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Abstract. Satellites have documented variability in sea ice
areal extent for decades, but there are significant challenges
in obtaining analogous measurements for sea ice thickness
data in the Antarctic, primarily due to difficulties in esti-
mating snow cover on sea ice. Sea ice thickness (SIT) can
be estimated from snow freeboard measurements, such as
those from airborne/satellite lidar, by assuming some snow
depth distribution or empirically fitting with limited data
from drilled transects from various field studies. Current es-
timates for large-scale Antarctic SIT have errors as high as
∼ 50 %, and simple statistical models of small-scale mean
thickness have similarly high errors. Averaging measure-
ments over hundreds of meters can improve the model fits
to existing data, though these results do not necessarily gen-
eralize to other floes. At present, we do not have algorithms
that accurately estimate SIT at high resolutions. We use a
convolutional neural network with laser altimetry profiles of
sea ice surfaces at 0.2 m resolution to show that it is possi-
ble to estimate SIT at 20 m resolution with better accuracy
and generalization than current methods (mean relative er-
rors ∼ 15 %). Moreover, the neural network does not require
specification of snow depth or density, which increases its
potential applications to other lidar datasets. The learned fea-
tures appear to correspond to basic morphological features,
and these features appear to be common to other floes with
the same climatology. This suggests that there is a relation-
ship between the surface morphology and the ice thickness.

The model has a mean relative error of 20 % when applied
to a new floe from the region and season. This method may
be extended to lower-resolution, larger-footprint data such as
such as Operation IceBridge, and it suggests a possible av-
enue to reduce errors in satellite estimates of Antarctic SIT
from ICESat-2 over current methods, especially at smaller
scales.

1 Introduction

Satellites have documented changes in sea ice extent
(SIE) for decades (Parkinson and Cavalieri, 2012); how-
ever, sea ice thickness (SIT) is much harder to measure
remotely. Declines in Arctic SIT over the past several
decades have been detected in under-ice upward-looking
sonar surveys and satellite observations (Rothrock et al.,
2008; Kwok and Rothrock, 2009). Arctic ice thickness has
been observed with satellite altimetry to continue to de-
cline over the past decade (Kwok and Cunningham, 2015),
but any possible trends in Antarctic SIT are difficult to de-
tect because of the presumably relatively small changes,
and difficulties in estimating SIT in the Antarctic (Kurtz
and Markus, 2012; Zwally et al., 2008). Because fully
coupled models generally fail to reproduce the observed
multi-decadal increase in Antarctic SIE, it is likely that
their simulated decrease in Antarctic SIT is also incor-
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rect (Turner et al., 2013; Shu et al., 2015). However, ocean–
ice models forced with atmospheric reanalysis correctly re-
produce an increasing Antarctic SIE and suggest an increas-
ing SIT (Holland et al., 2014). Massonnet et al. (2013) found
that assimilating sea ice models with sea ice concentration
shows that SIT covaries positively with SIE at the multi-
decadal timescale and thus implies an increasing sea ice vol-
ume in the Antarctic. Detection of variations in SIT and vol-
ume are important to understanding a variety of climate feed-
backs (e.g., Holland et al., 2006; Stammerjohn et al., 2008);
for example, they are critical to understanding trends and
variability in Southern Ocean salinity (e.g., Haumann et al.,
2016). At present, large-scale ice thickness cannot be re-
trieved with sufficient accuracy to detect with any confidence
the relatively small trends in thickness expected (Masson-
net et al., 2013), or even interannual variability (Kern and
Spreen, 2015).

The main source of Antarctic SIT measurements comes
from ship-based visual observations (ASPeCt, the Antarc-
tic Sea-ice Processes and Climate, compiled in Worby et al.,
2008), drill-line measurements (e.g., Tin and Jeffries, 2003;
Ozsoy-Cicek et al., 2013), aerial surveys with electromag-
netic induction (e.g., Haas et al., 2009) and sporadic data
from moored upward-looking sonar (ULS) (e.g., Worby
et al., 2001; Harms et al., 2001; Behrendt et al., 2013). These
are all sparsely conducted, with significant gaps in both time
and space, making it hard to infer any variability or trends.
There is also some evidence of a sampling bias towards thin-
ner ice due to logistical constraints of ships traversing areas
of thick and deformed ice (Williams et al., 2015).

The only currently feasible means of obtaining SIT data
on a large enough scale to examine thickness variability is
through remotely sensed data, from either large-scale air-
borne campaigns such as Operation IceBridge (OIB) (Kurtz,
2013) or more broadly from satellite altimetry, (e.g., ICE-
Sat, Zwally et al., 2008, or more recently, ICESat-2, Markus
et al., 2017). Here, SIT is derived from either the measured
snow surface (i.e., surface elevation referenced to local sea
level) in the case of laser altimeters (ICESat and OIB) or a
measure of the ice surface freeboard (CryoSat-2) (Wingham
et al., 2006). The measurement of the surface elevation it-
self has some error, due to the error in estimating the local
sea surface height (Onana et al., 2012). When using radar al-
timetry, the ice–snow interface may be hard to detect as ob-
servations suggest that the radar return can occur from within
the snowpack (e.g., Willatt et al., 2009), possibly due to scat-
tering from brine wicked up into the overlying snow, melt–
freeze cycles creating ice lenses, or from the snow–ice inter-
face (Fons and Kurtz, 2019). However, even with an accurate
measurement of the snow–ice freeboard, there are challenges
with converting this to a SIT estimate.

Assuming hydrostatic equilibrium, the ice thickness T
may be related to the snow freeboard F (i.e., snow depth +
ice freeboard; see Fig. 1) and snow depth D measurements

using the relation

T =
ρw

ρw− ρi
F −

ρw− ρs

ρw− ρi
D (1)

for some densities of ice, water and snow ρi,ρw,ρs (Fig. 1).
Without simultaneous snow depth estimates (e.g., from pas-
sive microwave radiometry (Markus and Cavalieri, 1998) or
from ultra-wideband snow radar such as that used on OIB
(e.g., Kwok and Maksym, 2014), some assumption of snow
depth has to be made, or an empirical fit to field observa-
tions is needed (e.g., Ozsoy-Cicek et al., 2013). When av-
eraging over multiple kilometers, and in particular during
spring, it is common to assume that there is no ice compo-
nent in the snow freeboard, i.e., F =D in Eq. (1) (Xie et al.,
2013; Yi et al., 2011; Kurtz and Markus, 2012). However,
this assumption is likely not valid near areas of deformed
ice, which may have significant nonzero ice freeboard, and
OIB data suggest this is not true at least for much of the
spring sea ice pack (Kwok and Maksym, 2014). More gen-
erally, empirical fits of SIT to F can be used (Ozsoy-Cicek
et al., 2013), but these implicitly assume a constant propor-
tion of snow within the snow freeboard and a constant snow
and ice density. These are not likely to be true, particularly
at smaller scales and for deformed ice. Moreover, detecting
variability with such methods is prone to error because these
relationships may change seasonally and interannually. Kern
and Spreen (2015) suggested a ballpark error of 50 % from
ICESat-derived thickness estimates. Kern et al. (2016), fol-
lowing Worby et al. (2008), looked at the snow freeboard as
one layer with some effective density taken as some linear
combination of sea ice and snow densities. More recently, Li
et al. (2018) have used a regionally and temporally varying
density (equivalently, a variable proportion of snow in snow
freeboard) inferred from the empirical fits of Ozsoy-Cicek
et al. (2013), which is equivalent to a more complex, regime-
dependent set of snow assumptions.

A key question is how much the sea ice morphology af-
fects these relationships between surface measurements and
thickness. Pressure ridges, which form when sea ice collides,
fractures and forms a mound-like structure (Fig. 1), are a pri-
mary source of deformed ice. Although only a minority of
the sea ice surface is deformed, ridges occur at a spatial fre-
quency of 3–30 per kilometer and so may account for a ma-
jority of the total sea ice volume (Worby et al., 1996; Haas
et al., 1999). The sea ice surface naturally has a varying pro-
portion of deformed ice, which affects the sampling required
to faithfully represent the distribution (Weissling and Ack-
ley, 2011). Around deformed areas, both the ice freeboard
and snow depth may be high, and we do not yet know the
statistical distribution of snow around such deformation fea-
tures. In this respect, local estimates of SIT are likely biased
low as the average ice freeboard cannot be assumed to be
zero. Moreover, the effective density of deformed ice (i.e.,
the density of the deformed ice including snow-, air- and
seawater-filled gaps) may differ significantly from level ice
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Figure 1. A schematic diagram of a typical first-year ridge. The
ridge may not be symmetric, and peaks of the sail and keel may not
coincide. The effective density of the ice is affected by the air gaps
above water and the water gaps below water. T , D and F may be
linked by assuming hydrostatic balance (Eq. 1).

areas due to drained brine and trapped snow in ridge sails
and seawater in large pore spaces in ridge keels (Fig. 1; also
discussed in Hutchings et al., 2015). Because these densities
affect the empirical fits, it is important to quantify how SIT
predictions should be adjusted to account for morphological
differences in snow freeboard measurements.

