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Abstract. The mass balance of the Greenland Ice Sheet
(GrIS) in a warming climate is of critical interest in the con-
text of future sea level rise. Increased melting in the GrIS
percolation zone due to atmospheric warming over the past
several decades has led to increased mass loss at lower eleva-
tions. Previous studies have hypothesized that this warming
is accompanied by a precipitation increase, as would be ex-
pected from the Clausius–Clapeyron relationship, compen-
sating for some of the melt-induced mass loss throughout the
western GrIS. This study tests that hypothesis by calculat-
ing snow accumulation rates and trends across the western
GrIS percolation zone, providing new accumulation rate es-
timates in regions with sparse in situ data or data that do not
span the recent accelerating surface melt. We present accu-
mulation records from sixteen 22–32 m long firn cores and
4436 km of ground-penetrating radar, covering the past 20–
60 years of accumulation, collected across the western GrIS
percolation zone as part of the Greenland Traverse for Accu-
mulation and Climate Studies (GreenTrACS) project. Trends
from both radar and firn cores, as well as commonly used re-
gional climate models, show decreasing accumulation rates
of 2.4± 1.5 % a−1 over the 1996–2016 period, which we
attribute to shifting storm tracks related to stronger atmo-
spheric summer blocking over Greenland. Changes in atmo-
spheric circulation over the past 20 years, specifically anoma-
lously strong summertime blocking, have reduced GrIS sur-
face mass balance through both an increase in surface melt-
ing and a decrease in accumulation rates.

1 Introduction

Greenland Ice Sheet (GrIS) mass loss has accelerated over
the past few decades, with modern mass loss rates more
than double those from Antarctica (van den Broeke et al.,
2016). The 2010–2018 GrIS mass loss was calculated as
286± 20 Gt a−1 (Mouginot et al., 2019), contributing 0.7±
0.2 mm a−1 to sea level rise. Over the past 20 years, the
largest warming rates (Hanna et al., 2012) and fastest mass
loss have occurred in western Greenland (26± 7 Gt a−2 in
basins F + G of Sasgen et al., 2012). Here, regional-scale
models calculate a surface mass balance (SMB) decrease
ranging from 31.1 % (European Centre for Medium-Range
Weather Forecasts downscaled; ECMWFd) to 76.5 % (Mod-
èle Atmosphérique Régional; MAR) over the 1996–2008 pe-
riod (Vernon et al., 2013) as a result of higher surface melt
and runoff (van den Broeke et al., 2009, 2016). Modern sur-
face melt rates are at their highest levels of at least the last
450 years across western Greenland (Graeter et al., 2018) and
more broadly throughout Greenland (Trusel et al., 2018). In
particular, ice core records from western Greenland show an
abrupt increase in surface melt rates beginning in the middle–
late 1990s due to a combination of higher North Atlantic sea
surface temperatures, enhanced summertime blocking highs,
and anthropogenic warming (Graeter et al., 2018).

Enhanced GrIS surface melt is driven fundamentally by
positive Greenland summer temperature trends of 0.135±
0.047 ◦C a−1 from 1982 to 2011 (Hall et al., 2013; Reeves
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Eyre and Zeng, 2017). Basic physics implies that rising tem-
peratures should cause an increase in accumulation rates over
the ice sheet due to the Clausius–Clapeyron relationship –
warmer air has a higher saturation vapor pressure, potentially
leading to more precipitation (Box et al., 2006; Buchardt
et al., 2012). The Coupled Model Intercomparison Project
Phase 5 (CMIP5) predicts precipitation increases of 20 %–
50 % over the GrIS by the end of the 21st century (Bin-
tanja and Selten, 2014), partially offsetting mass loss and
sea level rise from enhanced summer melt and runoff. How-
ever, most in situ records of Greenland snow accumulation
do not span the modern period of rapid warming since the
mid-1990s, making it difficult to determine whether accumu-
lation rates have been increasing with increased temperatures
as predicted. For example, the Program for Arctic Regional
Climate Assessment (PARCA) campaign collected accumu-
lation rate data from a network of 49 ice and firn cores in
1997–1998 (Mosley-Thompson et al., 2001), just at the onset
of accelerated surface melting (Graeter et al., 2018). There
have been no published in situ accumulation records from
the western GrIS percolation zone for the past decade. Up-
dated in situ snow accumulation rates are needed from this
region to assess recent changes in accumulation rates during
this period of warming and SMB loss from melt and runoff.

In addition to measuring snow accumulation rates with ice
cores and automated snow depth sensors, several studies have
used ground-based and airborne radar to calculate GrIS accu-
mulation rates and trends (e.g., Medley et al., 2013; Spikes et
al., 2004; Hawley et al., 2014; Koenig et al., 2016). We build
upon these previous studies by collecting ground-penetrating
radar (GPR) data across the lower percolation zone of west-
ern Greenland, where airborne radargrams are often obscured
by refrozen melt percolation (Nghiem et al., 2005). The in
situ GPR used in this study operates using a ultra-high-
frequency (UHF) pulsed radar, while other systems such as
frequency-modulated continuous-wave (FMCW) radars use
phase-sensitive antennas that include both amplitude and
phase information. By having our GPR antenna coupled with
the snow, we avoid losing energy, and therefore penetration
depth, from a strong reflection off the snow–air interface.

In addition to temperature–precipitation relationships
through the Clausius–Clapeyron equation, previous studies
have analyzed the dynamic climate controls on Greenland
precipitation. Mernild et al. (2014), Auger et al. (2017),
and Lewis et al. (2017) have hypothesized that a positive
Atlantic Multidecadal Oscillation (AMO) index correlates
with rising accumulation rates over most of the GrIS inte-
rior since higher sea surface temperatures increase moisture
flux over the GrIS and induce greater snowfall. In addition,
high-pressure (blocking) systems east of Greenland tend to
deflect eastward-moving storms over central Greenland and
increase precipitation, whereas blocking directly over Green-
land or in Baffin Bay has the potential to decrease accumula-
tion rates over the GrIS by displacing the polar jet stream and
corresponding storm tracks equatorward (Auger et al., 2017).

Over the 1991–2015 period there has been particularly strong
summertime Greenland blocking (Hanna et al., 2016), but its
effects on GrIS accumulation rates have not been determined
with in situ data.

Here we develop new accumulation records across the
western GrIS percolation zone using 16 firn cores and
4436 km of GPR data collected during an over-ice traverse
spanning two field seasons. We evaluate the veracity of the
accumulation data through comparisons of our firn core time
series with previous measurements. We quantify multi-year
trends in accumulation rates across western Greenland to test
the hypothesis that precipitation has recently increased from
the Clausius–Clapeyron relationship and higher GrIS tem-
peratures. Further, we assess the ability of regional climate
models (RCMs) to capture the year-to-year variability and
multi-year trends in western GrIS accumulation rates. Fi-
nally, we evaluate relationships between recent accumulation
rate trends and atmospheric circulation patterns, particularly
changes in storm tracks.

