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Abstract. Over large coastal regions in Greenland and
Antarctica the ice sheet calves directly into the ocean. In
contrast to ice-shelf calving, an increase in calving from
grounded glaciers contributes directly to sea-level rise. Ice
cliffs with a glacier freeboard larger than ≈ 100 m are cur-
rently not observed, but it has been shown that such ice cliffs
are increasingly unstable with increasing ice thickness. This
cliff calving can constitute a self-amplifying ice loss mech-
anism that may significantly alter sea-level projections both
of Greenland and Antarctica. Here we seek to derive a min-
imalist stress-based parametrization for cliff calving from
grounded glaciers whose freeboards exceed the 100 m sta-
bility limit derived in previous studies. This will be an exten-
sion of existing calving laws for tidewater glaciers to higher
ice cliffs.

To this end we compute the stress field for a glacier
with a simplified two-dimensional geometry from the two-
dimensional Stokes equation. First we assume a constant
yield stress to derive the failure region at the glacier front
from the stress field within the glacier. Secondly, we assume
a constant response time of ice failure due to exceedance of
the yield stress. With this strongly constraining but very sim-
ple set of assumptions we propose a cliff-calving law where
the calving rate follows a power-law dependence on the free-
board of the ice with exponents between 2 and 3, depending
on the relative water depth at the calving front. The critical
freeboard below which the ice front is stable decreases with
increasing relative water depth of the calving front. For a dry
water front it is, for example, 75 m. The purpose of this study
is not to provide a comprehensive calving law but to derive a
particularly simple equation with a transparent and minimal-
ist set of assumptions.

1 Introduction

Ice loss from Greenland and Antarctica is increasingly con-
tributing to global sea-level rise (Rignot et al., 2014; Shep-
herd et al., 2018; WCRP Global Sea Level Budget Group,
2018). A possible additional future mass loss from these ice
sheets is of crucial importance for future sea-level projec-
tions (Slangen et al., 2017; Church et al., 2013; DeConto and
Pollard, 2016; Kopp et al., 2017; Mengel et al., 2016; Ritz
et al., 2015; Levermann et al., 2014). Ice sheets gain mass by
snowfall. The question whether they contribute to changes
in sea level is determined by the question how strongly this
mass addition is compensated for or overcompensated for by
mass loss. Ice sheets in both Greenland and Antarctica cur-
rently show a net ice loss. Calving accounts for roughly half
the ice loss of the Antarctic ice shelves, the rest is lost by
basal melt (Depoorter et al., 2013). For the Greenland ice
sheet, calving accounted for two-thirds of the ice loss be-
tween 2000 and 2005, the rest is due to enhanced surface
melting and runoff (Rignot and Kanagaratnam, 2006). Be-
cause surface melt increased faster than glacier speed, calv-
ing accounted for one-third of the Greenland ice sheet mass
loss between 2009 and 2012 (Enderlin et al., 2014). In the
future the melt elevation feedback might further increase sur-
face melt (Levermann and Winkelmann, 2016).

Tidewater glaciers calve vigorously when they are near
floatation thickness, producing icebergs with a horizontal ex-
tent smaller than the ice thickness. This has been expressed
in semiempirical height-above-floatation calving laws (Meier
and Post, 1987; van Der Veen, 1996; Vieli et al., 2002). Calv-
ing at ice-shelf fronts or floating glacier tongues has long rest
periods interrupted by the calving of large tabular ice bergs
(Lazzara et al., 1999) and is preceded by the formation of
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deep crevasses upstream (Joughin and MacAyeal, 2005). The
distinction between these two kinds of calving is not always
easy because a tidewater glacier can form or lose a floating
tongue; this has for example been observed at the Columbia
glacier in Alaska (Walter et al., 2010).

In order to model calving not just for single glaciers
but for whole ice sheets, a calving parametrization is
needed. Models describing the nucleation and spreading of
crevasses in ice (Pralong and Funk, 2005) are computation-
ally very intense and difficult to apply in simulations over
long timescales and large spatial dimensions. In order to
parametrize calving processes, several approaches have been
used.

First, calving can be described as a function of strain rate
and crevasse depth. Nye (1957) first described the formation
of crevasses as a result of velocity gradients: the depth of the
crevasse is determined by the strain rate and overburdening
pressure of the ice. Observations show that ice velocities are
greater near the calving front than upstream (Meier and Post,
1987); hence, crevasses form mainly at the calving front.
When crevasses are deep enough, icebergs are then separated
from the glacier and calve off. Benn et al. (2007) proposed a
calving law with the assumption that a glacier calves where
crevasses reach the water level, Nick et al. (2010) proposed
calving when surface and basal crevasses meet. These calv-
ing laws have been applied successfully in higher-order flow-
line models (Nick et al., 2010) and in a 3-D Stokes model
(Todd et al., 2018).