Many pressure ridges can be observed from above using
airborne or terrestrial lidar scans (e.g., Dierking, 1995). How-
ever, it is difficult to derive SIT of deformed areas from these
scans due to the difficulty in determining the contribution of
snow to the snow freeboard measured by a lidar scan. Fur-
thermore, the corresponding keel morphology given some
surface (lidar) scan, and its effect on the SIT distribution,
is not known. Among other factors, radar-based estimates of
snow depth are known to be highly sensitive to surface rough-
ness, weather and grain size (Stroeve et al., 2006; Markus and
Cavalieri, 1998). Ozsoy-Cicek et al. (2011) and Markus et al.
(2011) found that snow depth measured by the Advanced
Microwave Scanning Radiometer – Earth Observing System
(AMSR-E) around deformed ice is underestimated by a fac-
tor of 2 or more. Kern and Spreen (2015) also showed that
the error estimate in the SIT is considerably affected by the
snow depth error, with a conservative estimate of 30 % error
in snow depth leading to a relative ice thickness error up to
80 %.

Sea ice draft and ridge morphology may also be observed
from below using sonar on autonomous underwater vehi-
cles (AUVs) (e.g., Williams et al., 2015). Although AUV
datasets of deformed ice have higher resolution than air-
borne and satellite-borne lidar datasets, they are much more
sparsely conducted and fewer such datasets of Antarctic ice
exist. This makes it hard to generalize conclusions of de-
formed sea ice from empirical datasets. It is therefore impor-
tant to understand how the morphology of deformed ice re-
lates to its thickness distribution. By using coincident, high-
resolution, and three-dimensional AUV and lidar surveys

Figure 2. Drone imagery (180 m× 180 m) of heavily deformed ice
in the Ross Sea, Antarctica. There are multiple ridges, which cannot
be easily separated. The ridge widths and slopes are varying and
must be arbitrarily defined, leading to a variety of possible values.
Image provided by Guy Williams.

of deformed ice, we can characterize areas of deformation
and surface morphology and their relationship to ice thick-
ness and snow freeboard much better than with linear, low-
resolution drilling profiles.

In order to account for the varying effective density of
a ridge, we need to be able to characterize different de-
formed surfaces. The analysis of ridge morphology is cur-
rently very simplistic. As summarized in Strub-Klein and
Sudom (2012), the geometry of the above-water (sail) and
below-water (keel) heights is typically analyzed, traditionally
by calculating the sail–keel ratios and sail angles (Timco and
Burden, 1997). There are known morphological differences
between Arctic and Antarctic ridges, such as sail heights of
Antarctic ridges being generally lower than those of Arc-
tic ridges, but these are not known comprehensively (Tin
and Jeffries, 2003). According to drilling data and shipboard
underway observations, Antarctic ridges have typical sail
heights of less than 1 m (Worby et al., 2008) and keel depths
of the order of 2–4 m (Tin and Jeffries, 2003), though much
thicker (maximum keel depths>15 m) ridges have also been
observed with AUVs (Williams et al., 2015). Metrics like sail
and keel angle are less meaningful in the presence of non-
triangular, irregular or highly deformed ridges (e.g., Fig. 2),
which are underrepresented in literature due to selection bias.
Identifying how the morphology of deformed ice can inform
estimates of SIT is important for reducing errors on SIT esti-
mates. This is necessary for understanding temporal–spatial
variations in SIT using existing measurements of surface el-
evation.
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The uncertainty in sea ice density is also a significant
contributing factor to the high uncertainty of SIT estimates
(Kern and Spreen, 2015). For example, if assuming zero ice
freeboard (F =D in Eq. 1) with some known snow den-
sity, a 10 % uncertainty in the sea ice density can lead to a
50 % uncertainty in the SIT. As mentioned before, the effec-
tive density may also vary locally, particularly in deformed
ice. On previous Antarctic fieldwork such as SIPEX-II in
spring 2012, Hutchings et al. (2015) found the density of
first-year ice in the presence of porous granular ice to be as
low as 800 kg m−3, a difference of more than 10 % from the
standard assumption of 900–920 kg m−3 (e.g., Worby et al.,
2008; Xie et al., 2013; Maksym and Markus, 2008; Zwally
et al., 2008; Timco and Weeks, 2010), but in line with the
750–900 kg m−3 range found by Urabe and Inoue (1988).
This effective density could vary regionally and seasonally
in line with ridging frequency, and knowing these variations
with greater certainty would decrease the errors in SIT esti-
mations. The effective density may also vary locally around
areas of deformed ice, which have varying gap volumes. This
means that the scatter in any given linear fit of T and F , and
the variability between different fits for different datasets,
can be interpreted as differences in effective densities; alter-
natively, this points out that linear fits will have an irreducible
error due to local effective density variations.

In this paper, we aim to use a high-resolution dataset of de-
formed sea ice to develop better algorithms to estimate SIT
from surface topography. Unlike previous studies which have
relied on low-resolution, 2-D drilling transects, we use high-
resolution, 3-D characterization of the snow surface from
terrestrial lidar, coincident with 3-D ice draft from an au-
tonomous underwater vehicle and detailed manually probed
snow depth measurements. In particular, having 3-D cover-
age allows for the analysis of complex morphological fea-
tures. First, we examine simple statistical relationships be-
tween snow freeboard, snow depth, and ice thickness and
compare with prior studies. We also estimate densities of
ice and snow by comparing the fits with Eq. (1) and com-
pare with field data. Next, we use a deep-learning convolu-
tional neural network to improve estimates of local ice thick-
ness by using complex, nonlinear functions of 3-D surface
morphology. Finally, we discuss the linear and convolutional
neural network (ConvNet) models and attempt to interpret
how learned features in the neural network may be related to
physically meaningful morphological features, and we con-
sider possible extensions to this work on larger datasets.

Our goal here is to test whether complex surface morpho-
logical information can be used to improve sea ice thickness
estimation. In this paper, we demonstrate this using high-
resolution spatial surface topography, which is most applica-
ble to airborne remote sensing data such as those obtained by
NASA’s Operation IceBridge (Kurtz, 2013). While a some-
what different approach would be required for linear data
such as those obtained from ICESat-2, this paper is a first

test of proof of concept that using such information may be
beneficial.

2 Data and processing

The PIPERS (Polynas, Ice Production and seasonal Evolu-
tion in the Ross Sea) expedition took place from early April
to early June 2017 (Fig. 3). In total, six AUV ice draft sur-
veys were taken of the undersides of deformed sea ice. Of
these, four coincided with snow depth measurements and a
lidar survey of the snow freeboard, thus providing a “layer
cake” of snow depth, ice freeboard and ice draft data (follow-
ing Williams et al., 2013). These four layer cakes are shown
in Fig. 4. There are two other AUV scans which lack lidar
and snow measurements so are not included in our analy-
sis. The AUV surveys were carried out with a SeaBED-class
AUV from the Woods Hole Oceanographic Institution fol-
lowing Williams et al. (2015), with a swath multibeam sonar
(Imagenex 837 Delta T) at a depth of 15–20 m in a lawn-
mower pattern (equally spaced passes under the ice in alter-
nating directions). Adjacent passes were spaced to provide
approximately 50 % overlap in consecutive swaths, with at
least one pass across the grid in the transverse direction to al-
low corrections for sonar orientation in the stitching together
of the final sonar map. The AUV multibeam data were pro-
cessed to correct for vehicle pose, and then individual swaths
were stitched together, with manual corrections to pitch and
roll offsets of the sensors to minimize differences in drafts
for overlapping portions of adjacent swaths. This largely fol-
lows the methodology in Williams et al. (2015), although
simultaneous localization and mapping (SLAM) algorithms
were not applied here as the quality of the multibeam maps
were determined to be comparable to those without SLAM
processing, and any improvements in resolving small-scale
features would not affect the analysis here. The vertical er-
ror in draft is estimated at 10 cm over deformed areas and
<3 cm for level areas (Williams et al., 2015). The scans
were ultimately binned at 0.2 m horizontal resolution. The
snow freeboard scans were performed with a Riegl VZ-1000
terrestrial lidar scanner, using three to five scans from dif-
ferent sides of a 100 m× 100 m grid to minimize shadows,
which were stitched together using tripod-mounted reflec-
tive targets placed around the grid. We scanned at the high-
est laser pulse repetition rate of 300 kHz, with an effective
maximum range of 450 m. The accuracy and precision at
this pulse rate are 8 and 5 mm, respectively. All compos-
ited and registered scans for a particular site were height-
adjusted to a sea level datum using a minimum of three drill
holes for sea level references. The output point cloud was
binned at 0.2 m resolution, and any small shadows were in-
terpolated over with natural neighbor interpolation (Sibson,
1981). The snow depth measurements were carried out last,
using a Magnaprobe, a commercial probe by Snow-Hydro
LLC with negligible vertical error when measuring snow
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Figure 3. PIPERS track (magenta) with locations of ice stations
labeled. Stations with AUV scans are shown in green (3, 4, 6, 7, 8
and 9) and the other stations (1, 2 and 5) are shown with red squares.
Stations 4, 7, 8 and 9 (green circles) also have a snow freeboard scan
and snow depth measurements; these are shown in Fig. 4. Other
stations have some combination of missing lidar, AUV and snow
data. Station dates were 14 May for station 3, 24 May for station 4,
27 May for station 6, 29 May for station 7, 31 May for station 8 and
2 June for station 9. Overlain is the sea ice concentration data (5 d
median) for 2 June 2017 from ASI-SSMI (Kaleschke et al., 2017).

