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Abstract. The calving fronts of many tidewater glaciers in
Greenland have been undergoing strong seasonal and in-
terannual fluctuations. Conventionally, calving front posi-
tions have been manually delineated from remote sensing
images. But manual practices can be labor-intensive and
time-consuming, particularly when processing a large num-
ber of images taken over decades and covering large areas
with many glaciers, such as Greenland. Applying U-Net, a
deep learning architecture, to multitemporal synthetic aper-
ture radar images taken by the TerraSAR-X satellite, we
here automatically delineate the calving front positions of
Jakobshavn Isbræ from 2009 to 2015. Our results are con-
sistent with the manually delineated products generated by
the Greenland Ice Sheet Climate Change Initiative project.
We show that the calving fronts of Jakobshavn’s two main
branches retreated at mean rates of − 117± 1 and −157±
1 m yr−1, respectively, during the years 2009 to 2015. The
interannual calving front variations can be roughly divided
into three phases for both branches. The retreat rates of the
two branches tripled and doubled, respectively, from phase
1 (April 2009–January 2011) to phase 2 (January 2011–
January 2013) and then stabilized to nearly zero in phase
3 (January 2013–December 2015). We suggest that the re-
treat of the calving front into an overdeepened basin whose
bed is retrograde may have accelerated the retreat after 2011,
while the inland–uphill bed slope behind the bottom of the
overdeepened basin has prevented the glacier from retreat-
ing further after 2012. Demonstrating through this successful
case study on Jakobshavn Isbræ and due to the transferable
nature of deep learning, our methodology can be applied to
many other tidewater glaciers both in Greenland and else-
where in the world, using multitemporal and multisensor re-
mote sensing imagery.

1 Introduction

Glacier retreating is one of the processes that control the re-
cent speedups of Greenland’s tidewater glaciers (King et al.,
2018). As a glacier retreats, it accelerates to compensate for
the loss of downstream buttress. Glacier dynamic instabil-
ities, as suggested decades ago by Meier and Post (1987),
play an essential role as the glaciers retreat over depres-
sions in the bedrock topography. For example, Joughin et
al. (2008a) indicated that dynamic instabilities caused Hel-
heim and Kangerdlugssuaq glaciers to speed up as they re-
treated into an overdeepened basin whose bed is retrograde
between 2001 and 2006. Examining 276 marine-terminating
outlet glaciers, Bunce et al. (2018) concluded that bed geom-
etry is an important control on the timing and magnitude of
glacier retreat.

An accurate and detailed quantification of calving front
variations would improve our understanding of the con-
trolling mechanisms of glacier retreat. Moreover, observa-
tions of retreat may serve as initial indicators for other dy-
namic variations such as the glacier acceleration (Moon and
Joughin, 2008). Calving front positions are influenced by a
range of forces including ice mélange buttressing, increased
runoff, and ocean-driven melt (Moon et al., 2015; Fried et
al., 2018). Nevertheless, the mechanisms behind the numer-
ous and complex controls on front positions are not yet fully
understood.

Compared with manually digitizing calving fronts, auto-
matic mapping is superior because of greater productivity
and reliability and lower cost. While most of the previous
studies have manually delineated the calving fronts (e.g.,
Howat et al., 2005; Joughin et al., 2008b), studies by Sohn et
and Jezek (1996) and Seale et al. (2011) have automatically
delineated calving fronts using feature extractors. Sohn et
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al. (1996) designed a method to extract the ice sheet margin
by applying the Roberts edge extractor to ERS-1 synthetic
aperture radar (SAR) images. Seale et al. (2011) automati-
cally identified glacier calving fronts from daily MODIS im-
ages by combining Sobel and brightness profiling methods.
With low computational complexity requiring no training
and little memory resources, these feature-extracting meth-
ods are promising but require extensive prior knowledge and
experience. The deep learning method has also been ap-
plied to delineate the calving front positions. Mohajerani et
al. (2019) have applied the U-Net architecture to Landsat-5,
7, and 8 images over Jakobshavn, Sverdrup, Kangerlussuaq,
and Helheim glaciers.

