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Abstract. Effects of the short-term temporal variability
of meteorological variables on soil temperature in north-
ern high-latitude regions have been investigated. For this,
a process-oriented land surface model has been driven us-
ing an artificially manipulated climate dataset. Short-term
climate variability mainly impacts snow depth, and the ther-
mal diffusivity of lichens and bryophytes. These impacts of
climate variability on insulating surface layers together sub-
stantially alter the heat exchange between atmosphere and
soil. As a result, soil temperature is 0.1 to 0.8 °C higher when
climate variability is reduced. Earth system models project
warming of the Arctic region but also increasing variability
of meteorological variables and more often extreme meteo-
rological events. Therefore, our results show that projected
future increases in permafrost temperature and active-layer
thickness in response to climate change will be lower (i)
when taking into account future changes in short-term vari-
ability of meteorological variables and (ii) when representing
dynamic snow and lichen and bryophyte functions in land
surface models.

1 Introduction

Soil temperature is an important physical variable of a terres-
trial ecosystem since it controls many functions of microbes
and plants. In permafrost regions, soil temperature also de-
fines the biologically active part of the soil that is thawing
in summer (active layer). Therefore, impacts of future warm-
ing on soil temperature have been investigated in numerous
experimental and modelling studies during the past decades.

Large-scale soil temperature is mainly determined by vertical
heat conduction. Therefore, soil temperature usually follows
an annual sinusoidal cycle of air temperature with a damped
oscillation (Campbell and Norman, 1998). That is why the
projected large increase in air temperature in the Arctic re-
gion over the next 100 years (Ciais et al., 2013) is raising
large concerns about the response of soil temperature and
hence permafrost thawing in the Arctic. Indeed, measure-
ments during the last decades already show an increasing per-
mafrost temperature (Romanovsky et al., 2010) and active-
layer thickness (Callaghan et al., 2010) in response to global
warming. Also, initial modelling results confirm such sim-
ple response of increasing future soil temperature and active-
layer thickness (Koven et al., 2011; Schaefer et al., 2011;
Lawrence et al., 2012; Peng et al., 2016). As a result of
increasing soil temperature and active-layer thickness, het-
erotrophic respiration is suggested to increase because of the
temperature response of biochemical functions (Arrhenius,
1889; van’t Hoff, 1896; Lloyd and Taylor, 1994) and the
additional availability of decomposable substrate (Schaphoff
et al., 2013; Koven et al., 2015) potentially leading to a pos-
itive climate—carbon cycle feedback (Zimov et al., 2006;
Beer, 2008; Heimann and Reichstein, 2008).

Meteorological variables, such as air temperature and pre-
cipitation, will not only change gradually into the future,
but also their short-term variability and frequency of ex-
treme events is projected to change (Easterling et al., 2000;
Rahmstorf and Coumou, 2011; Seneviratne et al., 2012). For
instance, for northern high-latitude regions, climate models
project an increase of the annual maximum of the daily max-
imum temperature by 4 °C by 2100 (Seneviratne et al., 2012)
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while annual maximal daily precipitation is projected to in-
crease by 20 % in these areas by 2100. At the same time,
many ecosystem functions respond non-linearly to environ-
mental factors; cf. for instance the temperature-dependence
of biochemical functions (Arrhenius, 1889). Therefore, ef-
fects of the short-term (daily to weekly) variability of meteo-
rological variables on the long-term (decadal) mean ecosys-
tem functions can enhance or dampen the effect of a general
gradual warming (Reichstein et al., 2013; Schwalm et al.,
2017). That is why there is a strong need to understand
such effects of climate variability on ecosystem states and
functions in addition to gradual changes in order to reliably
project future ecosystem state dynamics and climate. In this
context, effects of climate variability on soil temperature in
northern high-latitude environments have not been studied
so far: In addition to a gradual warming of Arctic air and soil
temperature, what are the specific effects of changing short-
term variability of meteorological variables on the long-term
mean annual or seasonal soil temperature? Will a short-term
variability change have the capability to enhance or dampen
the anticipated soil warming?