Second, a number of approaches have been taken to an-
alyze calving processes via the stress balance. Bassis and
Walker (2011) analyzed depth-averaged stresses at the calv-
ing front. Considering tensile and shear failure, they found
that there is an upper limit for the thickness of stable ice
cliffs: an ice cliff is only stable if the glacier’s freeboard (ice
thickness minus water depth) is lower than 200 m. The limit
decreases to 100 m if weakening of the ice through crevasses
is also considered. Krug et al. (2014) used damage and frac-
ture mechanics to model calving. This approach, using lin-
ear elastic fracture mechanics, has recently been analyzed by
Jiménez and Duddu (2018), who found that it can be applied
to floating shelves but not to grounded glaciers. Morlighem
et al. (2016) give a calving rate in terms of ice velocity and
the von Mises stress. Recent works by Ma et al. (2017) and
Benn et al. (2017) solved the 2-D full-Stokes equation at the
calving front with finite element methods. Ma et al. (2017)
found that while sliding glaciers calve through tensile fail-
ure, for glaciers frozen to the bed, shear failure dominates.
Benn et al. (2017) used finite element models to solve the
stress balance and a discrete element model to simulate frac-
ture formation. They modeled a range of calving mechanisms
including calving driven by buoyancy and melt-undercutting,
but did not give parameterizations of calving rates.

Finally, Mercenier et al. (2018) analyzed tensile failure
with a 2-D finite element model and derived a calving law for
tidewater glaciers. They analyzed crevasse formation at the

glacier terminus, determined the distance of the crevasse to
the front and the time to failure until the crevasse penetrates
the whole glacier and the iceberg in front of the crevasse
calves off. Together this gives an equation for the calving
rate as a function of water depth and ice thickness.

All these approaches agree on the basic physics of glacier
calving: thicker ice at the terminus leads to higher stresses
and larger calving rates. Glaciers terminating in water are sta-
bilized by the water’s back-pressure and have smaller calving
rates.

The stability limit derived by Bassis and Walker (2011)
lead to the formation of the marine ice cliff instability hy-
pothesis. If cliff calving from ice cliffs whose freeboards ex-
ceed the stability limit is initiated in an overdeepened basin,
e.g., in East Antarctica, it can lead to runaway cliff calving
where higher ice cliffs are exposed the further the grounding
line retreats, causing even larger cliff-calving rates.

Pollard et al. (2015) and DeConto and Pollard (2016) in-
corporated cliff calving in Antarctica projections by assum-
ing a linear relation between freeboard exceeding the stabil-
ity limit and calving rate and showed that the marine ice cliff
instability can lead to much faster sea-level rise than found in
previous approaches. Bassis et al. (2017) rewrote the condi-
tion that the glacier freeboard should not exceed the stability
limit as a lower bound on the rate of terminus advance or
equivalently an upper bound on the calving rate. More re-
search, and especially a more physically based cliff-calving
law, is needed. Studies by Ma et al. (2017), Benn et al. (2017)
and Mercenier et al. (2018) were made for tidewater glaciers
not exceeding the stability limit and might not be applicable
to glaciers exceeding the stability limit.

In this study, we analyze stresses at the calving front by
solving the 2-D Stokes equation with a finite element model
in order to propose a simple cliff-calving law. The purpose
of this study is not to provide a comprehensive analysis. By
contrast, we seek a minimalistic set of assumptions that paths
the way to a simple stress-based cliff-calving law.

2 Stress balance near the calving front

2.1 Problem setup: 2-D Stokes equation and boundary
condition

In this study we consider a plane, flat glacier of constant
thickness H terminating in water of depth D in a one-
dimensional (flow-line) model with horizontal coordinate x
and vertical coordinate z (Fig. 1).

In order to compute the stress field near the calving front
we set the glacier to be grounded (relative water depth w ≡
D/H < 0.9) and frozen to the bed. The numerical domain
has a length of L= 6 ·H �H . The factor 6 was chosen as
a compromise to reduce computational effort while ensur-
ing that the upstream boundary does not effect stresses at the
glacier terminus.L could have been chosen to be truly “much
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Figure 1. Geometrical setup of the stress computation: two-
dimensional plane, flat glacier frozen to the bedrock with a calving
front at its terminus. The glacier length L is 6 times as large as the
glacier height H in order to ensure that the boundary condition on
the right does not significantly influence the stress field at the termi-
nus on the left. The ice thickness is denoted H , ice thickness below
the water level is D and the free-board is denoted F .

larger” than H , but that would have required a lot of com-
putation time without significantly benefiting the precision
of the calculation. The flow-line assumption is justified, for
example, in situations where the glacier is wide in compari-
son to its length and thickness. In these cases lateral stresses
can often be neglected. The flow-line assumption is a strong
constraint that neglects, for example, any buttressing effects
within the ice sheet. However, the considered geometry with
the width of the glacier much larger than the horizontal ex-
tent in the flow-line direction L= 6 ·H is internally consis-
tent and applicable to a number of situations observed both in
Greenland and Antarctica. The assumption of a flat ice thick-
ness is justifiable on a horizontal scale of several hundred
meters to a few kilometers.

The ice flow and the stresses within the ice are governed
by the Stokes equations,

∂xσxx + ∂zσxz = 0, (1)
∂xσzx + ∂zσzz = f, (2)

and the continuity equation,

∇ ·u= ∂xux + ∂zuz = 0, (3)

with the Cauchy stress tensor σ and the gravitational force
f . The Cauchy stress tensor can be split into an isotropic
pressure P (also called cryostatic pressure) and the deviatoric
stress tensor S, such that

σij =−P · δij + Sij , (4)

where δij is the Kronecker delta. Ice rheology is assumed to
be given by Glen’s flow law (van der Veen, 1999),

ε̇ij = AS
n−1
e Sij , (5)

with the strain rate tensor ε̇ij = 1
2

(
∂iuj + ∂jui

)
and the ef-

fective stress Se =

√
1
2S

2
xx +

1
2S

2
zz+ S

2
xz.