2 Methods

This study uses data from the 2016–2017 Greenland Tra-
verse for Accumulation and Climate Studies (GreenTrACS),
which measured accumulation rates and melt across the west-
ern GrIS percolation zone over two summer snowmobile
traverses (closely following the 2150 m a.s.l. elevation con-
tour). The May–June 2016 season traversed 860 km from
Raven–Dye-2 northward to Summit Station, while the May–
June 2017 traverse made a 1230 km clockwise loop start-
ing and ending at Summit Station (Fig. 1). This paper fo-
cuses on accumulation rates derived from 400 MHz GPR
data collected along the entire traverse path, as well as 16
shallow (22–32 m deep) firn cores spaced 40–100 km apart
along the backbone of the traverse (Fig. 1). Firn Cores 1–
7 were collected in 2016 and Cores 8–16 were collected in
2017. We returned to the Core 7 location at the beginning of
the 2017 traverse to recover a weather station and to connect
the two season’s GPR data. Additionally, we collected GPR
data ∼ 30–70 km east and west of each core site, hereafter
called “spurs”, to measure changes in accumulation rates
along strong elevation gradients (see Fig. 1).

2.1 GPS

During the 2016 traverse we collected GPS data using a
Trimble NetR8 reference receiver with a Zephyr Geodetic
antenna mounted to a Nansen sled ∼ 5 m in front of the GPR
antenna. For each spur and the tail ends of each transect be-
tween core sites we performed differential corrections to the
GPS data using RTKLIB 2.4.1 and a Trimble NetR8 base
station near the core site. Between spurs, when not operat-
ing a base station, we post-processed GPS data in precise
point positioning mode (Zumberge et al., 1997). Estimated
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Figure 1. Average accumulation rates across the GreenTrACS tra-
verse for the length of each record showing the location of each firn
core, ACT11d, D4, D5, Katie (K), Raven–Dye-2, and Sandy (S) ice
cores, and Summit Station. Transect A–A′ discussed in Sect. 3.3.
Inset shows locations of Camp Century (CC), 2Barrel (2B), NEEM,
B26, and TUNU2013 (T13) ice cores, as well as locations of EGIG
(black), GrIT (grey), and GreenTrACS (blue) traverses.

root-mean-square horizontal errors were generally between
13 and 18 cm from standard deviations calculated during sta-
tionary periods at the end of spurs. To co-register GPR and
GPS data, we used time stamps embedded in the two data
streams and locations where we stopped to save GPR files,
approximately every 15 km. The time drift in the GPR log-
ger is negligible over these durations.

During the 2017 traverse we used GPS data from a Garmin
19x GPS receiver wired directly to the GPR instrument,
which recorded position data at every radar sample with rms
values of 3 m. During radar processing we average 75 ad-
jacent traces, corresponding to a distance of ∼ 20 m, so er-
rors in GPS positioning have a negligible effect on the final
dataset.

2.2 Ground-penetrating radar

We develop a spatially continuous record of accumulation
rates using GPR profiles collected with Geophysical Sur-
vey Systems Inc. (GSSI) SIR-3000 (during 2016) and SIR-
30 (during 2017) radar units with a 400 MHz antenna (fol-
lowing Hawley et al., 2014). The antenna was towed on
the snow surface in a small plastic sled ∼ 5 m behind a
wooden Nansen sled and ∼ 15 m behind a snow machine.
We recorded 2048 samples (2016) and 4096 samples (2017)
per trace over a range window of 800 ns (Fig. 2). The

400 MHz short-pulse radar has a range resolution (ability
to resolve distinct features) of 0.35± 0.10 m in firn, which
is fine enough to resolve internal reflecting horizons (IRHs)
that have been shown to represent isochrones (Medley et al.,
2013; Rodriguez-Morales et al., 2014; Spikes et al., 2004;
Hawley et al., 2014). We recorded 10 traces per second,
which at the snowmobile’s average travel speed of approx-
imately 2.75 m s−1 results in ∼ 3.6 traces recorded per me-
ter. Note that this spacing between traces varies with vehicle
speed.

Depending on signal attenuation within the firn column,
IRHs can be traced to a depth of 20–50 m (Fig. 2), provid-
ing accumulation records over the past 20–60 years (Fig. 3).
For areas with high attenuation (i.e., shallow penetration of
the radar signal), such as lower-elevation regions with more
refrozen melt layers, we calculate accumulation results for
shorter time periods. We are not able to trace as many IRHs
to the west of Cores 10–13 compared to the east due to higher
signal attenuation (Fig. 3), resulting in slightly different (less
than 0.03 m w.e. a−1) average accumulation values on either
side of these core locations. Likewise, we experienced an
equipment malfunction at the end of the 2016 traverse, reduc-
ing the number of observable IRHs from Core 7 to Summit
Station (Fig. 3). We have less confidence in calculated accu-
mulation rates throughout this section of the traverse due to
this malfunction, although the 2017 Summit to Core 8 inter-
val overlaps nicely with the last 140 km of the problematic
2016 interval, and provides high-quality accumulation mea-
surements for this section near Summit Station.

We reduce the GPR data volume and signal noise by av-
eraging 75 adjacent traces, which has the effect of suppress-
ing random noise by the principle of trace stacking (Yilmaz,
2001). We apply a combination of median trace filtering,
residual mean filtering (Gerlitz et al., 1993), and bandpass
filtering using a butterworth design (Selesnick and Sidney
Burrus, 1998) between 200 and 800 MHz. For data visual-
ization, we apply an automatic gain control (Yilmaz, 2001)
to give the interpreter more confidence when picking IRHs.

2.3 Firn core processing and density profiles

The amount of snow mass and the time span between IRHs
are necessary to calculate accumulation rates from the GPR
profiles. The accumulation rate is a function of the depth–age
scale, travel time–depth conversion rate, and the firn density
profile. We obtain the depth–age and depth–density scales
from each of the shallow firn cores collected along the Green-
TrACS traverse, and from density models based on tempera-
ture and accumulation rate data.

The 16 firn cores were drilled using an Ice Drilling Pro-
gram hand auger with a Kyne Sidewinder attachment (see
Graeter et al., 2018). We sampled the firn cores for chem-
ical measurements using a continuous ice core melter sys-
tem with discrete sampling at Dartmouth College (Osterberg
et al., 2006). We used an Abakus (Markus Klotz GmbH)
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Figure 2. Radargram showing the top 32 m of the transect along the main 2017 traverse from Core 13 to Core 15. Cores are indicated as
red lines down to their final depth, with dates plotted every 5 years at corresponding depths. Traced internal reflecting horizons are shown as
isochronous green lines. The depth scale on the vertical axis is calculated from the two-way travel time-to-depth conversion (see Sect. 2.4)
for Core 13, although there is no visual difference in depth scale across this radargram.

laser particle detector to measure microparticle concentra-
tions and size distribution from the continuous ice core melt-
water stream, a Dionex model ICS5000 capillary ion chro-
matograph to measure major ion (Na+, Mg2+, Ca2+, K+,
NH+4 , Cl−, NO−3 , SO2−

4 ) and methanesulfonic acid concen-
trations, and a Picarro L1102-I and a Los Gatos Research liq-
uid water isotope analyzer to measure oxygen and hydrogen
isotope ratios (δ18O, δD; Graeter et al., 2018).