Due to the well-known dampening effects of snow, near-
surface vegetation and the organic layer (Yershov, 1998,
pp. 361-369) (Goodrich, 1982; Zhang, 2005; Jafarov and
Schaefer, 2016; Wang et al., 2016), one would expect no
to little additional effects of changing air temperature fluc-
tuations on soil temperature, in particular on subsoil and
permafrost temperature. However, air temperature variabil-
ity will have an impact on snow height indirectly through
snow density (Abels, 1892) and also directly when temper-
ature periodically rises above the melting point. In addition,
the dependence of soil and near-surface vegetation conduc-
tivity on water and ice content (Campbell and Norman, 1998)
complicates the picture because water and ice contents them-
selves are also temperature-dependent. Snow manipulation
experiments have proven the large spatial heterogeneity of
soil temperature in cold regions due to snow height hetero-
geneity (Wipf and Rixen, 2010). The temporal variability of
insulating layers and their properties should be of similar im-
portance for soil temperature.

At high latitudes, near-surface vegetation consists to
a large extent of lichens and bryophytes, which often form
a continuous layer on the ground. Lichens are symbiotic or-
ganisms consisting of a fungus and at least one green alga
or cyanobacterium, while bryophytes are non-vascular plants
which have no specialized tissue such as roots or stems.
Both groups cannot actively control their water uptake or
loss, but they tolerate drying and are able to reactivate their
metabolism on rewetting. Typical species of upland regions
at high latitudes are feather bryophytes such as Hylocomium
splendens and Pleurozium schreberi or the lichen Cladonia
stellaris. This near-surface vegetation grows on top of any
organic horizon and is hence important for heat fluxes be-
tween land and atmosphere. In particular also for this layer,
thermal and hydrological properties depend highly on water
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and ice content. Hence, lichens and bryophytes dynamically
influence the vertical heat conduction (Porada et al., 2016a).

This study investigates the effects of temporal variability
of meteorological variables on snow and lichen/bryophyte
insulating properties and hence soil temperature in per-
mafrost regions. For this, a recently advanced land surface
model (LSM) has been used that also represents permafrost-
specific processes, and in particular a dynamic snow repre-
sentation and a dynamic near-surface vegetation model (Po-
rada et al., 2016a). While the model has been evaluated
against several types of observations in other studies (Ekici
et al., 2014, 2015; Porada et al., 2016a; Chadburn et al.,
2017), here mean annual ground temperature (MAGT) is
evaluated again against different observations or other mod-
elling studies. Then, the model is run with two distinct cli-
mate forcing datasets, one control dataset and one that has
identical long-term averages but reduced day-to-day vari-
ability of meteorological variables, such as air temperature
and precipitation. The differences in long-term average re-
sults from these two model runs will therefore demonstrate
the exclusive effects of temporal variability of climate vari-
ables and extreme meteorological events on MAGT in high-
latitude permafrost regions.

2 Methods
2.1 The land surface model JSBACH

The Jena Scheme for Biosphere—Atmosphere Coupling in
Hamburg (JSBACH) is the land surface scheme for the Max
Planck Institute Earth System Model (MPI-ESM) (Raddatz
et al., 2007; Reick et al., 2013). It runs coupled to the atmo-
sphere inside the ESM or offline forced by observation-based
or projected climate input data. This model has recently been
advanced by several processes which are particularly impor-
tant in cold regions (Ekici et al., 2014): coupling of soil hy-
drology and heat conduction via latent heat of fusion and the
effects of soil ice and water content on thermal properties,
and a snow model for soil insulation. The model simulates
heat conduction and soil hydrology in a 1-D vertical scheme
using several layers (Hagemann and Stacke, 2015). The ver-
sion used in this study has been updated from the one used
in Ekici et al. (2014) by two additional deep soil layers for
thermal and hydrological processes of 13 and 30 m, respec-
tively, which lead to a total potential soil profile of 53 m.
However, soil hydrological processes are constrained by the
depth to the bedrock. Another constraint on soil hydrological
processes is the potentially available pore volume, which is
reduced by ice content.

In contrast to the model version described in Ekici et al.
(2014), here we use a further advanced snow module that in-
cludes dynamic snow density and snow thermal properties
(Ekici, 2015). In this approach, the snow density (ospow) fol-
lows a similar representation to that in Verseghy (1991). It is
initialized with a minimum value of ppi, = 50kg m~3. Then

www.the-cryosphere.net/12/741/2018/



C. Beer et al.: Climate variability effects on permafrost temperature 743

the compaction effect is included as a function of time and
a maximum density (omax = 300kg m~3) value (Eq. 1),

—0.002 - At
3600

where At is the time step length of model simulation. Addi-
tionally, when there is new snowfall, snow density is updated
by taking a weighted average of fresh-snow density (omin)
and the calculated snow density value of the previous time
step.