The surface boundary is assumed to be traction-free. At
the calving front boundary, we assume traction continuity to
the water pressure and no traction above the water line. At the
glacier bed, a no-slip boundary condition is assumed, which
corresponds to a glacier frozen to its bed. No inflow is as-
sumed at the upstream boundary.

Ice top: σ ·n=

(
σxz
σzz

)
= 0 (6)

Ice base: u= 0 (7)

Ice front: σ ·n=

(
−σxx
−σxz

)
=

{
(−ρwgz,0), z < D

(0,0), z > D
(8)

Upstream: ux = 0 (9)

2.2 Numerical solution of the stress field

The boundary value problem was solved with the Finite El-
ement package FEniCS (Alnæs et al., 2015) and stabilized
with the Pressure Penalty method (Zhang et al., 2011). The
numerical domain was divided into a regular triangular mesh
with 100 vertical and 600 horizontal divisions.

Since the Stokes equations are linear in the stresses and the
terminus boundary condition is linear in the ice thickness, the
equations can be solved on a dimensionless domain and the
stresses scaled to arbitrary ice thickness. Velocities do not
scale linearly but can be obtained from the scaled stresses
through the ice rheology equation. The water depth at the
calving front was incorporated via the relative (dimension-
less) water depth w =D/H .

In order to determine a suitable stress criterion for cliff
calving we consider a number of commonly used stresses
that have a clear physical role (Fig. 2). Generally, stresses
increase with ice thickness, while the presence of water at
the glacier terminus decreases the stresses and stabilizes the
calving front.

The deviatoric normal stress, Sxx , corresponds to an out-
wards force at the calving front that has two maxima, one at
the waterline and one at the foot of the terminus. The devia-
toric shear stress, or Cauchy shear stress, (Sxz = σxz), trans-
lates to a bending moment that bends the top of the calving
front forward and downward.

The different components of the deviatoric stress tensor
are not invariants of the stress tensor, i.e., they depend on the
coordinate system in which they are computed, and therefore
they are not suitable as failure criteria. The largest principal
stress,

σ1 =
σxx + σzz

2
+

√(
σxx − σzz

2

)2

+ σ 2
xz, (10)

is calculated as the largest eigenvalue of the Cauchy stress
tensor and corresponds to the largest normal stress in a given
point. When σ1 is positive, it is tensile and crevasses can
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Figure 2. Stress configurations at the calving front for different rel-
ative water depths (w = 0, 0.5, 0.85) for a fixed ice thickness of
1000 m. The first column shows the deviatoric normal stress in the
x direction, Sxx , the second column shows the Cauchy shear stress,
σxz = Sxz, the third column shows the largest principal stress, σi ,
and the last column shows the maximum shear stress, τmax.

form. The maximum shear stress,

τmax =

√(
σxx − σzz

2

)2

+ σ 2
xz, (11)

acts on a plane at an angle 45◦ to the plane where the largest
principal stress acts. It has its maximum at the foot of the
calving front. The maximum shear stress can be related to
brittle compressive failure (Schulson, 2001) and is therefore
of particular interest for cliff failure.

The von Mises stress is the second invariant J2 of the de-
viatoric stress tensor,

σMises =

√
3
2

(
S2
xx + S

2
zz+ 2S2

xz

)
, (12)

and is used as a measure of deviatoric strain energy. It can
also be related to material failure (Ford and Alexander, 1963)
and has been used as a calving criterion by Morlighem et al.
(2016). Since Sxx =−Szz due to the incompressibility of ice,
the von Mises stress and the maximum shear stress differ by
only a single factor: σMises =

√
3τmax.

3 Cliff failure criterion

As a first step we select a failure criterion, which then yields
a failure region based on the computed stress fields. As a
second step we decide on a timescale for the failure in order
to derive a simple calving law.

3.1 Partial thickness failure through crevasses

Crevasses are a natural candidate for ice front failure. In the
case of glaciers that are frozen to the ground, crevasses, gen-

erally, do not form from the base upward (Ma et al., 2017).
Instead, surface crevasses can form in the upper part of the
glacier down to the depth where the principal stress becomes
compressive, i.e., attains negative values (Nye, 1957). The
presence of water at the calving front reduces the stresses in
the ice and decreases the depth to which surface crevasses
can penetrate. Surface crevasses, generally, do not penetrate
through the whole glacier thickness and so crevasses cannot
be the sole cause for calving. We thus do not follow this path
to determine a failure region.

Surface meltwater filling surface crevasses can increase
their depth (hydrofracturing) (Weertman, 1973; Das et al.,
2008; Pollard et al., 2015), but this is also not considered
here. The presence of crevasses weakens the ice and is ex-
pected to enable failure even when the critical shear stress is
not yet exceeded but also this is not further considered here.

3.2 Full thickness shear failure

Instead, we assume shear faulting to be the dominant pro-
cess in ice-cliff failure. We could use the von Mises stress
as a failure criterion instead and reach qualitatively the same
result because they differ only by a factor of

√
3.

The failure region is defined as the region close to the calv-
ing front where the maximum shear stress exceeds a critical
shear stress of τc = 1 MPa (Schulson et al., 1999; Schulson,
2001). While the specific value of the critical shear stress
may be subject to uncertainties (values might be between 0.5
and 5 MPa), it is mainly a constant that will not alter the calv-
ing rate dependence on the freeboard and the water depth.
The specific choice of the value is motivated by laboratory
experiments and can only provide an order of magnitude of
the calving rate. However, the uncertainty resulting from this
choice is smaller than the uncertainty arising from the esti-
mate of the failure time (see below).