depth on top of ice (Sturm and Holmgren, 2018; Eicken and
Salganek, 2010). The probe penetrates the snow and auto-
matically records the snow depth. It was fitted with an Em-
lid Reach real-time kinematic GPS, referenced to base sta-
tions on the floe, which allowed for more precise localiza-
tion of snow depth. Using post-processed kinematic (PPK)
techniques with the open-source RTKLIB library and cor-
recting for floe displacement/rotation, the localization ac-
curacy was ∼ 10 cm. The snow was sampled by walking
back and forth in a lawn-mower pattern, with higher sam-
pling clusters around deformed ice. A typical survey over the
100 m× 100 m area had ∼ 2000 points, with higher resolu-
tion (∼ 10 cm) near areas of deformed ice and lower resolu-
tion (∼ 5 m) over flat, level topography. These measurements
were converted into a surface by using natural neighbor in-
terpolation (Sibson, 1981), binned at 20 cm to match the lidar
and AUV data. The ice thickness can then be calculated by
taking (draft) + (snow freeboard) − (snow depth). Note that
because of thin snow, a negligible portion of the ice had neg-
ative freeboard. Where they do tend to occur (in deeper snow
adjacent to ridges), the effect on isostasy at the spatial scales
considered here will also be negligible because of the much
thicker ice.

The lidar and AUV data were corrected with a constant
offset, estimated by aligning with the mean measurements of
the level areas of the drill line for each floe. It is important to

Figure 4. Sea ice–snow layer cakes from PIPERS. The top layer is
the snow depth (D), the middle layer is the lidar scan of the snow
freeboard (F ), and the bottom layer is the AUV scan of the ice draft.
The ice thickness is therefore given by ice draft + snow freeboard
− snow depth.

use the level areas only as drill line measurements are likely
to be biased low due to the difficulties of getting the drill on
top of sails, potential small errors in alignment of the drilling
line relative to the AUV survey, differences in thickness mea-
surement in highly deformed areas (the drilling line samples
at a point, while the AUV will be some average over the sonar
footprint) and the presence of seawater-filled gaps that may
be confused with the ice–ocean interface when drilling. The
order of the lidar correction is ∼ 1 cm and the order of the
AUV correction is ∼ 10 cm. This offset accounts for errors
in estimating the sea level at lidar scan reference points and
the AUV depth sensor and vehicle trim.

Summary statistics for the floes sampled during PIPERS
are in Table 1. The PIPERS surveys comprised floes with
ridges that had sails and keels significantly thicker than those
that are typically sampled in drilling transects (e.g., Tin and
Jeffries, 2003; Worby et al., 2008). The sail and keel angles
(the angle of the sail and keel slopes relative to the verti-
cal) are not as well-defined for complex, nonlinear ridges, so
a range of angles are given, based on the variety of slopes
measured across the deformed area. The 99th percentile for
the sail and keel height is also reported to inhibit the ef-
fect of outliers from the lidar and AUV scans. We found the
sail / keel ratio was much more consistent when using the
99th percentile values. Our sail angles are typically <10◦
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and our keel angles are typically <20◦, in line with aver-
aged values from Tin and Jeffries (2003). However, our sail
heights and keel depths are slightly larger in magnitude than
the averaged Antarctic values from Tin and Jeffries (2003),
and are more similar to their reported values for temperate
Arctic ridges. Although our sampled ridges seem to be mor-
phologically typical of Antarctic ridges, they are somewhat
thicker than those typically sampled in drilling transects,
which is consistent with Williams et al. (2015), who sug-
gested that drilling transects may undersample thicker ice.

3 Methods

3.1 Linear regression approach

We attempt to statistically model SIT using surface-
measurable metrics (e.g., mean and standard deviation of
the snow freeboard), in order to see the limitations of this
method. To accurately calculate SIT without making assump-
tions of snow distribution, we need to use combined mea-
surements of ice draft (AUV), snow freeboard (lidar) and
snow depth (probe). Here, we primarily use PIPERS data to
focus on early-winter Ross Sea floes and also because this is
the largest such dataset from one season and region, which is
important so that the ridges have consistent morphology.

We use a simple (multi)linear least-squares regression with
either one (snow freeboard, F ) or two (F and snow depth,D)
variables with a constant term, such that T = c1F+c2D+c0.

For the two-variable fit, we do an additional fit with the
constant forced to be zero, in order to obtain coefficients that
can be used, following Eq. (1), to estimate the snow and ice
densities.

To measure the fit accuracy, we use the mean relative error
(MRE), as this avoids weighting errors from thin or thick ice
differently. The R2

adj value, adjusted for a different number of
variables, is also reported where possible (it is not defined for
a fit forced through the origin). When comparing the gener-
alization of the fits to test data excluded from the fit data, we
also report the relative error of predicting the mean survey-
wide thickness (REM), as often researchers are interested in
the aggregate statistics of a survey. These fit errors in esti-
mating mean SIT are compared to both prior relationships
derived from drilling data to highlight uncertainty when used
with different ice conditions and to our ConvNet predictions
of ice thickness.

In order to motivate more complex methods in subsequent
sections, we also use surface roughness (standard deviation,
σ ) to predict thickness to demonstrate that surface morpho-
logical characteristics have some information that can be
used to predict thickness.

3.2 Deep-learning approach

One advantage of deep-learning techniques is that they are
able to learn complex relationships between the input vari-

Figure 5. ConvNet architecture, using three convolutional layers
and two fully connected layers, for predicting the mean thickness
(1× 1 output) of a 20 m× 20 m (100× 100 input) lidar scan win-
dow at 0.2 m resolution (LeNail, 2019). The 64× 1 layer is made
by reshaping the 64× 1× 1 output of the final convolutional layer,
and so is visually combined into one layer. The optimizer used was
Adam with weight decay 1.0× 10−5 (Kingma and Ba, 2014). The
initial learning rate was η = 3×10−3 and reduced by a factor of 0.3
every 100 epochs until it reached 9× 10−5.

ables and a desired output, even if the relationships are not
obvious to a human. Although they are commonly used for
image classification purposes, they can also be used for re-
gression (e.g., Li and Chan, 2014). We expect a convolutional
neural network (ConvNet) to achieve lower errors in estimat-
ing SIT, as they are able to learn complex structural metrics,
in addition to simplistic roughness metrics like σ . Our input
is a windowed lidar scan (snow freeboard) and an output of
mean ice thickness. Notably, there is no input of snow depth,
or any input of ice or snow densities. This allows the Con-
vNet to infer these parameters by itself and more importantly
to potentially use different density values for different areas.

Our architecture is shown in Fig. 5. The input consists
of 20 m× 20 m (100 pixel× 100 pixel) windows, with three
convolutional layers, with a stride of 2 in the first two layers,
and two fully connected layers. We used scaled exponen-
tial linear units (SELUs) to create nonlinearity (Klambauer
et al., 2017). The loss function used was the mean squared
error. We also used dropout (p = 0.4) and augmentation (ran-
dom 90◦ rotations, horizontal and vertical flipping) to reduce
overfitting (Srivastava et al., 2014). An overview of ConvNet
basics and full implementation details are given in the Ap-
pendix.

The training–validation set consisted of randomly selected
windows from three PIPERS ice stations, each on a different
floe. We chose 20 m as the window size by using the range
of the semivariogram for the floes (25 m), which we expect
to represent the maximum feature length scale. This com-
pares well to an average snow feature size of 23.3 m from
early-winter Ross Sea drill lines from Sturm et al. (1998). We
chose 20 m instead of 25 m windows to balance this with the
need for a smaller window size to ensure a larger number of
windows (data points) for our analysis. These data were ran-
domly divided into 80 %–20 % to make the training and val-
idation sets. The remaining floe (divided into windows) was
kept as a test set, in case the training and validation windows
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Table 1. Standard metrics calculated for PIPERS dataset: sail height (HS), sail angle (AS), surface roughness (here taken as the standard
deviation of the snow freeboard, σ ), mean snow freeboard (F ), keel depth (HK), keel angle (AK), mean thickness (I ), mean level ice thickness
(IL), mean deformed ice thickness (ID), sail-to-keel ratio (HS/HK) and % deformation. For HS and HK, the absolute maximum is given,
along with the 99th percentile value of the deformed section draft (in brackets). The amount of deformed ice in each scan is generally high
as the survey grids were deliberately chosen for their deformation. The sail and keel angles are not precisely defined because the deformed
surfaces are complex and nonlinear, and a range of slopes across the deformed surface are given.

HS (m) AS (◦) σ (m) F (m) HK (m) AK (◦) I (m) IL (m) ID (m) HS/HK %def.