Snow density controls snow heat conduction parameters.
Equations (2) and (3) show the relationships of volumet-
ric snow heat capacity (cspow) and snow heat conductivity
(Asnow) to snow density following the approach of Abels
(1892) and Goodrich (1982). With no previous snow layers,
Csnow 18 1nitialized with an average value of 0.52MJ m3K!
and Agnow With 0.1 Wm~! K1,

t+1

Psnow = (Ioénow - pmax) €Xp + Pmax (1)

Csnow = Cice * Psnow» )

where cjce is the
(2106Tkg~' K1), and

specific heat capacity of ice

Asnow = 2.9 X 1076 (,Osnow)z- 3)

Another important advancement of the JSBACH model
version used in this study is the inclusion of a dynamic
lichen and bryophyte model (Porada et al., 2013; Porada
et al., 2016a). This model is designed to predict lichen and
bryophyte net primary productivity (NPP) in a process-based
way from available light, surface temperature, atmospheric
carbon dioxide concentration, and water content of lichens
and bryophytes. Furthermore, it is applicable when estimat-
ing various impacts of lichens and bryophytes on biogeo-
chemical cycles (Lenton et al., 2016; Porada et al., 2016b;
Porada et al., 2017). The model includes a dynamic represen-
tation of the surface cover which depends on the balance of
growth due to NPP and reduction by disturbance, such as fire
(Porada et al., 2016a). The coverage of the layer determines
its influence on heat exchange between atmosphere and soil.
The layer thickness and porosity are set to 4.5 cm and 80 %,
respectively.

The lichen and bryophyte water balance is integrated into
the scheme of hydrological fluxes in JSBACH. In addition,
the lichen and bryophyte layer is fully integrated into the heat
conduction scheme and hence also functions as a soil insu-
lating layer (Porada et al., 2016a). Soil insulation depends on
the fractional grid cell coverage of the lichen and bryophyte
layer as well as on its hydrological status. Thereby, thermal
diffusivity of this layer is computed as a function of water,
ice and air content in the lichen and bryophyte layer (Po-
rada et al., 2016a). The simulated relations between thermal
properties of the lichen and bryophyte layer and water con-
tent agree well with field observations. Porada et al. (2016a)
provide a complete description of the dynamic lichen and
bryophyte model in JSBACH. The model version used here
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differs from Porada et al. (2016a) only with respect to the
parametrization of the snow layer, which has a slightly longer
compression time, and a few bug fixes. This updated version
is also used in Chadburn et al. (2017), where it shows good
agreement with site-level soil temperature observations.

2.2 Forcing data

The JSBACH model driver estimates half-hourly climate
forcing data using daily data of maximum and minimum
air temperature, precipitation, shortwave and longwave ra-
diation, specific humidity and surface pressure. We are using
global data at 0.5° spatial resolution, which has been pro-
duced following the description in Beer et al. (2014). The
historical data from 1901 to 1978 came from WATCH Forc-
ing Data (Weedon et al., 2011), and for the period 1979-
2010 European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA-Interim reanalysis data (Dee et al.,
2011) have been bias-corrected against the WATCH forcing
data following Piani et al. (2010) as described in Beer et al.
(2014).

For a specific additional projection into the future (RED-
VARfut, Sect. 2.4), meteorological data during 2011-2100
have been obtained from the Coupled Model Intercompari-
son Project Phase 5 (CMIP5) output of the Max Planck In-
stitute Earth System Model (Giorgetta et al., 2012) following
the representative concentration pathway (RCP) 8.5. Meteo-
rological data of the two grid cells representing the Canadian
and Russian sites were cut out and then also bias-corrected
to the observation-based period following Piani et al. (2010)
as described in Beer et al. (2014).