We determined depth–age curves by identifying annual
layers based on robust seasonal oscillations in δ18O and the
concentrations of major ions, methanesulfonic acid, and dust,
consistent with previous ice core studies (Graeter et al., 2018;
Mosley-Thompson et al., 2001; Osterberg et al., 2015). We
combined the depth–age curves with core density to calcu-
late annual accumulation rates.

We determine depth–age curves for each core by identi-
fying annual layers based on seasonal oscillations in δ18O
and the concentrations of major ions and dust, consistent
with previous ice core studies in this region (Graeter et al.,
2018; Mosley-Thompson et al., 2001; Osterberg et al., 2015).
While meltwater percolation smooths the signal of some of
these tracers, we can still confidently determine the depth–
age curve using nearly unperturbed oscillations in δ18O and
dust. We combine the depth–age scales with measured den-
sity to calculate annual accumulation rates at the firn core
sites.

At each firn core and at the ends of each spur, we mea-
sured the density in the top meter of snow using a 1000 cm3

Snowmetrics cutter. To calculate density profiles from the
firn cores, we measured the mass, length, and diameter of

0.03–1 m long core segments in the field and again after
transporting the cores to the Dartmouth College Ice Core
Laboratory. Additionally, we measured melt layer thickness
in the laboratory following Graeter et al. (2018). To calcu-
late accumulation rates at Raven–Dye-2, we use density data
from a 119.6 m long firn core collected in 1997 (Bales et al.,
2009) and a 19.3 m long core collected from the same lo-
cation in 2015, which did not include accumulation rate data
(Vandecrux et al., 2018). For this location we use the most re-
cent density data for the near surface and the older densities
for depths below the 2015 core. Likewise, we use a density
profile from a 109 m long firn core collected from Summit
in 2010 (Mary Albert, personal communication, 2015). We
also incorporate density data from measurements along the
EGIG traverse at T19, T21, T23, T27, and T31 to improve
the density profile between Core 7 and Summit (Morris and
Wingham, 2014).

After collecting each firn core, we measured borehole tem-
perature for 24–48 h using a 20 m long thermistor string.
We estimate mean annual temperature from the deepest ther-
mistor on the 20 m long thermistor string. These measure-
ments agree with MODIS satellite-derived mean annual sur-
face temperature (Hall et al., 2012) to within ±1 ◦C for each
firn core location. The small amount of energy released from
refreezing of summertime percolation water has diffused by
the time of our measurements, allowing for direct compari-
son between in situ firn temperature and MODIS clear-sky
measurements. For the location of each firn core, we use the
depth–density data from that core and calculate a Herron and
Langway (1980) depth–density model for depths below the
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Figure 3. Date of oldest resolvable internal reflecting horizon
throughout the entire GreenTrACS traverse route. Anomalously
young ages from Core 7 to Summit are due to equipment malfunc-
tion.

core using our measured mean annual temperature, firn core
mean annual accumulation rates, and top-meter snow den-
sity. Likewise, we calculate Herron–Langway profiles for the
ends of each spur using MODIS satellite-derived mean an-
nual temperature (Hall et al., 2012), MAR-modeled accumu-
lation rates (Burgess et al., 2010), and the measured snow
density in the upper meter of each of the spur’s snow pits. Fi-
nally, we interpolate depth–density profiles both between firn
cores and along radar spurs to estimate the depth–density ma-
trix everywhere along our traverse (Fig. 4). Final calculated
accumulation rates are insensitive to the input accumulation
parameter we use to calculate our Herron–Langway models
(Lewis et al., 2017).

As shown in Fig. 4, ice layers within several firn cores
are extrapolated laterally along the traverse, although these
dense lenses are typically both localized and heterogeneous
at these elevations (Brown et al., 2011; Rennermalm et al.,
2013). Numerous studies have documented the heterogeneity
of firn throughout the percolation zone and the complications
of calculating SMB due to ice pipes and lenses (Brown et al.,
2011, 2012; de La Peña et al., 2015). Here we attempt to ac-
curately calculate accumulation rates using interpolated firn
cores and in situ GPR throughout this complicated region.
Our ice lens density interpolation is as accurate as possible
between firn cores without additional in situ data, and this es-
timation does not significantly alter our results, as discussed
in Sect. 2.6, since the ice layers represent a small fraction of
the total depth to IRHs.

2.4 Travel time to depth conversion

We convert the radar travel time to depth by iteratively mul-
tiplying the velocity of the electromagnetic wave by the sig-
nal’s one-way travel time to each internal reflecting hori-
zon (IRH). The electromagnetic speed of the radar wave, v
(m s−1), is calculated from the relative dielectric permittiv-
ity, εr (dimensionless), and the speed of light in a vacuum, c
(3× 108 m s−1), from

v =
c
√
εr
. (1)

In turn, we calculate the relative dielectric permittivity from
the density, ρ (g cm−3), of snow and ice at depth, as shown
in Fig. 4, for each radar trace at every range bin (following
Kovacs et al., 1995) by

εr = (1.0+ 0.845 · ρ)2. (2)

We calculate the depth of each subsequent radar sample for
each trace in the profile using the radar travel time and ve-
locity profile from Eqs. (1) and (2), following Hawley et
al. (2014) and Lewis et al. (2017).

2.5 Internal reflecting horizons

We manually select 10 clear, strong IRHs spaced approxi-
mately 5 years apart to consistently trace from Raven–Dye-
2 to Summit Station and throughout the 2017 main traverse
(Fig. 2). We trace each layer manually by visually identify-
ing strong amplitude peaks throughout the radargram, start-
ing with the 2016 layer and working downwards. We use a
spline interpolation between manual picks to trace each layer
along large amplitude reflections every ∼ 500–700 m along
the traverse. When a layer appears to bifurcate due to changes
in snow accumulation, we continue to trace the layer based
on the trajectory of surrounding IRHs. Each horizon is traced
throughout the traverse, except in areas where the attenuated
signal makes it too difficult to interpret (Fig. 3). We trace
layers for each spur starting at the depth of each layer at the
corresponding firn core location. Layers below the depth of
some firn cores are traced from nearby cores that are deeper
or have lower accumulation rates.

We trace layers between cores using a connect-the-dots
approach using the depth–age scale at each firn core. After
tracing layers from one firn core to the next, we check that
layers intersect the core location at the proper depth for the
age of our traced IRH. Note that the depths of several layers
at Cores 2–16 are located below the bottom depth of those
cores. Since these layers are isochronous, they are used to
calculate accumulation rates over appropriate time epochs by
using dates obtained from intersections with other cores (see
Fig. 3).
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Figure 4. Depth–density profile along the main 2016 traverse used for calculation of electromagnetic wave velocity and accumulation rates
in this study. Densities are linearly interpolated between the two nearest cores and are modeled using Herron–Langway profiles below the
depth of each core. The left and right boundary data come from the Raven–Dye-2 and Summit firn cores, respectively. Ice layers in Cores
1–5 are clearly visible as red lenses, but their extent is, in reality, likely more localized.