PIP4 1.64 (1.33) 6–40 0.20 0.28 7.43 (6.53) 15–25 1.72 0.65 2.19 0.22 (0.20) 71
PIP7 2.02 (1.53) 3–7 0.26 0.37 7.30 (6.84) 13–17 2.20 0.47 3.49 0.28 (0.22) 57
PIP8 1.95 (1.16) 1–6 0.15 0.27 5.70 (5.32) 6–14 1.33 0.57 2.08 0.34 (0.22) 50
PIP9 1.82 (1.27) 6–13 0.15 0.24 6.57 (5.93) 9–34 0.91 0.59 2.01 0.28 (0.21) 23

had similar morphology and the validation set was thus not
entirely independent of the training set. To prevent cherry-
picking, the ConvNet was trained four times, with a different
floe used as the test floe each time. Results are shown in Ta-
ble 2. Although the training error is directly analogous to the
fit error for linear models for some dataset, it is much easier
to overfit with a ConvNet as the training error can be made
arbitrarily low. As a result, we compare our validation error
to the linear fit errors, and we also use our test errors as a test
of the generalization of our model. From here onwards, anal-
ysis of the ConvNet refers to the one using PIP8 as a test set,
though using a different one would yield qualitatively similar
analysis.

4 Results

4.1 Linear model results

4.1.1 Fitting to snow freeboard only

Although we have snow depth measurements in addition to
snow freeboard measurements, in general there are far fewer
snow data and so we first try to fit with just snow free-
board, by making some snow depth assumptions. This ap-
proach has been applied by Ozsoy-Cicek et al. (2013) and
Xie et al. (2013) in order to obtain empirical relationships
between SIT and snow freeboard. All our fitted coefficients
are shown in Table 3. Because the R2 is not well-defined for
a fit with no constant term, we can compare all the model
fits with the AIC (Akaike information criterion, lower is bet-
ter; see Akaike, 1974). For all categories except for “level”,
the {F,D, constant} fit is indisputably best; for example, a
difference in AIC of 70 between the two best models in the
“all” category implies that the likelihood that the model with
{F , constant} is better than the one with {F,D, constant} is
e−70
= 4× 10−31. For the level category, the difference in

AIC suggests that linear fits with {F,D, constant} and {F ,
constant} are very similar (the latter has a 50 % likelihood
of being better than the former), which is consistent with the
idea that level ice probably has a constant ice / snow ratio

such that introducingD as a variable does not improve much
on using only F .

Fitting T = c1F +c0 gives a mean relative error (MRE) of
23 %. However, the slope is much higher (7.7), and the inter-
cept is also larger and different in sign (−0.7 m) to existing
fits in the literature (e.g., Ozsoy-Cicek et al., 2013, found that
T = 2.45F +0.21 for an early-spring Ross Sea dataset). Us-
ing the fitted relationship from Ozsoy-Cicek et al. (2013) for
our dataset, the MRE is 36 %, and the relative error in es-
timating the overall survey mean thickness (REM) is 41 %.
This is perhaps partly due to the seasonal difference in these
datasets, which itself implies that the proportion of deformed
ice (and hence nonzero ice freeboard) is variable. Reasons for
the difference in slope and intercept are given in Sect. 5.1.

We also test how well-generalized the fits are by fitting
only three of our four surveys at a time, then testing the fitted
coefficients on the remaining survey. These results are sum-
marized in Table 2. The average fit error was 24 %, but the
average test error was 31 %, which means that empirical fits
to the snow freeboard may have errors of 31 % when applied
to new datasets.

4.1.2 Fitting to snow freeboard and snow depth

For this section, we perform two different regressions: one
with a constant and one without. The with-constant fit is
intended to test whether introducing additional information
improves the empirical fits, following Ozsoy-Cicek et al.
(2013), and the without-constant fit is intended to be com-
pared against Eq. (1) to estimate sea ice and snow densities.
The coefficients are reported in Table 3 and the fit and test
MREs are reported in Table 2. We can see that adding snow
depth as a variable only slightly improves the fit MRE (aver-
age 20 %), but the fits remain poorly generalized, with a test
MRE of 28 %, only slightly lower than the 31 % test MRE of
fitting with F only.

Fitting without a constant allows us to directly compare
the fitted coefficients with Eq. (1). Using typical values of
910 kg m−3 for ice density, 1027 kg m−3 for water density
and 323 kg m−3 for snow density from Worby et al. (2011),
the coefficients for the freeboard F and snow depthD should
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Table 2. A compilation of the MRE of different fitting methods. Coefficients for the linear fits are shown in Table 3 and details are in
Sect. 3.2.1–3.2.2. The leftmost column indicates the floe that was excluded from the fitting data (e.g., the first row indicates fits that were
performed over the PIP7-9 data and then tested on PIP4). The ConvNet validation error was used for comparison with the linear model fits,
as the training error can be made artificially low by overfitting. On average, the ConvNet achieves the best generalization in the fit, even
though there are individual anomalous cases. For example, the F -only fit using PIP7 as a test set has a low test error than fit error, which
simply means that the average snow / ice ratio for PIP7 is similar to the averaged snow / ice ratio for the other floes. The F -only fit is most
comparable to our ConvNet as neither use the snow depth as an input.

Linear (no constant) Linear (with constant) F only (with constant) ConvNet

Test set Fit MRE Test MRE Fit MRE Test MRE Fit MRE Test MRE Val. MRE Test MRE

PIP4 36 % 12 % 17 % 31 % 19 % 39 % 14 % 20 %
PIP7 25 % 33 % 20 % 24 % 26 % 23 % 14 % 18 %
PIP8 33 % 32 % 22 % 23 % 25 % 32 % 16 % 20 %
PIP9 27 % 59 % 20 % 34 % 24 % 30 % 14 % 20 %
Average 30 % 34 % 20 % 28 % 24 % 31 % 15 % 20 %

Table 3. Fitted coefficients for SIT T as a multilinear regression of the snow freeboard F and snow depth D (Sect. 3.2.2), and also fitting
for F only (Sect. 3.2.1). The variable “const.” refers to a constant term being included in the fit. Surfaces are also categorized (Fig. 7) to
incorporate roughness into the fits (Sect. 4.1.3). As the R2 is not well-defined for a fit with no constant term, the Akaike information criterion
(a metric that minimizes information loss) is used to compare the models (Akaike, 1974). The R2 is reported for the with-constant fits only
and is adjusted for the different sample sizes in each fit. For each dataset, the smallest AIC value is bolded, and the second-lowest is italic.
The absolute value of the AIC does not matter; only the relative differences between AICs for different models that use the same dataset
matter, with the lowest being the best model. For individual floe fits, only PIP8 is shown for brevity as the other floes have comparable errors
and coefficients.

Fitted variables R2
adj AIC MRE, m (%) F coeff. D coeff. Constant (m)

PIP8
F , const. 0.91 10.2 0.20 (16) 7.07± 0.30 – −0.81± 0.10
F, D – 37.3 0.26 (24) 9.03± 1.0 −5.45± 1.25 –
F,D, const. 0.92 5.30 0.18 (15) 8.85± 0.73 −2.70± 1.02 −0.70± 0.11

Ridged
F, const. 0.91 128 0.31 (21) 7.59± 0.20 – −0.65± 0.08
F,D – 111 0.29 (22) 10.33± 0.44 −6.53± 0.67 –
F,D, const. 0.94 75.5 0.25 (17) 10.42± 0.39 −5.06± 0.63 −0.45± 0.07

Level
F, const. 0.00 −71.6 0.07 (13) 0.02± 0.67 – 0.50± 0.11
F, D – −56.5 0.07 (13) 3.58± 0.77 −0.82± 0.96 –
F,D, const. 0.07 −72.3 0.06 (12) 0.87± 0.85 −1.22± 0.76 0.52± 0.11

Snowy
F , const. 0.81 32.3 0.27 (24) 7.74± 0.59 – −0.72± 0.16
F,D – 36.4 0.29 (34) 10.45± 1.37 −6.29± 1.63 –
F,D, const. 0.87 19.9 0.22 (23) 11.88± 1.15 −5.33± 1.33 −0.63± 0.14

All
F, const. 0.92 179 0.28 (23) 7.67± 0.15 – −0.73± 0.05
F,D – 194 0.30 (31) 10.42± 0.37 −6.81± 0.53 –
F,D, const. 0.94 109 0.24 (20) 10.19± 0.31 −4.51± 0.49 −0.52± 0.05

be 8.8 and 6.0. Similarly, Zwally et al. (2008) used corre-
sponding densities of 915.1, 1023.9 and 300 kg m−3, giving
a freeboard coefficient of 9.4 and a snow coefficient of 6.7.
Our results when fitting over all four floes are 10.4 for c1
and 6.8 for c2, which are comparable to those inferred from
Zwally et al. (2008), although there is considerable variation
between the floes (7.9–10.6 for c1; 3.9–6.3 for c2; not shown
in Table 3).