3.3 Comparison to Coulomb failure

In general, brittle compressive failure happens through shear
faulting (Schulson et al., 1999) and can be described with the
Coulomb law (Weiss and Schulson, 2009): the shear stress τ
acting on the future fault plane is resisted by material cohe-
sion S0 and by friction µσ with the friction coefficient µ and
the normal stress across the failure plane σ . Failure happens
when

τ ≥ S0+µσ. (13)

This expression depends on the direction of the fault plane.
The failure condition can be expressed more generally in
terms of the maximum shear stress τmax and the isotropic
pressure P as√
µ2+ 1 τmax = τ0+µP, (14)

where τ0 is another measure of cohesive strength related to
S0 (Weiss and Schulson, 2009).
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Figure 3. Assuming Coulomb failure, the required cohesion, τ0 =√
µ2+ 1τmax−µP , is shown for different friction parameters (µ=

0, 0.3, 0.8). The failure region for a maximum cohesion of τmax =
1 MPa is encased by the black line.

Weiss and Schulson (2009) provide values of µ=

0.3. . .0.8, depending on the temperature of the ice. Since
friction increases the strength of the ice, this could stabilize
rather large ice cliffs. Bassis and Walker (2011) looked at
upper bounds of glacier stability with a depth-averaged shear
stress for different values ofµ (0.65, 0.4, 0) and a cohesion of
τ0 = 1 MPa. With a large friction coefficient, ice cliffs would
be stable for freeboards of up to 600 m (see Fig. 3) Since this
is not observed in nature, they concluded that the best model
is the one without friction, which only allows freeboards of
up to 200 m. Thus, with vanishing friction, the Coulomb fail-
ure criterion is equal to the maximum shear stress criterion
used here.

4 Failure region

We define the failure region as the region close to the calving
front where the maximum shear stress exceeds the critical
shear stress τc anywhere in the ice column. The failure dis-
tance L is the maximum distance of the failure region to the
front and was determined for a range of ice thicknesses H
and relative water depths w by solving the 2-D Stokes equa-
tion numerically and tracing the contour line where the max-
imum shear stress τmax equals the critical shear stress τc (see
Fig. 4).

For a given water depth, the failure distance L increases
with the ice thicknessH or the glacier freeboard F =H −D

Figure 4. Outline of the failure region for different ice thicknesses
on a dimensionless domain and without water stabilizing the front
(ice thickness = glacier freeboard). The background color shows
the maximum shear stress on a dimensionless scale with darker ar-
eas signifying larger stress. The failure region is defined as the re-
gion close to the calving front where the maximum shear stress ex-
ceeds the critical shear stress τc anywhere in the ice column. The
outline forH = 1000 m is also shown in Fig. 3 in the top-left panel.

(Fig. 5). For glacier freeboards smaller than approximately
100 m, the failure region vanishes: the critical shear stress
is not exceeded anywhere in the ice and no shear failure
takes place. This confirms results by Bassis and Walker
(2011), which were derived analytically with some simplifi-
cations (see Appendix A1 for more details). The relative wa-
ter depths influences the slope of the freeboard–failure dis-
tance relation: for large relative water depths, the failure dis-
tance grows more quickly with increasing freeboard. This is
because, for a large relative water depth, the overall ice thick-
ness is much larger than for a similar freeboard with a smaller
relative water depth and so the failure region is larger.

Above a critical freeboard of about 1000 m (see Fig. 4
for w = 0 and F =H ), the failure region encompasses the
whole ice thickness. Below this critical value the failure re-
gion contains only the lower part of the ice thickness, but
once the lower part of the ice column fails the upper part
lacks support and fails as well. The freeboard–failure dis-
tance relation has a steeper slope for large freeboards when
the whole ice thickness fails. This leads to a bend at the crit-
ical freeboard, and hence the two parts require separate ana-
lytical fits. Here, we only consider values below the critical
freeboard because that is the range of values most likely to
occur in nature.
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Figure 5. Size of shear failure region L as a function of glacier
freeboard F =H −D and relative water depth w =D/H . Numer-
ical results are shown for smaller freeboards where the failure re-
gion does not encompass the whole ice thickness (filled dots) and
for large freeboards, where the failure region contains the whole ice
thickness (empty circles). A power law has been fitted to the numer-
ical results for small freeboards (continuous line), which is given by
Eq. (15). The fit has been optimized for relative error in order to get
the onset of cliff calving right.

In Fig. 5 we provide an analytical fit with a power-law
function of the form

L=

(
F −Fc

Fs

)s
m, (15)

Fs =
(

115 · (w− 0.356)4+ 21
)

m, (16)

Fc = (75−w · 49) m, (17)
s = 0.17 · 9.1w + 1.76, (18)

with w ≡D/H < 0.9 and F ≡H−D =H ·(1−w). At first
L was fitted as a function of F for each value of w. Then the
parameter functions Fs, Fc and s were fitted as functions of
w.

Figure 5 shows the numerical results and the fit. Note that
the fit has been optimized for relative error, so for large free-
boards the fit is a little off, but it was considered more impor-
tant to fit the onset of cliff calving correctly.

