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Abstract. Sea ice is a crucial component for short-, medium-
and long-term numerical weather predictions. Most impor-
tantly, changes of sea ice coverage and areas covered by
thin sea ice have a large impact on heat fluxes between the
ocean and the atmosphere. L-band brightness temperatures
from ESA’s Earth Explorer SMOS (Soil Moisture and Ocean
Salinity) have been proven to be a valuable tool to derive thin
sea ice thickness. These retrieved estimates were already suc-
cessfully assimilated in forecasting models to constrain the
ice analysis, leading to more accurate initial conditions and
subsequently more accurate forecasts. However, the bright-
ness temperature measurements can potentially be assimi-
lated directly in forecasting systems, reducing the data la-
tency and providing a more consistent first guess. As a first
step towards such a data assimilation system we studied the
forward operator that translates geophysical parameters pro-
vided by a model into brightness temperatures. We use two
different radiative transfer models to generate top of atmo-
sphere brightness temperatures based on ORAP5 model out-
put for the 2012/2013 winter season. The simulations are
then compared against actual SMOS measurements. The re-
sults indicate that both models are able to capture the general
variability of measured brightness temperatures over sea ice.
The simulated brightness temperatures are dominated by sea
ice coverage and thickness changes are most pronounced in
the marginal ice zone where new sea ice is formed. There
we observe the largest differences of more than 20 K over
sea ice between simulated and observed brightness tempera-
tures. We conclude that the assimilation of SMOS brightness
temperatures yields high potential for forecasting models to

correct for uncertainties in thin sea ice areas and suggest
that information on sea ice fractional coverage from higher-
frequency brightness temperatures should be used simultane-
ously.

1 Introduction

Combining observations and model simulations through data
assimilation has been very successful in generating consis-
tent data sets for monitoring the Earth system, to initialize
forecasts and to provide feedback on the quality of observa-
tions and models (e.g., Simmons et al., 2016). For scientific
and operational applications related to ice-covered oceans,
considerable progress has been made with respect to the as-
similation of retrieved geophysical products, namely frac-
tional sea ice coverage (e.g., Stark et al., 2008; Lindsay and
Schweiger, 2015) and sea surface temperature (e.g., Sakov
et al., 2012). These parameters primarily rely on passive mi-
crowave measurements covering a frequency range from 6
to 89 GHz and observations in the thermal infrared spectral
region, respectively. Since the launch of the European Space
Agency’s Earth Explorer mission SMOS (Soil Moisture and
Ocean Salinity) in 2009, fully polarized brightness temper-
ature measurements at 1.4 GHz have become available on a
routine basis (Mecklenburg et al., 2012). However, while as-
similating sea ice concentration has become quite common,
the direct assimilation of Arctic-wide remote-sensing-based
sea ice thickness is relatively new (Yang et al., 2014; Xie
et al., 2016; Chen et al., 2017).
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Microwave radiation at 1.4 GHz (L-band) is especially
useful to derive thin sea ice thickness as it is able to pen-
etrate snow and sea ice for more than half a meter and
complements sea ice thickness retrievals that use altimetry
(Kaleschke et al., 2010; Ricker et al., 2017). This capability is
especially important as the Arctic Ocean shifts to a new state,
in which older, thicker sea ice is being replaced by younger
and thinner ice (Laxon et al., 2013; Meier et al., 2015). Con-
sequently, sea ice thickness data sets using SMOS measure-
ments have been produced operationally for the Arctic based
on retrieval algorithm developed at the University of Ham-
burg (Kaleschke et al., 2012; Tian-Kunze et al., 2014). Other
sea ice parameters estimated from L-band observations com-
prise sea ice concentration (Gabarro et al., 2017) and snow
coverage on thick sea ice (Maaß et al., 2013).

The sea ice thickness retrieval (Kaleschke et al., 2010) ap-
plies an incoherent radiative transfer model (Menashi et al.,
1993), which was further extended with a thermodynamic
sea ice model to consider variations of ice temperature and
salinity, as well as a statistical sea ice thickness distribution
(Tian-Kunze et al., 2014). The retrieved ice thickness cor-
relates with ship and airborne observational thickness up to
1.5 m (Kaleschke et al., 2016). The resulting data sets have
been further validated by comparison to independent data.
Maaß et al. (2015) showed a high correlation between sea
ice thicknesses derived from SMOS L-band brightness tem-
peratures and helicopter-based electromagnetic-induced sea
ice measurements in the Baltic Sea. The sea ice thickness
retrievals have also been compared with MODIS thermal in-
frared imagery data in the Kara and Laptev seas (Kaleschke
et al., 2012; Tian-Kunze et al., 2014).

By conducting “perfect model” experiments Day et al.
(2014) identify ice thickness as an important predictor of
Arctic ice concentration and extent up to 8 months ahead,
implying potential benefits for midlatitude meteorological
forecast skill. To estimate an accurate initial state in forecast
model systems thus requires the assimilation of sea ice thick-
ness or related information. Several assimilation approaches
and model systems have been successfully applied to use the
sea ice thickness information from SMOS. Yang et al. (2014)
have shown that the assimilation of SMOS sea ice thickness
into the Massachusetts Institute of Technology general cir-
culation model (MITgcm) with a localized singular evolu-
tive interpolated Kalman (LSEIK) filter leads to improved
ice thickness forecasts as well as better sea ice concentra-
tion forecasts. Xie et al. (2016) evaluated the use of SMOS
sea ice thickness in the operational Arctic forecast system
TOPAZ for the Copernicus Marine Environment Monitoring
Services (CMEMS). This assimilation of SMOS data with
an ensemble Kalman filter (EnKF) showed an improvement
of ice thickness and ice concentration and no degradation of
other quantities. Chen et al. (2017) used sea ice thickness
derived from SMOS and CryoSat-2 for assimilation in the
National Centers for Environmental Prediction (NCEP) Cli-

mate Forecast System (CFS) using a localized error subspace
transform ensemble Kalman filter (LESTKF).