Assuming a density of seawater during PIPERS of
1028 kg m−3 (determined from surface salinity measure-

ments at these stations), this gives bounds for the effec-
tive densities and standard errors of sea ice and snow as
929.4± 3.5 and 356.3± 57.2 kg m−3. The snow density is
in line with Sturm et al. (1998), who found mean densities of
350 and 380 kg m−3 during autumn–early winter and winter–
spring, respectively, in the Ross Sea, as well as the measured
snow densities from PIPERS (245–300 kg m−3). The mea-
sured PIPERS snow densities may be biased low because
they were measured at level areas and possibly do not rep-
resent snow densities in drifts around ridges well. The errors
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here are propagated from the standard errors found during
the regression; they are therefore representative of the error
in estimation of the mean densities over all data and do not
represent actual ranges in the ice and snow densities. The
ice (effective) density estimates here are averaged over the
entire PIPERS dataset (including both deformed and unde-
formed ice) and thus may not apply to other samples from
the Ross Sea in winter, as the effective density is affected
by the proportion of ridged ice, which is deliberately over-
represented in our sample. Moreover, it is important to note
that under this fitting method, the density estimates are cou-
pled (due to ρi appearing in both coefficients in Eq. 1) and
if the estimate of ρs decreases, ρi increases. For example, if
ρi = 935 kg m−3 (unusually, but not impossibly high for the
effective density of ridged ice, which includes some propor-
tion of seawater – see Timco and Frederking, 1996), the best
estimate for ρs becomes 312 kg m−3, which is closer to the
measured 300 kg m−3 value from PIPERS.

The fact that introducing snow depth as a variable only
slightly improves the generalization of the fit may be because
snow depth is itself highly correlated with snow freeboard
Ozsoy-Cicek et al. (e.g., 2013). Linear methods of fitting re-
quire the assumption of a constant snow and ice density (or
in a one-layer case, a constant “effective density”), which im-
plies an irreducible error for estimating small-scale SIT. This
fails to account for varying ice and snow densities around
level and deformed ice. This is discussed further in Sect. 5.1,
and motivates the introduction of surface roughness (σ ) as an
additional variable in our linear fit.

4.1.3 Incorporating surface roughness into the fit

Given that we expect effective density variations for different
surface types, we expect SIT estimates to improve with the
addition of surface morphology information. The most sim-
ple of these is the surface standard deviation, as prior studies
have found that this is correlated to the snow depth and the
mean thickness (Kwok and Maksym, 2014; Tin and Jeffries,
2001). Our data also show a reasonable relationship between
SIT and surface σ , though it is weaker than fits to the free-
board (Fig. 6). Adding the roughness as a third variable to
the fit gives an average fit MRE of 18 % and an average test
MRE of 24 %. This is not much of an improvement, and it is
possible that σ is too simplistic a metric to improve the fit or
that it is itself highly correlated with F and therefore offers
little additional information.

There is no particular reason to expect the surface σ to be
linearly combined with the snow depth and snow freeboard,
even if it makes dimensional sense. Instead, we can try using
the roughness as a regime selector. To do this, the lidar win-
dows were classified manually into snowy surface, level sur-
face, ridged surface and deformed surface categories (Fig. 7).
If it had both a ridge and snow, it was classified as ridged.
“Level” surfaces were distinguished as those windows with
no visible snow or ice features in the majority of the window.

Figure 6. Predicting mean ice thickness with just the surface rough-
ness (σ ) as the input, with MRE 33 %. The best-fit line is also
shown, with R2

= 0.65.

Figure 7. An example lidar scan from a station (PIP7) with the man-
ually classified segments. Snow features are clearly visible emanat-
ing from the L-shaped deformation. Deformed (blue) surfaces were
excluded from the analysis.

“Snowy” surfaces were those that contained a snow feature
(e.g., a dune or drift) in the window. “Deformed” was in-
tended as a transitional category for images that had no clear
ridge but were generally rough – this comprised, typically,
∼ 5% of an image and was excluded from analysis. We ac-
knowledge that this classification can be arbitrary, and we use
this method only to show that different surface types should
be treated differently, but a manual classification does not
help much: this motivates the use of a deep neural network
in the next section. The snowy, level and ridged categories
were individually fitted to see if there were any differences
in the coefficients; these are also reported in Table 3.

We then used a two-regime model over all four floes, so
that ice thicknesses for the low-roughness surfaces are esti-
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mated using the level coefficients, and high-roughness sur-
faces use the ridged coefficients. This resulted in MREs of
16 %–21 % assuming 20 %–50 % of the surface is deformed.
This is slightly better than for fitting the all category in
Table 3 (20 % MRE), suggesting that distinguishing topo-
graphic regimes improves thickness estimates. However, this
fit has issues with generalizing to other floes. If the fit for
the rough and level coefficients is carried out using only
three floes and then applied to the remaining (test) floe (us-
ing a surface roughness threshold determined from that floe,
and again assuming 20 %–50 % of the surface is deformed),
the test MREs averaged over all possible choices of test floe
are considerably higher (24 % when fitting). This does not
improve much on the generalization from the two-variable
linear fit, where the test MRE was 28 %.

4.2 ConvNet results

The (irreducibly) poor generalization of linear fits, likely due
to a locally varying proportion of snow and ice amongst dif-
ferent surface types, motivates the use of more complex al-
gorithms that can account for the surface structure. For this,
we use a ConvNet with training, validation and test datasets
as described in Sect. 3.2.

The best validation error was 15 %, corresponding to a
training error of 11 % (Fig. 8a and b). The mean test error
(on the excluded floe) was 20 %. Although the linear mod-
els have a similar fit error, they do not generalize as well to
the test set, and the resulting thickness distribution is visibly
different to the real test distribution (Fig. 8c).

This shows better generalization than the linear mod-
els (test MREs from 28 % to 47 %). Although the best-
performing linear models have only slightly higher test
MREs (24 % for the three-variable fit in Sect. 4.1.3) than our
ConvNet (20 %), the range of errors is much greater, with
test MREs of 18 %–29 %, whereas the ConvNet has remark-
ably consistent test MREs of 18 %–20 %. Furthermore, it is
important to remember that achieving these comparably low
MREs with linear models requires snow depth as a variable,
which is generally not available. These fits also typically in-
clude a negative constant (Table 3), which means T <0 for
F =D = 0, which is clearly unphysical and limits the appli-
cation of these models to areas of low snow freeboard. The
fits to snow freeboard only, which uses the same input data
as the ConvNet, have considerably higher test MREs (23 %–
39 %; see Table 2). For the sake of comparison to models that
use rms error, such as Ozsoy-Cicek et al. (2013), the valida-
tion rms error for our survey-averaged mean thickness values
is 2 cm, which is lower than the rms error of 11–15 cm from
Ozsoy-Cicek et al. (2013). Our fit uses three surveys from
three different floes as an input, which means the fit is likely
lower in error than Ozsoy-Cicek et al. (2013), which uses
23 floes. However, we would also expect poorer generaliza-
tion for our test set from using only three surveys. Although
our test rms error for the mean survey thickness (3 cm) can-

Figure 8. ConvNet results, with (a) the learned ConvNet model ap-
plied to the training data (80 % of randomly sampled 20 m× 20 m
windows from PIP4, PIP7, PIP9), with MRE 12 %; (b) the learned
ConvNet model applied to the validation data (remaining 20 % of
the randomly sampled 20 m× 20 m windows from PIP4, PIP7 and
PIP9) with a MRE of 16 % as well as a linear model (with snow
freeboard + constant) fitted to PIP4, PIP7 and PIP9 with a MRE
of 25 %; (c) the learned ConvNet model and fitted linear model ap-
plied to randomly sampled 20 m× 20 m windows from PIP8, as a
check against learning self-similarity, with MREs of 20 % (Con-
vNet) and 32 % (linear model)). In each case, the left panel shows
a scatter plot with the predicted and true thicknesses, and the right
panel shows the resulting thickness distribution. Our results suggest
slight overfitting, as the test error is higher than the training error,
but the learned model still generalizes fairly well, with MREs much
lower than linear models, even when including an unphysical inter-
cept to improve the fit (Table 2).

not be directly compared, it is reasonable to surmise that our
ConvNet achieves better generalization than a linear fit. Note
that the rms error is not linked to the surface rms roughness,
which is just the standard deviation of the snow freeboard.

As shown in Fig. 8c, the ConvNet does seem to be cap-
turing the thickness distribution of the test floe, even if the
individual window mean estimates have some scatter. In con-
trast, the linear models have considerably different thickness
distributions (Fig. 8, red points and lines) despite having sim-
ilar fit MREs (Table 2). The ConvNet also successfully re-
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produces the spatial variability of the SIT distribution better
than the linear fit (Fig. 9). Note because of the small size
of the dataset, there is significant oversampling in the Con-
vNet prediction of the floe SIT distribution. The primary dif-
ference between the ConvNet and linear fit for this floe is
a large overestimation of level ice thickness. This demon-
strates the inability of the linear fit to account for variations
in effective densities and/or snow / ice freeboard ratios. The
ConvNet prediction can have some large local errors, in this
case chiefly on the flanks of the ridge, where steep freeboard
or thickness gradients may affect performance. Comparisons
for other floes (not shown) are qualitatively similar, though
the spatial distribution of fit errors varies among floes. The
key result of the ConvNet is in the significantly reduced er-
ror in the local (20 m scale) mean thickness (MRE of 15 %–
20 %), which also gives a low ∼ 10% error of the average
scan-wide thickness. Moreover, this high accuracy also car-
ries over to test sets from the same region and season. In
contrast, linear models, which do not generalize well to new
datasets, have a considerable bias (Fig. 9), despite having an
ostensibly good fit. Analysis of why the ConvNet may be
performing better than linear fits is given in Sect. 5.2.

