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Abstract. In sea-ice-covered areas, the sea ice floe size dis-
tribution (FSD) plays an important role in many processes af-
fecting the coupled sea–ice–ocean–atmosphere system. Ob-
servations of the FSD are sparse – traditionally taken via a
painstaking analysis of ice surface photography – and the
seasonal and inter-annual evolution of floe size regionally
and globally is largely unknown. Frequently, measured FSDs
are assessed using a single number, the scaling exponent of
the closest power-law fit to the observed floe size data, al-
though in the absence of adequate datasets there have been
limited tests of this “power-law hypothesis”. Here we derive
and explain a mathematical technique for deriving statistics
of the sea ice FSD from polar-orbiting altimeters, satellites
with sub-daily return times to polar regions with high along-
track resolutions. Applied to the CryoSat-2 radar altimetric
record, covering the period from 2010 to 2018, and incor-
porating 11 million individual floe samples, we produce the
first pan-Arctic climatology and seasonal cycle of sea ice floe
size statistics. We then perform the first pan-Arctic test of the
power-law hypothesis, finding limited support in the range of
floe sizes typically analyzed in photographic observational
studies. We compare the seasonal variability in observed floe
size to fully coupled climate model simulations including a

prognostic floe size and thickness distribution and coupled
wave model, finding good agreement in regions where mod-
eled ocean surface waves cause sea ice fracture.

1 Introduction

Earth’s polar oceans are covered with sea ice: a thin, het-
erogeneous interface that plays an important role in the cou-
pling between ocean and atmosphere. Sea ice is a collection
of many individual pieces, called floes, which may be char-
acterized in terms of a horizontal length scale, their “size”.
On the large scales relevant to global climate modeling, the
statistical variability of floe size is described using the floe
size distribution (FSD; Rothrock and Thorndike, 1984).

The FSD is an important property of the sea ice cover
that influences the multiscale temporal and geographic vari-
ability of sea ice, akin to the grain size in sedimentology
or particle size distribution in atmospheric chemistry. The
scale of individual floes plays a role in many sea-ice-related
processes: sea ice melt rate (Steele, 1992; Horvat et al.,
2016; Horvat and Tziperman, 2018), the evolution of the
oceanic mixed layer (Manucharyan and Thompson, 2017),

Published by Copernicus Publications on behalf of the European Geosciences Union.



2870 C. Horvat et al.: Floes from altimetry

atmospheric boundary layer exchange (Birnbaum and Lüp-
kes, 2002; Lüpkes and Birnbaum, 2005; Tsamados et al.,
2014), the sea ice response to applied stress (Feltham, 2008;
Wilchinsky and Feltham, 2011), and the propagation of
waves into the ice (Squire et al., 1995; Squire, 2007; Smith
and Thomson, 2016). The importance of the sea ice FSD has
led to the development of diagnostic FSD models of vary-
ing complexity (Williams et al., 2013; Zhang et al., 2015;
Bateson et al., 2019) and a prognostic floe size and thickness
distribution (FSTD) scheme (Horvat and Tziperman, 2015;
Roach et al., 2018a).

Despite the potential relevance of sea ice floe size to polar
climate evolution, there remain no climate-scale assessments
of average floe size or the FSD. The observational record
of floe statistics derives from visual imagery localized in
space and time (i.e., Rothrock and Thorndike, 1984; Toyota
et al., 2006, 2011; Steer et al., 2008) or from repeat measure-
ments in the same region over multiple months (Hwang et al.,
2017; Stern et al., 2018a), which may subsequently be used
to compile a seasonal cycle of the FSD (Perovich and Jones,
2014; Stern et al., 2018a). FSD measurements are obtained
by identifying individual floes within a two-dimensional im-
age of the sea ice surface. Because floe sizes span several
orders of magnitude, accurate representations of the FSD –
even in relatively small geographical domains and in perfect
lighting and surface conditions – require high resolution and
high observational coverage. Nearly all measurements of the
FSD have been made in accordance with a “power-law” scal-
ing hypothesis commonly used to describe multiscale sys-
tems (Mandelbrot and Wheeler, 1983), in which the resulting
FSD is fit to a straight line in logarithmic coordinates, whose
slope, α, is reported as an intrinsic property of the floe mo-
saic. There is large uncertainty in these scaling coefficients,
the range they apply over, and their applicability and origin
(Herman, 2011; Horvat and Tziperman, 2017; Herman et al.,
2018; Stern et al., 2018b). Improvements in the quality and
quantity of available FSD data are needed before arriving at
consensus-derived FSD statistics to guide and assess model
performance.

Here we outline a method that exploits satellite radar al-
timetry to construct the FSD and its moments across polar
regions with sub-kilometer spatial resolution, sub-daily tem-
poral resolution, and spanning multiple orders of magnitude
in size. Altimeters, like the ones carried on the Envisat, ICE-
Sat, CryoSat-2, and ICESat-2 satellites, make repeated, fre-
quent passes over polar oceans, and substantial efforts have
been made to process the satellite returns to discriminate be-
tween open water, floes, and leads. The altimetric returns
have found many uses, including reconstructing the sea ice
thickness field (Laxon et al., 2013; Tilling et al., 2016, 2018)
and ocean surface circulation under sea ice (Peacock and
Laxon, 2004; Armitage et al., 2018). Fields inferred from al-
timetry have led to advances in understanding polar systems:
from forecast and climate prediction (Day et al., 2014) to
model validation (Schröder et al., 2018; Allard et al., 2018)

to climate change studies (Laxon et al., 2003; Kwok, 2018),
and have been evaluated and validated using field campaign
data (Skourup et al., 2017; Sandberg Sorensen et al., 2018;
Tilling et al., 2018).

One-dimensional measurements of sea ice properties, like
along-track altimetric measurements of ice open water, have
long been sought to describe the two-dimensional ice sur-
face. Rothrock and Thorndike (1984) originally described a
method for reconstructing the sea ice floe size distribution
in a region using straight-line measurements over the geom-
etry of floes. Lindsay and Rothrock (1995) later compiled
the statistics of lead and ice spacings in two-dimensional im-
agery. Other work has taken place to derive and understand
the width distribution of individual leads in visual imagery
and altimetry (Wadhams et al., 1988; Key and Peckham,
1991; Key, 1993; Wernecke and Kaleschke, 2015), which can
be used to estimate heat fluxes and turbulent transfer between
the ocean and atmosphere. To date, however, these studies
have not been designed to facilitate a comparison with model
data, nor have altimetric studies been used to compile floe
size statistics. These objectives are the focus of this work.

We outline the mathematical theory that allows for com-
parison of altimetric datasets and the FSD in Sect. 2. In
Sect. 3 we apply this method to a new dataset of segmented
CryoSat-2 sea-ice-type data from 2010 to 2018. Using these
data we produce the first climatological maps of mean sea ice
floe size and fragmentation for the Arctic Ocean. We then test
the power-law hypothesis, finding limited support for power-
law scaling across most of the dataset in Sect. 4. One of the
key aims of the paper is to develop floe size distribution mea-
surements that are useful for model validation and calibra-
tion. In Sect. 5, we show a proof of concept, demonstrating
how altimetric data can be used to constrain and evaluate new
models of the FSD, comparing the CryoSat-2 FSD data to a
climate model simulation with a prognostic FSTD model. We
conclude in Sect. 6.