An alternative way to combine information from the
model and observations is to assimilate brightness temper-
ature measurements directly rather than the retrieved sea ice
parameters. The observed brightness temperatures depend on
more than one ice parameter, and the advantage of assimilat-
ing measurements into the model is that a wide range of con-
sistent input data is used to generate the model-based first
guess. In contrast, retrieved data products are often based
on the inverse of the observation operator and auxiliary data
sets. When assimilating more than one retrieved observa-
tional data set there is the danger that the observation errors
are correlated or – even worse – the same information is used
more than once. However, the assimilation of measurements
rather than derived observations requires an observation (or
forward) operator that translates a set of model parameters
into measurement space. This adds to the complexity of the
analysis and forecasting system and often requires additional
expertise.

The question arises which radiative transfer model suits
best to be used as a forward operator in a brightness temper-
ature assimilation scheme for thin sea ice thickness. So far,
simulated brightness temperatures have been validated for
idealized typical Arctic conditions (e.g., Maaß et al., 2013;
Tian-Kunze et al., 2014) but have never been compared to
L-band remote sensing observations on a large scale. More-
over, there is a wide range of different radiative transfer mod-
els that can be used as forward operators for this purpose.
Depending on the required accuracy, the available auxiliary
information and the considered wavelength in relation to the
expected scatterer sizes, an incoherent one-ice-parameter ap-
proximation or a coherent, more realistic multi-parameter
model based on the Maxwell equations can be used. How-
ever, identifying the optimal model is challenging because
observations of all the involved ice parameters in the Arctic,
especially together with radiation measurements in the range
of 1.4 GHz, are rare and validation is thus difficult.

Here we investigate the Arctic-wide performance of the ra-
diative transfer models of Kaleschke et al. (2010) and Maaß
et al. (2013) to simulate brightness temperatures and to iden-
tify the most important input parameters for a sea ice thick-
ness application. The first radiative transfer model is the op-
erational model of the SMOS sea ice retrieval (Kaleschke
et al., 2012), which has been proven to be a simple tool, based
on radiative transfer equations that assume only one bulk ice
layer and consider only first-order reflections and refractions
at the layer boundaries (e.g., at the water–ice interface). It is
computationally very efficient. The second radiative transfer
model has a more comprehensive representation of the com-
plex structures of sea ice in that it considers multiple sea ice
layers and a snow layer on top and takes into account higher-
order reflections and refractions at the layer interfaces.

In this study, we evaluate which radiative transfer model to
use for assimilating sea ice thickness into the ORAP5 (Ocean

The Cryosphere, 12, 921–933, 2018 www.the-cryosphere.net/12/921/2018/



F. Richter et al.: Sea ice signatures 923

ReAnalysis Pilot 5; Zuo et al., 2015) reanalysis by compar-
ing simulated brightness temperatures based on ORAP5 in-
put data and observed brightness temperatures from SMOS
observations, respectively.

2 Data and methods

2.1 SMOS brightness temperatures

SMOS is equipped with a passive microwave 2-D inter-
ferometer called MIRAS (Microwave Imaging Radiometer
with Aperture Synthesis) operating in L-band at 1.4 GHz
(∼ 21 cm). It measures brightness temperatures in full po-
larization up to 65◦ incidence angle every 1.2 s (Kerr et al.,
2001). The hexagonal snapshots have a swath width of
around 1200 km, which allows a global coverage. Each point
on earth is observed at least once every 3 days with a daily
coverage in the polar regions due to SMOS quasi-circular
sun-synchronous orbit at 758 km height.

SMOS snapshots can be influenced by radio-frequency in-
terference (RFI) rooting from radar, TV and radio transmis-
sion (Mecklenburg et al., 2012). To account for the most
critical disturbances, a RFI filter has been utilized. Bright-
ness temperatures above 300 K identify a snapshot to be RFI-
contaminated and are ignored for the brightness temperature
product. Values higher than that are not expected to be seen
in the Arctic between November and March as the physical
maximum of a surface with temperature at the freezing point
would be 273.15 K if the emissivity was 1.

The brightness temperature product is provided at ver-
tical and horizontal polarization. Although these measure-
ments vary with incidence angles the intensity, defined as
the average of horizontally and vertically polarized bright-
ness temperatures, remains almost constant in the range of 0
to 40 degrees over sea ice. By averaging over this incidence
angle range we obtain more brightness temperature data per
grid point per day, reducing considerably the uncertainty. The
averaged product is available on a daily basis up to 85◦ N lat-
itude on a polar-stereographic grid with 12.5 km resolution.