5 Discussion

5.1 Possible causes for poor linear fit

Our linear regression results for fitting T = c1F + c0 have
markedly different coefficients from drill line data from the
same region and season (Ozsoy-Cicek et al., 2013). Here we
discuss possible reasons for their differences. The first differ-
ence is that our value for c1 = 7.67 (Table 3) is much higher.
This is almost certainly because our dataset includes much
more deformed ice, as we deliberately sampled deformed ar-
eas on floes. At one extreme, where the snow load is large
such that the snow depth = snow freeboard assumption is ap-
proximately valid (set F =D in Eq. 1), which for our data
occurs for level, thin ice where there is some snow load,
Eq. (1) would simplify to T = 2.7F (using density values
from Zwally et al., 2008). In contrast, when the topogra-
phy is sufficiently rough, there is considerable ice freeboard,
which may even exceed snow depth. If we assume the snow
is negligible (D = 0), which may be the case at the sail peak,
Eq. (1) becomes T = 9.4F . These values become lower and
upper bounds for fitting c1 in T = c1F (without the constant
c0). The best fit value for c1 is 5.8 when fitting to the full
dataset (Fig. 10), which falls between these two extremes
of snow-only F and ice-only freeboard F . Our coefficient
is also comparable to Goebell (2011), who found a coeffi-
cient of 5.23 from first-year Weddell ice. Much as in Goe-
bell (2011), our dataset includes considerable deformed ice,
which has a nonzero ice freeboard, and so the coefficient of F
is higher than 2.7. We can estimate the ratio of snow to ice by
comparing this with the hydrostatic equation: for example, if

we assume typical snow and ice densities of 300 kg m−3 and
920 kg m−3, this implies that snow, on average, comprises
54 % of the measured snow freeboard. Using these values,
Eq. 1 simplifies to T = 5.8F , as in Fig. 10. In further support
of this, our dataset has mean snow depths for the four surveys
ranging from 16 to 26 cm and mean snow freeboards ranging
from 24 to 37 cm, implying considerable nonzero mean ice
freeboards.

The high scatter of our fit also suggests that the snow / ice
ratio varies locally, as can be expected around level and de-
formed ice. If the proportion of ice to snow were constant,
then the best-fit line, for whatever slope, would have no scat-
ter. This is not the case in Fig. 10, and indeed the standard
deviation of ice freeboard across all windows was 7.9 cm
(mean: 9.0 cm). This means that assuming a constant snow
and ice density or a constant snow–ice proportion is not justi-
fied, and hence it is likely that simple statistical models break
down when looking at deformation on a small scale or when
large-scale snow deposition and ice development conditions
vary. This mirrors the conclusions in Kern et al. (2016), who
found that linear regressions could not capture locally and re-
gionally varying snow / ice proportions. Even when includ-
ing regime-dependent fits (Sect. 4.1.3, Fig. 6), this does not
improve the test errors because this is likely too simplistic
(even within a ridge, the ratio of snow to ice is likely vary-
ing). An important point regarding σ is that it does not ac-
tually account for the surface morphology very well, as any
permutation of elevations within the window will give the
same σ . This means that the “shape” or “structure” of the
surface is not truly accounted for. This motivates more com-
plex metrics for surface roughness (Sect. 4.2).

Unlike our approach, the fits in Ozsoy-Cicek et al. (2013)
and Xie et al. (2011) use large-scale, survey-averaged data.
Their coefficients for c1, 2.4–3.5 and 2.8 for Ross Sea and
Bellingshausen Sea data, respectively, are near the theoret-
ical value of 2.7 assuming no ice freeboard. This suggests
that at large scales for some seasons and regions, it may be
reasonable to assume that the mean ice freeboard is zero, but
this is not the case at smaller scales. It is also possible that
drill lines have undersampled ridged ice due to sampling con-
straints or (in our case) sample heavily deformed areas that
are not typically sampled in situ. Thus, empirical fits should
be used with caution.

The second major difference is that our intercept is nega-
tive, whereas those from Ozsoy-Cicek et al. (2013) and Xie
et al. (2011) are all positive. In our case, it is possible to in-
terpret our negative intercept as a result of fitting a linear
model across two roughness regimes. From above, the two
regime extremes (no-ice vs. no-snow contribution to snow
freeboard) give T = 2.7F and T = 9.4F as limiting cases. In
general, we expect the proportion of ice freeboard to gradu-
ally increase as F increases from thinner, level ice to thicker,
deformed ice. Although snow also accumulates around de-
formed ice, there may also be local windows at parts of the
ridge with no snow (e.g., the sail). This means that we expect
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Figure 9. Ice thickness profile of the test set (PIP8), using the linear fit (T = c1F + c0) and ConvNet model, both performed with PIP4,
PIP7 and PIP9 as inputs. The input windows are 20 m× 20 m, with a stride of 5 m in each direction, so there is a considerable oversampling.
The mean residual for the linear model (35 cm) is much higher than for the ConvNet (19 cm), which means the resulting mean thickness has
almost twice the REM (24 % vs. 13 %). The scatterplot clearly shows the linear model (using 20 m windows as well, with coefficients from
Table 3) predictions are consistently biased high, which is also apparent in the linear model residual.

Figure 10. The SIT (T ) as a function of measured snow freeboard
(F ). As expected, all points lie between the two extreme regimes
(no ice freeboard and no snow freeboard). The level surfaces mostly
have no ice freeboard, as expected, though there is some scatter
that suggests a varying component of ice freeboard. The best-fit
line for all windows from Table 3 is shown in black. Assuming
mean snow and ice densities of 300 and 920 kg m−3, this implies
a mean proportion of 55 % snow and 45 % ice in the snow free-
board. Again, the scatter around the best-fit line indicates that this
proportion is changing. Some points for the level category fall be-
low the T = 2.7F line, suggesting that snow densities in these areas
are <300 kg m−3 (or effective ice density < 915 kg m−3.)

a gradual transition from T = 2.7F to T = 9.4F as F in-
creases. Fitting one line through these two clusters of points
would result in a coefficient for F between 2.7 and 9.4 and
a negative intercept, which we find in almost all our cases.
The one exception is the fit for the level category, which is
essentially a null fit (as over 90 % of the thickness values are
clustered around 0.5± 0.05 m). In contrast, the coefficients
for F from Ozsoy-Cicek et al. (2013) and Xie et al. (2011)
are all ∼3 because these studies average over multiple floes
and have a sufficiently small proportion of deformed surface
area to assume a negligible ice freeboard as discussed above.
In their case, their intercept would be positive, as their ice
thickness estimates would be otherwise underestimated due
to some of the snow freeboard being ice instead of snow.

When fitting a linear or ConvNet model to snow freeboard
data, we cannot know whether there are negative ice free-
boards; as such, these methods account for it only implicitly,
with a linear fit effectively assuming that a similar percentage
of freeboards will be negative. This may contribute to errors
when trying to apply a specific linear fit to a new dataset.
A ConvNet could conceivably do better here, in that signifi-
cant negative freeboard is likely to matter most when there is
deep snow, which might have recognizable surface morphol-
ogy, although this is quite speculative.
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5.2 Plausible physical sources of learned ConvNet
metrics

The ConvNet performs better than the best linear models in
both fit and test MREs. However, the ConvNet trained with
our dataset is very limited in applicability to only datasets
from the same region and season. When we applied our
trained ConvNet to lidar inputs from a different expedition
(SIPEX-II; Maksym et al., 2019) from a different season and
region, the MRE is 69 %, and the REM is 51 %. This sug-
gests that other seasons and regions may have different rela-
tionships between the surface morphology and SIT, which is
not surprising given that snow accumulates throughout win-
ter. The SIPEX-II data were collected during spring in coastal
East Antarctica in an area of very thick, late-season ice with
very deep snow with large snowdrift features of length scales
>20 m (which would not be resolved by the ConvNet filters
here). It is also possible that datasets from spring, such as
SIPEX-II, will not be as easy to train networks on because
the significantly higher amounts of snow may obscure the
deformed surface. Although this points out a limitation of
this method, which restricts any trained ConvNet to a narrow
temporal–spatial range, it also adds weight to the idea that the
ConvNet is learning relevant morphological features. A Con-
vNet trained on Arctic data would likely learn different fea-
tures (e.g., melt ponds and hummocks), although additional
filters may be needed to distinguish multiyear and first-year
floes.

We also tried different inputs, such as using 10 m× 10 m
windows, which had training, validation, and test errors of
9%, 18 %, and 25 % and using 20 m× 20 m inputs with half
the resolution (i.e., 0.4 m), which had errors of 7%, 13 %
and 25 %. The smaller window case has a slightly higher
validation error than the above ConvNet, and the coarser-
resolution input has a slightly lower validation error than the
above ConvNet, but both cases have slightly higher test er-
rors. Larger windows, which are more likely to capture sur-
face features, are likely to improve the fit, but our dataset
is too small to test this as larger window sizes would mean
fewer training inputs. However, it is promising that the val-
idation errors are lower at a coarser resolution. This sug-
gests that this method may indeed extend to coarser, larger
datasets like those from airborne laser altimetry from OIB.
We also tried training for the mean snow depth given the li-
dar inputs, with training, validation, and test errors of 15%,
17 % and 18 %, which is very similar to the thickness predic-
tion. This is not entirely surprising as, if hydrostatic balance
is valid, being able to predict the mean thickness given some
snow freeboard measurements naturally gives the mean snow
depth via Eq. (1).