2 Floe chords and the floe size distribution

For an individual pass over sea ice by a polar-orbiting satel-
lite altimeter, return waveforms along the satellite orbit track
are assigned a surface type depending on the waveform shape
and coincident sea ice concentration (Tilling et al., 2018).
A “floe chord” of length D is a continuous series of points
identified as sea ice, covering a geographic distance D (Till-
ing et al., 2019a, b). Define a floe’s size, r , as its “effec-
tive radius” – the square root of the floe’s area divided by
π (Rothrock and Thorndike, 1984; Horvat and Tziperman,
2015) We use radius instead of diameter, as appears in some
other observational studies, for comparison with model out-
put in Sect. 5. Because the satellite path is at an unknown
angle with respect to the (also unknown) floe geometry, any
individual floe chord measurement is not a floe size mea-
surement. Converting between suitably processed altimetric
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floe chord measurements and floe size statistics is therefore
the subject of this section. Details on the processing of the
CryoSat-2 waveform, used to produce a dataset of floe chords
spanning the period 2010–2018, are outlined in Sect. 3 and
Tilling et al. (2019b).

For a domain of horizontal area A, and over a period of
time 1T that corresponds to several repeat satellite passes,
we bin the set of recorded floe chords to form a probability
distribution S(D), which we term the “floe chord distribu-
tion” (FCD), where S(D)dD is equal to the number frac-
tion of floe chords in A over 1T with length between D and
D+ dD, and is normalized to 1. To collapse all measured
chords onto a single independent scalar coordinate (D), we
follow the example of turbulence statistics (Batchelor, 1953)
and assume that the floe chord distribution data are homo-
geneous, isotropic, and stationary within the region and time
data are collected. In the same region, we define the (non-
cumulative) number FSD P(r), where P(r)dr is the frac-
tional number of floes with a size between r and r + dr in
A, and is also normalized to 1. The FSD inherits the as-
sumptions of homogeneity, isotropy, and stationarity from
the FCD. Our objective is to relate the FCD, S(D), or quanti-
ties derived from the FCD, to the statistics of the FSD, P(r).

Bayes’ theorem relates S(D) and P(r) through condi-
tional probabilities,

F(r;D)S(D)= F̃ (D;r)P (r). (1)

The conditional probability F(r;D) relates given chord
lengths to the floe size distribution that could generate them:
F(r;D)dr is the probability that floes with size in the range
from r to r + dR were sampled given a chord of length D.
The conditional probability F̃ (D;r) relates given floe sizes
to the chord length distribution they generate: F̃ (D;r)dD is
the probability of measuring a floe chord of length fromD to
D+ dD given that a floe of size r was measured.

This second probability distribution F̃ (D;r) can be de-
rived from first principles under a single assumption: that the
chord length distribution that would be sampled from a set of
floes of size r is independent of r (equivalently, the floe shape
distribution is scale-invariant). Formally, this requirement is

F̃ (D;r)dD =G(ξ)dξ, (2)

where G(ξ)=G(D2r ) is an unknown function that integrates
to 1 over the interval from ξ = 0 to 1. Under this assumption,
the distribution of possible chord lengths measured from
floes of size r has the same functional form independent
of r . The probability distribution F(D;r) may be derived
by considering the geometric relationship between straight-
line satellite passes and the geometry of the floes they pass
over. Individual floe shapes are highly variable: making an
assumption about the distribution of floe shapes may intro-
duce biases in the statistics derived from the FCD. Yet as
we prove in Appendix A, the ability to derive FSD statis-
tics from the FCD does not depend on the precise form of

Figure 1. Relating a floe chord to floe size for a circular floe. A
satellite track (dashed black line) passes over a floe of radius r (solid
black line). The track records a series of echoes of length D, which
is the length of a chord (red line) identified by its interior angle, θ .

F̃ (D;r) so long as the homogeneous, isotropic, stationary,
and scale-invariance assumptions are retained, and the evalu-
ation of power-law scaling is in fact independent of F̃ (D;r).

To proceed and arrive at a concrete (although not gen-
eral) realization of these functions, we will assume all floes
are perfect circles. In assessments of the relationship be-
tween major and minor axes of individual floes, the “round-
ness” parameter for a floe is typically within 15 % of 1
(Rothrock and Thorndike, 1984; Toyota et al., 2011; Per-
ovich and Jones, 2014; Gherardi and Lagomarsino, 2015;
Alberello et al., 2019), suggesting that this circular assump-
tion, while simplistic, is broadly appropriate. Nevertheless, it
will likely be necessary to amend the analysis below in the
future to account for more realistic shape distributions and
geometries (e.g., diamonds; Wilchinsky and Feltham, 2006),
regional differences in floe shape properties (such as in re-
gions where shear stress determines fracture patterns and floe
shapes; Schulson and Hibler, 1991), or to evaluate the sensi-
tivity of the results that follow to the assumed shape distribu-
tion. Solving for F̃ (D;r) is a geometric problem that relates
the possible measured chord lengths to the underlying floe
size, and we solve this explicitly for circular floes here. Sim-
ilar geometric problems have been identified and solved in
other fields (e.g., Pons et al., 2006; Nere et al., 2007), and we
therefore leave refinement of F̃ (D;r) to future work.

Consider the special case that all floes are perfect circles,
illustrated in Fig. 1. Because there is no correlation between
the statistics of local sea ice deformation and predetermined
satellite tracks, an individual recorded floe chord, D, orig-
inating from a floe of radius r , was obtained from a satel-
lite trajectory that crosses the floe at a random interior an-
gle θ ; thus the distribution of θ is uniform. Because of ro-
tational symmetry, we need only consider θ ∈ [0,π), sam-
pled according to a probability distribution T (θ;r)= π−1.
The length D is thus a chord of this circular floe, with
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D = 2r sin(θ/2). Accordingly,

F̃ (D;r)= T (θ;r)
∂θ

∂D
=

{
2
π

1√
(2r)2−D2

r > D/2,

0 otherwise,
(3)

which is a probability function that meets the above criterion
(Eq. 2).

The nth moment of the floe chord distribution S(D) is de-
fined

〈Dn〉 ≡

∞∫
0

DnS(D)dD =

∞∫
0

dr P (r)

∞∫
0

DnF̃ (D;r)dD. (4)

For any function F̃ (D;r) satisfying the scale invariance
above, the right-hand side may be expressed in terms of mo-
ments of P(r) (see Appendix A). For circular floes, using
Eq. (3),

〈Dn〉 =

∞∫
0

dr P (r)

2r∫
0

2
π

Dn√
(2r)2−D2

dD

=

∞∫
0

dr P (r)
2n+1

π
rn

π
2∫

0

sin(x)ndx = An〈rn〉, (5)

where D
2r ≡ ξ = sin(x), 〈rn〉 is the nth moment of P(r), and

the coefficient An is

An ≡

1∫
0

ξnG(ξ)dξ =
2n+1

π

π
2∫

0

sin(x)ndx =
2n

π
B

(
n+ 1

2
,

1
2

)
,

where B is the beta function. For n= 0, 1, 2, or 3, then An
is 1, 4

π
, 2, or 32

3π . Two important FSD-derived quantities are
derived from ratios of FSD moments, and therefore can be
obtained from the FCD directly: the “representative radius”
(Horvat and Tziperman, 2017; Roach et al., 2018a),

r ≡

∞∫
0
r3P(r)dr

∞∫
0
r2P(r)dr

=
〈r3
〉

〈r2〉
=

3π
16
〈D3
〉

〈D2〉
, (6)

and the floe perimeter per ice area, a measure of sea ice frag-
mentation,

P ≡

∞∫
0
rP (r)dr

∞∫
0
r2P(r)dr

=
π

2
〈D1
〉

〈D2〉
. (7)

