reconstruction. Model runs are initialized from steady states
around at 10.5 ka, 500 years prior to the Buizert et al. (2018)
HTM. Prior and posterior parameter values are reported in
Table 3.

Mean HTM precipitation anomalies are within
2 cm w.e. a−1 of the inversion presented in Sect. 3.2
(Fig. 10). Parameter uncertainties contribute to uncertainty
in 1P . Overall, however, temperature uncertainty is far
more significant than uncertainty in model parameters.
Differences in model initialization do not significantly
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Table 3. Summary of primary model parameters used in this work. Default values are provided where applicable. Prior parameter uncertain-
ties assumed for the sensitivity test are shown in the 2σ column.

Description Symbol Prior mean 2σ range Posterior mean Units

Ablation rate, snow λs 5× 10−3 3–7× 10−3 2.8× 10−3 m w.e. C−1 d−1

Ablation rate, ice λi 8× 10−3 6–10× 10−3 8.9× 10−3 m w.e. C−1 d−1

Precipitation param. λP 7× 10−2 5–9 ×10−2 9.8 ×10−2 C−1

Rate factor A 3.5× 10−25 2.1–5.7× 10−25 2× 10−25 s−1 Pa−3

Basal traction β2 1.2× 10−3 1.1–1.3× 10−3 1.2× 10−3 Pa a m−1

Figure 6. (a) Buizert et al. (2018) and Dahl-Jensen et al. (1998)
mean annual temperature anomalies are shown as blue and red
lines, respectively. Gray and black lines, respectively, show average
December, January, February (DJF) and June, July, August (JJA)
temperature anomalies for the Buizert et al. (2018) reconstruction.
Shaded blue and pink regions demarcate the extent of the HTM for
the Buizert et al. (2018) and Dahl-Jensen et al. (1998) reconstruc-
tions. (b) Estimated precipitation anomaly histories for the Buizert
et al. (2018) and Dahl-Jensen et al. (1998) inversions are shown by
blue and red lines, respectively. Solid lines show estimates for the
northern flow line, while dashed lines are for the southern flow line.

impact the results of the inversion. Although sensitivity tests
are initialized from steady states at 10.5 ka, while inversions
in Sect. 3.2 are initialized from a transient state at 11.6 ka,
the mean HTM precipitation anomalies are nearly identical.
Estimated posterior parameter values are also similar to the
assumed prior values (Table 3).

4 Discussion

We infer changes in Holocene precipitation in the Kanger-
lussuaq region of western Greenland using a new chronol-
ogy of ice sheet terminus position from Young et al. (2020)
and an inverse modeling procedure based on the unscented
transform. We find that scaling precipitation with tempera-
ture via the Clausius–Clapeyron equation (Eq. 4) results in
excessively fast retreat during the early Holocene for both the

Figure 7. Average precipitation (both solid and liquid) on the north-
ern flow line from the Buizert et al. (2018) reconstruction (black
line), which is based on the TraCE-21ka coupled ocean–atmosphere
general circulation model of the last deglaciation versus estimated
precipitation derived in this work based on reconciling the modeled
and observed retreat chronologies (blue line).

Buizert et al. (2018) and Dahl-Jensen et al. (1998) temper-
ature reconstructions. Thus, temperature-driven changes in
precipitation and accumulation alone are not sufficient to re-
produce the observed pattern of retreat. Inversions show that
adding precipitation throughout the Holocene and specif-
ically during the HTM yields a good fit to observations
(Figs. 6, 8). Since a large fraction of precipitation falls as
snow, a positive precipitation anomaly can be interpreted
fairly directly as an increase in accumulation beyond what
would be expected from temperature changes alone.