Deep learning can solve more complex problems with lit-
tle prior knowledge required and take advantage of increased
data volume (LeCun et al., 2015). With the continuous ac-
cumulation in the past decades and in recent space missions,
the data volume of remote sensing imagery in the polar re-
gions has increased dramatically. Moreover, glacier systems
are complex, as conditions such as weather and glacier dy-
namic behaviors vary from place to place and from season to
season. There are therefore obvious advantages to applying
deep learning techniques to automatically extract glaciologi-
cal features from the available big data.

Here we aim to design a method to automatically delin-
eate a glacier calving front from multitemporal TerraSAR-
X (TSX) images based on deep convolution neural networks
(DCNNs). More specifically, we delineate the glacier calving
front of Jakobshavn Isbræ (Fig. 1a) and quantify its seasonal
and interannual variations. With this new set of observations,
we investigate the possible link between calving front varia-
tions and bed elevation.

DCNNs are a class of the deep learning methods and have
made important breakthroughs in image processing. DCNNs
can discover both low-level (e.g., edges, corners, and lines)
and midlevel features (e.g., shapes, sizes, and locations) (Sun
et al., 2014; Zhang et al., 2015). Recently, some studies have
used DCNNs on high-resolution SAR images to perform
classification tasks (Geng et al., 2015; Huang et al., 2017).
These studies unanimously agree that DCNNs outperform
traditional classification methods on SAR images.

We use TSX images due to their high temporal resolu-
tion (11 d), high spatial resolution (3.3 to 3.5 m), and ability
to penetrate cloud cover. These high-temporal-resolution im-
ages have been acquired in all seasons and allow us to investi-
gate calving front variations with a high degree of continuity
and consistency. With these high-spatial-resolution images,
we can easily digitize the calving fronts (known as ground
truth in the context of deep learning) and verify the accuracy
of the DCNN. Using SAR images can avoid the cloud cover
problem associated with optical images such as the Landsat-
8 image shown in Fig. 1b.

2 Jakobshavn Isbræ

Jakobshavn Isbræ, located in central-west Greenland, is one
of the largest and fastest tidewater glaciers in the world. In
Jakobshavn, the ice flows westward to the ocean and divides
into two branches near the coast (Fig. 1a). Before summer
2004, these two branches merged and flowed into the Kangia
Fjord. Afterwards, as the glacier retreated, the two branches
became disconnected (Bondzio, 2017). During the past few
years, Jakobshavn Isbræ has undergone dramatic accelera-
tion as the glacier has retreated and thinned (Joughin et al.,
2008c, 2012). Jakobshavn’s calving front retreated 16 km be-
tween 2002 and 2008 (Rosenau et al., 2013). This glacier
alone has contributed nearly 1 mm to the global sea level rise
from 2000 to 2011 (Howat et al., 2011).

Observations have shown that the calving front variations
were correlated with the glacier velocity changes in Jakob-
shavn Isbræ. In 1998, the glacier sped up by 18 % in its
frontal regions, coinciding with the initial retreat of the ice
tongue (Thomas, 2004; Luckman and Murray, 2005). The
glacier doubled its speed by spring 2003, when nearly the
entire floating ice tongue had disintegrated (Joughin et al.,
2004). After the loss of this ice tongue, the glacier’s veloc-
ity fluctuated seasonally from 2004 to 2007 (Joughin et al.,
2008b). The glacier slowed down when it was advancing and
sped up when it was retreating (Joughin et al., 2012).

The variations of Jakobshavn’s calving front are also
strongly influenced by the presence of ice mélange, namely
a mixture of calved icebergs and sea ice (Fig. 1a). The sea-
sonal variation of the calving front in Jakobshavn Isbræ is
well correlated with the growth and recession of sea ice in
the Kangia Fjord (Sohn et al., 1998; Joughin et al., 2008c).
Temporal variations of the ice mélange strength can also con-
trol the timing of calving events and influence the evolution
of the calving front position (Amundson et al., 2010).

Our study area covers a 14km× 18km section of the
frontal area of Jakobshavn and includes bedrock, ice
mélange, and glacier regions. We restrict the extent of the
study area to reduce the computational costs, while also en-
suring the coverage of all the calving fronts within our in-
vestigation period (2009–2015, determined by the TSX im-
ages we have access to). We classify our study area into two
classes: ice mélange and nonice mélange regions (including
both glacier and bedrock regions). We delineate the bound-
aries between these two regions and retrieve glacier calving
fronts. The repetitive texture of crevasses in the glacier region
clearly distinguishes it from ice mélange, where icebergs are
distributed discretely. It is easy to identify the bedrock region
because of the distinct bedrock texture, including cracks and
land-based lakes.