2.6 Accumulation rate calculations and uncertainty

Finally, we calculate snow accumulation rates using the firn
core depth–age scales, measured and interpolated depth–
density profiles (Fig. 4), and traced IRHs (Fig. 2). We cal-
culate the water-equivalent accumulation rate ḃ (m w.e. a−1)
between adjacent IRHs from the depth z (m) and age t (year)
of each layer, the average density ρ (kg m−3) between layers,
and the density of water ρw (1000 kg m−3):

ḃ =
1

t2− t1

z2∫
z1

ρ(z)

ρw
∂z. (3)

We correct for layer thinning using a Nye (1963) model.
The thinning factor has an average value of 0.9993± 0.0003
and is multiplied by the accumulation rate for each radar
trace. For each radar trace, the thinning factor, λ(z), is cal-
culated from the average accumulation rate ḃ (m w.e. a−1) of
each epoch, average age of the epoch a (year), and water-
equivalent thickness of the GrIS H (m), from Morlighem et
al. (2014):

λ(z)= e−
ḃ
H
a . (4)

Accumulation uncertainty can arise from independent errors
in tracing IRHs, errors from incorrectly dating firn cores,
and/or errors in the densities used for converting from sep-
aration distance to water-equivalent accumulation rates. To
reduce tracing errors, we retraced each IRH along the two
main traverse paths four times apiece. Close inspection of

the IRHs reveals that the peaks defining IRHs are within
±2 radar samples (within at most ±0.12 m), and incorrectly
jumping to the next IRH would result in an error of at
most ±10 samples (within ±0.55 m). We chose an epoch
between IRHs of 5.0 years from the firn core chemistry
depth–age scales, which corresponds to a maximum trac-
ing error of ∼±0.11 m a−1 for each epoch, or a maximum
error of ±0.061 m w.e. a−1 given an average firn density of
0.55 g cm3 across this dataset.

We perform a leave-one-out cross validation to calculate
accumulation errors at locations where we do not have firn
core density profiles. Here we choose one of the 16 firn cores,
in addition to the Raven–Dye-2 and Summit cores, to omit
from our density interpolation (Fig. 4), so that we interpolate
density profiles between adjacent firn cores and a Herron–
Langway profile at the missing core location. We find maxi-
mum single-epoch errors of 0.079 m w.e. a−1 and maximum
rms (1971–2016) errors of 0.046 m w.e. a−1 (Fig. 5) at the lo-
cation of missing cores. These differences are approximately
twice as large at Cores 1–6 than Cores 7–16 due to larger
differences between measured and interpolated density pro-
files, likely a result of meltwater percolation and ice lenses
(Graeter et al., 2018).

Similarly, we perform a leave-one-out validation by omit-
ting a firn core density profile location entirely and interpo-
lating density profiles over a larger distance (e.g., between
Core 1 and Core 3). In this case we find maximum single-
epoch errors of 0.057 m w.e. a−1 and maximum rms (1971–
2016) errors of 0.033 m w.e. a−1. Throughout this study, we
use our measured density profiles to calculate accumulation
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Figure 5. Accumulation rates from GPR and collected firn cores (this study) compared with cores from the PARCA Campaign. Thin lines
represent annual PARCA (blue) and GreenTrACS (black) firn core accumulation rates, while thick lines are 5-year averages over correspond-
ing GPR epochs. Error bars represent one standard deviation over each epoch. GPR and PARCA accumulation rate averages and decadal
trends are statistically indistinguishable.

rates at core locations, rather than rely on Herron–Langway
density models that would result in larger uncertainties.

We conservatively take our accumulation error from miss-
ing density measurements to be 0.079 m w.e. a−1. This error
highlights the importance of our firn core spacing between 40
and 100 km along the traverse and confirms that the accuracy
of future remotely sensed radar accumulation (e.g., IceBridge
snow and accumulation radars) estimates depends on precise
field-based in situ density profiles for accurate accumulation
history in the percolation zone. Overly et al. (2016) calcu-
lated accumulation rates in the dry snow zone using Herron–
Langway profiles within 3.5 % of accumulation rates calcu-
lated using neutron-probe density profiles. However, here we
show that in situ measurements, or accurate meltwater per-
colation modeling (Meyer and Hewitt, 2017), are required to
correctly calculate SMB in the percolation zone.

We assume uncertainty in dating the firn cores from an-
nual variations in chemistry to be±0.5 years (Buchardt et al.,
2012). At the lowest accumulation rate locations, the small-
est distance between layers is 0.15 m w.e. over an epoch of
4.91 years. This gives an uncertainty in accumulation rates
due to dating of at most ∼±0.03 m w.e. a−1. The error asso-
ciated with measuring in situ firn density has been estimated
to be 1.4 % (Karlöf et al., 2005). However, following Haw-
ley et al. (2014) and Lewis et al. (2017), we conservatively
assume that our measurements have a density measurement
error of up to twice as large, corresponding to a maximum
accumulation error of ±0.014 m w.e. a−1.

We calculate the total uncertainty from formal error prop-
agation (following Bevington and Robinson, 1992) from
the average accumulation rate ḃ = 0.385 m w.e. a−1, average
thickness between IRHs 1h= 3.56 m, uncertainty in trac-
ing ρ = 0.550 g cm3, uncertainty in density measurements
δρ, average time period between IRHs 1t , and uncertainty
in core dating δt . We find the total accumulation rate uncer-
tainty for each epoch to be 0.071 m w.e. a−1 from Eq. (5).

σepoch =

√√√√ḃ2

((
δh

1h

)2

+

(
δt

1t

)2

+

(
δρ

ρ

)2
)

(5)

Due to the random and non-systematic nature of these er-
rors, we can assume that they are unlikely to contribute to
a regional or temporal accumulation rate bias. To calculate
uncertainty for accumulation rates averaged over multiple
epochs (σn−epochs) we divide our uncertainty σepochs by the
square root of the number of traced layers (n) at that loca-
tion.

σn−epochs =
σepoch
√
n

(6)

2.7 Model comparison

We compare our GreenTrACS accumulation results with an-
nual outputs from Box et al. (2013; hereafter “Box13”; 1840–
1999), the Fifth Generation Mesoscale Model (Polar MM5;
1958–2008; Burgess et al., 2010), MAR (1948–2015; Fet-
tweis et al., 2016), and the Regional Atmospheric Climate
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Model (RACMO2; 1958–2015; Noël et al., 2018) over com-
mon time periods. Grid cell sizes for these model outputs
are 5, 3, 5, and 1 km, respectively. For each radar trace we
calculate statistically significant differences (at α = 0.05) us-
ing a two-sample t test with the GreenTrACS accumula-
tion records for each epoch and RCM accumulation rates
for each common year. Additionally, we compare our Green-
TrACS accumulation rates with an accumulation map kriged
from 295 firn cores and 20 coastal weather stations (Bales
et al., 2009; hereafter “Bales09”). We perform the same
two-sample t test with the reported Bales09 uncertainty of
0.092 m w.e. a−1 (Bales et al., 2009).

