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Abstract. Spatial variability in snowpack properties nega-
tively impacts our capacity to make direct measurements of
snow water equivalent (SWE) using satellites. A comprehen-
sive data set of snow microstructure (94 profiles at 36 sites)
and snow layer thickness (9000 vertical profiles across nine
trenches) collected over two winters at Trail Valley Creek,
NWT, Canada, was applied in synthetic radiative transfer
experiments. This allowed for robust assessment of the im-
pact of estimation accuracy of unknown snow microstruc-
tural characteristics on the viability of SWE retrievals. Depth
hoar layer thickness varied over the shortest horizontal dis-
tances, controlled by subnivean vegetation and topography,
while variability in total snowpack thickness approximated
that of wind slab layers. Mean horizontal correlation lengths
of layer thickness were less than a metre for all layers. Depth
hoar was consistently ∼ 30 % of total depth, and with in-
creasing total depth the proportion of wind slab increased at
the expense of the decreasing surface snow layer. Distinct
differences were evident between distributions of layer prop-
erties; a single median value represented density and spe-
cific surface area (SSA) of each layer well. Spatial variability
in microstructure of depth hoar layers dominated SWE re-
trieval errors. A depth hoar SSA estimate of around 7 % un-
der the median value was needed to accurately retrieve SWE.
In shallow snowpacks < 0.6 m, depth hoar SSA estimates of

±5 %–10 % around the optimal retrieval SSA allowed SWE
retrievals within a tolerance of ±30 mm. Where snowpacks
were deeper than ∼ 30 cm, accurate values of representative
SSA for depth hoar became critical as retrieval errors were
exceeded if the median depth hoar SSA was applied.

1 Introduction

Seasonally snow-covered non-glaciated Arctic terrestrial en-
vironments north of tree lines cover approximately 5.05×
106 km2 (Walker et al., 2005). Layering of snow, where dis-
tinct differences in snow properties exist between vertically
adjacent strata (Fierz et al., 2009), is spatially heterogeneous
in Arctic regions with a dense wind slab layer overlaying
less-dense depth hoar (Benson and Sturm, 1993; see Fig. 1;
Derksen et al., 2009). As depth hoar and wind slab have
strongly diverging microwave scattering properties (Hall et
al., 1991), the relative proportion of each strongly influences
Ku-band radar backscatter (Yueh et al., 2009; King et al.,
2015, 2018). Knowledge of how layers vary within Arc-
tic snowpacks is therefore critical to the assessment of un-
certainty in radar-based retrievals of snow water equivalent
(SWE) and forward models of snow radiative transfer.
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Figure 1. Locations of snow trenches excavated in April 2013 are
indicated by the pink squares. Locations of snow pits excavated
in April 2013 and March 2018 are indicated by the blue crosses.
Brown, yellow, green, and blue colours on the map denote the dif-
ferent terrain types identified by the topographic position index.
In 2018, five additional pits were located on Husky Lakes (not on
map), approximately 5 km to the east of the presented domain.

Subnivean topography, wind redistribution, and vertical
thermal gradients dominate the formation of layers in Arc-
tic snowpacks (Benson and Sturm, 1993; Sturm and Benson,
2004). Grassy tussocks are common in tundra environments,
allowing early-winter snowfall to collect in wind-protected
hollows between tussock mounds. Strong thermal gradients
in shallow early-season snowpacks cause extreme thermal
metamorphism required to initiate growth of large depth hoar
crystals and chains (Sturm et al., 1997). Growth of depth hoar
in this lowest layer of the snowpack then continues through-
out the winter, usually more so than in any other snow-
pack layer as it is subject to strong thermal gradients for the
longest period of time. Subsequent snowfall events through-
out the winter contribute to the development of high-density
layers of wind-compacted snow crystals through aeolian-
driven redistribution (Derksen et al., 2014). These wind-
compacted layers become prominent when the total snow
depth exceeds the height of the tussocks and the snow sur-
face is fully exposed to winds. Tundra shrubs have a similar
influence on snow catchment and metamorphism: reducing
local wind velocities and providing shelter for early-season
snow deposition, which favours development of depth hoar
(Sturm et al., 2001).

Highly heterogeneous microstructural properties of snow-
packs are problematic for retrieval of snow water equiva-
lent (SWE) via remote sensing. While passive microwave re-
mote sensing historically has provided estimates of global
SWE distributions (Kelly, 2009), much uncertainty exists,
largely due to the impact of seasonal snow microstructural
evolution on microwave scattering in SWE retrieval mod-

els (e.g. Derksen et al., 2014). However, recent experimen-
tal work using Ku-band radar suggests using two frequen-
cies, each with different sensitivities to wind slab and depth
hoar, may mitigate this primary source of uncertainty (King
et al., 2018; Lemmetyinen et al., 2018). In order to apply
this two-frequency approach in a distributed manner, we need
an understanding of layer length scales: horizontal distances
over which the physical properties of each layer decouple
and become statistically uncorrelated to each other. The spa-
tial scales of interest depend on the application. For SWE
distribution within tundra catchments, it is critical to under-
stand layer variability at the landscape scale (10–1000 m),
where different topographic units (e.g. plateau, slope and val-
ley) are subject to different snowdrift, scour, and sublima-
tion processes. Understanding this resolution of landscape-
scale variability in snow properties (layers, density, and
microstructure) is particularly relevant to future active mi-
crowave satellite mission concepts, as well as distributed hy-
drological modelling which uses meteorological inputs from
high-resolution numerical weather prediction models. While
the range of spatial variability in snowpack layering and
snowpack properties can be estimated from multiple one-
dimensional profiles distributed throughout a catchment, this
alone will not adequately describe variability in horizontal
correlation length scales of snowpack properties. Knowing
how these correlation length scales change between differ-
ent landscape topographic units can help upscale centimetre-
scale field measurements of snow properties characterising
spatial uncertainty in the statistical distributions of param-
eters with strongly different microwave-scattering capabili-
ties. Such statistical distributions could then be used in a ra-
diative transfer model, such as the recently developed Snow
Microwave Radiative Transfer model (SMRT) (Picard et al.,
2018), to address how accurately the information on snow-
pack properties needs to be known to inform a viable SWE
retrieval. Consequently, for the first time, this opens up the
potential to explore how variability in snow layers might im-
pact radar backscatter and retrievals of SWE from backscat-
ter. To do so, this study will do the following:

1. quantify the spatial variability in snow depth and layer
thickness for surface snow, wind slab, and depth hoar
within the Trail Valley Creek catchment;

2. determine representative snow microstructural parame-
ters, specifically specific surface area (SSA) and den-
sity, and their associated variability for individual tun-
dra snowpack layers;

3. use these relationships to construct a series of syn-
thetic snowpacks with a realistic range of parameters
to quantify the impact of spatial uncertainty in snow
microstructural parameters on SWE retrieval accuracy
from radar backscatter at two frequencies (13.4 and
17.2 GHz) with SMRT.
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2 Methods

2.1 Field data

Field data presented in this study were collected between
4–9 April 2013 and 14–22 March 2018 within the research
basin of Trail Valley Creek (TVC), NWT, Canada (68◦44′ N,
133◦33′W), located at the southern edge of the Arctic tundra.
Measurements of snow microstructure were made mainly on
graminoid tundra, which dominates the land cover, as well
as in patches of taller shrubs (willow or alder) found on
south-facing slopes and in proximity to drainage channels
and water features (Marsh et al., 2010). Snow pit and snow
trench locations (Fig. 1) were focussed on gently undulating
(< 5◦ slope angle) upper tundra areas that were exposed to
high winds while also incorporating some slope and valley
bottom areas, representative of more sheltered areas in the
catchment. Hourly air temperatures were measured through-
out both winters to provide temporal context of freeze-up,
mid-winter melt events, and snowmelt onset.

2.1.1 Snowpack properties

To investigate the spatial variability in snowpack layering
within the snowpack at TVC, nine snow trenches each rang-
ing in length from 5 to 50 m were excavated in 2013. Of the
nine snow trenches, one 50 m (trench 4) and six 5 m trenches
were located in gently undulating upper tundra plateau ar-
eas, while two 5 m trenches (trench 6 and 7) were located
within valley bottoms (Fig. 1). Following the methods of
Tape et al. (2010), at each trench, near-infrared (NIR) pho-
tography was used to quantify two-dimensional changes in
snowpack layering. The positions of all layer boundaries
were subsequently geolocated at 1 cm resolution through-
out the length of each trench (Watts, 2015); a 5 m trench
therefore provides 500 vertical profiles of snowpack layer-
ing. Within each 5 m trench section (including ten 5 m sec-
tions of the 50 m trench), measurements of density and spe-
cific surface area (SSA) were made in a single vertical profile
and subsequently assigned to individual layers, which were
assessed through visual inspection and hardness. SSA was
measured using both an InfraRed Integrating Sphere (IRIS)
(Montpetit et al., 2012) for the trenches and pits in 2013
and 2018 and an A2 Photonic Sensors IceCube measure-
ment system for the pits in 2018; both measurement systems
followed principles presented in Gallet et al. (2009). Layers
were often discontinuous due to the spatial variability in sub-
nivean topography and aeolian processes. One-dimensional
vertical profiles of snow properties, in combination with in-
spection of two-dimensional NIR imagery, allowed individ-
ual layers to be manually classified into one of three mi-
crostructure types: surface snow (SS), wind slab (WS), or
depth hoar (DH) (Fig. 2). While the surface snow layer is of-
ten of low density (< 100 kg m−3) and dominated by decom-
posing and fragmented precipitation particles, surface snow

may have been subject to metamorphism or melt, creating
rounded grains and melt forms which can increase the layer
density (100–300 kg m−3). Depth hoar and wind slab layer
properties followed the classifications of Fierz et al. (2009).
Spatial variability in layer thicknesses was assessed using
unidirectional semivariogram to estimate correlation length
scales of layer thicknesses: horizontal distances over which
the thickness of a layer along a trench becomes statistically
uncorrelated. The range to sill of a semivariogram, using a
stable bounded fitting model, was used to quantify this dis-
tance for each layer (SS, WS, DH) in all trenches.

In addition to trenches, measurements of the same snow
properties were made in 85 snow pits at 54 locations through-
out TVC, where each in situ snow measurement was at-
tributed to one of three layers. Whilst only trench data were
used in the semivariogram analysis, data from the trenches
and pits in 2013 and the pits in 2018 were combined to de-
termine layer thickness as a function of snow depth and the
microstructural properties of the snow within those layers.