The Cryosphere, 13, 1729–1741, 2019 www.the-cryosphere.net/13/1729/2019/



E. Zhang et al.: Automatically delineating the calving front of Jakobshavn Isbræ 1731

Figure 1. (a) TerraSAR-X image taken on 11 July 2015 showing the frontal area of Jakobshavn Isbræ. Its two branches are labeled as “A”
and “B”. The green lines indicate the location of the bed elevation profiles shown in Fig. 8. (b) Landsat-8 image taken on 13 July 2015. The
white box shows the area illustrated in (a).

3 TerraSAR-X images and preprocessing

The German SAR satellite TerraSAR-X was launched in
June 2007 and carries an X-band SAR sensor. In this study,
we use TSX images taken in both ascending and descending
orbits and in stripmap imaging mode. We use the enhanced-
ellipsoid-corrected (EEC) products, which are multilooked,
projected, and resampled to the WGS84 reference ellipsoid.
We use 159 images in total, taken between 16 April 2009 and
23 December 2015 (listed in Table S1 in the Supplement).
We apply three preprocessing procedures including despeck-
ling, multilooking, and regeoreferencing. Figure 2 shows an
illustrative example of our preprocessing workflow, which
we will describe below in detail.

Because the quality of SAR images is adversely affected
by the speckle noise (Fig. 2a), we apply the median blur filter
to mitigate the speckle noise (Fig. 2b) and then multilook the
filtered images to reduce their size by 25 times (Fig. 2c). The
median blur filter is widely used in image processing and is
particularly effective for speckle noise. With the despeckled
images, we average five neighboring pixels (vertically and
horizontally) by using the Geospatial Data Abstraction Li-
brary (GDAL) package (https://gdal.org/, last access: 17 Jan-
uary 2019). Moreover, both despeckling and multilooking
can smooth images without the loss of essential information
for delineating the calving fronts. After despeckling and mul-
tilooking, the pixel size of our images is 6 m.

We choose the EEC products because they include to-
pographic correction and are the standard geocoded prod-

ucts of TSX (Roth et al., 2004). However, even for the EEC
products, we observe that the geocoding information for our
study area is inaccurate. First, overlaying the EEC images
on Google Earth, we note obvious offsets between these
two. Second, the geocoding information is inconsistent in
different orbit directions of EEC products. Therefore, we
need to regeoreference the EEC products. For the images we
have, we observe that the images in the same orbit direction
have identical geometry. Based on this observation, we as-
sume that the differences between the EEC products and the
Google Earth images are systematic, namely that they are
consistent for the EEC products in the same orbit direction.
We correct the geocoding information of the EEC products
using 16 ground control points on Google Earth images, in-
cluding the center of lakes and cross sections of the bedrock,
due to their stability and ease of identification. For all the
EEC products in the same orbit direction, we apply the same
thin plate spline transformation using the GDAL package.

4 Deep learning and postprocessing

DCNNs are a class of neural networks that consist of nu-
merous convolutional layers, each of which contains learn-
able weights and biases. A network’s architecture refers to its
overall structure, including the number of units and layers the
network has and how they are connected. Here, we use the
U-Net architecture, which has achieved outstanding perfor-
mance in biomedical segmentation applications and is among

www.the-cryosphere.net/13/1729/2019/ The Cryosphere, 13, 1729–1741, 2019

https://gdal.org/


1732 E. Zhang et al.: Automatically delineating the calving front of Jakobshavn Isbræ

Figure 2. A set of examples of TerraSAR-X data preprocessing and preparation, including the (a) enhanced-ellipsoid-corrected (EEC)
product, (b) despeckled image after reducing the speckle noise, (c) multilooked image after decreasing the image size, and (d) images after
vertically flipping and rotating (c) by 90, 180, and 270◦, respectively. For ease of presentation, the images in (d) are not to scale with (a)–(c).