These derived quantities are useful because they require
no further information about the sea ice (such as its concen-
tration) to compare against modeled FSDs. However, both

r and P can represent only those floes whose size is larger
than rmin =Dmin/2, the smallest possible floe size sampled.
For perfect power-law distributions beginning at a scale of
rmin or before, both metrics are functions of rmin. However,
for the real FCDs measured here, a maximum floe size exists,
and a power-law scaling is not found approaching rmin, so the
use of such metrics is justified (see Sect. 4). Because of the
finite sampling resolution of the altimeter, chords that would
originate from floes with a diameter near the sampling res-
olution may not be observed, and thus 〈Dn〉 ≤ An〈rn〉. We
explore this uncertainty in Appendix B. For a known floe
size distribution, the error decreases exponentially as a func-
tion of the distributional moment being considered, though it
can be large (20 % or more) in pathological cases. For dis-
tributional tails characterized by observed scaling exponents
(Stern et al., 2018b), and for moments considered here, this
uncertainty can be determined systematically and vanishes
for measurement spacings smaller than the radius of the most
common floe size. This resolution error does not affect the
analysis of the power-law hypothesis, as that analysis is fo-
cused on the distributional tail. However, because P is pro-
portional to a negative moment of the FCD, it is sensitive to
changes in the number of small chord lengths. Because of the
measurement uncertainty for smaller chord lengths we will
focus instead on r , which is a positive moment of the FCD.

2.1 Evaluating the floe size power-law hypothesis with
floe chord data

Suppose the FSD P(r) has a power-law tail that be-
gins at some specified value r1. Then for r > r1, P(r)≡
P(r;α,C)= Cr−α , for an unknown coefficient C and
power-law slope α. Integrating Eq. (1) over all r ,

S(D)=

∞∫
0

F̃ (D;r)P (r)dr, (8)

where the integral of the left-hand side of Eq. (1) is equal to
S(D) as

∫
F(r;D)dr = 1. Under the assumption of Eq. (2),

if P is a power law, so is S(D) (Appendix A). For circular
floes,

S(D)=
2C
π

∞∫
r1

r−α√
(2r)2−D2

dr. (9)

Because of the sampling resolution of the altimeter there is a
minimum resolved chord scale Dmin. If Dmin�D∗ ≡ 2 · r1,
there is an explicit solution for S(D), a power-law distribu-
tion over the range (D∗,∞),

S(D)= C ·B

(
1
2
,
α

2

)
2α−1

π
D−α ≡ CαD

−α, (10)

where B is the beta function. The coefficient Cα is a multi-
plicative factor independent of size, and the power-law expo-
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nent for a FCD is the same as the exponent for FSD, where
the two are related by Eq. (1).

Moments of a power-law tail can be evaluated explicitly
(for α > n+ 1),

〈rn〉 = C

∞∫
r1

rn−αdr = C
rn+1−α

1
n+ 1−α

. (11)

Then for both the FCD and FSD, the ratio of two moments is
independent of the unknown coefficient C, i.e.,

Rn,ε ≡
〈Dn+ε−1

〉

〈Dn−1〉
=Dεmin

n−α

n+ ε−α
, (12)

valid for n+ ε < α. The power-law coefficient can be ob-
tained for any n, ε as

αn,ε = n+ ε
Rn,ε

Rn,ε −D
ε
min
= constant. (13)

In the analysis below we will arbitrarily select only n=

0.5,ε = 1 for comparison (for scaling coefficients α > 1.5,
the bulk of reported power-law coefficients are in this range;
Stern et al., 2018b). Because the observations will not be per-
fect power-law distributions, we will use α0.5,1 ≡ α

∗ as an
estimator. A second estimate of the power-law scaling coef-
ficient, α̂, is computed via the maximum likelihood estima-
tor (Muniruzzaman, 1957; Clauset et al., 2009; Virkar and
Clauset, 2014) (details in Appendix C) as

α̂ = 1+
N

N∑
i=1

ln Di
Dmin

, (14)

where N is the number of chords. If the power-law hypoth-
esis holds, then the two estimates of α agree, although the
agreement of α̂ and αn,ε is not sufficient to confirm the
power-law hypothesis. In the Supplement Sect. S1, we com-
pare these two estimates when they are evaluated against syn-
thetic datasets drawn from a true power-law distribution. The
two agree even when the size of the data is relatively small
(N < 25). While in practice Eq. (13) is easy to apply, it only
holds when αn,ε > n+ 1, and unlike the method of Clauset
et al. (2009), it does not allow for a robust statistical analysis
of the power-law fit, and should only be used when the data
are assumed to follow a power-law already.

3 Climatology and trends in floe properties derived
from CryoSat-2 altimetry

We apply the analytic technique described in Sect. 2 to a floe
chord dataset constructed from the CryoSat-2 radar altime-
ter processed by the Center for Polar Observation and Mod-
elling (CPOM) over the period from October 2010 to present
(CPOM data products are available at http://www.cpom.

ucl.ac.uk/csopr/seaice.html, last access: 9 January 2019).
CryoSat-2 radar echo returns are defined as “lead”, “floe”,
“open ocean”, or “ambiguous” according to waveform shape
and sea ice concentration (Tilling et al., 2016, 2018), at an
approximately constant along-track spacing Dmin =300 m.
Floe chords are defined as a continuous sequence of one
or more “floe echoes”, with a gap of one ambiguous echo
permitted within a floe sequence to allow for anomalous
returns. A chord length is taken from the midpoint of the
first to the midpoint of the last radar echo. Individual chord
lengths can be underestimated when continuous floes are
separated artificially by producing two or more ambiguous
echoes in sequence, or when highly reflective leads dominate
the waveform return close to the floe edge and cause mea-
surement dropout (Tilling et al., 2019b). Lead contamina-
tion, or “snagging” (Armitage and Davidson, 2014), is more
likely when the altimeter cuts off a small section of a floe,
i.e., for small values of θ . Overestimates of chord length can
also occur when ice floes are in close contact with neighbor-
ing floes. Therefore, floe chord lengths should be considered
a satellite-derived product, not a true measurement of floe
size. The minimum chord length retrieval Dmin is limited to
the CryoSat-2 footprint (∼ 300 m along-track) (see the dis-
cussion in Appendix B). However, surface discrimination via
altimetry is highly accurate in months without melt ponds
(Peacock and Laxon, 2004; Guerreiro et al., 2017; Quartly
et al., 2019), giving confidence that floe echoes represent a
coherent length of ice. More details on the details of chord
identification may be found in Tilling et al. (2019b). Indeed,
these raw floe chord data have been used successfully to re-
duce biases in altimeter-observed satellite sea ice thickness
estimates from altimeters with different footprint sizes (Till-
ing et al., 2019b). Here we analyze the sea ice floe size dis-
tribution using that floe chord product.

Figure 2 shows an example of floe chord data for a single
CryoSat-2 track over the Arctic on 21 January 2014. Free-
board values for echoes discriminated as floe are plotted in
Fig. 2b as a function of the along-track distance in kilome-
ters, and correspond to the blue circle in Fig. 2a. Floe chords
are identified as black segments in Fig. 2b. The histogram of
all 741 identified chords for this single satellite pass is shown
in log-log space in Fig. 2d.