2.1.2 Land surface slope classification

To classify the surface topography of TVC by slope position
and landform category (Fig. 1), a topographic position index
(TPI) was calculated following the methods of Weiss (2001).
A 1 m resolution digital elevation model (DEM) was used,
created during snow-free conditions in August 2008 (Hop-
kinson et al., 2011), with an Optech ALTM 3100 lidar.
The absolute vertical accuracy of the 1 m DEM was at best
±25 cm, and the horizontal positional accuracy was±50 cm.
The TPI values were combined with slope information to
classify the study domain into the following landforms: flat
upland plateau (< 5◦), flat valley bottom (< 5◦), slopes (>
5◦), lakes (lake extent was extracted from 1 : 50 000 Cana-
dian topographic maps).

2.1.3 Airborne lidar snow depths

A spatially continuous surface of snow heights in TVC was
measured in April 2013 using an airborne laser-scanning
Riegl LMS-Q240in lidar (Johnson et al., 2013). The lidar,
flown at 500 m above ground level, had a laser shot footprint
diameter of ∼ 20 cm, which was aggregated to a 1m× 1 m
surface height product across a swath width of 500 m. Typ-
ical measurement errors associated with this system were
up to ±20 cm (Johnson et al., 2013). Airborne lidar snow
depth was then estimated based on elevation differences be-
tween these snow surface heights and the snow-free summer
2008 DEM data (Hopkinson et al., 2011); see Sect. 2.1.2. The
1m× 1 m airborne lidar snow depth raster was then resam-
pled to 10m× 10 m resolution using a cubic interpolation.

In a subset of all lidar snow depths, King et al. (2018)
demonstrated that lidar and in situ measured snow depths
closely agreed in relatively flat, open environments. Lidar
and in situ measured mean snow depths in upland tundra ar-
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Figure 2. (a) Stitched NIR images of the trench face (trench 10). (b) Layer boundaries derived from NIR imagery; blue lines highlight
boundaries between snow and air, surface snow and wind slab, and wind slab and depth hoar. The brown area is subnivean soil or vegetation.
Symbols describe snow type following the classification by Fierz et al. (2009).

eas of TVC were shown to have a RMSE of 8.5 cm (King
et al., 2018), while additional unpublished analysis showed
a ∼ 14 cm positive bias of lidar snow depths over the whole
TVC domain.

2.2 SWE retrieval errors using SMRT

The Snow Microwave Radiative Transfer (SMRT) backscat-
ter and emission model (Picard et al., 2018) was used to il-
lustrate potential retrieval error from a dual Ku-band radar
system (cf. King et al., 2018; Lemmetyinen et al., 2018).
Three layers were assumed within the snowpack for snow
up to 0.7 m in depth: depth hoar (DH), wind slab (WS),
and surface snow (SS), with layer thickness dependent on
total snow depth and based on relationships derived from
snow trenches. For deeper snow, generally only wind slab
and depth hoar layers were found (see Sect. 3.1), so only two
layers were simulated for snow depths greater than 0.7 m.
While ice lenses were occasionally present in the 2018 snow-
pack and volumetric field samples of snow density and SSA
contained sections of ice lenses, their impact on backscatter
was not explicitly modelled by SMRT. There is a need for de-
tailed field measurements of ice lenses coincident with radar
measurements as a priority for future SMRT evaluations. Ice
lenses may be simulated in SMRT in terms of dielectric dis-
continuities, although coherent effects as a result of ice lens
thickness are yet to be included.

A set of three experiments was performed that considered
spatial variability in SSA in each of the DH, WS, and SS lay-
ers in turn. Synthetic scenarios were used to simulate “truth”
backscatter of the scene, with information from observed
spatial variability in microstructural properties. Whilst spa-
tial variation in SSA was represented in one layer in the truth
simulations, horizontally homogeneous snow was assumed

for all layers in the retrieval, with snow depth retrieved as
a function of the estimated snow microstructure. Davenport
et al. (2008) used a similar synthetic scene methodology to
quantify soil moisture error from passive microwave obser-
vations.

For simulation of the truth backscatter, density was held
constant for each layer. SSA observations were classified by
five equally sized intervals across the observed SSA range.
Five intervals were chosen to describe the SSA distribution
adequately whilst maintaining simplicity. Truth scenes were
constructed from five backscatter simulations and aggregated
with weights taken from the histogram frequency:

ϕtru
k =

∑5
n=1

wnϕn,k, (1)

where ϕtru
k is the aggregated truth backscatter at frequency k

and ϕn,k is the backscatter simulated for a three-layer snow-
pack with nth SSA value. To isolate the impact of individ-
ual layers, SSA in two layers was kept spatially constant
whilst being allowed to vary in the third layer, as illustrated
in Fig. 3. The weights, wn, derived from the histogram fre-
quencies fn for each SSA interval (1≤ n≤ 5) are

wn =
fn

6fn

. (2)

Aggregated together, the set of five simulations represents
spatial variability in that the frequency and weights represent
the proportion of a scene that might take each SSA value.