2.2 Radiative transfer models

For our analysis we selected the radiative transfer models
of Kaleschke et al. (2010) (further referred to as KA2010)
and Maaß et al. (2013) (referred as MA2013) to simulate
brightness temperatures above seawater and ice at 1.4 GHz.
KA2010 is a rather simple dielectric slab model, a single-
layer of sea ice with a semi-infinite layer of air on top and a
semi-infinite layer of ocean water below, and has been suc-
cessfully applied for operational sea ice thickness retrieval
(Kaleschke et al., 2012; Tian-Kunze et al., 2014), whereas
MA2013 consists of multiple layers. Both models provide
brightness temperatures at two polarizations as a function
of the incidence angle, the considered layers’ temperature,
thickness and permittivity. In the following we use just the

intensity, the average of vertically and horizontally polarized
brightness temperature near nadir. MA2013 adapts the ra-
diative transfer model of Burke et al. (1979) and describes
the upwelling brightness temperature represented by plane-
parallel specular-reflecting layers using three layers of sea ice
and one layer of snow on top of the ice. All ice layers have the
same properties except for the ice temperature that linearly
changes between the lowest layer bordering the ocean and
the upper layer facing the atmosphere. The snow is assumed
to be dry and has a snow density of ρsnow = 330 kg m−3 that
accounts for the climatological average value for Arctic aver-
age snow density over sea ice in March (Warren et al., 1999).
In contrast to KA2010, the snow layer affects not only the
temperature of the underlying sea ice but also the radiation
incidence angle. As an addition to the model described in
Maaß et al. (2013) we take into account multiple reflections
within sea ice instead of only considering first-order reflec-
tivity.

Both models consider the sea ice thickness subpixel-scale
heterogeneity of open ocean and sea ice with a statistical ice
thickness distribution obtained by observations (denoted as
Algorithm II* by Tian-Kunze et al., 2014). We calculate the
brightness temperatures for 10 linearly divided sea ice thick-
ness bins with a maximum of 1 m thickness in order to rep-
resent typical first-year sea ice. Then, the brightness temper-
ature is the average of the 10 respective bins weighted by
the sea ice thickness distribution. Seawater emissivity calcu-
lations are based on Fresnel equations, assuming a specular
surface (Ulaby et al., 1981; Klein and Swift, 1977). Wind-
induced sea surface roughness influences are assumed to be
small and will be neglected (Dinnat et al., 2003). To cor-
rect for galactic background radiation and atmospheric de-
viations an atmospheric model (Peng et al., 2013) is applied,
forced by climatological mean from 65 years of NCEP data
(Kalnay et al., 1996). The cosmic background contribution to
the overall brightness temperatures is set to 2.7 K. The freez-
ing temperature of seawater is constant at −1.8 ◦C.

2.3 The ORAP5 reanalysis

The radiative transfer models are forced using data from the
ORAP5 project, which is provided by the European Cen-
tre of Medium range Weather Forecast (ECMWF) (Tietsche
et al., 2014). The sea ice thickness and snow depth, the sur-
face and seawater temperature, the sea ice fractional cover-
age and the sea surface salinity are taken from ORAP5 data.
The reanalysis has been produced using the NEMO global
ocean model version 3.4, which was run on the DRAKKAR
ORCA025.L75 configuration for 34 years, covering the years
from 1979 to 2013. The configuration uses a tripolar mesh
grid with poles located in Greenland and Central Asia in
the Northern Hemisphere and a pole in the Antarctic in the
Southern Hemisphere. The spatial resolution ranges from
0.25 degree at the Equator to a couple of kilometers in the
polar regions with 75 vertical levels in the ocean. The at-
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mospheric forcing fields are derived from the ERA-Interim
reanalysis (Dee et al., 2011).

The second-generation dynamic–thermodynamic
Louvain-la-Neuve Sea Ice Model (LIM2) has been coupled
to the NEMO ocean model (Bouillon et al., 2009). Sea
ice is represented with a two-dimensional viscous–plastic
rheology that interacts with the atmosphere and the ocean. A
simple three-layer model (one for snow and two layers for
ice) is used to determine sensible heat storage and vertical
heat conduction. Vertical heat fluxes are calculated based on
the thermodynamic energy balance according to Semtner
(1976). The sea ice thickness is determined by the surface
balance of radiative, turbulent and heat fluxes and the con-
ductive heat balance between the bottom part of the sea ice
and the ocean. Snow is accumulated by solid precipitation
in cases when sea ice is present. If the surface temperature
of the snow–ice system exceeds freezing temperature the
surface temperature stays unchanged at the freezing point
and the remaining energy is put into melting snow and
afterwards sea ice. The albedo is a function of the snow and
ice thickness, the state of the surface and the cloudiness.
Sea ice coverage is derived by the surface energy balance
over open water, the contribution of closing leads and the
Operational SST and Sea Ice Analysis (OSTIA) system,
which assimilates sea ice concentration from the Satellite
Application Facility on Ocean and Sea Ice (OSI-SAF)
data set produced by the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT).

This study focuses on the winter season in 2012/2013,
more precisely on November 2012 and March 2013. Novem-
ber and March are the first and the last months in which tem-
peratures are below freezing in the winter season (Vikhamar-
Schuler et al., 2016), and the period has been chosen due
the availability of the reanalysis data set ORAP5 and SMOS
measurements (v. 5.05). As the ORAP5 reanalysis does not
provide uncertainties on its own, we use the uncertainties
from the follow-on product ORAS5 reanalysis (Zuo et al.,
2015). The uncertainty values listed in Table 1 represent the
deviation of 99 % of all values in an area north of 50◦ N over
first-year ice (1 m and below). We use the 99 % quantile to
exclude outliers and find a representative value for the ma-
jority of grid cells. The same statistical quantity is used for
the seasonal variation of changing physical property between
the beginning and the end of the month for November and
March.