The full CryoSat-2 dataset examined here spans the time
period from October 2010 to November 2018, and floe
chords measured using the above technique are binned into
the CICE sea ice model’s two-dimensional sea ice grid for
each month and year to facilitate comparison with model
products. This implies that we invoke the principles of
isotropy, homogeneity, and stationarity of the FCD, required
to produce such a distribution, on the length scale of the
CICE model grid (O(25 km)) and timescale of a month. For
every grid cell i, month m, and year y, we have a vector of
floe chords {Di,m,y} from which we build a FCD. The base 10
logarithm of the total number of floe chords recorded in each
grid cell per month is shown in Fig. 2a. Because the satellite
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Figure 2. Constructing a FCD from altimetry. (a) Base 10 logarithm of the number of floe chords identified and binned into the CESM grid,
across all CryoSat returns in the Arctic from 2010 to 2018. Black line is a single satellite track on 21 January 2014. (b) Subsection of the
track centered on the blue dot in (a). Blue line is freeboard of sea ice in radar echoes defined as “floes” along the track. Black lines are
chords identified from the freeboard retrieval. (c) Total number of chords measured in each month in the Arctic. Plot is centered on 1 January.
(d) FCD for the satellite track depicted in (a). Black marks on the x axis are the logarithmically spaced chord length bins.

passes are densest near the pole, the measurement density is
highest near the pole as well. Figure 2c shows the number
of Arctic measurements in each month. Sea ice type from
CryoSat-2 is not available during summer months, as melt
ponds make it difficult to discriminate between leads and
ponded floe surfaces, and we do not include measurements
from May to September. Across the entire set of satellite
tracks included here, 11 million chord lengths are recorded
in the Arctic.

Figure 3a shows the seasonal cycle of Arctic representa-
tive radius over the CryoSat-2 period obtained by applying
Eq. (6) to the binned CryoSat-2 floe chord product. Individ-
ual years are plotted as thin lines, and the climatological av-
erage is shown in red. Details on how temporal and spatial
average statistics are computed are included in Appendix D.
During the months of October–December, the climatolog-
ical representative radius is roughly 35 % larger (7.06 km
vs. 5.18 km) than during February–April. This seasonal cycle
is broadly consistent across years. A possible interpretation
of this seasonal cycle is that large first-year ice pans form
in October and are later fractured into smaller floes through-
out the winter months. This concept is supported by obser-
vations that large-scale fracturing of sea ice in the Beaufort
Sea is dominated by coastal processes and therefore can only
occur once sea ice freezes to the coast in midwinter (Richter-
Menge, 2002), although such an interpretation is specula-
tive and must be evaluated further as this method is refined.
Figure 3b shows annual-average representative radius in red
for each full year from 2011 to 2017, with thin lines cor-
responding to the individual months within that year. Sea-
sonal variability is significantly larger than inter-annual vari-

ability. There is no statistically significant linear trend at the
p = 0.05 level.

The geographic variability of representative radius over
the “early winter” (October–December) and “late winter”
(February–April) periods is shown in Fig. 3c–d, for all grid
areas. We display only those areas with at least 25 recorded
floe lengths in each month during the averaging period. In
Sect. S2 and Fig. S1, we examine the sensitivity of bulk FSD
statistics to this threshold, finding similar seasonal cycles and
climatologies. The largest representative radii in the Arctic
lie in the interior Arctic near the pole, with a tongue of large
floes that extends along the Canadian Arctic in late winter.
There is a notable increase in representative radius with lat-
itude. In Fig. S2, we show that this relationship cannot be
explained as a result of the increasing density of measure-
ments near the pole and may therefore be a geophysical sig-
nal. The smallest representative radii (below 1 km) lie in the
Bering Strait and the Russian Arctic in early winter and in the
Laptev Sea in late winter. The difference in representative ra-
dius between fall and spring is accounted for by the reduction
of floe sizes in regions near the Arctic interior (see Fig. 6).

4 Evaluating the power-law hypothesis using floe size
statistics derived from CryoSat-2

Given a collection of chord lengths, we would like to exam-
ine whether it is distributed according to a power law. Under
the assumptions of Sect. 2, the scaling behavior of the FSD is
the same as of the FCD (see Appendix A). We use the statis-
tical methodology outlined in Clauset et al. (2007, 2009) and
Virkar and Clauset (2014) (which we term the MLE method)
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Figure 3. (a, b) Temporal and geographic variability of Arctic rep-
resentative radius. (a) Climatology of Arctic-average representative
radius in units of kilometers (red line). Thin lines are individual
CryoSat-2 years. (b) Annual-average Arctic representative radius
(red line). Thin lines are the average in individual months. (c) Cli-
matological representative radius in the months October–December.
(d) Same as (c) but for February–April.

to evaluate shape parameters of the most likely power-law fit
and to test its plausibility. This method has been used to eval-
uate power-law behavior in a recent FSD model (Horvat and
Tziperman, 2017) and observational studies (Hwang et al.,
2017; Stern et al., 2018b) and proceeds as follows.

1. Lower-truncate the FCD. First identify a minimum
chord scale, D∗, above which we hypothesize a power-
law tail, and analyze only those floe chord measure-
ments. We either (a) choose D∗ to be 900 m (to reduce
the impact of small-size sampling errors discussed in
Sect. 2) or (b) use the scheme described in Clauset et al.
(2007) to evaluate the most likely value of D∗ for a
power-law tail. The length of this lower-truncated dis-
tribution is N . In the descriptions that follow, we use
the subscript “all” to describe case (a) and “tail” to de-
scribe case (b).

2. Compute power-law scaling estimates and parame-
ter uncertainty. We obtain two estimates of the FCD
scaling estimate, either computing α∗ via Eq. (13) or
computing α̂, and uncertainty estimates in both α̂ and
D∗ via the MLE method (Eq. 14). That the two esti-
mates of α agree is a necessary condition for the FCD
(and thus FSD) to be power-law distributed.

3. Examine the plausibility of the power-law fit. We
generate M FCDs of size N (the same number of syn-
thetic chords as observed chords), with each synthetic
FCD drawn from the hypothesized power-law distribu-
tion P(α̂,D∗). For each of these synthetic FCDs, we
compute the Kolmogorov–Smirnov distance between it
and the hypothesized power-law model that generated

it, P(α̂,D∗). We also compute the distance between the
observed FCD and P(α̂,D∗). A p value, p, is equal to
the fraction of thoseM synthetic FCDs that are “further
away” from the hypothesized power-law model than is
the observed FCD. We use M = 10 000, which permits
computation of p within 0.005 (Clauset et al., 2009),
and rule out the power-law hypothesis under the condi-
tion p < 0.1 (Virkar and Clauset, 2014).

We note that a power law describes the scaling of a distri-
bution’s tail. Previous observational studies have discussed
“double power laws” (i.e., Toyota et al., 2011), i.e., two
power-law distributions of a different exponent joined at a
specified scale. The methods employed here would capably
capture the large-size power-law scaling but not the small-
scale scaling. Such double power laws are necessarily scale-
variant, and require at least three parameters to describe. The
conceptual and mathematical simplicity of the power-law hy-
pothesis does not apply in such a case, and we do not con-
sider them here.

The MLE method is a rigorous test of the power-law hy-
pothesis that eliminates potential human bias when interpret-
ing observational data. To illustrate why this is important,
we first consider the entire set of 11 million chord lengths
recorded in the Arctic in all months (October–April), span-
ning a length range from 300 m to 100 km. The histogram
of these floe chords is the black line in Fig. 4a (hashes on
black line are the logarithmically spaced bin centers). Begin-
ning from D∗ =Dmin = 900 m, α̂all = 1.97 (blue line) and
α∗all = 2.05 (not shown). The observations are further away
from synthetic data drawn from P(α̂all,D

∗) in each of the
M = 1000 random draws (pall = 0/1000) and we reject the
power-law hypothesis for these measurements. We note that
if the resolution bias explored in Appendix B proves to be
larger than expected, the underrepresentation of small floe
lengths may affect the analysis of the full distribution.