There are considerable differences in predicted precipita-
tion anomalies depending on the assumed temperature his-
tory. Inversions using the Buizert et al. (2018) temperature
reconstruction show generally decreasing snowfall through
the Holocene. Due to high snowfall in the early Holocene
(nearly 100 % higher than modern) and a dip in HTM pre-
cipitation associated with the 8.2 ka cold event, average
HTM snowfall roughly matches the overall Holocene aver-
age, which is about 35 % above modern. In contrast, inver-
sions using the Dahl-Jensen et al. (1998) temperature recon-
struction show a clear trend between HTM warming and in-
creased snowfall (Fig. 9). This trend could be interpreted as
a transient increase in snowfall due to reduced Arctic sea ice
cover or changes in atmospheric circulation during the HTM.
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Figure 8. Modeled retreat histories for the northern (a) and southern
(b) flow lines using a variety of 1T and 1P forcings. Blue and
red lines show modeled retreat using Buizert et al. (2018) and Dahl-
Jensen et al. (1998) temperature forcings, respectively. Dashed lines
show the results of forcing the model with1P = 0, while solid lines
show the results of using optimal estimated precipitation anomalies.
Black diamonds and bars show reconstructed terminus positions,
along with 95 % confidence intervals. Shaded blue and pink regions
demarcate the extent of the HTM for the Buizert et al. (2018) and
Dahl-Jensen et al. (1998) reconstructions, respectively.

Figure 9. HTM snowfall averaged across the northern and south-
ern flow lines for the Buizert et al. (2018) (solid blue line) and
Dahl-Jensen et al. (1998) (solid red line) inversions. Shaded blue
and pink regions demarcate the extent of the HTM for the Buizert
et al. (2018) and Dahl-Jensen et al. (1998) reconstructions, respec-
tively. Dashed lines show pre-HTM, HTM, and post-HTM average
snowfall for each inversion.

A large positive 1P correction during the early Holocene
in the Buizert et al. (2018) inversion likely reflects the de-
pendence of precipitation on temperature. Low temperatures
during the early Holocene result in low precipitation. With-
out an additional moisture source to increase snowfall, the ice
sheet retreats far more rapidly than observed. In the Dahl-
Jensen et al. (1998) reconstruction, warming occurs more
gradually in the early Holocene. Accumulation and ablation

Figure 10. The blue line and shaded region show the estimated
mean 1P and 95 % confidence bands, respectively, for the sensi-
tivity test, accounting for uncertainty in a number of ice flow and
PDD model parameters. The dashed black line shows the mean es-
timated 1P from a previous inversion assuming no uncertainty in
model parameters.

are more closely balanced, resulting in a smaller precipitation
anomaly correction from 11.6 to 10 ka.

When interpreting results of precipitation inversions, it is
important to consider that the Buizert et al. (2018) and Dahl-
Jensen et al. (1998) reconstructions are obtained using differ-
ent methodologies. The Greenland-wide Buizert et al. (2018)
reconstruction is obtained by merging the TraCE-21ka cou-
pled ocean–atmosphere general circulation model of the last
deglaciation (Liu et al., 2009; He et al., 2013) with borehole
temperature reconstructions at GISP2, NGRIP, and NEEM.
Our estimated precipitation history in the Kangerlussuaq re-
gion is significantly different from TraCE-21ka, particularly
during the early Holocene and parts of the HTM (Fig. 7). In
contrast to Buizert et al. (2018), the Dahl-Jensen et al. (1998)
temperature reconstruction at GRIP offers only a pointwise
estimate containing no explicit spatial or seasonal informa-
tion.

While the Buizert et al. (2018) temperature reconstruction
is arguably more suitable for our purposes, since it resolves
spatial and seasonal patterns in1T , there is still considerable
uncertainty in temperature, particularly near the ice margins.
Despite this, there is some consensus between the Buizert
et al. (2018) and Dahl-Jensen et al. (1998) inversions. For
example, average HTM snowfall is roughly 35 % higher than
modern in both cases (Fig. 9).