Grid cells are divided into four tiles according to the
four most dominant vascular plant functional types of this
grid cell (Ekici et al., 2014). This vascular vegetation
coverage is assumed to stay constant over the time of
simulation. In the model simulations used in this study,
we apply new soil parameters. Hydrological parameters
have been assigned to each soil texture class follow-
ing Hagemann and Stacke (2015) according to the per-
centage of sand, silt and clay at 1km spatial resolu-
tion as indicated by the Harmonized World Soil Database
(FAOMIASA/ISRIC/ISSCAS/JRC, 2012). Thermal parame-
ters have been estimated as in Ekici et al. (2014) at a 1 km
spatial resolution. Then, averages of 0.5° grid cells have been
calculated. Soil depth until bedrock follows the map used in
Carvalhais et al. (2014) based on Webb et al. (2000).

2.3 Meteorological forcing data with manipulated
variability

Based on the climate data described above (subsequently
called CNTL dataset), an additional climate dataset has been
developed. This dataset shows reduced day-to-day variabil-
ity but conserved long-term mean values as compared to
CNTL, as described in detail in Beer et al. (2014). The
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dataset with reduced variability is called REDVAR. In that
dataset, the variability of daily values is reduced by a vari-
ance factor of k = 0.25 (see Beer et al., 2014, for details),
but the mean seasonal cycle is conserved. The seasonal vari-
ability is represented by an 11-year running average across
the same dates. Differently from Beer et al. (2014), sea-
sonal means in the REDVAR dataset were exactly preserved
by normalization with respect to the CNTL dataset for the
annual quarters December—January—February, March—April—
May, June—July—August and September—October—-November
for each year individually.

For the specific additional projection until 2100 at site-
level scale, bias-corrected future climate data have been ma-
nipulated such that the short-term variability of meteorolog-
ical variables is dynamically reducing during 2011-2100, in
contrast to the REDVAR dataset for which a constant reduc-
tion factor has been applied. This additional artificial dataset
is called REDVARfut in the following. For REDVARfut, the
variance factor k is set to change linearly from 1 to 0.1 over
these 90 years following Eq. (4):

k=1- (2.7*5 -d) , @)

where d is the day relative to 1 January 2011. This has been
done for two grid cells representing one location in Canada
(medium recent MAGT) and one location in eastern Siberia
(cold recent MAGT) (cf. Sect. 2.4). The CNTL and RED-
VARfut datasets are identical for the time period before 2011.

2.4 Model experiments

For addressing the research question about effects of cli-
mate variability on mean annual ground temperature in per-
mafrost regions (cf. Sect. 1), artificial model experiments
are conducted in this study. In addition to the control model
run (CNTL), in one model experiment called REDVAR the
land surface model has been driven by an artificial climate
dataset that represents a reduced short-term (day-to-day) cli-
mate variability while the decadal averages are conserved
(Sect. 2.3). Then, differences in decadal averages of sim-
ulated snow and lichen and bryophyte properties and ulti-
mately soil temperature can be interpreted exclusively due to
a difference in variability of meteorological variables.

Two different kinds of such experiments are presented in
this study. The main experiments are conducted at the pan-
Arctic scale over historical to recent time periods (1901-
2010). Here, CNTL and REDVAR model runs are done ex-
actly the same way including the spin-up approach for bring-
ing state variables, such as soil temperature, in equilibrium
with pre-industrial climate. At the end, results are compared
from “two different worlds” with the same average climate,
one with a constantly lower variability of meteorological
variables than the other.

The second kind of experiments has been performed at
site-level scale. Here, JSBACH has been run over the period
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1901-2100 (CNTL), and a second model run with constantly
increasing reduction of climate variability (REDVAR(fut, see
Sect. 2.3) has been performed for the period 2011-2100.
This experiment additionally clarifies the effects of chang-
ing future climate variability on permafrost temperature. The
REDVAR(fut experiment additionally contributes to the ques-
tion on how climate data should be prepared in order to per-
form so-called offline model experiments in the future. Of
particular concern are potential biases in future projections
of ecosystems states using LSMs because in these projec-
tions anomalies of raw ESM output is usually added to re-
cent short-term variability of meteorological variables. Even
if that is the most reliable approach of conducting such future
projections at the moment, still we need to address the ques-
tion of how high the bias could be just because a change in
short-term variability has been neglected. The REDVARfut
experiment has been conducted for two grid cells represent-
ing two sites, one Canadian site at about 62.2° N, —75.6°E
with MAGT of about —5 °C, and one eastern Siberian site at
about 72.2° N, 147° E with MAGT of about —10 °C. At these
sites, JSBACH results differed by only 0.7 and 0.2 °C from
the borehole measurements.