5 Failure time

There is a theory for damage evolution in ice for tensile dam-
age (Pralong et al., 2003), from which the time to failure is
derived as follows (Mercenier et al., 2018):

Tf =
(1−D0)

k+r+1
− (1−Dc)

k+r+1

(k+ r + 1)B(σ0− σth)r
, (19)

with the rate factor for damage evolution B, material con-
stants r and k, initial damage D0, critical damage Dc, stress
threshold for damage creation σth, and the working stress σ0,
which we assume to be the maximum shear stress τmax. With
these assumptions Eq. (19) can be written as

Tf = (σ0− σth)
−r/B∗, (20)

with σth = 0.17 MPa, r = 0.43 and B∗ = 65MPa−ra−1, as
given in Mercenier et al. (2018). These parameters have been
determined by calibrating a tensile failure calving model with
data on calving rate, water depth and ice thickness for a vari-
ety of tidewater glaciers in the Arctic.

However, Eq. (20) is valid only for damages created
through tensile creep. The difference between tensile and
compressive damage is that under tension a single crack
grows in an unstable fashion to cause failure, while in com-
pression a large number of small cracks grow in a stable fash-
ion until their interaction causes failure (Ashby and Sammis,
1990).

There is plenty of literature about compressive creep and
failure in rocks (Brantut et al., 2013). Fatigue failure hap-
pens when a material is loaded with stresses below the failure
stress and fails with a time delay due to the development of
micro-cracks. There is an exponential law as well as a power
law for the time to failure:

tf = t0 exp
(
−b

σ

σ0

)
, (21)

tf = t
′

0

(
σ

σ0

)−b′
. (22)

The power-law exponent is usually large, b′ ≈ 20, so the
power law is very similar to the exponential law. Once the
major stress σ exceeds the instantaneous strength σ0, imme-
diate failure is assumed (tf = 0). Both time to failure rela-
tions fit the experimental data for rock well (Amitrano and
Helmstetter, 2006). However, the constants depend on mate-
rial properties, and there are to our knowledge no studies for
time dependence of compressive creep failure in ice.

This leaves us with a dilemma: there have been no stud-
ies that determined the material properties of ice under time-
dependent brittle compressive failure. Also, we cannot deter-
mine those material properties ourselves by fitting the result-
ing calving law to observations because, so far, cliff calving
has not been observed as the major calving process in any
glacier. That makes it impossible to estimate the time to fail-
ure using Eq. (21) or (22). Equation (20) and the value of
its constants have been determined for tensile failure, which
is microscopically very different from brittle compressive
failure. So there is little reason to expect it to describe the
timescale of shear failure well.

Nevertheless, we will use it as a starting point for our fur-
ther analysis. For the stresses above the shear failure thresh-
old, σ0 > 1 MPa, the time to failure for tensile failure (given
by Eq. 20) changes by only a factor of 2 (see Fig. 6). Hence,
the calving relation can be further simplified by assuming
that there is a characteristic time to failure, Tc, that is the
same for all stresses and sizes of failure regions, Tc ≈ 4 d.
This characteristic time has been derived from parameters
determined for tensile failure, so its application to shear fail-
ure comes with an uncertainty that is difficult to quantify.
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Figure 6. Time to failure given by Eq. (20). For stresses above the
shear failure threshold, σ0 > 1 MPa, the time to failure changes only
little (box).

Figure 7. Cliff-calving rates C as a function of glacier free-
board F =H −D and relative water depth w =D/H , as given by
Eq. (23).

6 Calving law

With a constant failure time, the calving rate is proportional
to the size of the failure region

C = C0 ·

(
F −Fc

Fs

)s
, (23)

Fs =
(

115 · (w− 0.356)4+ 21
)

m, (24)

Fc = (75−w · 49) m, (25)
s = 0.17 · 9.1w + 1.76, (26)

C0 =
1m
4d
= 91.25 ma−1, (27)

with w ≡D/H < 0.9 and F ≡H −D =H · (1−w).
A dry cliff (w = 0) reaches calving rates of C = 50 km a−1

at an ice thickness of F =H ≈ 800 m, while an ice cliff that
is close to floatation (w = 0.8) reaches the same calving rate
at a freeboard of F ≈ 300 m, which corresponds to an ice
thickness of H ≈ 1500 m (see Fig. 7).

Table 1. Table of parameters in the cliff-calving relation (Eq. 23),
giving the exponent s, critical freeboard Fc and scaling factor Fs for
a range of relative water depth values w.

Fc
w s (m) Fs

0 1.93 75.0 22.85
0.1 1.97 70.1 21.49
0.2 2.02 65.2 21.07
0.3 2.09 60.3 21.00
0.4 2.17 55.4 21.00
0.5 2.27 50.5 21.05
0.6 2.40 45.6 21.41
0.7 2.56 40.7 22.61
0.8 2.75 35.8 25.47
0.9 3.00 30.9 31.07

How do cliff-calving rates given by Eq. (23) compare to
currently observed calving rates? A glacier enters the cliff-
calving regime when its freeboard is larger than the criti-
cal freeboard Fc and the cliff-calving rate given by Eq. (23)
becomes nonzero. Obviously, glaciers calve through tensile
failure before and after they reach the cliff-calving regime,
so we expect the overall calving rate to be larger than the
cliff-calving rate, especially for glaciers that just entered the
cliff-calving regime and are heavily crevassed.

Jakobshavn glacier in Greenland is one of the few glaciers
that are currently in a cliff-calving mode. Jakobshavn glacier
terminates in water with a depth of 800 m (Morlighem et al.,
2014) and has a glacier freeboard of 100 m (Xie et al., 2018).
Therefore, it can be considered to be at the beginning of
the cliff-calving regime. Since the terminus is also heavily
crevassed, we expect tensile calving to be the main contribu-
tion to the overall calving rate. Hence, this example can only
give an upper bound on the possible cliff-calving rate.