Predicted HTM precipitation anomalies are not particu-
larly sensitive to uncertainties in the ice sheet or PDD model
parameters or the initialization procedure. In the sensitivity
test presented in Sect. 3.3, model runs are initialized using
steady states at 10.5 ka. Runs in the full Holocene inversions
in Sect. 3.2, which use fixed parameter sets, are initialized
from a transient state at 11.6 ka. Even considering these dif-
ferences in model initialization, estimated HTM precipitation
anomalies are comparable in all inversions (Fig. 10). Addi-
tionally, 1P does not appear to be sensitive to uncertainties
in bedrock geometry, as inversions conducted with a static
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bedrock geometry yielded similar results to inversions ac-
counting for isostatic uplift.

5 The unscented transform as a data assimilation
method

Significant strides have been made in time-dependent data
assimilation in glaciology using adjoint-based methods.
Goldberg and Heimbach (2013) infer the initial thickness and
basal conditions for a synthetic ice sheet given snapshots of
ice thickness at discrete times. Larour et al. (2014) demon-
strate a data assimilation framework within the Ice Sheet Sys-
tem Model (ISSM), capable of obtaining temporal estimates
of surface mass balance and basal friction given surface al-
timetry.

In contrast to adjoint-based approaches, the unscented
transform (UT) does not require computing the Jacobian or
Hessian of an objective function or a special checkpoint-
ing code for time-dependent problems. Adjoint-based meth-
ods are advantageous for extremely high-dimensional prob-
lems, as the required number of model runs is independent of
the number of parameters. However, the UT provides more
accurate uncertainty estimates than linearization (Julier and
Uhlmann, 1997). Hessian information can be used to im-
prove uncertainty estimates (Isaac et al., 2015). However, this
methodology uses purely local approximations to the non-
linear function around the maximum a posteriori probability
(MAP) estimator, which may affect the quality of uncertainty
estimates.

The unscented transform has advantages over Markov
chain Monte Carlo methods for inference problems with a
relatively small number of unknown parameters (< 1000 or
so parameters). In this work, we optimize for n= 44 pa-
rameters representing precipitation anomaly values at dis-
crete points in time. Since function evaluations at each
sigma point are independent, the UT is trivially paralleliz-
able. Consequently, on a high-end desktop, the iterative op-
timization process presented in Sect. 2.5.6 takes roughly the
same amount of time as performing three successive forward
model runs.

MCMC methods can be parallelized to some extent by uti-
lizing multiple interacting Markov chains running in parallel
(e.g., Chowdhury and Jermaine, 2018) or by combining sam-
ples from independent chains in a post-processing step (e.g.,
Neiswanger et al., 2013). Nonetheless, computational bottle-
necks persist in MCMC methods since individual Markov
chains are inherently serial. Consequently, UT approxima-
tions to the posterior distribution can be generated hundreds
to thousands of times faster for small parameter sets.

A drawback of the UT is that its accuracy is inherently
limited by using a predetermined number of sample points.
In our case, for example, using a minimal set of n+ 1 sigma
points for n unknown parameters yields accurate mean esti-
mates but appears to underestimate covariance when com-

pared to a higher-order cubature method. Without testing
multiple sigma point sets and scaling parameters, it can be
difficult to assess the accuracy of UT estimates of the poste-
rior. MCMC methods, in contrast, can provide arbitrarily ac-
curate estimates of the posterior given sufficient computation
time. Moreover, they can resolve the full posterior distribu-
tion rather than computing its moments as in the UT.

An alternative to traditional MCMC methods is to use sur-
rogate models or emulators (Gong and Duan, 2017). Here,
a computationally inexpensive surrogate model is trained to
approximate the output of a more complex model function.
The surrogate model can then be used in place of the full
model for the purpose of MCMC sampling, significantly re-
ducing the overall computational cost. A few types of surro-
gate models have already been applied to glaciological prob-
lems including deep neural networks (Tarasov et al., 2012)
and Gaussian processes (e.g., Chang et al., 2016; Pollard
et al., 2016).