In retrieval snowpack scenes, SSA was assumed constant
within layers, as shown by Fig. 3. For the spatially con-
stant layers, the same SSA was used in both truth and re-
trieval simulations. For the layer with spatially varying SSA,
a range of values was used to represent an unknown homo-
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Figure 3. Illustration of three-layer (SS: surface snow; WS: wind
slab; DH: depth hoar) truth scene with spatial variability in spe-
cific surface area of WS (SSAWSa to SSAWSe) and the retrieval
scene with horizontally uniform SSA. Spatial distribution in truth
SSA given by observed spatial distribution at TVC over two win-
ters (2013 and 2018).

geneous SSA. As such, the retrieval does not attempt to re-
trieve SSA directly, but comparisons of the SWE retrieval
errors for a given true snow depth allow for selection of the
SSA that best represents the spatially variable truth. Simula-
tions with a range of estimates of unknown SSA were used
to determine the backscatter of homogeneous scenes and re-
trieved depth (subsequently converted to SWE) identified as
the minimum of a cost function. Median observed layer den-
sities used for the truth simulations were also used for the
retrieval backscatter and SWE calculations. For these sim-
ulations, a simplified version of the cost function given in
Lemmetyinen et al. (2018) was used (Eq. 3). From the op-
timal dual-frequency approach to SWE retrieval determined
by Lemmetyinen et al. (2018), the retrieval algorithm in this
study was based on the backscatter difference at two frequen-
cies (13.4 and 17.2 GHz at VV polarisation) and a fixed inci-
dence angle of 35◦. Retrievals followed an equivalent SMRT
model configuration to the forward modelling of Lemmetyi-
nen et al. (2018) and King et al. (2018), i.e. an exponential
snow microstructure model and the improved Born approxi-
mation electromagnetic theory. The model approaches differ
in the solution of the radiative transfer equations: a multi-
flux solver (Picard et al., 2004, 2014) was used in the SMRT
simulations, whereas a six-flux solver was used in King et
al. (2018).

Perfect radar observations were assumed (i.e. no noise
added to truth backscatter), and an isothermal temperature of
265 K and constant soil backscatter contribution of −13 dB
were assumed in both truth and retrieval simulations. The as-
sumed soil properties are for illustration purposes only, given
the lack of bare frozen soil backscatter observations at this
frequency. This appears to be a plausible value from the snow
to snow-free transition period shown in Scipal et al. (2002),
and an alternative soil backscatter of−10 dB was used to test
the robustness of conclusions from the −13 dB simulations;
however, a full error budget study should consider a range of
values. The simplified cost function was

CF(d, SSA) =
[
ϕsim

diff (d, SSA, x1, . . .,xm) − ϕtru
diff

]2
, (3)

where ϕdiff is the backscatter difference ϕ17.2 VV− ϕ13.4 VV,
d is snow depth, the estimated microstructure is determined
from the SSA, and xm represents other parameters assumed
to be known exactly, i.e. the same as used in the truth sim-
ulations. For these simulations the exponential autocorrela-
tion length used in the SMRT simulations (both truth and re-
trieval) is calculated with Eqs. (5) and (10) of Mätzler (2002).

In summary, the methodology was used to isolate the im-
pact of the spatial variability of SSA in a single layer on
retrieval accuracy from all other sources of retrieval error.
Therefore, the following was assumed: (1) perfect radar ob-
servations, (2) perfect knowledge of snow layer densities,
(3) perfect knowledge of the soil, (4) correct transformation
of SSA into exponential autocorrelation length, and (5) per-
fect knowledge of SSA in all but one layer in the snowpack.
Single (homogenous) values were used to represent the un-
known SSA of the remaining layer. Only depth is estimated
by the retrieval, which is then transformed to SWE via the
known densities to compute the SWE retrieval error.

3 Results

3.1 Snowpack properties

The winter of 2017–2018 was warmer than 2012–2013
(Fig. 4). Similar air temperatures were observed in both win-
ters from October through November, but December through
March in 2017–2018 was on average 9 ◦C warmer. Impor-
tantly, during 2017–2018 there were three short (< 1 d) pe-
riods where mid-winter air temperatures increased above
−5 ◦C and approached melting point. The warm period on
15 January 2018 coincided with reports of light freezing
rain at Inuvik airport, the nearest weather observing station
49 km away. Therefore, while similar meteorological condi-
tions influenced early-season winter snowpack accumulation
and depth hoar metamorphism, a spatially extensive ice lens
(> 1 mm thick) was formed in the 2017–2018 snowpack be-
cause of the January warm event. Ice lenses provide potential
to restrict vertical vapour diffusion, although such impacts
may be limited due to the additional presence of a dense wind
slab layer of already tightly packed snow grains. Ice lens for-
mation can also restrict the flux of blowing snow, reducing
the potential for subsequent drifting. Consequently, through
the aggregation of snowpack measurements over two winters
with strongly differing meteorological conditions, the result-
ing data set provides a highly valuable description of tundra
snowpack properties in a warming Arctic.

Figure 5 compares statistical distributions of snow depths
from lidar in three topographically delimited subdomains
(Fig. 1: flat upper plateau, slope, and flat valley bottom) of
the TVC catchment. Median snow depths were very sim-
ilar (0.60–0.65 m) across all subdomains. The interquartile
range of snow depths on slopes was largest, reflecting en-
hanced drift processes that preferentially redistributed SWE
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Figure 4. Air temperature at Trail Valley Creek during winter 2012–
2013 and 2017–2018.

to wind-sheltered areas of sloping terrain. However, simi-
larity in frequencies of snow depths greater than 0.9 m be-
tween flat upper plateau and sloped subdomains suggested
preferential SWE deposition also occurred over relatively flat
(< 5◦) terrain, in addition to drifts in leeward slopes aligned
perpendicular to prevailing northwesterly winds (King et al.,
2018). This is of importance as the flat upland plateau, where
the majority of trenches and pits were located, was the areally
dominant subdomain (66 % of the total TVC lidar coverage
in contrast to 19 % slopes and 8 % flat valley bottom). Conse-
quently, field measurements well represented both the range
and frequency of the total TVC lidar snow distribution. This
type of exposed, flat, largely unforested terrain is represen-
tative of pan-Arctic tundra environments, allowing potential
for implications to be drawn beyond TVC.