It is difficult to determine calving rates directly. The ice
flow velocity to the front of Jakobshavn is up to 12 km a−1

(Joughin et al., 2012). The grounding line of Jakobshavn
glacier retreats and advances seasonally about 6 km each
year, but the maximum grounding line position has not
changed much between 2012 and 2015 (Xie et al., 2018).
Assuming a fixed grounding line, the calving rate plus frontal
melt rate would equal the flow velocity. Hence, the averaged
yearly calving rate is smaller than 12 km a−1.

Inserting values of glacier freeboard and water depth
given above into Eq. (23) gives a cliff-calving rate of C =
750 m a−1, which is well below the overall calving rate.

7 Discussion and conclusion

We solved the 2-D Stokes equation numerically for a flat
glacier frozen to its bed in a flow-line model and investigated
the stresses at the calving front.

www.the-cryosphere.net/13/2475/2019/ The Cryosphere, 13, 2475–2488, 2019



2482 T. Schlemm and A. Levermann: Simple stress-based cliff-calving law

The following four simplifications were made.

1. The model was solved in one horizontal direction, ne-
glecting lateral shear effects. Without lateral shear ef-
fects, the result is independent of the topography of in-
dividual glaciers.

2. We assumed a basal boundary condition corresponding
to a glacier frozen to its bed. Sliding was not considered.

3. The main failure mechanism was assumed to be shear
faulting. We assumed brittle compressive failure ac-
cording to the Coulomb law without friction stabilizing
the ice cliff. Friction would allow glaciers with larger
freeboards than observed to be stable.

4. A constant time to failure has been assumed.

Under these assumptions, crevasses cannot penetrate the
whole glacier depth and shear failure was chosen as the main
failure mechanism. The region where shear stresses exceed
a critical shear stress of 1 MPa is called the failure region.
The extent of this failure region, the failure distance, was de-
termined for a range of glacier freeboards and relative water
depths. For freeboards small enough for the failure region not
to encompass the whole ice thickness, an analytical fit was
made. Assuming a constant time to failure, a cliff-calving
rate was derived. Resulting cliff-calving rates seem large
compared to currently observed calving rates. Comparison
with Jakobshavn glacier in Greenland shows that the cliff-
calving rate is smaller than the overall calving rate; hence,
we conclude that Eq. (23) probably does not overestimate
cliff-calving rates.

7.1 Idealized setup vs. realistic conditions

The cliff-calving rate was derived using an idealized setup,
given by the first two of the four assumptions described
above. Realistic glaciers that might experience cliff calving
sit in valleys where they experience lateral drag and may be
sliding. The calving front may have a slope rather than a ver-
tical cliff and there might be an undercut caused by frontal
melt.

7.1.1 Sliding glaciers

First consider sliding with a constant velocity v (i.e., vanish-
ing strain rate) for which the upstream boundary condition
is an influx with velocity v, so u= v. The basal boundary
conditions become u= v, w = 0. Solving the Stokes’ equa-
tions with these boundary conditions numerically with Fen-
iCS gives the exact same stress fields as in the frozen case
and the velocity field is simply shifted by the sliding veloc-
ity v. This is not surprising: a simple Galilean transformation
takes this sliding glacier back to the frozen glacier previously
considered without changing any of the physics.

Figure 8. Stress configurations at the calving front for different rel-
ative water depths (w = 0, 0.5, 0.85) for a fixed ice thickness of
1000 m with a free-slip basal boundary condition, instead of the
no-slip boundary condition used in the previous analysis (compare
Fig. 2). The first column shows the deviatoric normal stress in the
x direction, Sxx , the second column shows the Cauchy shear stress,
σxz = Sxz, the third column shows the largest principal stress, σi ,
and the last column shows the maximum shear stress, τmax. In con-
trast with the no-slip case, there is no definite failure region, as the
maximum shear stress is large throughout the whole numerical do-
main.

In general, sliding velocities increase towards the glacier
terminus. The steepest possible velocity gradient can be ob-
tained with a free-slip basal boundary condition: we assume
no influx at the upstream boundary, u= 0, and at the bed
we assume free slip in the horizontal direction, which only
leaves a boundary condition for the vertical velocity, w = 0.
The basal velocity is zero at the upstream boundary and takes
its maximum at the calving front. Due to this velocity gradi-
ent, the maximum shear stress is large throughout the whole
numerical domain (see Fig. 8). For increasing ice thickness
it becomes difficult to define a meaningful failure region be-
cause the critical shear stress is exceeded in the whole nu-
merical domain – one must assume that the whole numerical
domain will fail. Thus, in the case of a sliding glacier, the
failure region is larger than in the case of a glacier frozen to
its bed. Hence, the derived cliff-calving rate can serve as a
lower bound for this kind of calving front.

To summarize, the derived cliff-calving law is valid for
glaciers that are frozen to the bed or sliding with a constant
velocity and vanishing strain rate. It serves as a lower bound
on the calving rate for glaciers in which velocities increase
towards the calving front.