2.4 Brightness temperatures bias correction above
seawater

To investigate the quality of the radiative transfer models for
sea ice areas in the ORAP5 setup we want to keep the bright-
ness temperature difference above seawater as small as pos-
sible. Thus, we first check the representation of brightness
temperatures over open ocean of the models. Both models
use the same equations to calculate the emissivity of water

areas and will thus produce the same brightness temperatures
using the same input data. Therefore here we only show the
correction for MA2013. L-band brightness temperature vari-
ations in Arctic open waters are low compared to sea ice and
the difference between SMOS measurements and simulated
brightness temperatures from the radiative transfer models
should be less than 2 K, assuming temperatures around freez-
ing point and 30 psu salinity (Berger et al., 2002).

We simulate brightness temperatures in all open water ar-
eas north of 50◦ latitude. As a first step, we project the
ORAP5 reanalysis on the polar-stereographic grid SMOS is
using. Afterwards, we obtain a monthly average by calculat-
ing brightness temperatures for each day of the month us-
ing daily input data. Then, we average all brightness tem-
peratures corresponding to a single day to a monthly value.
We find an average bias of 4.5 K between MA2013 and the
SMOS observations in November and March (Fig. 1). To
identify the open water areas, we exclude all data points with
a fractional sea ice coverage above zero in the ORAP5 re-
analysis and also exclude all data points flagged as land, in
either the reanalysis product or SMOS observations. Further-
more, brightness temperatures of more than 120 K are con-
sidered as outliers and are excluded as well. Finally, a total
of 99085 data points show an average open water brightness
temperature TBSMOS = 100.7 K, whereas the models have an
average of TBmodel = 96.1 K.

To correct for the bias of open water areas we add the dif-
ference of 4.5 K to the overall brightness temperature of sea-
water. Subsequently, results of the radiative transfer models
show the main accumulation of data points at around 99 K
and a second, weaker one beginning at 99.5 K, each one with
a tail towards higher brightness temperatures of SMOS. The
wide range of observed brightness temperatures at 99 K is ex-
plained by the complexity of nature and the simplicity of the
radiative transfer model. As not all parameters are taken into
account in the model, e.g., wind speed, the simulated bright-
ness temperatures tend to be less diverse. The second tail at
99.5 K has evidence in the Baltic Sea. In that area, lower sea
surface salinity and higher water temperature compared to
the rest of the Arctic waters lead to higher brightness tem-
peratures. However, this is not a general statement about the
quality of the brightness temperatures above Arctic seawa-
ter but a correction only for this analysis. The correction is
used in all following simulations using the radiative transfer
models.

2.5 Sea ice growth model

To obtain a reference point for Arctic sea ice thickness
growth for the radiative transfer model sensitivity study in
Sect. 3.2, we utilize an empirical sea ice growth model
(Lebedev, 1938). The sea ice thickness increase is param-
eterized by d = 1.3320.58 cm with the freezing days 2=∫
(Tf− Ta)dt as a function of the freezing point of seawater
Tf ≈−1.9 ◦C (Maykut, 1986) and the surface air temperature
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Table 1. Uncertainties of the ORAS5 reanalysis and monthly variations of the ORAP5 reanalysis for the radiative transfer model input
parameters expressed as the 99 % quantile.

ORAS5 uncertainty ORAP5 monthly variation
No. Model parameter Nov 2012 Mar 2013 Nov 2012 Mar 2013

1 Sea ice thickness (m) 0.24 0.17 0.76 0.87
2 Sea ice concentration (%) 4.4 8.1 97 69
3 Sea ice temperature (K) 0.31 0.87 18.5 18
4 Snow depth (m) 0.03 0.03 0.1 0.17
5 Sea surface salinity (g kg−1) 0.38 0.32 3.56 1.5

Figure 1. Seawater brightness temperature comparison between
SMOS and MA2013. Contour lines (MA2013 biased) represent a
direct comparison between simulated and measured brightness tem-
perature above open seawater. Filled contours (MA2013 corrected)
represent the same comparison but with a correction for simulated
brightness temperatures of 4.5 K.

Ta (in ◦C). The sea ice growth model has been used in var-
ious previous studies (e.g., Yu and Lindsay, 2003) and will
provide an initial estimate of the sea ice thickness growth
over a certain time period.

3 Results

3.1 Brightness temperature comparison

Brightness temperatures simulated with MA2013 are gener-
ally higher than brightness temperatures of KA2010 by up to
around 15 K (Fig. 2). The largest differences are located in
the outer sea ice zones with the highest magnitude where sea
ice concentration is close to 100 %, and an increase of sea ice
thickness with time is expected, such as in the East Siberian

Sea or the Canadian Arctic Archipelago in November or the
Sea of Okhotsk in March. For a first evaluation of the bright-
ness temperature models, the two extreme cases of open wa-
ter and 100 % multi-year thick sea ice can be considered.
Since we already treated the lower boundary of open ocean
brightness temperatures with a water bias correction as indi-
cated above, we now concentrate on the upper boundary of a
saturated signal over thick sea ice areas. We find higher simu-
lated brightness temperatures in the central part of the Arctic
by MA2013. The value in MA2013 saturates around∼ 255 K
whereas KA2010 shows a maximum ∼ 240 K. There are no
indications for seasonal changes between brightness temper-
atures from November and March except the increased area
covered by sea ice. The variability in March shows a larger
variation of brightness temperature difference close to the sea
ice edge.