2.8 Accumulation trends

To investigate recent changes in GrIS accumulation rates, we
calculate trends in accumulation rates across our GPR and
GreenTrACS firn core dataset. We fit a linear model to the ac-
cumulation rate time series for each radar trace and analyze
the trend for both slope and statistical significance. Likewise,
we calculate trends and their statistical significance for total
precipitation (snowfall + rainfall) for MAR and RACMO2
grid cells from 1996 through the end of both models’ tem-
poral coverage. We can compare these results with our ac-
cumulation trends since precipitation and accumulation rates
are nearly identical above the equilibrium line altitude, due to
zero runoff and negligible sublimation within the percolation
zone.

2.9 Storm track changes

To investigate the potential role of changing storm tracks in
precipitation changes over the western GrIS, we utilize the
updated Serreze (2009) storm track database. This database
contains 6 h interval positions of extratropical cyclone storm
centers on a 2.5◦ grid. These centers are defined when a grid
point sea level pressure is surrounded by grid points at least
1 hPa higher than the central point (Serreze, 2009). We cal-
culate the total number of days on which a storm center is
located within our region of interest for each season. To de-
termine statistical significance, we run a two-sample t test on
the number of storms in our region of interest between 1958
and 1996 compared with 1996–2016.

3 Results and discussion

3.1 Firn core and GPR accumulation records

Figure 1 displays the mean accumulation rates at each lo-
cation along the traverse route, with higher accumulation
rates along the main traverse and lower accumulation rates
at higher elevations of the ice sheet interior, broadly con-
sistent with previously published accumulation rate compi-
lations (e.g., Bales et al., 2009) and RCM output (Box et
al., 2013; Burgess et al., 2010; Fettweis et al., 2016; Noël et

Figure 6. Difference between averaged (1966–2016) GreenTrACS
accumulation and average (1962–2014) IceBridge Accumulation
Radar rates from Lewis et al. (2017) across all 562.5 km of overlap.
Spatially overlapping section of 2016 and 2017 traverses displayed
as adjacent tracks. Also showing extent of GreenTrACS traverse
(black) and IceBridge accumulation radar (grey). Inset shows map
location with respect to GreenTrACS traverse (black).

al., 2018). We analyze localized differences between GPR-
derived accumulation rates and these RCMs in Sect. 3.3.
There is an especially high accumulation rate zone near Core
11 (0.685 m w.e. a−1), nearly double the accumulation rate at
Core 10 (0.453 m w.e. a−1) and Core 12 (0.327 m w.e. a−1),
respectively situated only 43 km northwest and 73 km south-
west of Core 11. In the GPR data, the number of traceable
IRHs is highest towards the interior of the ice sheet and low-
est in warmer areas towards the coast and in the south, where
refrozen percolated meltwater from enhanced surface melt
attenuates the radar signal and reduces the number of ob-
servable IRHs (Brown et al., 2011; Fig. 3).

3.2 Validation with past measurements

We validate our accumulation record with published core
records from the PARCA campaign and accumulation data
from the NASA IceBridge program. The locations of Green-
TrACS core sites 2, 5, 9, 10, 11, 14, 15, and 16 were cho-
sen to reoccupy PARCA core locations 6745, 6945, 7147,
7247, 7249, NASA-U, 7347, and 7345, respectively. These
GreenTrACS cores overlap with the accumulation history of
each PARCA core and extend the record from 1997/1998 to
2016/2017. Annual and epoch-averaged accumulation rates
derived from GreenTrACS firn cores are within uncertainty
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Figure 7. Average GreenTrACS GPR accumulation rates (black) compared with (a) IceBridge accumulation radar, (b) Bales09 kriged ice
core map, (c) MAR, (d) RACMO2, (e) Box13, and (f) Polar MM5. GPR measurements are statistically indistinguishable from each of the
other measurements along this 285 km transect in the dry snow zone (A–A′ in Fig. 1).

ranges of those determined from corresponding PARCA
cores during the period of overlap. Averaging accumulation
rates over 5-year epochs reduces noise in year-to-year ac-
cumulation variability. Figure 5 compares the accumulation
records from PARCA sites 6745, 6945, 7345, and NASA-
U to their corresponding GreenTrACS cores, demonstrating
that each pair of cores has similar long-term mean accumu-
lation rates and nearly identical decadal variability. Thus, we
have confidence in firn-core-derived accumulation rates that
are used in subsequent GPR calculations of accumulation
rates throughout the GreenTrACS traverse.

Average (1966–2016) GPR accumulation rates are statisti-
cally indistinguishable from average (1962–2014) IceBridge
Accumulation Radar measurements analyzed by Lewis et
al. (2017), with an rms difference of 0.039±0.033 m w.e. a−1

(6.0± 9.6 %) along a total of 562.5 km of overlap (Fig. 6).
The disagreement is largest at lower elevations, where
Herron–Langway profiles used in Lewis et al. (2017) dif-
fer the most from GreenTrACS firn core density profiles
in the upper 30 m of firn, demonstrating the importance of
field observations for calibration and validation. The close
agreement at higher elevations is illustrated in Fig. 7a, where
our GreenTrACS accumulation measurements are statisti-
cally indistinguishable from the IceBridge radar-derived ac-
cumulation rates (Lewis et al., 2017) along the 285 km A–A′

transect in Fig. 1. Notice that the uncertainty in GreenTrACS
accumulation rates progressively decreases higher in the per-
colation zone and into the dry snow zone (towards the right in

Fig. 7) along this transect as density becomes less heteroge-
neous from fewer melt layers (Graeter et al., 2018) and IRHs
become easier to trace.

Similarly, our 2011–2016 accumulation rates are statisti-
cally indistinguishable from average 2009–2012 IceBridge
snow radar measurements analyzed by Koenig et al. (2016),
with an rms difference of 0.049± 0.096 m w.e. a−1 (14.0±
27.7 %) along a total of 69.7 km of overlap (not shown).
Koenig et al. (2016) use a different radar system on an air-
borne platform and are able to calculate annual accumulation
rates at elevations below 2000 m a.s.l.; however the Green-
TrACS accumulation record covers a longer temporal dura-
tion than the data from that study.

3.3 Comparison to modeled accumulation

We assess differences between RCM accumulation output
and GreenTrACS accumulation records at each firn core site,
two of which are shown in Fig. 8. In general, year-to-year
correlations between GreenTrACS firn core accumulation
records and RCM output for the corresponding grid cell are
strong, positive, and statistically significant (Table 2). On av-
erage, GreenTrACS firn cores’ correlation coefficient with
MAR output is 0.718, with PolarMM5 is 0.701, with Box13
is 0.607, and with RACMO2 is 0.763. Every correlation is
statistically significant at p < 0.05 except for Cores 7 and 11
with Box13. We do not report a correlation coefficient for
Core 11 and Box13 because they only share two common
years. Temporal correlation coefficients remain high even at
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Figure 8. Accumulation record at GreenTrACS Core 8 and Core 15 (black) compared with RCM output from RACMO2 (red), Polar MM5
(cyan), MAR (green), and Box13 (blue). We find statistically significant Pearson correlation coefficients between GreenTrACS and RCM
accumulation rates for these cores (see Table 2).

locations with large magnitude differences between RCM
output and firn core accumulation rates. For example, the
Box13 model overestimates accumulation rates at Core 15
by 0.15± 0.05 m w.e. a−1, on average, but the model output
has a correlation coefficient of 0.48 with Core 15 (Table 2)
and matches years of high accumulation rates (e.g., 1987,
1990, and 1996) and low accumulation rates (e.g., 1981,
1989, 1992).