the best methods in image segmentation (Ronneberger et al.,
2015). This network is fast, taking less than a second on
a mainstream graphics processing unit (GPU) to segment a
512pixels× 512pixels image. The U-Net architecture con-
sists of a contracting path and an expansive path (Fig. S1 in
the Supplement). The contracting path consists of repeated
application of two 5×5 convolution layers, each followed by
a batch normalization layer and a leaky rectified linear unit
(LeakyReLU) activation function, as well as 2×2 max pool-
ing operation for downsampling feature maps and doubling
the number of feature channels. Every step in the expansive
path consists of a 4× 4 up-convolution layer that upsamples
the feature map and halves the number of feature channels,
a concatenation with the corresponding feature map from
the contracting path and two 5× 5 convolution layers, each
followed by a batch normalization layer and a LeakyReLU
activation function. The final layer is a 3× 3 convolutional
layer with the sigmoid activation function to get the final seg-
mentation patch. We utilize relatively large convolution ker-
nel size (5 by 5) to obtain smoother calving fronts. We use
LeakyReLU activation functions with a slope of 0.1 below
zero, which allows for a small, nonzero gradient when the
unit is not active (Maas et al., 2013), making optimization

potentially more robust. We use binary cross entropy (BCE)
between the ground truth images and the network outputs to
measure the training error because it avoids the problem of
slow learning (the training loss decreases slowly) (Goodfel-
low et al., 2016). We use adaptive moment estimation max
(AdaMax) (Kingma and Ba, 2015) as the optimizer with a
learning rate of 0.0001 and an L2 regularization factor of
0.00001.

The proposed framework for using deep learning to de-
lineate the calving fronts is summarized in Fig. 3. We sep-
arate all the SAR images into a training–validation dataset
(75 images) and a test dataset (84 images) (Table S1). In
the training–validation dataset, we randomly choose 90 % as
training data and take the rest as validation data. The valida-
tion dataset is for minimizing overfitting and tuning the hy-
perparameters of the network such as learning rate and kernel
size.

Before training the network, we prepare the training
dataset, including training images (SAR images) and their
corresponding ground truth images. The ground truth im-
ages have two classes: the ice mélange region is set as zero,
and the nonice mélange region (including both glacier and
bedrock regions) is set as one (Fig. S2). The ground truth
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Figure 3. Diagram of the proposed framework. Details are described in Sects. 3 and 4.

images are derived by converting the vector of manually de-
lineated calving fronts to rasters using GDAL. Manual delin-
eation is simple on most TSX images. However, it is chal-
lenging to delineate the calving fronts on the few TSX im-
ages acquired in winter and spring because the boundaries
are obscured due to snow cover and sea ice bonding. For each
of these obscure images, we use its temporally closest image
with a clear calving front as a reference and require that our
manually delineated fronts are smooth (Fig. S3).

To ensure the effectiveness and accuracy of deep learn-
ing for a set of SAR images taken in all seasons spanning
7 years, it is important to prepare a sufficiently diverse train-
ing dataset. We include at least one image in each month into
the training dataset to represent various conditions related to
radar backscatter and image texture. First, radar backscatter
can vary with the dielectric properties of the surface scatter-
ers in the study area due to changes in snow cover, wetness,
and variations in geometric properties such as roughness,
grain size, and internal structure (Fahnestock et al., 1993).
Since our study area is in the ablation region, backscatter in-
creases in winter because of dry snow cover and decreases in
summer due to snow melting. Second, the seasonal and in-
terannual variations of the ice mélange condition can change
the image texture. Sea ice formation in winter solidifies ice
mélange, while ice mélange weakens in summer, resulting in
freely floating icebergs (Amundson et al., 2010; Xie et al.,
2016).

We also perform data augmentation to enrich our training
dataset. We adopt the following two strategies. First, we ver-
tically flip and rotate our training images by 90, 180, and
270◦, respectively, to constitute many possible locations of
the calving front in the study area (Fig. 2d). Second, we ap-
ply a 2 % linear stretch to the training images to enhance the
edges. For all the values between the 2nd and 98th percentiles
of the pixel value histogram, we linearly stretch them to the
range between 0 and 255. The values lower than the 2nd per-

centile are set to zero, and the values larger than the 98th
percentile are set to 255.

We subdivide each image (3565pixels×1634pixels) in the
training dataset into small patches (960pixels× 720pixels).
Otherwise, the resolution would be limited by the GPU mem-
ory. We split images with overlaps and obtain 36 414 patches
in total. Such a strategy allows a seamless segmentation after
merging, which reduces the edge effect. A larger patch size
can also better mitigate the edge effect. A common train-
ing strategy in deep learning is to train several training ex-
amples as a batch each time instead of training the whole
dataset. With a given GPU memory, a smaller patch size al-
lows more items in a batch, which increases the efficiency
and improves the accuracy of the gradient estimation at each
step. To strike a balance between edge effect and batch size,
we choose 960pixels× 720pixels as our patch size, and the
batch size is three.