Thickness of tundra snowpack layers was spatially vari-
able and frequently laterally discontinuous. Layers expand
and contract horizontally, often creating several different dis-
crete entities of the same layer across a trench face (Fig. 6).
The number of layer entities in snow trenches ranged from
5 to 14 in the 5 m trenches and up to 36 layer entities in the
50 m trench (Table 1). Mean snow depth of trenches ranged
between 26 and 53 cm for all but trench 6 (79 cm), located
in a valley bottom. Consequently, even when considering a
positive lidar measurement bias of ∼ 14 cm, trenches were
generally located between the median and lower quartile of
the total TVC lidar snow depth distribution (Fig. 5). A coher-
ent layer of surface snow was evident in four trenches (Ta-
ble 1), consisting of up to 26 % of the mean layer thickness.
The proportions of wind slab layers (35 % to 80 %) and depth
hoar layers (20 % to 46 %) exhibited a larger range. Figure 7
shows that the mean proportion of depth hoar was consis-
tently just under 30 % of total snow depth. The mean pro-
portion of wind slab was consistently greater than 50 % and
showed an increasing trend with increasing total snow depth,

indicating that (other factors being equal) where wind slab
thickness was greater so was the total depth of the snowpack.
A decreasing trend in the mean proportion of surface snow
(approximately 25 % to 0 %) with increasing total depth was
most likely a result of greater wind erosion and redistribution
from the surface where the snowpack was deeper and more
wind affected. While interquartile ranges around these trend
lines express the natural variability in measured proportional
thickness, where total snow depth is known, trend lines made
it possible to estimate the percentage of wind slab and depth
hoar in a snowpack of unknown microstructure, thereby al-
lowing potential for application of these relationships over
larger spatial scales.

Centimetre-scale variability in tundra snowpack layer
thickness was quantified from trench measurements in a spa-
tially distributed manner throughout a catchment for the first
time. The range to sill (i.e. horizontal correlation length) of
semivariograms (Fig. 8) was used to quantify spatial vari-
ability, which varied for all layer thicknesses between 16 and
158 cm (Table 2). While the semivariance of layer thickness
in trenches (Fig. 8) changed as a function of absolute layer
thickness (Table 1), the mean range to sill of layer thickness
increased from depth hoar (45 cm) via wind slab (59 cm) to
surface snow (81 cm). The mean range to sill of total snow
depths (61 cm) was only slightly greater than that of wind
slab, suggesting horizontal variability in wind slab thick-
ness has a strong control over total snowpack thickness. Sub-
nivean roughness, the boundary between snow and the under-
lying substrate, is likely to have a strong influence on depth
hoar thickness. To estimate the importance of this influence,
roughness was quantified as twice the value of the root mean
square of residuals between the snow–substrate boundary
and a linear best fit line to that boundary (Table 1). This pro-
vides an estimate of the peak-to-trough amplitude between
adjacent subnivean topographic features, often controlled in
tundra environments by tussock grasses (e.g. Fig. 6). The
roughness metric was calculated across 2 m moving win-
dows. The starting position of each window moved in 1 cm
horizontal increments along each trench, and then the rough-
ness of all moving windows was averaged per trench. The
2 m distance was chosen to exceed the maximum measured
horizontal correlation length of layer thicknesses while also
being broadly representative from visual field inspection of
the spacing between tussocks. Across all trenches, roughness
of the subnivean boundary ranged from 9 % to 32 % of total
trench depth, with a mean of 18 % for all trenches. This is
consistent with the premise that depth hoar layer thickness
(∼ 30 % of total snowpack depth) is strongly influenced, but
not exclusively controlled, by subnivean roughness.

Figure 9 demonstrates relationships between mean per-
centage thickness of different layers, density, and SSA from
a combination of snow microstructural profiles from trenches
and pits. Layers were primarily delimited in the field by ver-
tical profiling (visual inspection and hardness). Figure 9a
and b show median densities of 104 kg m−3 (surface snow),
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Figure 5. Snow depths (limited to 2 m) in TVC from airborne lidar: (a) to (c) histograms of three topographically delimited subdomains of
the TVC catchment (red) overlaid on the histogram of all snow depths (blue); (d) distributions of snow depth by land surface type: blue box
(interquartile range), red line (median), and whiskers (dashed lines) extend from the end of each box to 1.5 times the interquartile range;
outliers beyond this range are omitted.

Figure 6. Cross section with vertical exaggeration of layer boundaries of individual stratigraphic layers in trench 4 (50 m). Blue lines highlight
boundaries between snow and air, surface snow and wind slab, and wind slab and depth hoar. The brown area is subnivean soil or vegetation
(two tussocks are labelled). Black lines show boundaries of individual layers aggregated within the wind slab and depth hoar layers.

253 kg m−3 (depth hoar), and 316 kg m−3 (wind slab); differ-
ences in median densities between layers were greater than
the 5 %–9 % sampling error associated with gravimetric cut-
ters (Proksch et al., 2016). The interquartile ranges of each
layer density did not overlap, indicating clear differences be-
tween layer densities, even though there was overlap between
full measurement ranges. The upper quartile of surface snow

densities overlapped densities of both wind slab and depth
hoar, as although it is structurally distinct from the lower
wind slab layer, surface snow may have been subject to de-
composition, melt, or some wind-packing effects. Addition-
ally, overlap between the lower quartile of wind slab densities
and the upper quartile of depth hoar densities resulted from
densities in lower sections of wind slab which exhibited the
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Figure 7. Relative change in thickness of snowpack layers with total
depth: median (solid) and interquartile range (shaded) of surface
snow (red), wind slab (blue), and depth hoar (black) layers. Dotted
line describes the dependence of layer thickness on depth based on
linear trend line fits. Layer thickness data from 2013 trenches only.