Surrogate models require an initial training phase. Pol-
lard et al. (2016), for example, perform 625 ice sheet model
runs using combinations of four unknown simulation param-
eters. A Gaussian process surrogate model is then fitted to
this training data in order to interpolate the model in parame-
ter space for inference. The number and selection of training
points significantly affects the performance of the surrogate
model.

Interestingly, there is a strong connection between the un-
scented transform and Gaussian process surrogate models.
It can be shown that sigma points for the UT are optimal
training points for a Gaussian process surrogate model in the
sense of minimizing the variance of the expected value of
the posterior distribution (Särkkä et al., 2016). While the de-
tails are technical, one can think of UT sigma points as op-
timal training points given that (i) the prior distribution is a
multivariate Gaussian and (ii) the Gaussian process surrogate
model has a polynomial covariance function.

5.1 Modeling conclusions

Our work follows a number of previous observationally con-
strained paleo-ice sheet modeling studies (e.g., Tarasov and
Peltier, 2002; Lecavalier et al., 2014; Calov et al., 2015). Per-
haps most relevant to this work is Lecavalier et al. (2014),
who model the deglaciation of Greenland from the Last
Glacial Maximum (LGM) using a 3D thermomechanically
coupled ice sheet model. Model runs in Lecavalier et al.
(2014) are informed by constraints on relative sea level, ice
core thinning, and LGM ice sheet extent.

In contrast to previous modeling studies, the compu-
tational efficiency of the flow line model outlined in
Brinkerhoff et al. (2017) makes time-dependent data-
assimilation, sensitivity testing, and robust uncertainty esti-
mation tractable. Sensitivity testing indicates that estimated
precipitation is insensitive to parameter uncertainties in the
PDD and ice dynamics models. This conclusion supports ear-
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lier findings showing that modeled Holocene retreat in land-
terminating sectors of the GrIS is more sensitive to surface
mass balance than other factors like the flow law or basal
sliding (Cuzzone et al., 2019; Lecavalier et al., 2014).

A drawback of our modeling approach is that we cannot
account for inherent map plane effects such as changes in ice
flow direction, or convergent or divergent flow in or out of the
assumed flow path. These factors likely contribute to small
discrepancies in estimated precipitation anomalies between
the northern and southern flow lines (Fig. 6). Beyond com-
putational efficiency, there are number of reasons why a flow
line model is appropriate for our purposes. The modern flow
field near Kangerlussuaq can be characterized by relatively
simple east-to-west flow, and there is an absence of strongly
convergent flow into outlet glaciers. Given the low bedrock
relief in the region, and the surface-mass-balance-dominated
retreat pattern (Van Tatenhove et al., 1996; Cuzzone et al.,
2019), it is reasonable to assume that the flow regime was
similar during the Holocene.

In this work, we do not treat temperature as a random
variable with its own covariance structure. However, differ-
ences between the Buizert et al. (2018) and Dahl-Jensen et al.
(1998) inversions indicate that temperature is the dominant
source of uncertainty in 1P . This result underscores the im-
portance of generating improved, regionally specific, temper-
ature reconstructions constrained by proxy records. More re-
gionally specific estimates of temperature would help to de-
crease uncertainty in the estimated precipitation history.

Despite lingering uncertainties, our modeling results indi-
cate that the Holocene thermal maximum was accompanied
by elevated snowfall, which slowed ice retreat in the Kanger-
lussuaq region of the GrIS. Inversions conducted using both
the Buizert et al. (2018) and Dahl-Jensen et al. (1998) tem-
perature reconstructions show average HTM snowfall around
35 % higher than modern. More specifically, in the Dahl-
Jensen et al. (1998) inversion, there is a clear trend between
HTM warming and increased accumulation, which could be
interpreted as transient increase in precipitation due to re-
duced Arctic sea ice cover or changes in atmospheric circu-
lation.
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Appendix A: A higher-order method for estimating
covariance