Although the ConvNet achieved a much lower test error
than the linear fits, the inner workings of a ConvNet are not as
clear to interpret. We can try to analyze the learned features
by passing the full set of lidar windows through the ConvNet
to see if the final layer activations resemble any kind of met-

Figure 11. Typical weights learned in the first and last convolu-
tional layers. Weights learned from the third layer are shown using
the same color map as the snow freeboard in Fig. 7 to facilitate
comparison. Darker colors indicate lower weights, but the actual
values are not important. The filters in layer 1 correspond to edge
detectors, e.g., Sobel filters, and the filters in layer 3 may be higher-
order morphological features like “bumps” (snow dunes) and linear,
strand-like features (ridges). The filter size of the first layer corre-
sponds to 4.0 m (20 pixels at 0.2 m resolution) and the third layer
is 8.8 m (11 pixels at 0.8 m resolution). The resolution is halved at
each layer due to the stride of 2 (see Fig. 5).

ric. The below analysis of features is very qualitative, as it
is inherently very difficult to characterize what a ConvNet is
learning.

One helpful way to gain insight into what the ConvNet is
learning is to inspect the filters. Filters in early layers tend to
detect basic features like edges (analogous to a Gabor filter,
for example), with later layers corresponding to more com-
plex features like lines, shapes or objects (Zeiler and Fergus,
2014). We see similar behavior in our filters; typical filters
learned in our model are shown in Fig. 11. Early filters high-
light basic features like edges when convolved with the input
array, while later filters show more complex features. These
complex features are hard to interpret, but are clearly con-
verged and not just random arrays. For example, a “blob”
feature could be a snow dune filter, while filters with a clear
linear gradient could correspond to the edge of ridges. The
filters in the final layer are around ∼ 8 m in size. This may
be too small to resolve the entire width of the ridges in our
dataset, but would be enough to identify areas near ridges.
With a larger windowed lidar scan, such as those from OIB
with a scan width ∼ 250 m (Yi et al., 2015), we expect better
feature identification, as the entire width of a ridge can be
resolved within a filter.

The learned weights for the final (8× 1) hidden layer and
their activations (when each input window is fed forward
through the ConvNet) are shown in Fig. 12a, grouped by
category (level, ridged, snowy). These should correspond to
(unspecified) metrics, which are linearly combined with the
weights shown in Fig. 12b. It is clear that level surfaces are
distinguished from ridged and snowy surfaces, but ridged and
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Figure 12. (a) Distribution of the final (8× 1) layer activations
for the level, ridged and snow categories from Fig. 7, and (b) the
learned weights for the final fully connected hidden layer. To gener-
ate the final thickness estimate, the activations in (a) are multiplied
with the weights in (b) and then summed.

snowy surfaces show considerable overlap with each other.
While it is not possible to determine with full certainty what
each of the eight features corresponds to, we can correlate
these features to metrics that we may expect to be important
for estimating the ice thickness and see which ones match.
Performing this analysis, for ridged surfaces, features 0, 3
and 6 had a strong correlation (|R|>0.95) to the mean snow
freeboard (Fig. 13d); for snowy surfaces, these three features
had a slightly weaker correlation (0.88< |R|<0.96) to the
mean snow freeboard; and for level surfaces, features 1 and
5 had a slight correlation (|R| = 0.67 and 0.80, respectively)
to the mean snow freeboard (Fig. 13a). However, features
that correlated to the ridged surface mean snow freeboard
did not correlate to the level surface mean snow freeboard,
and vice versa (Fig. 13b and c). This suggests that the mean
snow freeboard for level surfaces is treated differently (e.g.,
given a different effective density) than other categories.

For ridged surfaces, in addition to the mean snow free-
board, the rms roughness was also important, with features
2 and 4 weakly correlating (|R| = 0.61) to the standard de-
viation of the window. The standard deviation had a slightly
weaker correlation (|R| = 0.55) for level surfaces and vir-
tually none at all for snowy surfaces (|R|<0.20). Another
measure of roughness is the rugosity (the ratio of “true”
surface area over geometric surface area; see Brock et al.,
2004). This was most important for the snowy category, with
|R| = 0.57 for feature 7, compared to |R| = 0.53 for feature
6 for ridged surfaces and |R| = 0.22 for feature 2 for level

Figure 13. Scatter plot showing correlations between features and
real-life metrics. Here, features 0 and 5 correlate strongly to the
mean elevations of the level and ridged surfaces, respectively, but
not the other way around. This suggests that the level and ridged
surfaces are treated differently, implying a different effective den-
sity of the surface freeboard. The correlation for the level category
is not as strong; without the two points near x = 0.1, |R| = 0.64,
so this feature is possibly a combination of the mean elevation and
something else.

surfaces. As we found before, these features were much more
strongly correlated to the mean elevation and standard devia-
tion, respectively for their respective surface category. This
was not the case for feature 7 for snowy surfaces, which
had a similar correlation (|R| = 0.54) to the mean elevation
and a much weaker correlation (|R| = 0.35) to the surface σ .
To summarize, for all categories, the mean snow freeboard
is important (though weighted differently, as different filters
activate for different categories). For both level and ridged
surfaces, the rms roughness is important, and for snowy sur-
faces, the rugosity is also important. The above analysis sug-
gests that there are important regime differences for estimat-
ing SIT. It should be noted that these statistical metrics sug-
gested above, with the exception of rugosity, do not account
for structure (any permutation of the same numbers has the
same mean/σ ), which limits the usefulness of this approach
to interpreting the ConvNet.

This is by no means an exhaustive list, but it suggests that
the ConvNet is learning useful differences between differ-
ent surface types. However, as suggested by the considerable
overlap in the distributions in Fig. 8, these categories may
also not be the most relevant classifications. Alternatively,
a t-distributed stochastic neighbor embedding (see van der
Maaten and Hinton, 2008), which is an effective cluster visu-
alization tool, shows that ridged and level surfaces are clearly
distinguishable, but there is considerable overlap between the
snowy and ridged categories (Fig. 14). However, the ridged
category is quite dispersed, and may even consist of differ-
ent classes of deformation which should not be grouped all
together. Nevertheless, it is apparent that at the very least,
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Figure 14. The t-distributed stochastic neighbor embedding dia-
gram for the encoded input, using the first fully connected layer
(feature vector of size 64) (van der Maaten and Hinton, 2008). The
level and ridged categories are most clearly clustered, although the
snowy category may also be a cluster. There is some overlap be-
tween the snowy and ridged clusters, which may reflect how ridges
are often alongside snow features. It is also possible that the ridged
category contains multiple different clusters. This result suggests
that the manually determined surface categories shown in Figs. 7
and 12 are pertinent, but perhaps not the most relevant, for estimat-
ing SIT given different surface conditions.

the level and non-level categories are meaningfully distin-
guished. With more data and larger scan sizes (e.g., from
OIB), a deep-learning neural network suitable for unsuper-
vised clustering (e.g., an auto-encoder) could identify natural
clusterings with their associated features (Baldi, 2012).

To emphasize the importance of the mean elevation, we
also tried training the same ConvNet architecture with de-
meaned elevation as the input. Our ConvNet architecture is
able to achieve a lowest validation error of 25 % (training er-
ror 10 %), but the test MRE is relatively high (40 %). The
test error is worse than the linear model and has twice the
test MRE of our ConvNet with snow freeboard (test MRE:
20 %).

We also trained the ConvNet to predict the mean snow
depth, with comparable training, validation, and test errors
of 15%, 17 %, and 18 % when using raw lidar input and er-
rors of 15%, 22 %, and 45 % when using demeaned lidar in-
put, which suggests the same analyses hold for snow depth
prediction. As the snow depth is largely correlated with the
snow freeboard (e.g., Ozsoy-Cicek et al., 2013), with the ex-
ception of ridged areas, it is not surprising that the demeaned
input is not as good a predictor of the snow depth. However,
when metrics obtained from the demeaned snow freeboard
(such as roughness) are combined with the mean snow free-
board, snow depth estimates (as well as SIT estimates) are
improved. This may mean that aside from the mean snow
freeboard, surface lidar scans may contain other information
(e.g., morphology) capable of improving both SIT and snow
depth predictions. This is promising for applications to larger
datasets such as OIB or ICESat-2.

Another approach to analyze these learned weights is to
look at the sign of the weight and the typical values of the

activations in Fig. 12. Feature 0 has a negative weight for
which the ridged category (and to a lesser extent snowy)
has the largest (most negative) feature values; this leads to
adding extra thickness, primarily for the ridged ice category.
This perhaps accounts for a higher percentage of ice free-
board in the snow freeboard measurement than for the level
and snowy categories. Indeed, most of the level category has
values near 0 for this feature. This could therefore be inter-
preted as a “deformation correction” of some sort, or increas-
ing the effective density of the ridged surface (perhaps due to
a higher proportion of ice). This is also the case for features
3 and 6, which is not surprising as these three features all had
strong correlations to the mean elevation for the ridged and
snowy categories.