7.1.2 Lateral drag

In order to investigate how lateral drag influences cliff calv-
ing, we will assume ice flow in a channel with a flow-line
in the x direction. Ice is assumed to flow only in the x di-

The Cryosphere, 13, 2475–2488, 2019 www.the-cryosphere.net/13/2475/2019/



T. Schlemm and A. Levermann: Simple stress-based cliff-calving law 2483

Figure 9. Maximum shear stress τmax in the vicinity of the calving
front in the case without lateral drag (a) and with a constant lateral
drag of τxy = 1 MPa (b).

rection with a flow maximum in the middle of the chan-
nel. Since deviatoric stresses are connected to the strain rate,
τij = Bε̇eε̇ij , and the strain rate is given by the velocity gra-
dients, ε̇ij = 1

2

(
∂iuj + ∂iuj

)
, we get an additional deviatoric

shear stress in the x–y plane, τxy . The other stress compo-
nents in y vanish, τyz = τyy = 0, because the respective ve-
locity gradients vanish. The Cauchy stress tensor becomes

σ =

P + τxx τxy τxz
τxy P 0
τxz 0 P − τxx

 . (28)

The principal stresses σi are defined as eigenvalues of σ , and
the maximum shear stress τmax is defined as the difference
between the maximum and minimum principal stress. In 3-
D, there is no simple analytical formula for the eigenvalues of
a matrix, and therefore it is not feasible to get an analytical
estimate on whether the introduction of nonzero τxy makes
τmax smaller or larger.

Assuming P(x,z), τxx(x,z) and τxz(x,z), as given by the
FeniCS simulation with a constant τxy = 1 MPa, we calculate
the principal stresses and the maximum shear stress numeri-
cally. This shows that τmax increases with increasing absolute
value of τxy (see Fig. 9).

Hence, lateral shear increases the maximum shear, there-
fore increasing the size of the failure region and the cliff-
calving rate. The derived cliff-calving rate can serve as a
lower bound if lateral drag is present.

7.1.3 Calving front slope

Other studies have shown that a calving front with a slope
has significantly reduced stresses compared to a calving front
with a vertical cliff (Benn et al., 2017; Mercenier et al.,
2018). It is clear that a calving front slope also reduces the
cliff-calving rate.

We have not analyzed this effect here because once cliff
calving has been initiated, the full thickness calving proba-
bly prevents calving front slopes from forming. We aim to
find a parametrization that can be implemented in ice sheet

models capable of simulating the Antarctic ice sheet. These
simulations are done on resolutions of several kilometers and
cannot resolve calving front slopes on length scales of sev-
eral tens or hundreds of meters.

7.1.4 Melt undercut

Undercut from melt would increase the stresses near the calv-
ing front (Benn et al., 2017) and hence increase the calving
rate.

7.2 Uncertainties

Cliff calving is still a rather hypothetical process with a very
limited scope of observations. Since there are currently no
glaciers that are clearly in a cliff-calving regime, the calving
rate cannot be fitted to observed calving rates. There is un-
certainty in the maximum shear stress used to determine the
failure distance as well as the time to failure.

Laboratory studies give a range of values between 0.5 and
5 MPa for the critical shear stress (Schulson et al., 1999;
Schulson, 2001). A much larger uncertainty arises from the
time to failure. There are studies that give time to failure rela-
tions and parameters for brittle compressive failure of rocks
but none for ice. Time to failure of ice has only been studied
for tensile failure. We use the time to failure relation used by
Mercenier et al. (2018) as a first guess. Applying this time to
failure for tensile failure to a process of shear failure is very
uncertain. We guess that the time to failure could be up to an
order of magnitude smaller or larger.

The scaling parameter C0 in Eq. (23) should therefore be
considered a free parameter. In any implementation of this
cliff-calving relation, a range of values for C0 should be
tested for plausibility.

7.3 Comparison with other calving parametrizations

7.3.1 Other cliff-calving approaches

Bassis and Walker (2011) derived a stability limit for ice
cliffs considering shear and tensile failure (their assumptions
are analyzed further in the appendix). According to Eq. (23),
cliff calving starts when the freeboard exceeds F ≈ 75 m,
this is close to the stability limit of F ≈ 100 m given by
Bassis and Walker (2011).

Pollard et al. (2015) and DeConto and Pollard (2016) im-
plemented cliff calving in their ice sheet model by assum-
ing a cliff-calving rate that is zero until the freeboard has
reached≈ 100 m, increases linearly up to 3 km a−1 for a free-
board of about 150 m and stays constant after that. The calv-
ing relation is modified by factors representing back stress
and additional wet crevasse deepening. Edwards et al. (2019)
did an ensemble study with a range of values for the maxi-
mum cliff-calving rate from 0 km a−1 (no cliff calving) up
to 5 km a−1. Depending on the scaling constant C0, cliff-
calving rates given by Eq. (23) have an equal range of mag-
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nitude but increase with a power-law dependence and have
no upper bound.

Bassis et al. (2017) implemented cliff calving by requir-
ing that ice cliffs cannot exceed the stability limit. This be-
comes a condition for the speed of grounding line retreat and
advance. Equation (23) is easier to implement in ice sheet
models because it can be implemented just like other calv-
ing parameterizations and does not need to be rewritten as a
condition for the grounding line.

7.3.2 Other stress-based calving laws

Mercenier et al. (2018) derived a cliff-calving law for tidewa-
ter glaciers below the stability limit by solving the stresses in
the vicinity of the front and assuming tensile failure through
the formation of a large crevasse. In contrast, we assume
shear failure (also called brittle compressive failure). The
calving rate given by Mercenier et al. (2018) increases ap-
proximately linearly with the freeboard and has no lower
bound, while the calving rate given by Eq. (23) grows with
a power s(w) > 1 for freeboards larger than the critical free-
board Fc(w) (see Fig. 10). Hence, we expect tensile failure to
dominate for small freeboards and shear failure to dominate
for large freeboards.