Estimating the mean and covariance of the posterior distribu-
tion requires approximating Gaussian-weighted expectation
integrals of the form

E[F(x)] =
∫
Rn

F(x)N (x | 0,I ) dx, (A1)

via numerical integration rules, also called cubature rules,
which approximate the expectation integral as a weighted
sum

E[F(x)] ≈Q[F(x)] =
N∑
i=1

wiF(χ i). (A2)

Here, the notation N (x | 0,I ) refers to a Gaussian probabil-
ity density function evaluated at the point x. General Gaus-
sian weight functions N (x | x0,Px) are handled by changing
variables. Letting

√
Px be a matrix square root of the covari-

ance matrix, we have∫
Rn

F(x)N (x | x0,Px) dx

=

∫
Rn

F(x0+
√

Px ξ)N (ξ | 0,I ) dξ . (A3)

Cubature rules, including the unscented transform, are
constructed to exactly integrate polynomial functions F(x)
up to a certain degree d . Suppose that x = [x1,x2, . . .,xn]

T

is a point in Rn. A monomial of degree d refers to a function
x
i1
1 x

i2
2 . . .x

in
n , where the exponents are nonnegative integers

that sum to d . A polynomial of degree d is a linear combina-
tion of monomials with highest degree d.

Li et al. (2017) describe a fifth-order cubature rule us-
ing fully symmetric sets of sigma points. A set X =
{χ1,χ2, . . .,χN } is fully symmetric if it is closed under
the operations of coordinate position and sign permutations.
Their cubature rule has the form

Q[F(x)] = w1F(0,0, . . .,0)

+w2
∑

full sym
F(λ,0, . . .,0)

+w3
∑

full sym
F(λ,λ,0, . . .,0). (A4)

The notation
∑

full symF(·) refers to a sum of the function F
evaluated at all points in the fully symmetric set generated by
the given point.

Due to the symmetry of the sigma points and the Gaussian
weight function, all moments (that is, integrals of Gaussian-
weighted monomial functions) containing an odd order expo-
nent are automatically satisfied. Exploiting this fact and the

symmetries of the sigma points, it can be shown that satisfy-
ing the remaining moment constraint equations up the fifth
order reduces to solving the following system of four equa-
tions in four unknowns w1,w2,w3 and λ

E [1]= w1+ 2nw2+ 2n(n− 1)w3,

E
[
x2
i

]
= 2λ2w2+ 4(n− 1)λ2w3,

E
[
x4
i

]
= 2λ4w2+ 4(n− 1)λ4w3,

E
[
x2
i x

2
j

]
= 4λ4w3. (A5)

By slightly modifying this cubature rule

Q[F(x)] = w1F(0,0, . . .,0),

+w2
∑

full sym
F(λ1,0, . . .,0),

+w3
∑

full sym
F(λ2,λ2,0, . . .,0), (A6)

we introduce a new free parameter λ2 that allows scaling of
the sigma points about the mean. The new moment constraint
equations become

E [1]= w1+ 2nw2+ 2n(n− 1)w3,

E
[
x2
i

]
= 2λ2

1w2+ 4(n− 1)λ2
2w3,

E
[
x4
i

]
= 2λ4

1w2+ 4(n− 1)λ4
2w3,

E
[
x2
i x

2
j

]
= 4λ4

2w3. (A7)

Using E [1]= 1, E
[
x2
i

]
= 1, E

[
x4
i

]
= 3, and E

[
x2
i x

2
j

]
= 1

we obtain

λ1 =
λ2
√
n− 4

n− λ2
2− 1

,

w2 =
4− n
2λ4

1
,

w3 =
1

4λ2
2
,

w1 = 1− 2nw2− 2n(n− 1)w3, (A8)

with n > 4 and n− λ2
2− 1 6= 0. A drawback of the original

cubature rule, as well our modified version here, is that it
requires negative weights, which can lead to numerical insta-
bility.
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