Examining the tail of the distribution in Fig. 4a, the max-
imum likelihood estimate of D∗ is ≈ 15.0 km (red vertical
line, vertical shaded region is the range of uncertainty for
D∗), above which there are ∼ 40 000 chord length measure-
ments between 24.7 and 99 km (0.4 % of the dataset). On the
truncated FCD, α̂tail = 4.65 (red line, dashed lines are uncer-
tainty ranges for α̂tail) and α∗tail = 4.67 (not shown), similar to
the large-scale roll-off reported in observations (Toyota et al.,
2016). Even when restricted to the FCD tail, ptail = 0/1000.

Finding no statistical basis for a power-law fit to the tail
in Fig. 4a underscores the challenge in using the human eye
to observe power-law scaling. While the black and red lines
in Fig. 4a appear similar across much of the range of sizes
above 24.7 km, examining the misfit between the power-law
estimates and the data shows that the two curves in fact differ
significantly across the entire fit range. A misfit error can be
defined as

E =

〈∣∣P(xi, α̂tail,D
∗)−P(xi)

∣∣
P(xi, α̂tail,D∗)

〉
, (15)
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Figure 4. Examining the power-law hypothesis. (a) Histogram of all chord lengths recorded in the Arctic for the months November–April
(black). Bin centers are indicated by hashes and are logarithmically spaced. The blue line is power-law fit to all observed sizes according
to Eq. (14). The red line is power-law fit to the tail. Dashed red lines are fit lines using the ±1 standard deviation values of α̂. The red
vertical line is the most likely beginning of the power-law tail, D∗, with shaded region ±1 standard deviation in D∗. (b) Same as (a), but
for measurements in April. (c) Maximum likelihood estimate of the beginning of the power-law tail, D∗ (km) for all measurements at each
geographic location over the observational period. Only locations with N > 1000 are plotted. (d) Maximum likelihood estimate of power-
law tail exponent, α̂tail, for the same points. Colored values have more than 200 chord lengths in the tail and p > 0.1. Zero values are those
locations plotted in (c) but where either p < 0.1 or there are fewer than 200 measurements in the tail. (e) Number of chord lengths in the tail
(above D∗) at each location.

where xi represents the bin locations, angle brackets de-
note an average over the relevant bins, and P(xi) represents
the observed histogram values. Over the range from 24.7 to
100 km, the misfit error is 33 %. The visual agreement, misfit
error, and apparent slope and shape of the distribution depend
sensitively on the bin spacing and the logarithmic plotting.

Sea ice parameterizations that assume a power-law distri-
bution may significantly bias sea ice statistics. The imposi-
tion of any fixed distributional shape, when FSD dynamics
are scale-variant, leads to implicit nonlocal redistribution of
sea ice between floe size categories (Horvat and Tziperman,
2017). To see this in practice we compare the difference in
Arctic-wide representative radius, r , which is used in pa-
rameterizations of wave attenuation and ice thermodynam-
ics, between the most-likely power-law fit to the data and
the “true” value obtained via Eq. (6). The observations yield
r =10.2 km, versus 34.5 km for the power-law fit. Examining
only the tail of the distribution (chord lengths above 24.7 km)
yields better agreement: 23.7 km for the observations and
24.4 km for the fit line. Yet this tail constitutes just 1 % of all
measured chord lengths, corresponding to just 18 % of total
ice area and 4.5 % of the perimeter per square meter (Eq. 7).

Segmenting the chord length data into individual months
in the Arctic, there are none where pall > 0. Examining
only the tail of each month’s distribution, ptail < 0.1 in all
months. Only in April is there a nonzero ptail = 0.04, for
which the analysis of Fig. 4a is repeated as Fig. 4b. In April,
α̂all = 1.99, α̂tail = 5.70, andD∗ = 30.7 km. The tail consists
of 1618 measured chord lengths up to 97.5 km, accounting

for 8 % of the total floe area and 1.4 % of the perimeter per
square meter. The misfit error between the April FCD tail
and P(α̂tail,D

∗) is 76 %. Accumulating all measured chord
lengths from October to May into the CESM model grid,
we find zero locations that support a power-law distribution
across the range of measurements (i.e., pall > 0.1). For grid
areas with N > 1000, we show the value of D∗ computed
using the local FCD in Fig. 4c. Values of D∗ range from
2 km along the Russian Arctic to more than 10 km near the
North Pole.

While most of the Arctic has at least 1000 total measure-
ments across all years, FCD tails (D >D∗) are not as well-
sampled. We investigate these tails including regions with
at least 200 measured floe chords larger than D∗. The per-
centage of geographic areas with at least 1000 total measure-
ments that have a tail with at least 200 measurements is 44 %;
on average D∗ is 5.4 km for these regions. For most of these
regions we can not rule out a power-law tail. For the subset
of regions with 1000 total measurements, 200 measurements
in the tail, and where the power-law hypothesis cannot be
ruled out, the average D∗ is 6.5 km and average α̂tail is 3.34,
within the typical range of Arctic FSD measurements (Stern
et al., 2018b). In Fig. 4d we show the values of α̂tail at these
locations. Colored cells are those with p > 0.1 and a tail with
at least 200 measurements. In Fig. 4e we show the base 10
logarithm of the MLE tail for all geographic locations. Those
regions for which a power law cannot be ruled out are gen-
erally those with the largest floes and the highest sampling,
clustered near the central Arctic. The weakest support for a
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Figure 5. Top row: Temporal variability of power-law fits to Arctic FCDs. (a) Estimate of the most likely power-law scaling coefficient
for all recorded floe chords as a function of month over all years, calculated from the MLE method Eq. (14) (red lines) or Eq. (13) (blue
lines). Thick lines are climatological averages, and thin lines are individual years. Plot is centered on 1 January. (b) Like (a), but plotted for
individual years over all months. Thick lines are the average over months plotted in (b) and thin lines are individual months in each year.
(c–d) Same as (a–b), but for the distributional tail starting from D∗ computed using the MLE method. “Arctic” refers to points above 60◦ N.

power-law tail is in the Chukchi and Beaufort seas, where
power-law floe size distributions have often been reported.
We note that our choice of tail length plays an important
role in whether the power-law hypothesis is rejected in the
tail across the Arctic. For example, the fraction of Arctic re-
gions with at least 1000 total measurements, a tail of at least
100, 200, and 400 measurements, and that does not reject
the power-law hypothesis is 72 %, 52 %, and 15 %, respec-
tively. The better-sampled the FCD–FSD, the more likely the
power-law hypothesis is rejected.

Scaling coefficients can provide useful information about
the distributional shape. In Fig. 5a–d we show the seasonal
and inter-annual variability of power-law estimates in the
Arctic. Figure 5a plots the climatology of the power-law scal-
ing estimates when including all measured chord lengths in
dark red (using Eq. 13) or blue (using 14). Individual years
are thin red or blue lines. The two estimates disagree. Be-
cause agreement between the two estimates is necessary for
the power-law hypothesis to be true (see Sect. 4, Sect. S1),
this alone is sufficient to rule it out. There is a seasonal
cycle in the power-law fitting to the full distribution, with
αall increasing (steepening) from September to January and
remaining flat until April and no significant linear trend at
the p = 0.05 level for the annual-average value of αall. Fig-
ure 5c–d repeat this analysis on the tail of those monthly dis-
tributions. In this case, the two estimates agree well. There
is a different seasonal cycle in the steepness of the distribu-
tional tail: shallowest in early winter and steeper in late win-
ter. This indicates that the changes across the winter months
may be due to a reduction of the largest floes and a steep-
ening of the distributional tail, although there is significant
inter-annual variability among these estimates. A similar sea-
sonal cycle to that found in Fig. 6a, c, with an FSD that
steepens from September to April, was found in image anal-
ysis of floes in the Beaufort and Chukchi seas (Stern et al.,
2018b), with α ≈ 2.5, although the distribution steepened
monotonically over that period. There is no significant lin-
ear trend at the p = 0.05 level in the annual-averaged FSD
tail slope (Fig. 5d).