We also assess spatial differences between GreenTrACS
accumulation rates and mean RCM accumulation rates aver-
aged over several decades (Table 2). Figure 9 shows that dif-
ferences between GreenTrACS accumulation rates and RCM
output increase in magnitude, become more spatially hetero-
geneous, and vary by model at lower elevations of the ice
sheet where topographic variations are larger and surface
melt increases. Averaged over all 4436 km of the traverse,
the rms difference (±1σ ) between each model and Green-
TrACS accumulation rates over corresponding data periods
(Table 2) is 0.068±0.065 (MAR), 0.056±0.055 (RACMO2),
0.082± 0.070 (Box13), 0.048± 0.045 (Polar MM5), and
0.048±0.045 m w.e. a−1 (Bales09). We find that RCM differ-
ences from GreenTrACS accumulation rates are small in the
dry snow zone (Fig. 9). For example, Fig. 7 shows that aver-
age GreenTrACS accumulation measurements from 1966 to
2016 along the A–A′ transect in Fig. 1 are statistically indis-
tinguishable from those derived from the Bales09 kriged ice
core map (Fig. 7b), MAR (1966–2015; Fig. 7c), RACMO2
(1966–2013; Fig. 7d), Box13 (1966–1999; Fig. 7e), and Po-
lar MM5 (1966–2008; Fig. 7f).

However, the high spatial resolution of our dataset shows
significant accumulation variability not captured in model
output (Fig. 9). For example, Polar MM5 and MAR both
underestimate accumulation rates between Core 4 and Sum-
mit, while overestimating accumulation rates to the west of
Cores 10–12. Likewise, RACMO2 overestimates accumu-
lation rates between Raven–Dye-2 and Core 5 by 0.03 to
0.08 m w.e. a−1 and shows statistically significant differences
east of Cores 11 and 12. Bales09 accurately calculates ac-
cumulation rates along most of the 2016 traverse, but over-
estimates accumulation rates west of Cores 11 and 12 by
0.135±0.041 m w.e. a−1. Finally, Box13 overestimates accu-
mulation rates along many of the western spurs and has sta-
tistically significant overestimations of 0.1 to 0.4 m w.e. a−1

between Cores 10 and 16. Box13 overestimates 67.8 % of the
data in the Core 10–16 region by at least 0.1 m w.e. a−1 and
6.6 % of that data by at least 0.2 m w.e. a−1.

Our study is almost entirely contained within drainage
basin E from Vernon et al. (2013), who note that basin E
is the only major Greenland drainage basin with no statisti-
cally significant differences in SMB between the four RCMs.
However, differences of 0.1 to 0.4 m w.e. a−1 exist when we
look at a local (sub-drainage-basin) scale for each model. All
four of the RCMs overestimate accumulation rates along the
western spur of Core 11 and they all underestimate accumu-
lation rates along the eastern spur of Core 5 (Fig. 9).

In summary, the RCMs do an excellent job of calculating
accumulation rates averaged over this drainage basin, with
rms values between 0.048 and 0.082 m w.e. a−1, but there
are larger differences of 0.1 to 0.4 m w.e. a−1 between model
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Table 1. Difference between accumulation rates at each GreenTrACS core site calculated using Herron–Langway profiles and firn core
density information.

Core Rms average difference Max epoch difference Max epoch difference
(m w.e. a−1) (m w.e. a−1) (% of acc.)

1 0.046 0.079 20.1
2 0.025 0.061 16.2
3 0.037 0.074 19.9
4 0.028 0.045 10.7
5 0.026 0.054 11.5
6 0.038 0.052 10.0
7 0.015 0.026 5.4
8 0.026 0.045 10.3
9 0.030 0.049 10.9
10 0.019 0.039 8.5
11 0.023 0.035 5.0
12 0.018 0.027 8.2
13 0.025 0.031 10.7
14 0.019 0.027 8.2
15 0.010 0.016 5.3
16 0.014 0.025 8.2

Table 2. Pearson correlation coefficients between accumulation rate
time series from firn cores and co-located RCM output over their
common time period∗.

Available data MAR PolarMM5 Box13 RACMO2
period

Core1 1966–2016 0.70 0.66 0.56 0.73
Core2 1969–2016 0.75 0.77 0.62 0.79
Core3 1971–2016 0.72 0.69 0.63 0.74
Core4 1977–2016 0.79 0.74 0.72 0.72
Core5 1984–2016 0.81 0.80 0.60 0.79
Core6 1985–2016 0.76 0.76 0.65 0.83
Core7 1993–2016 0.81 0.82 0.61 0.73
Core8 1978–2017 0.78 0.77 0.69 0.81
Core9 1984–2017 0.68 0.75 0.74 0.79
Core10 1984–2017 0.88 0.80 0.80 0.80
Core11 1997–2017 0.75 0.59 n/a 0.75
Core12 1962–2017 0.6 0.54 0.53 0.64
Core13 1955–2017 0.51 0.62 0.37 0.76
Core14 1974–2017 0.70 0.62 0.46 0.74
Core15 1969–2017 0.68 0.63 0.48 0.75
Core16 1979–2017 0.79 0.77 0.66 0.88

∗ Statistically significant correlations (p < 0.05) are bold. n/a – not applicable.

and GPR accumulation rates on local scales. Differences be-
tween GreenTrACS and RCM accumulation rates are largest
in areas concurrent with the fewest, shortest, and/or most
outdated in situ measurements. For example, the GPR vs.
model differences near Cores 11, 12, and 13 are relatively
large for all RCMs, despite Core 11 being co-located with
PARCA 7249. However, the PARCA cores were collected
over 20 years ago, and Core 11 only spanned 7 years because
of the high accumulation rate at that site. This highlights the
importance of collecting updated field-based measurements
to calibrate remotely sensed data and RCM output.

3.4 Accumulation temporal trends

In most locations, there are no statistically significant trends
in the GreenTrACS accumulation record from 1966 through
the mid-1990s. However, a change-point analysis (Lavielle,
2005) reveals that accumulation rates in the western GrIS
percolation zone changed significantly after the 1995–1996
accumulation year. Since 1996, our record indicates a sta-
tistically significant average accumulation rate decrease of
0.009± 0.005 m w.e. a−2, or 2.4± 1.5 % a−1, from 1996 to
2017. Although we observe fewer statistically significant ac-
cumulation trends when we expand this analysis to include
the entire temporal duration for each firn core, the sign of the
trend at each core site does not change.