State variables have been brought into equilibrium using
a spin-up approach prior to the transient model runs (1901—
2010 or 1901-2100). We assume the time period 1901-1930
to be a representative for pre-industrial climatology follow-
ing Cramer et al. (1999) and McGuire et al. (2001). There-
fore, randomly selected years from that period have been
used. For a proper spin-up of soil physical state variables in
permafrost regions, we suggest a two-step procedure. First,
a 50-year model run with the above-described randomly se-
lected climate from the period 1901-1930 has been done
without considering any freezing and thawing. This first spin-
up will bring the soil temperature and water pools in an ini-
tial equilibrium with pre-industrial climate. In a second step,
another 100-year spin-up with the same climate data is per-
formed, but now freezing and thawing are switched in order
to have all pools including soil ice and water content, and soil
temperature in equilibrium with climate.

2.5 Mean annual ground temperature evaluation

The permafrost-enhanced JSBACH model has been inten-
sively evaluated elsewhere (Ekici et al., 2014, 2015; Po-
rada et al., 2016a). The model version used here has re-
cently also been extensively evaluated against site-level
observations (Chadburn et al., 2017). In this paper, the
simulated MAGT is again evaluated against various other
datasets at different spatial scales. First, JSBACH model
results are compared to model results from the Geophysi-
cal Institute Permafrost Lab (GIPL) 1.3 model (Marchenko
et al.,, 2008) over Alaska for the period 1980-1989. For
this we downloaded GIPL model results at 2 km x 2 km grid
cell size from http://arcticlcc.org/products/spatial-data/show/
simulated-mean-annual-ground-temperature. Then, the map
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was reprojected to geographic lat-lon using a bilinear
method and further aggregated to 0.5° grid cell size in order
to be comparable with JSBACH outputs. For this compar-
ison we used JSBACH mean soil temperature results from
layer 7 (38 m depth) and during 1980-1989. Then, spatial
details of MAGT are compared to the information from the
Geocryological Map of Yakutia (Beer et al., 2013a) using
also model results from layer 7 but a mean value during
1960-1989. The depth of 38 m ensures that temperature vari-
ation is negligible and hence comparable to the information
in the observation-based map. The time period 1960-1989
represents observations used to create this map (Beer et al.,
2013a). Last, JSBACH subsoil temperature is compared to
pan-Arctic borehole measurements collected by the Global
Terrestrial Network for Permafrost (GTN-P) initiative (Ro-
manovsky et al., 2010; Christiansen et al., 2010; Smith et al.,
2010) using model results from the layer corresponding to
the measurement depth and from the year 2008. The re-
spective GTN-P Thermal State of Permafrost (TSP) snapshot
data (International Permafrost Association , IPA) was down-
loaded from the National Snow and Ice Data Center (NSIDC)
at http://nsidc.org/data/G02190\T 1\textbackslash#.

2.6 Analysis

In order to analyse effects of variability of meteorological
variables on snow and near-surface vegetation properties and
hence soil temperature, model results from the period 1980—
2009 have been averaged. As the averages of climate forc-
ing data is similar between both experiments, REDVAR and
CNTL, (relative) differences in long-term average model re-
sults, such as snow depth or soil temperature, show the ef-
fects of short-term variability of climate forcing data on
ecosystem states and functions. Usually, differences are cal-
culated as REDVAR minus CNTL, and relative differences
accordingly as (REDVAR—CNTL)/CNTL. Therefore, rel-
ative differences are displayed as a fraction (no unit). In
Figs. 4 to 9 the grey area represents all land outside the (spo-
radic) permafrost zone which is masked by applying a long-
term mean air temperature threshold of —3 °C.

In order to evaluate the short-term variability of the RED-
VARfut and CNTL time series in Sect. 3.6, the mean absolute
difference (MAD) of both daily time series is computed for
each year as

1 n
MAD (x,y) =~ > |x; = yil. )
i=1
Here, i denotes the day of the year, and n = 365 or n = 366.
3 Results

3.1 Mean annual ground temperature evaluation

When comparing against a global dataset of MAGT at depth
ranging usually from 1 to 20 m (GTN-P initiative), JSBACH
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Figure 1. Evaluation of mean annual ground temperature against
GTN-P borehole measurements. Model results are taken from the
depth of observation for each point.
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Figure 2. Difference in subsoil temperature (°C) between the mod-
els JSBACH and GIPL1.3 from the University of Alaska Fairbanks
(1980-1989 average). JSBACH results from 38 m depth.