Due to different computational time used in training and
automatic delineation, the overlap areas between adjacent
patches are set differently in the training and the test datasets.
Taking the GPU we use as an example, training the network
takes more time (80 h) than automatic delineation (20 min)
after the network is well trained. Therefore, we split the train-
ing images with smaller overlap (two-thirds of the patch size)
to save computational power and split the test images with
larger overlap (four-fifths of the patch size) to make denser
samplings so that the results become more robust.

Balancing the number of training samples between
classes is crucial in deep learning (Batista et al., 2005;
Anantrasirichai et al., 2018). Compared with patches with
two classes, patches with only one class are not equally
helpful for delineating boundaries. However, one-fifth of the
36 414 patches only have one class. Therefore, we randomly
drop out 80 % of these patches to make the network perform
better on the boundary between two classes and also to save
computational power.
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Figure 4. Examples of (a) superior and (b) inferior delineation from our deep-learning-based method. In both (a) and (b), the red line shows
the calving front delineated by the network. (c) and (d) show the zoomed-in figure of the obscure calving front positions within the blue
boxes in (b).

Training the network starts with initializing all weights as
zero. We stop the training when the validation error starts to
increase for five consecutive epochs. After the training, we
first subdivide each test TSX image into small patches and
use the well-trained network to segment all the patches into
ice mélange and nonice mélange classes. Then, we merge the
segmented patches (binary images with a pixel value of one
or zero) into a single segmentation image by averaging the
overlaps. After merging, if the pixel value is larger than 0.5,
we consider the pixel to be in a nonice mélange region. We
use GDAL to convert the segmentation image into a vector,
which contains a large polygon constituted by both the calv-
ing front and the image border, as well as small isolated poly-
gons caused by erroneous segmentation. After removing the
small polygons and truncating the large polygon to separate
the calving front from the image border, we finally obtain the
calving front for each image.

Using the postprocessed delineation results, we can quan-
tify the temporal calving front variations of both branches.
Taking the earliest calving front (16 April 2009) as the ref-
erence, we calculate the enclosed area bounded by the refer-
ence and the calving front in a given TSX image. We adopt
these metrics of area changes because they take both calving
front position and shape into account.

5 Data validation and error estimation

Our results are validated by calving front products from the
Greenland Ice Sheet Climate Change Initiative (CCI) project
(http://products.esa-icesheets-cci.org, last access: 8 Octo-
ber 2018). The CCI calving fronts are derived by manual de-

lineation using ERS and Sentinel-1 SAR, as well as Landsat-
5, 7, and 8 optical imagery. We validate our results in the
following two aspects.

First, the validation of the regeoreferencing (Sect. 3) is de-
rived by directly comparing the manually delineated calving
fronts obtained from this study and the CCI products. The
calving fronts from these two datasets should be on the same
date, and therefore only six calving fronts are compared. We
manually delineate the calving fronts from the TSX image af-
ter regeoreferencing and then calculate the averaged width of
the enclosed area bounded by both of the calving fronts from
these two datasets. The mean difference is 104 m (equiva-
lent to∼ 17.3 pixels) (Table S2 and Fig. S4). Several reasons
could cause such a seemingly large difference. The geocod-
ing information of the CCI products also has uncertainties.
Moreover, manual delineations from both the CCI and ours
are subjected to image quality and the different criteria we
adopt for front delineation. To measure the manual delin-
eation error, we have another investigator to manually delin-
eate the abovementioned six calving fronts again. By com-
paring the two sets of independent delineation results, we ob-
tained a mean difference of 33 m (equivalent to ∼ 5.5 pixels)
(Table S2).

Second, the difference of calving front variations between
ours and the CCI presents an overall validation that sums up
both regeoreferencing and network-delineation uncertainties.
We quantify the calving front variations of the CCI products
with the same method and reference used in our results. Fi-
nally, we calculate the difference between these two varia-
tions in terms of both area and equivalent length.

The errors in the test dataset represent the error of the net-
work. Unlike the BCE-measured segmentation error in train-
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Table 1. Retreat rates in area and equivalent length during different phases.