Brightness temperatures measured by SMOS appear to be
in between the simulated ones of KA2010 and MA2013 in-
fluenced by strong spatial differences (Fig. 3). In Novem-
ber 2012, both models show higher brightness tempera-
tures in the East Siberian Sea and the Canadian Arctic
Archipelago. Lower brightness temperatures are located in
the Canadian Basin and the Chukchi Sea with extension to
the Bering Street. A different picture is shown in the cen-
tral Arctic at grid points with more than 80 % sea ice con-
centration coverage, where both models simulate brightness
temperatures with deviations of opposite directions. In this
area, the model of KA2010 shows lower (−2.4± 7.3 K) and
MA2013 higher (9.4± 7.5 K) brightness temperatures com-
pared to SMOS observations in November 2012. The same is
true for March 2013, although KA2010 (0.3± 7.1 K) shows
a stronger agreement in the central Arctic than MA2013
(10.8± 7.1 K). Brightness temperature deviations between
KA2010 and the SMOS measurements show a higher vari-
ability between positive and negative differences. MA2013
appears to be positively biased not only in November 2012
but in March 2013 as well. The simulations exceed SMOS
brightness temperatures almost everywhere in the Arctic
with deviations up to 20 K in the Labrador Sea and Sea of
Okhotsk.

A comparison between all simulated and modeled bright-
ness temperatures in the Arctic shows that 92 % data points
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926 F. Richter et al.: Sea ice signatures

Figure 2. Monthly brightness temperatures simulated by KA2010 (a and d) and MA2013 (b and e). Panels (a)–(c) show the November 2012
brightness temperature distribution based on ORAP5 reanalysis input data with a comparison plot of both models at (c). Panels (d)–(f) are
equal, but for March 2013.

Figure 3. SMOS brightness temperatures (a, d) compared with simulated brightness temperatures using KA2010 (b, e) and MA2013 (c, f)
in November 2012 (a–c) and March 2013 (d–f). The red dot in panel (a) indicates the position of the investigated grid cell in the Laptev Sea.
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Figure 4. Brightness temperature comparison between simulated
and observed brightness temperatures in November 2012 (a and
b) and March 2013 (c and d) for KA2010 (a and c) and MA2013
(b and d). The Pearson correlation r between simulated and ob-
served brightness temperatures over sea ice for MA2013 and
KA2010, respectively, is stated in the legend.

are clustered at 105± 3 and 240± 7 K (Fig. 4). The latter
is associated with thicker sea ice related to saturated bright-
ness temperatures at 1.4 GHz. Simulated brightness temper-
ature shows a high correlation of the distribution state of
r = 0.98 or r = 0.97 with SMOS measurements. KA2010
brightness temperatures are on average 2 K lower than SMOS
in November, whereas MA2013 simulates larger brightness
temperatures in thick ice regions in March and November.
Furthermore, as already seen in Fig. 3, MA2013 overesti-
mates brightness temperatures above∼ 190 K also in March.
The difference between simulated and observed brightness
temperatures is largest in between the main clusters, although
most points appear to concentrate around the 1 : 1 line.

3.2 Radiative transfer model sensitivity study

In order to identify the most important input variables for the
radiative transfer models, we evaluate the sensitivity of the
models to certain changes of sea ice, snow and seawater pa-
rameters. We keep all but one parameter fixed at a monthly
value and calculate the brightness temperatures for the min-
imum and the maximum simulated value within the month
for one physical parameter. That will give us two different
brightness temperatures – one for the minimum and one for
the maximum – of which the difference is the range of bright-
ness temperature change related to one of the parameters

Figure 5. Most influential physical variables from ORAP5 on the
brightness temperature gradient. Monthly values are shown for
November 2012 (a–b) and March 2013 (c–d) for KA2010 (a–c)
and MA2012 (b–d).

that can be expected. Varying all input parameters provided
by the ORAP5 reanalysis, we quantify the impact of certain
physical parameters on our brightness temperatures at a spe-
cific place over the time span of 1 month.

The most important input parameters for brightness tem-
perature calculations with the radiative transfer models are
the sea ice fractional coverage, sea ice thickness and sea ice
temperature (Fig. 5, accounting for 92 % grid points in March
and November). For both seasons, the sea ice temperature
has the largest impact on the brightness temperatures in the
central Arctic with the largest spatial extent in MA2013. In
March when the Arctic sea ice extent reaches its maximum,
the ice temperature is the most important parameter in about
25 % of the area of the Arctic. Closer to the outer sea ice re-
gions, the sea ice fractional coverage is most influential for
the largest part of the Arctic sea ice (around 60 % of the total
sea ice area). During the sea ice growth season in November,
the leading impact of sea ice fraction extends all the way to
the coastal areas in the East Siberian Sea, whereas the Cana-
dian Basin is dominated by sea ice thickness growth. In any
case, the sea ice thickness is most important close to the sea
ice edge (25 % of the area in November). The impact is lower
when the sea ice thickness is predominantly thicker than half
a meter and exceeds SMOS sensitivity (5 % in March). How-
ever, the effect of sea ice concentration and thickness is sim-
ilar in both models. In the very outer marginal sea ice zone
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Figure 6. Freeze-up event in October to November 2012 that took
place in the Laptev Sea (77.5◦ N, 137.5◦ E). Brightness temperature
time series of from KA2010, MA2013 and SMOS measurements
(top) and sea ice thickness and concentration time series of ORAP5,
ASI and Lebedev retrieval model data (bottom).

it appears that sea surface temperature dominates (7 %). The
sea surface salinity only contributes in very small areas in
the Fram Strait, where the sea surface temperature and salin-
ity are higher (< 1 %).