shows almost no bias (—0.4 °C) and a root mean square er-
ror of 3 °C Fig. 1. JSBACH represents the spatial variation in
MAGT reasonably well with a coefficient of determination
of 0.5. Figure 1 shows that, for a number of measurements
between 0 and —1 °C, JSBACH simulates a larger variation
ranging from 2 to —8 °C. In addition, JSBACH clearly under-
estimates MAGT at three borehole sites in the Canadian High
Arctic (data about —10 °C, model about —22 °C), which re-
quires further evaluation, for example about the representa-
tiveness of these data points or about the validity of snowfall
input data to the model.

When looking at alternative estimates of spatial details of
MAGT, JSBACH underestimates or overestimates MAGT by
about 2 to 4 °C depending on the location (Figs. 2 and 3).
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Figure 3. Difference in subsoil temperature (°C) between the JSBACH model (1960-1990 average) and the Geocryological Map of Yakutia
(Beer et al., 2013a). JSBACH results from 38 m depth. The right-hand-side figure shows the difference to MAGT mean minus standard
deviation (spatial uncertainty) from the Geocryological Map of Yakutia.

The JSBACH results for Alaska are compared to another
model output. ISBACH overestimates MAGT in many areas
in Alaska by several °C, while also underestimating MAGT
at the southern end of the North Slope (Fig. 2). In eastern
Siberia (Yakutia), the model usually underestimates MAGT
by 2 to 6°C (Fig. 3) as compared to an observation-based
map (Beer et al., 2013a). However, the cold bias is largely
reduced when taking the uncertainty (standard deviation) in
the original geocryological map into account (Fig. 3). Then,
the difference is negligible in many regions. Still, there is
a very strong cold bias in the mountainous regions of east-
ern Siberia. When taking the map uncertainty into account
(Fig. 3), the model still underestimates MAGT by about 6
to 8 °C here. This bias also cannot be explained by the gen-
eral warm bias of very low MAGT in the geocryological map
when comparing to GTN-P observations (Beer et al., 2013a).
In fact, very low snow depth model results in these areas of
about 15 cm on average (data not shown) seem to be the rea-
son for a too-low insulation of soil during a very cold winter.

3.2 Climate forcing data comparison

The long-term (1980-2010) averages of air temperature dif-
fer by only 0.015 °C at maximum or 0.004 % between CNTL
and REDVAR in permafrost regions (Fig. 4a). Long-term
precipitation averages are also similar between the datasets,
with differences of —0.2 to 0.1 % (Fig. 4b).

In contrast, the difference in short-term variability of mete-
orological variables at daily resolution between both datasets
is remarkable. Although the statistical transformation of vari-
ables has been performed at residuals to the mean seasonal
cycle (Sect. 2.3), still the standard deviation of air temper-
ature at daily resolution is usually 0.2 to 1°C lower in the
REDVAR dataset than in CNTL, or 2 to 10 % (Fig. 5a). That
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means that temperature of warmer days have been reduced,
while air temperature of colder days have been increased
such that the overall mean air temperature is similar. Inter-
estingly, the amount of variability difference between the two
datasets also depends on the location. For example, smaller
differences in standard deviation are visible in colder regions,
such as eastern Siberia and the Canadian High Arctic. One
explanation for this pattern is the higher mean seasonal cy-
cle in continental climate, which has not been manipulated
(Sect. 2.3) and which therefore dominates stronger the over-
all variability, which is analysed in Fig. 5a. REDVAR pre-
cipitation standard deviation is also usually 2 to 6 % lower
than precipitation standard deviation of the CNTL dataset
(Fig. 5b). Hence, in this artificial climate dataset, extremely
heavy rainfall or snowfall is reduced, while small precipita-
tion amounts are increased.

3.3 Climate variability effects on snow properties

Importantly, snow depth is up to 20 % higher under condi-
tions of reduced climate variability (Fig. 6a). In fact, the
snow depth difference can be explained by differences in
snow water equivalents of the same magnitude (Fig. 6b). In
contrast, the slightly higher snow density under reduced cli-
mate variability (Fig. 6¢) is not able to explain the difference
in snow depth. Snowmelt flux differences in autumn between
both model experiments of 10 to 40 % (Fig. 7) demonstrate
clearly that, under reduced air temperature variability dur-
ing the beginning of the snow season, individual snowmelt
events and hence the total snowmelt flux are reduced. Besides
snow depth, the thermal diffusivity of snow controls the over-
all heat conduction. Figure 6d shows that, under conditions
of reduced climate variability, thermal diffusivity of snow is
0.5 to 2.5 % higher in high-latitude regions.
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(a) Air temperature difference (°C).