Period Mean retreat rate

Branch A Branch B

Area change (106 m2 yr−1) Apr 2009–Jan 2011 −3.07± 0.05 −4.97± 0.09
Jan 2011–Jan 2013 −8.30± 0.04 −8.03± 0.07
Jan 2013–Dec 2015 −0.50± 0.03 −1.01± 0.03
Apr 2009–Dec 2015 −2.56± 0.01 −3.41± 0.01

Equivalent length change (m yr−1) Apr 2009–Jan 2011 −141± 4 −228± 9
Jan 2011–Jan 2013 −381± 3 −368± 5
Jan 2013–Dec 2015 −23± 2 −46± 2
Apr 2009–Dec 2015 −117± 1 −157± 1

Figure 5. Time series of calving front variations (in area changes) of branches A and B from our deep learning method (stars) and the
Greenland Ice Sheet CCI project (triangles). Dashed vertical lines divide the time series into three separate phases (see text).

ing, the test error is for calving front delineation. We mea-
sure the test error by calculating the averaged width of the
enclosed area bounded by the manually delineated and the
network-delineated calving fronts (Fig. S5).

6 Results

We present our results in the following order: (1) the
network-delineated calving fronts from 16 April 2009 to
23 December 2015, which are shown in a movie (Movie S1
in the Supplement); (2) two examples of our automatically
delineated calving fronts (i.e., results in test dataset) (Fig. 4);
(3) retreat rates (Table 1) and time series of calving front vari-

ations (Fig. 5); (4) interannual calving front variation (Figs. 6
and 7).

The individual network-delineated results are influenced
by image quality. Usually, the boundary is more distinct
in summer than in other seasons, yielding superior results
(Fig. 4a). In winter and spring, the boundary is obscure due
to the low contrast and similar texture of the images, for
example, the Branch B and the northern part of Branch A
(Fig. 4b, c, and d). The backscatters of the snow-covered ice
mélange and the glacier are similar. Moreover, sea ice for-
mation in winter solidifies the ice mélange and even bonds it
with the glacier. As a result, our detected edge deviates from
the ground truth. Table S3 lists all of the test error with a
mean of 38 m. It also shows that our network performs better
in summer than other seasons.
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Figure 6. Two examples showing the asynchronous behaviors of branches A and B. (a) Branch A began to retreat in May 2010, while Branch
B started to retreat 1 month later. (b) Branch A’s calving front underwent strong variation between August and November 2012, whereas
Branch B’s calving front was relatively stable. The magenta line in both (a) and (b) shows the calving front position just before the annual
retreat.

Overall, our results agree well with the CCI products
(Fig. 5). The area difference is 2.14×106 m2, and the equiv-
alent length difference is 73 m. Moreover, our results have
a higher temporal resolution (about two measurements ev-
ery month) than the CCI products (about four measurements
every year). Therefore, we can observe the seasonal and
interannual variations more clearly. Based on our results,
branches A and B retreated from 2009 to 2015 with linear
trends of−117±1 and−157±1 m yr−1, respectively. The in-
terannual variation can be roughly divided into three phases
(Fig. 5 and summarized in Table 1). (1) From April 2009 to
January 2011, the retreat rates were −141 and −228 m yr−1

along branches A and B, respectively. (2) From January 2011
to January 2013, the glacier retreated 170 % and 61 % faster
than in the previous phase in branches A and B, respec-
tively. (3) From January 2013 to December 2015, these two
branches behaved differently. In Branch A, the glacier re-
treated and advanced seasonally but at much slower average
rates (−23 m yr−1). In Branch B, the seasonal variations were
minor, and the glacier retreated slowly (−46 m yr−1).

Further examination of the interannual variation indicates
that the calving front exhibited different seasonal variations
from year to year. First, even within a close distance of 10 km
around the coastal area, branches A and B behaved asyn-
chronously. For example, in 2010, Branch A began to re-
treat in May, while Branch B started to retreat 1 month later
(Figs. 6a and 7). Moreover, after 2012, Branch A’s front un-

derwent strong seasonal variation while Branch B’s front re-
mained relatively stable (Fig. 6b). Second, the retreat timing
of the glacier varied in different years. In Branch A, the front
began to retreat around May in most years, while in 2011 and
2013 the retreat started in June. In 2010, both branches ex-
perienced a sudden retreat from mid-January to early Febru-
ary and then became stable. Third, the calving front variation
became regular after 2012. In Branch A, the front stopped
retreating in July of each year, and its position remained un-
changed up to September to October. In Branch B, the front
advanced in spring and retreated in early summer, while its
position remained almost unchanged in other seasons (Figs. 5
and 7).