The propagating errors from ORAP5 uncertainties to the
brightness temperature simulations are shown in Table 2.
Similar to the method used in Fig. 5 one parameter varies
over a range of values whereas all other parameters are fixed
to a default value. The range of values is set to be the ORAS5
monthly uncertainty of November (Table 1). At that time, the
sea ice thickness uncertainty is higher than in March as it is
in the middle of the sea ice growth season. This calculation
is performed twice, once for thin sea ice (10 cm) and once
for a thick sea ice (50 cm) (except in the case of varying sea
ice thickness). For both sea ice thickness values, the ORAP5
sea ice thickness uncertainty of 24 cm dominates the simu-
lated brightness temperature signal with a value up to 152 K
in MA2013. The influence of all other physical properties do
not exceed more than 8 K except the sea ice salinity with val-
ues up to 15 K. The effect of the sea ice temperature and sea
surface salinity vanishes in this case of thin sea ice.

For a more detailed analysis on the contribution of sea
ice thickness and concentration to the modeled brightness
temperatures, a sample freeze-up situation is investigated at
a point located in the Laptev Sea (77.5◦ N, 137.5◦ E) from
October to November 2012 (Fig. 6). The observational sea
ice concentration product ASI (ARTIST Sea Ice algorithm)
(Kaleschke et al., 2001; Spreen et al., 2008) shows a rapid
freeze-up to 80 % sea ice coverage in just a few days. The
brightness temperatures of SMOS measurements and the
KA2010 and MA2013 models show high agreement with
some exceptions on the first days of the freezing period,
which starts around the 25 October. The simulated bright-

ness temperatures appear to underestimate the SMOS mea-
surements at the beginning of the season, which leads to a
more linear brightness temperature increase rather than a log-
arithmic shape as observed from the SMOS measurements.
However, the simulated sea ice concentration of ORAP5 is
lower than the observed ASI sea ice concentration and needs
almost 2 weeks to catch up to the same coverage as ASI.
The sea ice thickness, in contrast, shows a fast thickening to
more than half a meter even before the main freeze-up event
takes place. The sea ice growth model of Lebedev (1938)
accumulates sea ice as a function of the temperature differ-
ence between the surface air temperature and freezing point
of water as well as the number of freezing days below zero
degrees. In contrast to the sea ice thickness of ORAP5, Lebe-
dev’s parameterization shows a gradual increase of ice thick-
ness throughout the freeze-up event. Following, we observe
an underestimation of sea ice concentration and an overes-
timation of sea ice thickness in the reanalysis over a range
of 2 weeks, whereas the SMOS brightness temperature only
deviate more than 20 K for 5 days.

4 Discussion

Our results indicate that brightness temperature differences
up to around 15 K, and even higher differences at the ice
edge, can be due to the usage of different radiative transfer
models (Fig. 2). Even though both models tend to have the
same signatures, KA2010 shows lower brightness tempera-
tures than the MA2013 in the whole Arctic. This was ex-
pected as the MA2013 model is able to take multiple sea ice
layers into account, as well as the radiometric effect of snow
on top of sea ice, whereas KA2010 only indirectly includes
the effect of snow with the representation of the thermo-
dynamic insulation effect. However, compared with SMOS
brightness temperatures, it appears that MA2013 driven with
the ORAP5 output overestimates brightness temperatures in
many parts of the Arctic, most pronouncedly in March in the
central Arctic region. This area is mostly covered by thick
sea ice. In contrast, KA2010 shows good agreement in the
central Arctic area.

The analysis shows spatial differences between SMOS
and simulated brightness temperatures throughout the Arc-
tic with largest differences in the outer Arctic regions for
November 2012 and March 2013. However, the sign of
the deviation changes according to the region. In the East
Siberian Sea both models simulate higher brightness tem-
peratures compared with SMOS, whereas lower values are
shown in the Canadian Basin. In the latter the fractional sea
ice coverage increased from almost open water to an aver-
age value of 60 % in November, whereas the coverage in the
East Siberian Sea stayed more or less constant at 100 % (not
shown here). To estimate the sea ice thickness from bright-
ness temperature measurements, the sea ice concentration be-
comes more important the thicker the sea ice gets. The rea-
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Table 2. Changes of simulated brightness temperatures in KA2010 and MA2013 related to alternating physical parameters. The range is
based on the ORAS5 uncertainties of November (Table 1). Two cases of thin sea ice (10 cm) and thicker sea ice (50 cm) are shown.

1TB at 10 cm in K 1TB at 50 cm in K
No. Parameter KA2010 MA2013 KA2010 MA2013 Default value Range

1 Sea ice thickness 120 152 120 152 0.1 m / 0.5 m 0–0.24 m
2 Sea ice concentration 4 6 8 8 100 % 95.6–100 %
3 Sea ice temperature 0 0 0 1 −5 ◦C −6–−5 ◦C
4 Snow depth 3 4 1 1 Ice thickness * 0.1 0–0.03 m
5 Sea surface salinity 0 0 0 0 30 g kg−1 29.8–30.2 g kg−1

6 Sea ice salinity 2 7 15 12 8 g kg−1 4–12 g kg−1

sons are as follows. (1) The brightness temperature differ-
ence between ice and water is higher for thicker ice, thus a
changing ice concentration changes the mixture’s brightness
temperature more than for thinner ice. (2) Due to the lower
sensitivity of the L-band signal to ice thickness for thicker
ice, the brightness temperature difference induced by chang-
ing ice concentration leads to a higher ice thickness differ-
ence for thicker ice than for thinner ice.