5 An example model–observation comparison of floe
size variability

A principal aim of this work is to allow model–data com-
parisons and facilitate testing rapidly developing FSD–FSTD
models. Here we demonstrate how such a comparison can be
made and provide useful information to modelers, even in the
presence of the high uncertainties in this nascent FSD recon-
struction technique. With the gridded data provided above,
we may now directly compare development-stage sea ice
models that incorporate FSD effects to observations. To do
so, we use the Roach et al. (2018a) prognostic model for the
FSD–FSTD, based on the Horvat and Tziperman (2015) the-
oretical FSTD framework, implemented into the CICE 5.1.2
(Hunke et al., 2015) sea ice model. The FSTD is a sea ice
state variable, subject to interaction of five key physical pro-
cesses: lateral growth, lateral melt, fracture by ocean surface
waves, welding of floes in freezing conditions, and wave-
dependent new ice growth (Horvat and Tziperman, 2015,
2017; Roach et al., 2018a, b). Previously published model
runs (Roach et al., 2018a) focused on the impact of the FSD
on lateral melt, which is largely driven by small floes (Steele,
1992), and so floe sizes above 1 km were not considered. As
a larger range of scales is resolved in the CryoSat-2 observa-
tional product, we conducted a model run that extended the
floe size categories to scales larger than 1 km, using 24 loga-
rithmically spaced floe size categories from 0.5 m to 33 km.

This FSTD model simulation is coupled to a slab ocean
model and the WAVEWATCH III ocean surface wave model
(Tolman, 2009), forced by the JRA-55 atmospheric reanaly-
sis (JRA-55, 2013) over the period from 2000 to 2016. These
wave-coupled runs are branched at year 2000 from a stand-
alone sea ice run from 1975 to 2000, spun up using repeated
1975 atmospheric forcing. Additional model physics beyond
those processes outlined in Roach et al. (2018a) have been
added to determine the initial size of newly formed sea ice
floes as a function of the ocean surface wave field. Details
on this new parameterization, model initialization, and spin-
up, are described in Roach et al. (2019). Recalling the finite
measurement resolution of the CryoSat-2 dataset, the mod-
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Figure 6. Geographic and climatological comparison of modeled and observed representative radii. (a–b) Average representative radius from
November to December in (a) the CryoSat-2 observational dataset and (b) the FSTD model. Grey shaded regions in (b) are the interior of
contours in (a), which represent “pack ice” unaffected by waves in the model simulations. (c) Climatology of Arctic-average representative
radius in units of kilometer for the MIZ in observations (red) and the model (blue). Green line is the annual average for the “pack”, the
excluded regions in (b). Thin lines are averages in individual years from 2011 to 2016 in the MIZ. (d–e) Same as (a–b), but for the months
of February–April. (f) Annual-average Arctic representative radius for wave-affected regions in MIZ observations (red), MIZ model (blue),
and pack ice observations. Thin lines are the average in individual months in the MIZ observations.

eled representative radius is calculated only including floe
size categories from 150 m (as floe sizes are radii, this corre-
sponds to a radius equal to the minimum chord length) and
larger. We include all FCD measurements here (chord lengths
above 300 m) to make the broadest comparison, but note that
the potential underrepresentation of floes with diameters near
the sampling resolution may lead to inaccurate values of r in
regions mainly consisting of such floes.

Figure 6a–b, d–e compare modeled and observed clima-
tologies of Arctic representative radius (for floe diameters
300 m and larger) averaged over 2011–2016 and the months
of October–December (a, b) and February–May (c, d). Geo-
graphic variability of representative radius is broadly similar
between model and observation: the largest floes lie in the
Arctic interior, with regions of smaller floes in the straits and
continental margins. Across the interior Arctic, simulated
representative radii are significantly larger than are found in
the observations, as the Roach et al. (2018a) FSTD model
does not include processes that break up large floes in the
absence of ocean surface waves. To compare seasonality be-
tween model and observations, we compare only those re-
gions that experience wave fracture in the model runs, areas
we collectively term the marginal ice zone (MIZ). The MIZ is
defined by excluding categories that do not experience wave
fracture in a given month (see Appendix D), shown as the
contoured regions in Fig. 6a–b, d–f and greyed out in Fig. 6b,
e. All excluded “pack ice” regions have modeled representa-

tive radii greater than 18 km. The MIZ region accounts for
37 % of grid areas with at least 25 chord measurements in
months from October to December and 35 % of such areas
for the period February–March. Note that the month of Oc-
tober is absent from these plots because no well-sampled re-
gions are classified as MIZ across all model years according
to the criteria outlined in Appendix D.

Figure 6c compares the observed (red) and modeled (blue)
Arctic-average representative radii for the MIZ over the pe-
riod 2011–2016 as in Fig. 3a. The seasonal cycle of repre-
sentative radius in the MIZ is different in the observations
(red line; thin orange lines are individual months) than when
all geographic regions are included (Fig. 3a). The seasonal
cycle of representative radius in the pack ice region (i.e., not
the MIZ) is shown as a green line in Fig. 6c. In the MIZ,
average representative radii are smaller (on average 4.17 km
vs. 6.49 km in the pack ice region). In contrast to the sea-
sonal variation across all geographic regions (Fig. 3a) as well
as in the pack ice, floes are larger in February–April than
in November–December (5.40 km vs. 3.15 km). In both the
MIZ and pack ice regions, however, average representative
radius is similar in late winter. The largest difference between
the two regions is from November to December, where rep-
resentative radii are more than twice as large in the pack ice
than the MIZ.

Figure 6f shows the annual average representative radius
in the MIZ (red), pack ice (green), and modeled MIZ regions
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(blue). Modeled MIZ representative radii have a similar mag-
nitude compared to the MIZ observations, though these re-
gions have smaller floes than the interior. To address the scale
mismatch between the too-high modeled floe sizes and ob-
served representative radii in the interior Arctic, as well as
the strong and different seasonal cycle in representative ra-
dius in both regions, modeling efforts must include additional
mechanisms for reducing floe size in the Arctic interior away
from waves, such as mechanical fragmentation (Toyota et al.,
2006; Rynders et al., 2016) or ridge dynamics (Roberts et al.,
2019), to obtain realistic representative radii across the entire
Arctic, as these processes are not present in the model used
to make this comparison.

6 Conclusions

Here we developed and demonstrated a method for deriving
the statistics of the sea ice FSD from satellite radar altime-
ter measurements of chord length. This method provides the
first pan-Arctic accounting of climate-relevant quantities de-
rived from the FSD, permits testing of existing scaling laws
previously used to characterize distributions of floe size, and
allows for gridded comparisons between FSD models and
observations. Using this new technique we produced clima-
tological, annual-average, and geographic mean moments of
the Arctic FSD across a range of resolved length scales from
300 m to 100 km.

With the combination of satellite altimetry and mathemat-
ical theory, we were able to rigorously examine the power-
law hypothesis related to the FSD under simple assump-
tions about the underlying floe chord data and the fidelity
of CryoSat-2 satellite retrievals. Segmenting measurements
by geographic location, by month, and by year, we find lim-
ited statistical basis for a power-law scaling beginning be-
low about 6.5 km. In a limited number of geographic loca-
tions, we find the observational data cannot rule out power-
law scaling, except for typical sizes above about 6.5 km. As-
suming a power-law floe size distribution can bias sea ice
model output and conceptual understanding, the geographic
variability and lack of consistent multi-scale behavior rein-
forces the need for sea ice models to account for floe-scale
processes rather than diagnose a distributional shape.