7 Discussion

7.1 Differences from the previous work

Mohajerani et al. (2019) have applied the U-Net architec-
ture to Landsat images over Jakobshavn, Sverdrup, Kanger-
lussuaq, and Helheim glaciers in Greenland. Despite the fact
that both Mohajerani et al. (2019) and our study use the U-
Net architecture, our study is different from Mohajerani et
al. (2019) in datasets, result accuracy, transferability, strate-
gies for classification, postprocessing, and image resampling.
The usage of high-resolution TSX images allows us to gener-
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Figure 7. Similar to Fig. 5 but showing the time series of calving front changes (in area changes) of our deep-learning-based results in
different years. The red filled stars mark the dates when the glacier started to retreat. Red open stars mark starting dates that cannot be
reliably determined due to data gaps (e.g., Branch A in 2011) and small variations (e.g., Branch B in 2013).

ate more accurate calving fronts. Without additional manual
practices, our method is more transferable, particularly when
applying to large areas with many glaciers. Below we discuss
the technical differences in detail.

First, our study classifies the surface into two types (i.e.,
ice mélange and nonice mélange) to extract the calving front,
while Mohajerani et al. (2019) used semantic segmentation
to extract the front without classifying the surrounding sur-
faces. Both strategies require postprocessing procedures. In
our method, erroneous segmentation can cause small isolated
polygons within the ice mélange or the nonice mélange re-
gions. Yet, we can solve this problem by removing these
small polygons in the postprocessing. The semantic segmen-
tation used by Mohajerani et al. (2019) can be affected by
icebergs, crevasses, etc. Nonetheless, the lowest-cost path
search method could solve this problem (Mohajerani et al.,
2019). Second, additional manual practices are needed in
the work of Mohajerani et al. (2019). For instance, images
of every single glacier in their work were adjusted by a
certain angle to make all the glaciers flow in the same di-
rection in the preprocessing. Third, we subdivide the im-
ages into small patches, which allows us to utilize the ad-
vantages of images with high resolution and various sizes.

Mohajerani et al. (2019) resampled images to a fixed size
(240pixels× 152pixels) with low spatial resolution (49.0 to
88.1 m); therefore the position accuracy is limited.

7.2 Calving front variation and bed elevation

In general, calving front variations are influenced by multiple
factors, including floating or grounding conditions (McFad-
den et al., 2011; Murray et al., 2015; Bondzio et al., 2017;
Fried et al., 2018), interaction with the ocean (Holland et al.,
2008; Howat et al., 2008; Motyka et al., 2011; Vieli and Nick,
2011; Straneo and Heimbach, 2013), ice mélange and sea ice
conditions (Amundson et al., 2010; Moon et al., 2015; Cas-
sotto et al., 2015), basal lubrication (Joughin et al., 2008b;
Moon et al., 2014), and bed elevation (Joughin et al., 2008a,
2014; Kehrl et al., 2017; Bunce et al., 2018). Here we exam-
ine the possible link between the observed variations of the
calving fronts with bed elevation.

Bed elevation has a substantial influence on the glacier re-
treat. In the first situation where the bed is flat, glacier re-
treat decreases resisting force, which accelerates the glacier.
The acceleration of the glacier can also thin the ice. Thin-
ning reduces the effective pressure at the bed, N = Pi −Pw,
where Pi is the overburden pressure and Pw is water pressure.
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A decreased N reduces basal drag, causing stretching and
faster flow and constituting positive feedback. In the second
situation, as the glacier retreats into an overdeepened basin
where the bed slopes down inland or is retrograde, the pos-
itive feedback is reinforced, and the glacier becomes more
unstable, for two reasons. First, ice thickness at the calving
front increases as the retreat progresses, increasing driving
stress. Second, because the calving front moves into deeper
water, this retreat decreases N further. In the third situation
where the bed slopes inland–uphill, the glacier may stabi-
lize, since retreating into shallower water increases N and
decreases driving stress.