Here, we provide sea ice fractional coverage from our re-
analysis to the radiative transfer models and are thus able to
reduce the uncertainty of sea ice fraction changes compared
to studies with an assumption of a constant 100 % sea ice
concentration coverage (Table 2) (Tian-Kunze et al., 2014).

At a sea ice thickness of around 50 cm, an uncertainty of
5 % fractional sea ice coverage accounts for a difference of
8 K (Kaleschke et al., 2010), which in turn can result in a sea
ice thickness uncertainty of more than 10 cm. In occasional
events, the deviation of sea ice concentration from the reanal-
ysis data to the here-investigated ASI sea ice concentration
can be even higher, with differences up to 40 % (Fig. 6). The
largest error is due to the sea ice thickness with an estimated
uncertainty of 24 cm for ORAP5 in November 2012, corre-
sponding to a brightness temperature difference of 120 and
152 K for thin ice (below 24 cm) in KA2010 or MA2013,
respectively. This uncertainty is more than 10 times higher
than all other uncertainties in the case of typical first-year
sea ice represented by the default values in Table 2, with the
exception of sea ice salinity, which is a function of sea ice
thickness and sea surface salinity (Ryvlin, 1974). This is ben-
eficial for assimilation purposes as 93 % in MA2013 or 90 %
in KA2010 of all brightness temperature deviations between
SMOS and the radiative transfer models are rooted in the sea
ice thickness (compare Table 2).

In order to assimilate thin sea ice thickness it is crucial
to understand the impact of all physical parameters on the
brightness temperature simulations. Kaleschke et al. (2012)
found sea ice concentration and thickness changes in thin sea
ice areas are the most important variables for L-band bright-
ness temperatures. We here support this evidence as our most
dominating dependencies for brightness temperature simula-
tions are found to be the same throughout the Arctic (Fig. 5).

Over thick sea ice in the central Arctic we find the sea ice
and/or snow surface temperature to be the most influential
parameter. Since sea ice concentration is close to 100 % and
sea ice thickness is above the L-band sensitivity, brightness
temperature changes are due to the impact of snow depth and
sea ice and/or snow temperature changes that come with it. In
thin sea ice regions, variations of sea ice temperature, snow
depth and sea surface salinity can have an accumulated influ-
ence of up to more than 25 K (not shown).

Our results also show a significant influence of sea surface
temperature and salinity in areas of thin sea ice close to the
ice edge. This is explained by a fractional sea ice coverage of
less than 10 %, where brightness temperature variations are
dominated by changing open water emissivities. We point out
that sea surface temperature and salinity get more important
in regions with lower sea ice coverage. Therefore, in the case
that partially ice-covered areas are taken into account we cau-
tion that a climatology of sea surface temperature or salinity
might not be sufficient enough to picture the transition be-
tween open water towards the sea ice edge. This is especially
true for the declining sea ice observed in the recent years as
the sea ice edge is likely to be located at a different location
than in the previous years.

A comparison of SMOS and simulated brightness temper-
atures showed a Pearson correlation of 0.97–0.98. However,
most of the data points are located at brightness temperatures
for either the saturated case at 240 K (255 K) for KA2010
(MA2013) or open water areas at around 100 K (Fig. 4), es-
pecially in March. The reason is that 92 % of all simulated
data points over sea ice are larger than 220 K. The overall
performance in terms of the range of simulated brightness
temperatures over sea ice is explained by the Kolmogorov–
Smirnov test (α = 0.1). The test determines the accordance
of two different data sets without making any assumption
about the distribution of the data (Sachs and Hedderich,
2006). In the Kolmogorov–Smirnov test, 1−α is the prob-
ability that two data sets originate from the same distribution
or, in other words, α is the confidence to accept a hypothesis.
Here, the test only accepts the brightness temperature distri-
bution from March 2013 of KA2010. Therefore, it is most
important for the model to agree with the saturated case in
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order to determine reasonable areas for brightness tempera-
ture assimilation in that KA2010 in March agrees most. We
specifically concentrate on the saturated case, as it is next
to water the only reliable reference point we can address for
a quality assessment of the models. Thus, based on ORAP5
reanalysis input data and electromagnetic formulations used
here, we suggest using the KA2010 radiative transfer model
for brightness temperature assimilation. However, for the re-
maining 8 % of all simulated data points with intermediate
sea ice thickness and concentration we are unable to find a
favorable radiative transfer model as the results of the models
are superimposed by the sea ice thickness uncertainty. Note
that this is not a statement about the quality of the radiation
model in general but rather a suggestion for the specific as-
sumptions and characteristics of the LIM2 sea ice models
that were used in this study.

Although the statistical representation of brightness tem-
peratures is well captured, we find large discrepancies in
times of rapid sea ice changes (Fig. 6). For an example
case, ORAP5 appears to have difficulties simulating freeze-
up events, in which we see an overestimation of sea ice thick-
ness and an underestimation of sea ice concentration. The
assimilation of OSI-SAF sea ice concentration into ORAP5
pushes the sea ice concentration into the right direction but
appears to be too slow to picture changes in a short period of
time. A smaller fractional sea ice concentration and an over-
estimation of sea ice thickness then lead to simulated bright-
ness temperatures that fit with observed SMOS brightness
temperatures, even though both parameters are divergent at
this time.