It is difficult to say at which glacier freeboard the ten-
sile failure regime ends and the shear failure regime begins,
not only due to uncertainty in the scaling parameter C0. In
practice, both failure modes will interact, with tensile stress
damaging the ice through a few large crevasses originating
from the surface of the ice and shear stress damaging the ice
through a large number of small crevasses in the lower part
of the cliff. This likely interaction of failure modes cannot be
analyzed by assuming ice to be a continuous medium (like
the approach used here and by Mercenier et al., 2018) but
should be done with damage theory or a discrete element ap-
proach.

7.4 Conclusion

The calving law proposed here was derived under a number
of constraining assumptions. First, it was assumed that fric-
tion plays no role in shear failure. Second, it was assumed
that once the critical shear stress is exceeded, ice fails after
a constant time to failure. An improved cliff-calving model
might include friction and allow a stress-dependent time to
failure.

If the Coulomb law with a friction component is used, the
immediate failure region is smaller than in the no-friction
case. Time to failure relations for compressive failure, as
given by Eqs. (21) and (22), are valid for stresses below the
critical shear stress. Failure is assumed to be instantaneous as
soon as the critical shear stress is reached. Regions where the
stress is below the failure stress would be assigned a stress-
dependent failure time leading to a spatially distributed time
to failure. Since friction is smaller at the top of the ice cliff,

Figure 10. Comparison of the cliff-calving law given by Eq. (23)
(continuous line) with the calving law for tidewater glaciers given
by Mercenier et al. (2018), Eq. (22) (dotted line). Note that the cliff-
calving rate could be scaled differently due to the uncertainty in C0.

the top would fail earlier than the base, leaving a foot that
would subsequently fail due to buoyant forces. There is no
simple way to find a parametrization of the cliff-calving rate
for these processes.

Another problem is that there are no laboratory studies on
the parameters in the time to failure relations for ice. It is also
not possible to calibrate the calving relation using observed
calving rates because there are no glaciers currently available
where cliff calving is the primary failure mechanism. Paleo-
records might provide some means to calibrate cliff-calving
rates as attempted in Pollard et al. (2015) and DeConto and
Pollard (2016).

Paleorecords might not be constraining enough to provide
a useful limit for the Antarctic sea-level contribution of the
next 85 years. But even if it is difficult to constrain the rate
of cliff-calving there are important qualitative consequences
of a monotonously increasing cliff-calving dependence on
ice thickness. The most important is the potential of a self-
amplifying ice loss mechanism, which is not constrained by
the reduction in calving but must be constrained by other pro-
cesses. Without some kind of cliff-calving mechanism it is
likely that ice sheet models are lacking an important ice loss
mechanism.

Code availability. FeniCS can be downloaded from the project
website https://fenicsproject.org/download/ (last access: 1 Septem-
ber 2018). The script used for the FeniCS simulation in this paper
is available on request from the authors.
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Appendix A: Simplified stress balance

It is possible to solve the stress balance at the calving front
analytically in a depth-averaged model with a simplifying as-
sumption for the isotropic pressure. This has been used by
Bassis and Walker (2011) and Pollard et al. (2015). It is inter-
esting to compare this with the numerical stress field solution
obtained above.

Bassis and Walker (2011) and Pollard et al. (2015) as-
sumed the isotropic pressure is given by the gravitational
pressure

P(x,z)= ρig(H − z), (A1)

where ρi is the density of ice. This assumption is actually
only true over length scales that are large compared with the
ice thickness and far from the ice margins (MacAyeal, 1989),
which is not the case when stresses close to the calving front
are analyzed. But making this assumption allows for an an-
alytical solution of the depth-averaged stresses and does not
require any ice rheology.

Together with incompressibility, which means that the
trace of the strain rate disappears (ε̇kk = 0) and implies
Sxx + Szz = 0, the 2-D Stokes equations become

0=
∂Sxx

∂x
+
∂Sxz

∂z
, (A2)

0=
∂Sxz

∂x
−
∂Sxx

∂z
. (A3)

Assuming a traction-free surface boundary, traction-
continuity at the terminus boundary and vanishing deviatoric
stresses at the upstream boundary, as well as the bed bound-
ary, a boundary value problem arises that can be solved
numerically.

The resulting stresses are smaller than the stresses ob-
tained in Sect. 2 for the 2-D Stokes equation with nonlin-
ear ice rheology (Fig. A1). A failure region can be defined
as in Sect. 3 and its size shows a very similar dependence
on glacier freeboard and water depth, though it is smaller by
about a factor of 3.

The biggest difference between the two approaches lies
in the largest principal stress: in this simplified problem, the
largest principal stress is negative in the whole ice volume;
there is no region of tensile stresses, so no crevasses form.
This is due to the assumption that the isotropic pressure is
equal to the gravitational pressure, which is not actually the
case in the vicinity of the glacier terminus.

Figure A1. Stress configurations at the calving front for different
relative water depths (w = 0, 0.5, 0.85) for a fixed ice thickness of
1000 m. The first column shows the deviatoric normal stress in the
x direction, Sxx , the second column shows the Cauchy shear stress,
σxz = Sxz, the third column shows the largest principal stress, σi ,
and the last column shows the maximum shear stress, τmax.
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