Table 2. Mean range to sill (cm) for thicknesses of each layer (sur-
face snow, wind slab, and depth hoar) and total snow depth using
the stable variogram model.

DH WS SS Total depth

Trench 4 37 79 77 42
Trench 5 44 29 – 64
Trench 6 62 137 – 138
Trench 7 16 53 44 31
Trench 8 18 19 – 20
Trench 9 26 100 158 41
Trench 10 117 46 44 122
Trench 11 56 35 – 70
Trench 12 29 30 – 24
Mean 45 59 81 61

hardness of wind slab yet also microstructural similarity to
depth hoar. This is often reported in Arctic tundra snowpacks
that undergo strong temperature gradient metamorphism, and
it has previously been classified as a unique layer type such
as indurated hoar (Sturm et al., 1997; Fierz et al., 2009;
Derksen et al., 2014; Domine et al., 2016). Differences be-
tween SSA of different layers were more distinct than for
densities (Fig. 9c and d); interquartile ranges did not overlap
as median SSA increased from depth hoar (11 m2 kg−1) via
wind slab (24 m2 kg−1) to surface snow (45 m2 kg−1). Dif-
ferences in median SSA between layers were much greater
than the 10 % measurement uncertainties in SSA (for snow
< 60 m2 kg−1) from IR hemispherical reflectance techniques
at 1310 nm (Gallet et al., 2009). Consequently, as the den-
sity and SSA values of each layer are nicely separate from
each other, it is reasonable to expect that with respect to radar
backscatter it is the relative proportions of these snow com-
ponents, and their attributes, which will drive the radar re-
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Figure 8. Semivariograms in individual trenches for (a) total snow depth, and layer thickness for (b) surface snow, (c) wind slab, and
(d) depth hoar.

sults. In the next section we explore this using a three-layer
radiative transfer model.

3.2 SWE retrieval accuracy from radar backscatter

Notable differences between distributions of SSA and den-
sity in surface snow, wind slab, and depth hoar layers allowed
parameterisation of snowpack microstructure in the SMRT
model (Table 3). Coupled with fitted relationships between
total snow depth and layer thickness as a proportion of total
depth (Table 3 and dotted trend lines in Fig. 7), SWE retrieval
errors from SMRT simulations were calculated as a function
of measured variability in SSA in different layers. SSA mea-
surements of snowpack layers show positively skewed dis-
tributions (Fig. 10 a, c, and e); surface snow, wind slab, and
depth hoar distributions comprised 64, 77, and 85 averaged
layer measurements, respectively. SWE retrieval errors were
calculated as truth SWE minus retrieved SWE. SWE retrieval
error due to heterogeneity in SSA for SS, WS, and DH lay-
ers is presented in Fig. 10b, d, and f for snowpacks of depths
between 0.2 and 1 m, and for estimates of layer SSA within
20 % of the known median value.

Spatial variability in surface snow SSA has a negligible ef-
fect on the retrieval error (Fig. 10b). Instead, the retrieval is

most sensitive to spatial variability in depth hoar (Fig. 10f),
despite only a small range in measured SSA values. A 20 %
underestimation in SSA leads to an underestimation in re-
trieved SWE by as much as 100 mm SWE in 0.8 m deep
snowpacks: an underestimation of between one- and two-
thirds of total SWE assuming typical tundra snow densities.
Overestimation of SSA leads to nearly as large an error in the
other direction. Errors in assigning SSA values to wind slab
also affect the SWE retrieval, but to a much lesser extent.
While a perfect retrieval is possible at all depths (shown by
the white contour line in Fig. 10f), an estimated SSA lower
than the median is required. For depth hoar, approximately
7 % less than the median is required. For wind slab, closer to
10 % under the median is required.

A radar SWE retrieval algorithm will have constraints on
the allowable accuracy. Here, we have set a limit of ±30 mm
SWE, indicated as black contour lines in Fig. 10, as the ac-
ceptable limit on SWE. This error constrains the setting of
SSA values (black contour lines in Fig. 10f), which become
increasingly stringent for deeper snow. The constraints in
SSA are considerably more liberal for wind slab (Fig. 10d)
than for depth hoar as the retrievals are less sensitive to the
spatial variability in SSA. Fig. 10f (DH) shows that as snow
depth exceeds 0.6 m, the need for accurate values of SSA
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Figure 9. Change in snow layer (a) density and (c) SSA with relative thickness of snowpack layers: surface snow (red circle), wind slab (blue
cross), and depth hoar (black star). Distributions of snow layer (b) density and (d) SSA: blue box (interquartile range), red line (median), and
whiskers (dashed lines) extend from the end of each box to 1.5 times the interquartile range; outliers beyond this range are omitted.

Table 3. SMRT parameters derived from TVC data. Thickness relationship derived from NIR-derived stratigraphy observed in 2013. Density
and fixed SSA taken from median of all observations for that layer type in 2013 and 2018. Fixed SSA values were used in place of the SSA
distribution when assessing the impact of spatial variability in other layers.