5 Summary and conclusion

For the direct assimilation of satellite measurements, in this
case brightness temperatures, it is necessary to generate a
modeled first guess using the output from a numerical model
and a forward/observation operator to translate geophysical
variables into measurement space. We tested the approach
using simulations from ORAP5 and two radiative transfer
models to compute L-band brightness temperatures. These
simulations were then compared against actual SMOS ob-
servations. This is normally the first step in a data assim-
ilation framework, often referred to as monitoring of first-
guess departures. We used the radiative transfer models from
Kaleschke et al. (2010) (denoted as KA2010) and Maaß
et al. (2013) (MA2013) and focused on the winter season
2012/2013, namely November 2012 and March 2013, ac-
counting for the start and the end of the winter season, re-
spectively.

The results of this study indicate that both radiative trans-
fer models are able to simulate Arctic-wide brightness tem-
peratures with realistic spatial and temporal variability, e.g.,
we are able to observe a similar increase of simulated and
observed brightness temperatures from thin to thicker sea ice

areas. Although both models show a decent fit in November,
the model of Maaß et al. (2013) tends to overestimate bright-
ness temperatures in the saturated case of thick sea ice in
March with the configurations applied here. A Kolmogorov–
Smirnov test thus only accepts the brightness temperature
distribution of KA2010 in March by taking the SMOS ob-
servation as the reference probability distribution. All oth-
ers, especially the results of MA2013 in March, are rejected.
For starting the integration of SMOS measurements into the
ORAP5 data assimilation system we therefore suggest using
the model of KA2010 for a brightness temperature assimi-
lation into the ORAP5 reanalysis project. This suggestion is
primarily based on a comparison between SMOS and sim-
ulated brightness temperatures over thick sea ice and open
water and does not make a statement about the ability of the
model to reproduce brightness temperatures in thin sea ice
conditions.

By analyzing the sensitivity of the brightness temperatures
with respect to geophysical parameters, we expect the largest
impact of SMOS observations in the marginal ice zone. Here,
the most important parameters are the sea ice thickness and
fractional sea ice coverage. This result supports the findings
of other studies (e.g., Kaleschke et al., 2012). In thicker sea
ice areas the dominant parameter is the sea surface temper-
ature since the sea ice fractional coverage is close to 100 %
and sea ice thickness changes do not affect the measurements
at 1.4 GHz. The influence of the sea ice temperature, snow
depth and sea ice salinity increases in thinner sea ice areas
but will still be less than the sea ice thickness and concentra-
tion. However, the smaller the fractional sea ice coverage is,
the more important the sea surface temperature and salinity
become. This becomes relevant at sea ice concentration be-
low 15 %, usually found in small regions at the very outer sea
ice edge.

Even though the sea ice thickness and concentration in
ORAP5 are partly constrained by observations (Tietsche
et al., 2015), the model shows difficulties representing a rapid
freeze-up event with an underestimation of sea ice concentra-
tion and an overestimation of sea ice thickness. However, the
corresponding resulting brightness temperatures are in agree-
ment with the SMOS observations.

It is therefore strongly recommended to assimilate bright-
ness temperature measurements from 6 to 37 GHz simultane-
ously with L-band measurements constraining fractional sea
ice coverage and thickness consistently at the same time. The
observation operators will become available together with
an observational data set spanning almost a decade. Never-
theless, more collocated in situ or laboratory measurements
of ice and snow parameters and multi-frequency brightness
temperature are needed to advance our understanding of ra-
diative transfer modeling.

It should be noted that current analysis systems using de-
rived geophysical variables at data product levels 2 to 4 al-
ready provide very promising results (e.g., Yang et al., 2014;
Xie et al., 2016; Chen et al., 2017). However, assimilating
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measurements such as brightness temperatures or radiances
rather than a set of individually retrieved geophysical has a
number of advantages:

– The first guess in observation space is based on a consis-
tent set of input data. This ensures that the observation
errors for the different measurements remain uncorre-
lated and are fully traceable to the instrument error. It
is also ensured that the same observation is only used
once.

– Systematic differences between the modeled first guess
and the individual measurements can be treated consis-
tently and a bias correction scheme can be included in
the data assimilation scheme.

– Processing measurements at their native resolution al-
lows a better characterization of the representativity er-
ror, which accounts for the different spatial and tempo-
ral support of the model and the observations.

– The quality control and data thinning can be done con-
sistently in observation space, addressing the error cor-
relations in the original measurements. In addition, in
situ measurements remain independent information that
can be either assimilated in the analysis or used for val-
idation purposes or for calibrating the model or the for-
ward operator.

– Finally, the Jacobians can be used in the analysis to de-
termine the relative weight of the observations.

Adjusting the existing systems for the direct assimilation of
measurements is a substantial task and requires dedicated ad-
ditional investments in manpower and money. However, the
assimilation of brightness temperatures will eventually result
in more accurate and consistent analyses of the true state of
Arctic sea ice at any given time.

Data availability. L3B brightness temperatures are provided by the
CliSAP Integrated Climate Data Center (ICDC) on http://icdc.cen.
uni-hamburg.de/1/daten/cryosphere/l3b-smos-tb.html (Tian-Kunze
et al., 2012). The reanalysis data of ORAP5 were kindly pro-
vided by ECMWF. The ORAS5 uncertainties will be soon
available at http://www.ecmwf.int/en/research/climate-reanalysis/
browse-reanalysis-datasets (ECMWF, 2018).
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