Features 5 and 7 both show some distinguishing of the dif-
ferent surface types, although the weights are so small for
these features (Fig. 12b) that they likely do not significantly
change the SIT estimate and we do not speculate what these
may account for.

The inner workings of ConvNets are not easily interpreted,
but the analysis here suggests that the ConvNet responds in
physically realistic ways to the surface morphology. It may
be possible to use these physical metrics to construct an ana-
lytical approximation to the model, but due to the nonlinear-
ities in the ConvNet as well as the considerable scatter be-
tween the features and our guessed metrics, this will not be
as accurate as simply passing the input through the ConvNet.

6 Summary and conclusions

Statistical models for SIT estimation suffer from a lack of
generalization when applied to new datasets, leading to high
relative errors of up to 50 %. This is problematic if attempt-
ing to detect interannual variability or trends in ice thickness
for a region. Deep-learning techniques offer considerably im-
proved accuracy and generalization in estimating Antarctic
SIT with comparable morphology. Our ConvNet has compa-
rable accuracy to a linear fit (15 % MRE vs. 20 % MRE) but
it has much better generalization to a test floe (20 % MRE
vs. 28 % MRE for applying the best linear fit). This linear fit
uses additional snow depth data not included in the ConvNet;
without these data, the linear fit has an even higher test MRE
of 31 %.

We find that even for level surfaces, there is a consider-
able varying ice freeboard component that creates an irre-
ducible error in simple statistical models, but can be accom-
modated as a morphological feature in a ConvNet. Our error
in estimating the local SIT is <20 % (rms error of ∼ 7 cm)
and the resulting mean survey-wide SIT also has lower errors
(rms error: 2–3 cm) than empirical methods (11–15 cm; see
Ozsoy-Cicek et al., 2013).

In applying any model to a new dataset, it is assumed
that the relationships from the fitted dataset hold for the new
dataset. We already showed that linear fits do not hold for

www.the-cryosphere.net/13/2915/2019/ The Cryosphere, 13, 2915–2934, 2019



2930 M. J. Mei et al.: Morphology-based sea ice thickness prediction

different datasets (even from the same region or season),
with the MRE increasing substantially, likely due to differ-
ing snow–ice proportions in the snow freeboard. This is true
even when applying relationships from some PIPERS floes
to other PIPERS floes. In addition to different surveys having
different freeboards, ice–snow densities may also be differ-
ently distributed between surveys. Our ConvNet has errors of
12 %–20 % when estimating both the local and survey-wide
thicknesses of a test dataset, which is only slightly higher
than the validation errors of 7 %–15 %. This suggests that the
morphological relationships learned in the ConvNet also hold
for other floes of comparable climatology, which in turn sug-
gests that deformation morphology may be consistent within
the same region and season.

Although our survey consists of high-resolution lidar,
snow and AUV data, we really only need high-resolution li-
dar data. Lidar surveys are much easier to conduct than AUV
surveys, and so a viable method for obtaining more data for
future studies is to use a high-resolution lidar scan, combined
with coarser measurements of mean SIT (e.g., with electro-
magnetic methods, as in Haas, 1998). Snow depth measure-
ments are not needed with this method. This should greatly
reduce the logistical difficulties to extend these methods to
more regions and seasons.

Another possible strength of our proposed ConvNet is that
it could account for a varying ice and snow density, with
greater complexity and accuracy than an empirical, regime-
based method. Although recent works like Li et al. (2018)
have attempted to vary effective surface densities using em-
pirical fits, these are not effective at higher resolutions, where
snow and ice proportions may vary locally. Although the
workings of ConvNets are somewhat opaque, we have shown
that our ConvNet takes into account the spatial structures of
the deformation, and given plausible justifications for why
the snowy, level and ridged surfaces are treated differently.
The learned filters suggest that morphological elements are
important for SIT estimation.

Although our ConvNet would be greatly improved with
more training data, it is promising that local SIT can be ac-
curately predicted given only snow freeboard measurements.
More extensive lidar, AUV and snow measurements from
different regions and seasons would improve the ConvNet
generalization. The window size of 20 m× 20 m used here
may also be valid, with some modifications, to work on OIB
lidar data, as the learned features at∼ 8 m resolution are also
resolved by OIB lidar data (resolution 1–3 m).

We have shown that surface morphological information
can be used to improve prediction of sea ice thickness us-
ing machine learning techniques. This provides a proof of
concept for exploring such techniques to similarly improve
sea ice thickness prediction (particularly at smaller scales)
for airborne or satellite datasets of snow surface topogra-
phy. While the ConvNet technique presented here is not di-
rectly applicable to linear lidar data such as from ICESat-2,
related methods that exploit sea ice morphological informa-
tion might help improve sea ice thickness retrieval at smaller
scales from ICESat-2. Alternatively, using a larger training
set, it may be possible to use deep-learning-based methods
to more readily identify relevant metrics for predicting SIT
that may be measured/inferred from low-resolution, coarser
data like ICESat-2 or Operation IceBridge.

Data availability. The PIPERS layer cake data used here are avail-
able at https://doi.org/10.15784/601207 (Jeffrey Mei et al., 2019)
and https://doi.org/10.15784/601192 (Stammerjohn, 2019) .
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Appendix A: ConvNet details

For a comprehensive introduction to deep learning, the reader
is directed to Shalev-Shwartz and Ben-David (2014). Here
we will give the details of our ConvNet and explain the im-
portance of chosen parameters.

Convolutional neural networks, commonly known as Con-
vNets, are a class of deep neural networks that convolve fil-
ters (matrices that contain weighting coefficients, or weights)
through the input array. The input array is typically an image,
and the learned filters typically correspond to basic edge de-
tections in initial layers and more complex features in later
layers (e.g., Krizhevsky et al., 2012). Here, we use the lidar
elevation scan as an input, due to its similarity to a grayscale
image.

Like other deep-learning methods, ConvNets “learn” by
updating their weights. This is done through comparing the
output of the prediction with the true output, using the deriva-
tive of a loss function (here, mean squared error) propagated
through the layers in reverse (backpropagation). The weight
update rule, in its most basic form, is wi+1 = wi + η

∂E
∂wi

, for
some weight w, loss function E and learning rate η. The
value of η is important to ensure convergence: too high, and
the filters may not converge (and may even diverge); too low,
and the filters may take too long to converge. In order to in-
troduce nonlinearities in the network, a nonlinear activation
function is used at each layer. Typically, this is done with a
rectified linear unit (ReLU), which zeros out all negative ac-
tivations. We chose a scaled exponential linear unit (SELU),
which has been found to improve convergence (Klambauer
et al., 2017), as ReLUs sometimes lead to dead weights when
dealing with many negative values. As convolutions by de-
fault shift by 1 pixel at a time, this leads to considerable over-
lap and large output sizes at each layer. To combat this, the
filters can shift by a different number; this is called the stride.

ConvNets are normally used in image classification prob-
lems due to their ability to discern features. The output
would be a probability vector assigning likelihood of differ-
ent classes, with the highest one being the prediction. Con-
vNets can also be applied to regression problems (e.g., Levi
and Hassner, 2015) by simply changing the output to be one
number. Here, we make the output the mean thickness, scaled
by 5. The scaling here is because, for our dataset, the max-
imum thickness was just under 5.0 m, and normalizing the
outputs to be between 0 and 1 allows the gradients for the
backpropagation of error to neither vanish nor blow up. Sim-
ilarly, the lidar inputs were scaled by 2.0 to keep them be-
tween 0 and 1. The values are unscaled during model eval-
uation. ConvNet inputs, when dealing with image classifica-
tion, are often standardized to have a mean of 0 and a vari-
ance of 1, but this was not done here as we want to use the
mean and variance (roughness) of the elevation to predict the
mean ice thickness.

Figure A1. Training errors, validation errors and training losses
shown on a logarithmic scale. Although the training loss contin-
ues to slowly drop after the epoch with the lowest validation error
(red line, at epoch 881), validation error stays relatively flat, sug-
gesting that the ConvNet is overfitting after this epoch. The gradual
decrease in MRE is less smooth than the training loss because the
loss function is mean squared error, whereas the MRE is propor-
tional to the mean absolute error.

We tried networks with two, three, and four convolutional
layers and one or two fully connected layers with a variety
of filter sizes and found the one shown in Fig. 5, with a to-
tal of five hidden layers, had the best results. The filter sizes
were chosen to try and capture feature sizes of <20 m, as
discussed in Sect. 3.2. The first layer has a size of 4 m, the
second is 8.4 m, and the third is 8.8 m (corresponding to win-
dows of 20, 21 and 11 pixels at 0.2, 0.4 and 0.8 m resolution).
For the first two layers, a stride of 2 was used to reduce the di-
mensionality of the data. The implementation was performed
using PyTorch with an NVIDIA Quadro K620 GPU and took
around 8 h.

The input windows were randomly flipped and rotated in
integer multiples of 90◦ to help improve model generaliza-
tion. Dropout, which randomly deactivates certain weights
with some probability p, were added after the first and sec-
ond convolutional layers (p = 0.4) to reduce overfitting (Sri-
vastava et al., 2014). The selected model for analysis was the
best-performing validation error (15.5 %) at epoch 881, as
shown in Fig. A1.
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