In Fig. 10, we compare the negative accumulation trend in
the GreenTrACS record (1996–2016) to best-fit linear trends
in total precipitation (rain + snowfall) across the ice sheet
in MAR and RACMO2 simulations over the 1996–2015 and
1996–2013 periods, respectively. Also shown in Fig. 10 are
1996–2016 accumulation trends for all 16 GreenTrACS firn
cores (squares), accumulation trends from ACT10A (1996–
2010), ACT10B (1996–2010), ACT10C (1996–2010), D4
(1991–2002), D5 (1991–2002), Katie (1991–2002), Sandy
(1991–2002), and Summit 2010 (1991–2010) ice and firn
cores (stars on ice sheet), and precipitation trends from
coastal weather stations (Mernild et al., 2014; stars on coast).
Statistically significant trends (p < 0.05) in core data are in-
dicated by black dots, while statistically significant trends in
the MAR and RACMO2 output are stippled in black.

We find strong agreement between the accumulation
rate decrease in the GreenTrACS record and widespread
precipitation decreases in the RCMs over the study area
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Figure 9. Differences between GreenTrACS accumulation rates and (a) Polar MM5, (b) MAR, (c) Bales09, (d) RACMO2, and (e) Box13
accumulation rates averaged over the corresponding time periods. Large dots show statistically significant differences from GreenTrACS
accumulation rates.
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Figure 10. Best-fit linear trends for each grid cell showing magnitude (left) and percent (right) changes in total precipitation for (a, b)
MAR (1996–2015) and (c, d) RACMO2 (1996–2013). Statistically significant RCM grid cell trends are stippled black. Also shown are
accumulation trends for GreenTrACS firn cores (squares), ACT10A, ACT10B, ACT10C, D4, D5, Katie, Sandy, Summit 2010, and Raven–
Dye-2 cores (stars on ice sheet) and precipitation trends from Mernild et al. (2014; stars on coast) with statistically significant trends indicated
by black dots.

(Fig. 10). On average, the RCMs have a more nega-
tive precipitation trend than the GreenTrACS record by
0.003±0.005 m w.e. a−2 (0.3±0.77 %) for MAR and 0.002±
0.005 m w.e. a−2 (0.45± 1.22 %) for RACMO2. Vernon et
al. (2013) show a melt-driven decrease in SMB across this
drainage basin of 31.1 % (ECMWFd), 61.6 % (RACMO2),
76.5 % (MAR), and 33.5 % (Polar MM5) for the 1996–2008
period. The negative precipitation trends of 2.4± 1.5 % a−1

(Fig. 10d) indicate a total of 2539 fewer gigatons of precip-
itation and a total of 5159 additional gigatons of melt (not
shown) over 1996–2013 across the GrIS. Thus, our analy-
sis suggests that a significant decline in snow accumulation
rates contributes to declining SMB throughout the western
GrIS over recent decades, in addition to increasing surface

melt from rising temperatures (van den Broeke et al., 2009,
2016).

3.5 Effects of melt on accumulation trends

Increased melt throughout the 1996–2016 period is a con-
founding variable when analyzing trends in accumulation
rates. With increased melt over the past several decades in
this region, meltwater percolates down through several years
of firn (Benson, 1962; Graeter et al., 2018; Harper et al.,
2012; Wong et al., 2013). This movement of mass into lower
years can artificially increase the mass balance at depth and
lower the mass balance during the most recent years, which
have not experienced as much meltwater percolation from
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more recent annual layers. Therefore, it is necessary to evalu-
ate the degree to which the recent accumulation rate decrease
in the GreenTrACS record is biased by the recent increase in
surface melt and percolation.

On average, we find larger negative accumulation trends
(−7× 10−3 to −10× 10−3 m w.e. a−2) at the lower-latitude
cores that experience more melt, supporting the hypothesis
that meltwater percolation and refreezing are enhancing the
negative accumulation trend. However, several other lines
of evidence support a negative accumulation trend in the
study area since 1996. First, we find statistically significant
negative accumulation trends at Cores 10, 11, 12, 13, 15,
and 16, each of which experience < 1.6 cm a−1 of meltwa-
ter percolation on average. Additionally, we have confidence
that GreenTrACS accumulation trends reported here are not
artifacts of meltwater percolation because both MAR and
RACMO2 have similar trends in precipitation (Fig. 10). Fi-
nally, we evaluate the maximum effect meltwater percolation
could have on GreenTrACS accumulation trends over 1996–
2016. The largest measured melt layer from our 16 ice cores
occurred during 2003–2004 in Core 1 and contains 0.364 m
of ice, equivalent to 0.333 m w.e. (Graeter et al., 2018). We
add this percolation to 9 years’ of accumulation rates using
a sine wave (percolation magnitude 0, 0.5, 1, 0.5, 0, −0.5,
−1, −0.5, 0), square wave (0, 0, 0, 1, 1, 1, 0, 0, 0), and tri-
angle wave (0, 0.25, 0.5, 0.75, 1, 0.75, 0.5, 0.25, 0) weighted
kernel, before recomputing hypothetical accumulation trends
over the same time period with additional meltwater percola-
tion. Regardless of the wave-type choice, recalculated trends
remain within a factor of 2 of the original SMB trends and
do not change sign with additional percolation.

3.6 Atmospheric circulation drivers of the recent
accumulation decline

Our analysis indicates that snow accumulation rates have
been declining in western Greenland since 1996, despite sig-
nificant warming and resulting increases in saturation va-
por pressure from the Clausius–Clapeyron relationship. In-
stead, precipitation decreases over western Greenland likely
result from changes in atmospheric and/or oceanic circula-
tion. Mernild et al. (2014) and Auger et al. (2017) found that
the positive phase of the Atlantic Multidecadal Oscillation
(AMO) is associated with a precipitation increase over inte-
rior and southwestern Greenland based on ice core records
and the Japanese Meteorological Agency 55 Year Reanalysis
(JRA-55; Kobayashi et al., 2015), respectively. In direct con-
trast with these findings, the decline in western Greenland
accumulation rates documented in the GreenTrACS record
began in the mid-1990s, contemporaneous with a switch to
the AMO positive phase.

We hypothesize that the differences between our results
and those of Auger et al. (2017) and Mernild et al. (2014)
stem from different causes. Auger et al. (2017) validated the
reanalysis data by demonstrating that JRA-55 precipitation at

Nuuk, Greenland, is significantly correlated with Nuuk sta-
tion data from 1958 to 2013. Furthermore, coastal precipita-
tion in western Greenland is strongly and significantly (p <
0.05) correlated with precipitation over the interior western
GrIS in the JRA-55 dataset (not shown). However, Mernild et
al. (2014) found that coastal Greenland precipitation is anti-
correlated with ice core accumulation records from the inte-
rior GrIS from 1900 to 2000. This suggests that JRA-55 pre-
cipitation data, which are not constrained by ice core accu-
mulation records, should be interpreted with caution over the
interior GrIS. Mernild et al. (2014) concluded that positive
AMO conditions favor higher precipitation over the interior
GrIS based on the previous positive AMO phase (1920s to
mid-1960s), contrasting with lower accumulation rates dur-
ing the negative AMO phases (mid-1960s to mid-1990s and
prior to the 1920s). However, Mernild et al. (2014) state that
the ice core composite record in their analysis may be biased
from 1995 to 2000, and they do not analyze precipitation
trends after 2000. Thus, the decline in western GrIS accu-
mulation rates documented in the GreenTrACS cores during
the latest positive AMO phase from 1996 to 2017 was not
captured in the Mernild et al. (2014) analysis. Our results
suggest that factors other than the AMO are behind the de-
cline in western GrIS accumulation rates since 1996.