Snowpack truth scene

Surface snow Wind slab Depth hoar

Thickness 1z (percentage depth in metres) 1zSS
=

{
−44.7269d + 30.1551, d < 0.7
0, d ≥ 0.7

1zWS
= 1−1zSS

−1zDH 1zDH
= 29.6

Density (kg m−2) 103.7 315.5 253.1
Fixed SSA (m2 kg−1) 44.7 23.8 11.5
Assumed temperature (K) 265 265 265

for depth hoar becomes critical. If the median SSA is used
for depth hoar, the maximum SWE error is 40 % of the truth
SWE. For depth hoar SSA 20 % above the median, the SWE
retrieval error can exceed the actual SWE, particularly for
shallow snowpacks. A higher soil backscatter contribution of
−10 dB does not change the optimal SSA estimates but does
result in more stringent retrieval requirements. For example,
at 60 cm snow depth the SSA should be between 89 % and
97 % of the median value to remain within error budget for a
soil backscatter of−13 dB. For a soil backscatter of−10 dB,
this range is reduced to between 90 % and 96 %. This high-

lights the need for field observations of backscatter from bare
frozen soil to better constrain this value.

Estimates of the single SSA of layers in retrieval scenes
will always be lower than the median because of nonlinear-
ity between scattering and SSA. Snow layers with smaller
SSA will have a disproportionately larger effect in the truth
scene as these microstructure elements will scatter more (op-
tical grain diameter is inversely proportional to SSA). SMRT
simulations can compensate for the heterogeneity by assum-
ing slightly smaller SSA in the homogeneous scene. The
amount of compensation required could differ as a function
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Figure 10. (a, c, e) Histograms of SSA within each layer. (b, d, f) Synthetic error budget study for a range of snow depths assuming
homogeneity in the retrieval. Contour lines show acceptable SSA error as a function of snow depth to remain within a ±30 mm SWE
retrieval accuracy limit. White contour line shows perfect retrieval.

of ground contributions, but the representative SSA will al-
ways be smaller.

4 Discussion and conclusions

Comparison between the mean snow depth of all trenches
(40 cm) and distributions of lidar-derived snow depths
demonstrated that trenches were highly representative of
snow depths across the whole TVC catchment, incorporat-
ing a range of different topographic landscape units. Snow
depths in trenches were also consistent with snowpacks
found over much wider spatial scales; mean snow depths
of 39 and 23 cm for sub-Arctic and Arctic snowpacks, re-
spectively, were reported by Derksen et al. (2014). In addi-
tion, trenches at TVC were highly representative of the pre-
viously documented complex and often discontinuous layer-
ing of tundra and sub-Arctic snowpacks (Benson and Sturm,
1993; Sturm and Benson, 2004; Domine et al., 2012; Rut-
ter et al., 2014, 2016). Consequently, through the coincident
combination of spatially distributed measurements of snow

microstructure (94 profiles at 36 sites across two winters) and
snow layer thickness (9000 vertical profiles across 9 trenches
during one winter), we present a unique and robust data set
that is likely to be representative of tundra snowpacks in gen-
eral. The application of these data in a Snow Microwave Ra-
diative Transfer model (Fig. 10), therefore, is of high po-
tential relevance to remote sensing of seasonal snow in the
Northern Hemisphere.

Horizontal correlation lengths of layer thicknesses
(i.e. distances over which variability in the thickness of in-
dividual layers decouples and becomes independent) have
not previously been reported. High-resolution layer bound-
ary identification using stitched and georeferenced NIR im-
agery (Tape et al., 2010; Watts, 2015) now allows the spa-
tial variability in layer thickness to be quantified using semi-
variograms in analytical approaches similar to assessment of
snow depth distributions (e.g. Deems, 2008; Trujillo, 2015).
Horizontal correlation lengths (i.e. range to sill of semivari-
ograms) and variance in major layer thicknesses at TVC sug-
gest depth hoar layers vary the most over the shortest dis-
tances because of the subnivean vegetation and topography.
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In tundra environments, especially on topographically ex-
posed plateaus, undulating subnivean topography traps early-
winter snowfall in troughs between tussocks. Discontinu-
ities in snowpack layering occur between adjacent ridges
and troughs (often caused by tussock grasses), and trapped
snow is then subject to strong temperature gradient metamor-
phism (Colbeck, 1983, 1987), creating large depth hoar crys-
tals. The decreasing spatial variability (increasing distance in
horizontal correlation length) of wind slab and surface snow
layer thickness reflects the decreasing influence of topogra-
phy once snow has filled local hollows and the increasing
predominance of spatially smoother wind-driven processes
such as snow redistribution and compaction. For comparison,
the horizontal correlation length of total snowpack thickness,
a consequence of variability in all three layers, approximates
that of wind slab. Quantification of layer thickness variabil-
ity using trench measurements suggests a relative hierarchy
of variability in commonly occurring tundra snowpack layer
types, which all vary significantly at the submetre scale.

Correlation lengths highlight minimum measurement dis-
tances over which sampling of snowpack properties should
take place. While the intensity of such sampling may have
practical limitations, targeted submetre-scale sampling as
part of wider ground-based catchment-scale snow measure-
ment campaigns is highly relevant for evaluation of current
and future satellite sensors that operate over resolutions on
the scale of metres to tens of metres (e.g. Cline et al., 2009;
Yueh et al., 2009; King et al., 2018). Rapid acquisition of ver-
tical profiles of snowpack properties using snow micropen-
etrometers (Schneebeli et al., 1999; Proksch et al., 2015) may
increasingly provide the enhanced field measurement capac-
ity required to achieve this spatial sampling resolution.