Previous studies also suggest that bed elevation has a sub-
stantial influence on glacier calving front variations. Ex-
amining the height above flotation of Branch A in Jakob-
shavn, Joughin et al. (2014) suggested that retreating into an
overdeepened basin where the bed slope is retrograde may
lead to an unstable calving front retreat, and a bed sloping
inland–uphill may stabilize the glacier. Other studies have
also suggested that retreating into deeper water may acceler-
ate the glacier, resulting in an unstable retreating (Howat et
al., 2005, 2007; Nick et al., 2009; Catania et al., 2018).

In our study area, the bed elevation derived from BedMa-
chine v3 (Morlighem et al., 2017) shows two overdeepened
basins along the main channel of Branch A (Fig. 8a). During
the period from 2009 to 2015, the calving front of Branch
A retreated into the second overdeepened basin in August
2011 for the first time, which may have produced a faster
rate of retreat. In July 2012, the glacier retreated to the bot-
tom of the overdeepened basin and stopped retreating further
(Movie S2). The inland–uphill bed slope behind the bottom
of the overdeepened basin may have prevented the glacier
from further retreating. In Branch B, after June 2012, the
glacier retreated into a zone where the bed slopes uphill in-
land (Fig. 8b, Movie S3). We suggest that retreating into this
zone may have led to the more regular and stable behavior of
Branch B after June 2012 (Fig. 5b).

7.3 Limitations of the current method

The current method is limited by high computational power
requirement, and manual delineation largely controls its ac-
curacy. First, the U-Net architecture requires relatively high
GPU memory for large images. In our configuration, around
15 GB (gigabyte) of GPU memory is needed for training the
network. Second, although splitting images with overlaps al-
low us to apply the network to images with different sizes,
the overlaps increase the training time. These two limitations
can be overcome by hardware development. With more pow-
erful GPUs in the future, we can increase the calculation ef-
ficiency and lessen the training time. Third, the accuracy of
this method relies on manual delineation as well as the in-
formation richness of the training dataset (Goodfellow et al.,
2016). If the training examples are not representative of the
actual task or if the manual delineation in these examples is

Figure 8. Bed elevation profiles of two branches derived from Bed-
Machine v3 (Morlighem et al., 2017). The profile locations are
shown in Fig. 1a. The dashed box shows the zone where the bed
slopes uphill inland.

of low quality or inconsistent, U-Net will either fail to train
or will reproduce inconsistent results on new data. To further
increase the accuracy and robustness of the network, more
training examples are needed.

7.4 Prospects for future work

In the near future, we will include more training examples to
minimize network error. In this study, the well-trained net-
work is limited to a specific dataset, namely TSX images.
However, it is feasible to apply the DCNN to multisensor
remote sensing imagery, which has been proved by previ-
ous studies (Nogueira et al., 2017; Lang et al., 2018). More-
over, as long as the calving fronts are clear in the images,
our method can also use images with light cloud cover and
Landsat 7 images with scan line errors.

The effectiveness and transferable nature of deep learning
(Anantrasirichai et al., 2018) promises that our methodol-
ogy can be applied to many other glaciers, both in Greenland
and elsewhere in the world. Besides Jakobshavn Isbræ, other
Greenland tidewater glaciers such as Helheim and Kangerd-
lugssuaq also show strong calving front variations (Howat et
al., 2005, 2007; Joughin et al., 2008a). In theory, the DCNN
can be retrained whenever new data are added to the training
dataset. Moreover, including more data over other places can
increase the generalization of the network, making it appli-
cable to more situations (Goodfellow et al., 2016).
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8 Conclusions

This study designs a method based on DCNNs to automat-
ically delineate calving fronts of Jakobshavn Isbræ from
TerraSAR-X SAR images acquired from April 2009 to De-
cember 2015. The small test error suggests that the accuracy
of a well-trained network can be close to the human level.
Our results reveal that the two branches of Jakobshavn Is-
bræ behaved asynchronously. We suggest that bed elevation
may have a major influence on the observed calving front
variations. Our methodology can be applied to many other
tidewater glaciers both in Greenland and elsewhere in the
world using multitemporal and multisensor remote sensing
imagery.
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are available from http://products.esa-icesheets-cci.org (Markus
and Joanna, 2017, last access: 8 October 2018). The bed elevation
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access: 17 October 2018). The code of the whole framework
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