Observations that span the polar regions and different
years and seasons are valuable for future refinement of
process-based models of the FSD. In Sect. 5, we demon-
strated how such model–observation comparisons can be
made and can provide useful insights for model developers.
At present, some general features of floe size evolution (in
particular the magnitude and seasonal cycle of the represen-
tative radius) are broadly similar between model and obser-
vation in the marginal ice zone. Yet there is a significant scale
mismatch in the interior Arctic between the presented sim-
ulations and this observational product because of missing
fragmentation physics in the absence of ocean surface waves.

Floe size modeling efforts have focused on marginal ice zone
processes (Horvat and Tziperman, 2015; Zhang et al., 2015),
and particularly floe sizes below about 1 km because these
small floes play an important role in sea ice thermodynam-
ics for floe sizes. The CryoSat-2 observations, however, are
best suited to resolving floe chords of several hundred me-
ters and above. New satellite altimeters like ICESat-2 have
the potential to increase the chord length resolution to scales
of 20–100 m and provide insight at smaller scales.

We emphasize strongly that refinement may be necessary
to apply this method for operational purposes, trend anal-
ysis, and further model validation. This paper has focused
on the framework for making altimetric measurements of the
FSD and comparison to model output, but the obtained chord
lengths and distributions have not been carefully validated
against other observational methods, and this will be neces-
sary before further application of this method. Before doing
so, we have tried to outline the most significant uncertain-
ties in the method. The typical assumptions of homogene-
ity, isotropy, and stationarity are invoked here at the length
scale of the CICE model grid (O(25) km on each side) and
timescale of 1 month. These statistical assumptions may not
be satisfied if, for example, the number of measurements in
a given region in 1 month is insufficient to sample the known
anisotropy of the sea ice floe field, and additional passes
change the mean chord length significantly (see Sect. S2 and
Fig. S1). While we found little evidence for power-law scal-
ing throughout most areas of the Arctic, this may be sensi-
tive to the geographic (here the CICE model grid of approxi-
mately 25 km× 25 km) and temporal (here all measurements
from 2010 to 2018) windows we use to collect and evaluate
chord length measurements for a power law. The assump-
tion of scale-invariant sampling, observational uncertainty
because of the finite sampling resolution, analysis of ambigu-
ous returns, and the accuracy of retrievals in regions of thin
sea ice may also affect the inferred size of sea ice floes. This
in turn may affect the climatologies described in this study.

While processed CryoSat-2 data have been validated
against both visual imagery and ground-based observations,
they were not designed with this application in mind – addi-
tional quality control may be necessary for climate studies of
changing floe properties. The positive comparison between
model and observation in Sect. 5 could also be due to a com-
pensation between these measurement uncertainties and will
need to be re-examined in future validation work. Yet obser-
vational uncertainties regarding, for example, the floe shape
distribution can be roughly estimated at the order of the er-
ror in effective radius obtained for circular floes (r =

√
A/π )

or a square (r =
√
A/4), with a relative error of 25 %. Con-

straining model results beyond this scale of error will require
further refinement. However, as shown in Fig. 6, at present
the model–data mismatch in the interior Arctic can exceed a
factor of 3. Even with expected levels of error in the present
derived FCD–FSD product, some constraints on the model
can be considered at present with this method. A future com-
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parison of results from the Ice-Sat2 and CryoSat-2 altimeters
will provide insights into the relevance of measurement and
statistical uncertainties, as will comparison of altimetrically
derived floe chord measurements with visual imagery.

Even accounting for important caveats that arise from
making satellite measurements, remotely sensing the sea ice
FSD from altimeters at sub-daily resolutions can provide a
significant increase in data for comparison and analysis of
new sea ice models that parameterize the FSD. Previously
the difficulty of making measurements of the FSD at rele-
vant spatial and temporal scales has inhibited the widespread
adoption of such floe-sensitive sea ice models. Understand-
ing sea ice variability at the floe scale is also an important
aspect of sea ice forecasting, and the ability to remotely as-
sess the sea ice FSD at near-real time will allow for further
improvement of operational forecasting networks.

Data availability. CPOM sea ice data, including raw floe length
data, are available through the CPOM data portal at http://www.
cpom.ucl.ac.uk/csopr/seaice.html (last access: 1 November 2019).
The processed FCD–FSD statistics are available at https://github.
com/chhorvat/CRYOSAT-FLOES/ (last access: 1 November 2019).
The Roach et al. (2018a) FSTD model is publicly developed and
available at https://github.com/lettie-roach/ (last access: 1 Novem-
ber 2019).
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Appendix A: Proof that the FCD and FSD have the
same statistical properties

For generic probability distributions S(D) and P(r), and a
probability function F̃ (D;r), via Eq. (4) we have the rela-
tionship

〈Dn〉 =

∞∫
0

dr P (r)

r∫
0

DnF̃ (D;r)dD, (A1)

where we restrict the upper bounds on the second integral
because F̃ (D;r) is zero forD > r . Under the scale-invariant
sampling assumption F̃ (D;r)dD =G(ξ)dξ , where ξ = D

2r
for D < 2r (ξ < 1). Therefore,

〈Dn〉 =

∞∫
0

dr P (r)

1∫
0

rnξnG(ξ)dξ, (A2)

=

∞∫
0

dr P (r)rn
1∫

0

ξnG(ξ)dξ, (A3)

= An · 〈r
n
〉, (A4)

whereAn is the nth moment ofG(ξ), a constant that depends
on the functional form of G. For any such probability func-
tion (for example that derived in Sect. 2 for circular floes), the
moments of the FSD and the moments of the FCD are pro-
portional. Most of the hypothetical statistical distributions we
would consider (for example, power laws) can be fully deter-
mined in terms of their moments, and thus the relationship
between moments of the FSD and FCD is typically sufficient
to reconstruct the underlying FSD.

Supposing P(r) were a power-law function, converting
Eq. () to an integral over ξ from 0 to 1, we have

S(D)=

∞∫
0

F̃ (D;r)P (r)dr =

1∫
0

P(D/2ξ)G(ξ)
ξ

dξ. (A5)

For a power-law function, P(D/(2ξ))∝
(
D
ξ

)−α
and

S(D)∝ ·D−α

1∫
0

ξα−1G(ξ)dξ = Aα−1D
−α. (A6)

From Eqs. (A4) and (A6), and under the assumptions of
Sect. 2, all moments of the FSD and FCD are related by
a computable function of the moment only, and power-law
FSDs are derived from power-law FCDs with the same scal-
ing law. While the proportionality of moments and Eq. (A6)
prove that an observed power-law FCD must reflect an un-
derlying power-law FSD, the same analysis used to arrive at
Eq. (A6) can be repeated to find P(r) given a power-law-
distributed S(D) as well.