Correlation lengths can be applied in distributed mod-
elling of snowpack properties using kriging techniques to en-
able spatial interpolation. Application of the length scales of
major snowpack layers, as well as variability of properties
within each layer, has the potential for use in catchment-
scale models along with knowledge of other landscape ele-
ments such as snow drifts. While accurate snowpack mod-
elling at the tens-of-metres scale in tundra environments is
challenging (Essery et al., 1999; Clark et al., 2011), snow-
pack layer correlation lengths could be used to parameterise
models so variability in snowpack properties is reliably ac-
counted for when modelling at coarser resolutions. This will
become an important parameterisation for future linkages be-
tween physical snowpack models and one-dimensional radia-
tive transfer models (Sandells et al., 2017), to better model
surface and volume scattering in snow (Zhu et al., 2018), and
in observing system simulation experiments (e.g. Garnaud et
al., 2019), to assess the performance of future Ku-band radar
satellite sensor configurations.

Relationships between layer thicknesses and total snow
depth are presented for purposes of simplifying snowpack
layer complexity for applications over large scales. Linear
trend lines provide a guide to changes in layer proportions

for snowpacks up to 1 m deep. Interestingly, the proportion of
depth hoar is consistently ∼ 30 % irrespective of total depth,
a trend which continued in the few snow pits in 2018 that
were deeper than 1 m. This is somewhat surprising, due to
the previously described strong controls of ground surface
roughness over depth hoar creation and the potential for large
wind slabs to then dominate as the total snow depth increases
above the top of ridges. However, the proportion of wind slab
layer instead increases at the expense of the decreasing sur-
face snow layer. Consequently, this proportional approach to
layer partitioning of snowpacks provides an alternative to ap-
plying a maximum depth hoar thickness of 25 cm (King et
al., 2018); therefore it may be more appropriate for wider
applications across pan-Arctic tundra over multiple winter
seasons.

Although rates of compaction, and hence density, of a dry
snow layer under its own mass will have a proportional re-
lationship to its thickness (Colbeck, 1972; Anderson, 1976),
the weak relationship for fresh surface tundra snow is ex-
pected due to other influential aeolian and metamorphic pro-
cesses. In addition, there is unlikely to be a direct relationship
between density and proportional layer thickness for either
wind slab or depth hoar, due to wind and thermal gradients
dominating processes which control the density of these re-
spective layers. Such processes are currently very challeng-
ing to simulate accurately in Arctic snowpacks (Barrere et al.,
2017; Domine et al., 2019). So, as distinct differences are ev-
ident between distributions of layer properties, using a single
median value to represent the density for each layer is appro-
priate. Differences are even more profound between distribu-
tions of SSA in different layers which exhibit low interquar-
tile ranges, especially for depth hoar layers which dominate
Ku-band microwave scattering (King et al., 2015). This is
particularly important for depth hoar as nonlinear microwave
scattering with respect to SSA (SSA is inversely proportional
to exponential correlation length or optical grain diameter)
means that the smaller SSA will have a disproportionate scat-
tering effect compared to larger SSA. This is demonstrated
by synthetic experiments that evaluate the impact of spatial
uncertainty in snow microstructural parameters on SWE re-
trievals, where a single SSA describing a homogeneous scene
must be smaller than the median of a heterogeneous scene to
compensate for the nonlinear scattering response. Small SSA
corresponds to high scattering, so it follows that an underes-
timation in the SSA estimate (too much scattering) results in
less scattering material needed (an underestimation in the re-
trieved SWE). Whilst the effects of spatial variability in SSA
can be countered, the value of representative SSA is critical.
Although the SWE retrieval accuracy requirements for depth
hoar are more stringent than for wind slab, it is known more
precisely than wind slab SSA for the TVC data (Fig. 9). The
insensitivity of the retrieval to the spatial variability in sur-
face snow SSA suggests that a median value of SSA will suf-
fice for SWE retrievals. Future work will consider whether a
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two layer retrieval system could be used to represent the scat-
tering of a three-layer snowpack.

By applying a comprehensive data set of snow microstruc-
tural properties collected over two winters at TVC in syn-
thetic radiative transfer experiments, the impact of estima-
tion of unknown snow microstructural characteristics on the
viability of SWE retrieval strategies relevant for satellite mis-
sion design has been robustly assessed. Spatial variability
in microstructure of depth hoar layers dominates SWE re-
trieval errors. A depth hoar SSA estimate of around 7 % un-
der the median value is needed to accurately retrieve SWE for
this snow. In shallow snowpacks < 0.6 m, depth hoar SSA
estimates of ±5 %–10 % around this value allow retrievals
within a tolerance of ±30 mm SWE. Where snowpacks are
deeper than around 30 cm, accurate values of representative
SSA for depth hoar become critical as the retrieval error will
be exceeded if the median depth hoar SSA is applied. Impor-
tantly, these experimental results allow potential for uncer-
tainty in SSA in Arctic tundra snow to be used to produce fu-
ture SWE retrieval quality flags in remotely sensed products
and also provide benchmark accuracies for physical snow-
pack models to deliver SSA estimates. As modelling mi-
crowave scattering in large-scale applications has currently
been limited to single-layer snowpacks (Takala et al., 2011),
the potential for using multilayer information is exciting and
progressive, especially when considering the strongly differ-
ent scattering properties of wind slab and depth hoar (King et
al., 2018), the combined influence of which dominates con-
trol over microwave scattering in Arctic tundra snowpacks.
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