We find that the decrease in accumulation rates over the
western GrIS is associated with a significant decrease in the
number of storm days since 1996. The GreenTrACS region
experienced an average of 115.8± 15.3 storm days per year
over 1958–1996 and 96.2± 27.3 storm days per year over
1996–2016. A two-sample t test indicates that this 17 % de-
cline in storm days is statistically significant (p < 0.001).
The largest decrease in storm days (25 %) over the Green-
TrACS region occurred during summer, with 56.4±6.1 storm
days per summer from 1958 to 1996 and 42.3± 17.4 storm
days per summer from 1996 to 2016 (p < 0.0001; Fig. 11b).
We also find an increase in the number of storm days in the
northwestern GrIS near Thule (not shown).

The decline in summer storm days indicates a relation-
ship with well-documented stronger summer blocking over
Greenland over the past 2 decades (Hanna et al., 2013;
McLeod and Mote, 2016), with a positive Greenland Block-
ing Index (GBI) during 17 out of 21 summers between 1996
and 2016 (Hanna et al., 2016). The June–August GBI had a
statistically significant positive trend of 1.87 (unitless; nor-
malized to 1951–2000) from 1991 to 2015 (Hanna et al.,
2016). The summertime 500 mbar geopotential height in-
creased 50–70 m over the 1996–2016 period compared with
the 1979–1996 baseline (Fig. 11c), indicating stronger block-
ing that we suggest likely reduced precipitation over the cen-
tral GrIS by deflecting storms poleward from the Greenland
interior. This is consistent with an observed 0.9± 0.3 % a−1

decrease in JJA cloud cover over Greenland from 1995 to
2009, with the largest decreases in the GreenTrACS region
(Hofer et al., 2017). Furthermore, we find a strong negative
correlation between ERA-Interim 1979–2015 June–August
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Figure 11. (a) Serreze (2009) gridded storm track dataset showing location of GreenTrACS traverse and inquiry box. (b) Total number of
storm days within inquiry box for annual and seasonal periods. Horizontal black lines show a decrease in 1958–1996 to 1996–2016 average
number of storm days within this region. (c) the 500 mbar geopotential height change over Greenland showing 1996–2016 minus 1979–1996
for the summer season. Image obtained using Climate Reanalyzer (http://cci-reanalyzer.org, last access: 1 February 2019), Climate Change
Institute, University of Maine, United States. (d) Correlation between June–August Greenland Blocking Index and MAR June–August
precipitation. Statistically significant RCM grid cell correlations are stippled black. GreenTrACS traverse is shown in black.

(JJA) GBI and JJA precipitation in both MAR (Fig. 11d)
and RACMO2 (not shown) across the central and southern
GrIS. These results suggest that the blocking-induced accu-
mulation rate decline observed in the GreenTrACS region is
representative of a broader pattern over the GrIS, with the
exception of northwest Greenland where poleward blocking
has increased storm days (not shown) and accumulation rates
(Fig. 11d).

The effect of summertime Greenland blocking has previ-
ously been discussed primarily in the context of increasing
surface melt (Hanna et al., 2013, 2018; Ballinger et al., 2017;
Hofer et al., 2017), while the effect of blocking on precipita-
tion has received less attention (Hanna et al., 2013; McLeod
and Mote, 2016). Our results highlight that stronger summer
blocking reduces GrIS SMB through both an increase in sur-

face melting and a decrease in accumulation rates. Stronger
summer blocking has been tied to an observed increase in
surface melt since 1996 across the western GrIS percolation
zone (Graeter et al., 2018), and to the July 2012 melt event,
during which 98.6 % of the GrIS experienced melt (Nghiem
et al., 2012). We show here with in situ data that snow ac-
cumulation rates have declined in this same region as strong
blocking has decreased the number of summer storm days.
Presently, none of the GBI outputs from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) suite of global cli-
mate models accurately capture the recent summer GBI in-
crease (Hanna et al., 2018). Improved predictions of summer-
time Greenland blocking under future anthropogenic forc-
ing scenarios are therefore critical for accurately predicting
Greenland SMB and its contribution to sea level rise.
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4 Conclusions

We have developed a new dataset of accumulation rates over
the western interior of the Greenland Ice Sheet spanning the
past 20–60 years, based on sixteen 22–32 m long firn cores
and 4436 km of in situ GPR accumulation data. This accumu-
lation record is internally consistent across the dataset and is
validated by previous in situ field measurements and other
radar-derived accumulation measurements (e.g., Lewis et al.,
2017).

Overall, the Polar MM5 (Burgess et al., 2010), MAR (Fet-
tweis et al., 2016), Box13 (Box et al., 2013), and RACMO2
(Noël et al., 2018) regional climate models accurately cap-
ture large spatial patterns in accumulation rates over the
GrIS, but show statistically significant differences from GPR
accumulation rates on a regional basis. The average rms
difference between each model and GreenTrACS accumu-
lation rates is 0.068± 0.065 (MAR), 0.048± 0.045 (Polar
MM5), 0.082± 0.070 (Box13), 0.056± 0.055 (RACMO2),
and 0.045± 0.045 m w.e. a−1 (Bales09). These differences
are on the same order as the uncertainties in the Green-
TrACS and RCM accumulation rate estimates. While these
average differences are small, we find differences of 0.1 to
0.4 m w.e. a−1 when we investigate at a local scale for each
model.

While global climate models predict a 21st-century in-
crease in precipitation over the GrIS (e.g., Bintanja and Sel-
ten, 2014), we observe a decrease in precipitation across the
western GrIS from 1996 to 2016 using records from firn
cores, GPR, and published RCMs. We believe this study is
the first to identify widespread negative GrIS precipitation
trends during this period of enhanced surface melt, evident in
these RCMs and our field observations (Graeter et al., 2018).

We attribute the decrease in accumulation rates over the
western GrIS between 1996 and 2016 to more persistently
positive Greenland blocking in the summer. We find a statis-
tically significant 25 % reduction in the number of summer
storms that precipitate over the GreenTrACS region since
1996. While increased temperatures from anthropogenic
forcing and enhanced summer blocking have increased melt
across the western percolation zone, here we show that sum-
mer blocking has also contributed to declining precipitation
over the past 2 decades. This has led to a strongly negative
SMB trend on both the input and output sides of the SMB
equation that may not be accurately captured in global cli-
mate models that are currently unable to reproduce the recent
increase in blocking. This highlights the importance of im-
proving global climate models (GCMs) projections of future
summer blocking to accurately forecast Greenland precipita-
tion and melt rates under stronger greenhouse gas forcing.

Data availability. We have uploaded all corresponding data from
this project to the NSF Arctic Data Center (Lewis, 2019). This
dataset includes the depth–age and depth–density scales, all asso-

ciated chemistry data, final yearly accumulation, and yearly melt
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includes all GPR accumulation measurements for each epoch and
the traced IRH depths.
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