Appendix B: Bounds on the relationship between chord
length and floe size moments

The real altimetric data product has a finite sampling resolu-
tion Dmin, which can bias the computed FSD moments and
power-law decay profile. For example, applied to real data
with a finite sampling resolution, the integrals in Eqs. (4)
to (5) are taken beginning at the minimum observed chord
lengths Dmin and floe sizes rmin =Dmin/2. Moments of the
distributions S and P reflect only statistics for floes larger
than Dmin and rmin, respectively. All other aspects of this
derivation remain the same, as F̃ (D;r) is zero for any r <
D/2. However, the relationship expressed in Eq. (4) becomes

〈Dn〉 =

∞∫
rmin

dr P (r)
2n+1

π
rn

π
2∫

Y (r)

sin(x)ndx, (B1)

= An〈r
n
〉

1−

∞∫
rmin

dr P (r) 2n+1

π
rnSn(Y (r))

An〈rn〉

 , (B2)

≡ An〈r
n
〉 [1−E(P (r);n)] , (B3)

where Y (r)≡ sin−1(Dmin
2r ), Sn(y)=

∫ y
0 sinn(x)dx, and E is

the error in relating the nth moments of S(D) and P(r).
Since P(r) is unknown, E cannot be computed a priori. The
function Sn(Y (r)) expresses the percentage of chords formed
from floes of size r that would be smaller thanDmin, although
it is not readily expressed as a function of n. The most patho-
logical distribution is when P(r) is a delta function at rmin,
P(r)= δ(r − rmin), Y (rmin)= π/2, and E = 1 as no chord
lengths would be measured.

We can compute the error function for any delta function
distribution as

E(δ(r − r∗);n)=
Sn(Y (r

∗))

Sn(
π
2 )

, (B4)

and the misfit is the proportion of the integral of sinn(x) be-
tween 0 and Y (r∗). Because sin(x) is monotonically increas-
ing from x = 0 to π/2, the integral of Sn is bounded above:

Sn(Y (r
∗))≤ Y (r∗)sinn(Y (r∗))= Y (r∗)

(
Dmin

2r∗

)n
, (B5)

and the misfit error is bounded above by

E(δ(r − r∗;n))≤

(
Dmin

2r∗

)n
Y (r∗)

B(n+1
2 , 1

2 )
. (B6)

The reciprocal of B is equal to π at n= 0 and decreases sub-
linearly, and so away from rmin the error term decays expo-
nentially with n and is small even for nearly pathological dis-
tributions (for n= 1, r∗ =Dmin, for example, E ≤ π/24≈
14%. Knowing the distribution of errors behaves in this way
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allows us to establish upper bounds by integrating P as a sum
of δ functions.

We note that increasing resolution of floe chords will result
in tighter bounds on this error. When Y (r)∗ ≤ 1, which oc-
curs when r∗ ≥ Dmin

2sin(1) ≈ 0.59Dmin, we can exploit a tighter
bound using the fact that sinn(x)≤ xn,

Sn(Y (r
∗))≤

Y (r∗)n+1

n+ 1
≤ Y (r∗)

(
Dmin

2r∗

)n
. (B7)

Using the same example as above (n= 1, r∗ =Dmin) bounds
the error E ≤ π2/144≈ 7%. A real-world distribution of
floe sizes must have a peak value above zero; thus by in-
creasing the sampling resolution (say, for example, to near
the size of pancakes, i.e., Dmin ≈ 20 m or less, approached
by the ICESat-2 altimeter), this bound takes over and errors
are reduced substantially.

We can explicitly solve Eq. (B3) for distributions
with power-law tails. These distributions are peaked at
the minimum floe size, and so will have high mo-
ment error. For power laws with α =−1, −2, −3, or
−4, E(P (r;α,rmin),1) is 1, 4, 16, or 25 %. For n= 2,
E(P (r;α,rmin),2) is .003, .04, 2, or 9.6 %: the increase
in error with decreasing α is because sharper power-law
slopes concentrate most of the distribution towards the small-
est scale.

Appendix C: Maximum likelihood estimation for chord
length distributions

Given a set of floe chords {D}i and an estimate of the begin-
ning of a power-law tail D∗, we would like to find the most
likely power-law floe size distribution P(r;α,rmin) that gen-
erated them. As discussed in Appendix A, moments of the
FSD and FCD are related by a multiplicative factor, and the
distributions themselves will share the same power-law expo-
nent. Thus we may test the power-law hypothesis directly on
the FCD S(D). The power-law hypothesis means that S(D)
is of the form

S(D)=
(α− 1)
D∗

(
D

D∗

)−α
. (C1)

Following Muniruzzaman (1957) and Clauset et al. (2009)
(see also the derivation in Stern et al., 2018a), we compute
the log-likelihood of the observations for a given α (Eq. 10),

L≡ ln
N∏
i=1
S(Di)= ln

[(
α− 1
D∗

)N N∏
i=1

(
Di

D∗

)−α]
, (C2)

=N ln(α− 1)+N(α− 1) lnD∗−α
N∑
i

lnDi . (C3)

As the natural log is monotonically increasing in its argu-
ment, to find the most likely α, denoted α̂, we take the deriva-

tive with respect to α and set to zero,

1
α− 1

+ ln(D∗)=
1
N

N∑
i=1

ln
Di

D∗
, (C4)

which resolves as a solution for the most likely α:

α̂ = 1+
N

N∑
i=1

ln Di
D∗

. (C5)

The above analysis concerns the most likely α that ex-
plains the FCD. We may ask a separate question: what is the
most likely α, which we define as αP , that would explain the
FSD, given the explicit relationship that can be derived be-
tween S(D) and a power-law-distributed P(r) examined in
Eq. (10).

S(D)= C ·B

(
1
2
,
α

2

)
2α−1

π
D−α, (C6)

where C is unknown. Repeating the above analysis,

L≡ ln
N∏
i=1
S(Di)=

ln

CNB(1
2
,
αP

2

)N(2(αP−1)

π

)N N∏
i=1
D
−αP
i

 (C7)

=N lnC+N lnB
(

1
2
,
αP

2

)
+N(αP − 1) ln2

−N lnπ −αP
N∑
i

lnDi . (C8)

Next we take the derivative of L with respect to αP and
setting to zero. We use the fact that B(x,y)= B(y,x)
and ∂B(x,y)

∂x
= B(x,y)(ψ(x)−ψ(x+ y)), where ψ is the

digamma function, to find

∂ lnB
(

1
2
,
αP

2

)
αP =

1
2

(
ψ
(αP

2

)
−ψ

(
αP + 1

2

))
. (C9)

The maximum likelihood αP is the solution to the transcen-
dental equation,

1
2

[
ψ
(αP

2

)
−ψ

(
αP + 1

2

)]
+ ln2=

1
N

N∑
i=1

lnDi, (C10)

which is an alternative method for obtaining the FSD scaling.

Appendix D: Averaging and segmenting FSD statistics

Due to limitations in the number of floe chords recorded at
any particular location over time, we do not include all ge-
ographic locations when computing hemispheric means. Av-
eraging is performed by including only geographic regions

The Cryosphere, 13, 2869–2885, 2019 www.the-cryosphere.net/13/2869/2019/



C. Horvat et al.: Floes from altimetry 2883

where there are at least 25 recorded floe chords. The area be-
ing averaged over is thus not fixed in time. For seasonal cycle
plots, we only include months which have enough measure-
ments for all fully sampled CryoSat-2 years (2011–2018).
For annual averages, we include only those years where all
CryoSat-2 months (excluding June–September) have enough
measurements.

When masking additional regions to perform the model–
observation comparisons in Fig. 6, we note that because the
Roach et al. (2018a) model does not include processes that
fragment larger floes into smaller floes in the absence of
ocean surface waves, regions in the interior Arctic without
wave activity have nearly all sea ice area belonging to the
highest floe size categories. Nearly all regions where wave
fracture is an active process also have representative radii be-
low about 10 km (Roach et al., 2019). We define regions that
do not experience wave fracture as those with an abnormally
high simulated representative radius, which we choose to be
the 22nd floe size category (r = 18.6 km) or above. The mask
and comparisons in Fig. 6 are made by excluding all such ar-
eas.

Supplement. The supplement related to this article is available on-
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