(b) Precipitation relative difference (-).

Figure 4. Comparison of 1980-2009 averages of meteorological variables (REDVAR—CNTL) or (REDVAR—CNTL)/CNTL. Air temper-

ature colour scale adjusted to Fig. 9.

(a) Air temperature standard deviation dif-

ference (°C).
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Figure 5. Comparison of 1980-2009 standard deviations of meteorological variables (REDVAR—CNTL) or (REDVAR—CNTL)/CNTL.

3.4 Climate variability effects on thermal diffusivity of
lichens and bryophytes

Thermal diffusivity of lichens and bryophytes differs only
marginally between the REDVAR and CNTL model experi-
ments over most of the northern high-latitude permafrost re-
gions (Fig. 8a). In western Siberia and Quebec, winter ther-
mal diffusivity of bryophytes and lichens is up to 12 % lower
under conditions of reduced climate variability (Fig. 8a). In
contrast, summer diffusivity of bryophytes and lichens is
usually higher under reduced variability of meteorological

www.the-cryosphere.net/12/741/2018/

variables (Fig. 8b). Under these climate conditions, it rains
a little bit more often and air temperature is not extreme, re-
sulting in more moist conditions for lichens and bryophytes,
and hence higher thermal diffusivity. In tundra the difference
is about 2 %, while in the boreal forest it can be up to 6 %
(Fig. 8b).
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(c) Snow density.
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(d) Snow thermal diffusivity.

Figure 6. Comparison of mean winter (DJF) season snow properties during 1980-2009. Shown is the relative difference

(REDVAR—-CNTL)/CNTL expressed as a fraction (-).

3.5 Ultimate climate variability effects on soil
temperature

The estimated long-term average of both topsoil and sub-
soil temperature differs between REDVAR and CNTL ex-
periments (Fig. 9a and b). Soil is 0.1 to 0.8 °C warmer when
climate variability is reduced (Fig. 9a and b). These results
and also the spatial pattern are similar between topsoil and
subsoil values (Fig. 9a and b), with a slightly larger effect on
topsoil temperature. Soil temperature differences are larger
in winter, with values up to 1.5 °C, than in summer, when
differences are typically 0.2-0.5 °C (Fig. 9c and d).

The Cryosphere, 12, 741-757, 2018

3.6 Effects of future changes of climate variability on
soil temperature

In order to analyse effects of changing variability of meteo-
rological variables into the future, the results of the respec-
tive additional future projections at two sites are displayed
as time series in Figs. 10 and 11. In contrast to the continen-
tal model experiments, in these additional point simulations
the variability of meteorological variables is increasingly re-
duced during 2011-2100 in the REDVARfut input dataset,
while the historical climate until 2010 is identical (Sect. 2.3).

The bias-corrected MPI-ESM CMIP5 model output fol-
lowing RCP8.5 shows increasing air temperature at both lo-
cations (solid blue line in Figs. 10a and 11a). Precipitation is
also increasing but not constantly (solid blue line in Figs. 10b
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Figure 7. Autumn (SON) 1980-2009 average snowmelt relative dif-
ference. Relative difference (REDVAR—CNTL)/CNTL expressed
as a fraction (-).

and 11b). Meteorological forcing data of the REDVARfut
dataset (red lines) show similar long-term averages to the
CNTL dataset (Figs. 10a, b, and 11a, b). Hence, REDVARfut
meteorological variables follow the general positive trend.
However, the two time series increasingly differ in their day-
to-day and week-to-week variability by design. This is shown
by the mean absolute difference of daily data (cf. Eq. 5) in the
insets of Fig. 10a and b as well as Fig. 11a and b.

These CNTL and REDVAR(fut climate datasets have been
used as forcing data for JSBACH in the additional point-scale
model runs. The respective soil temperature results are com-
pared to each other in Fig. 10c and d as well as Fig. 11c and
d. The increasing differences in the variability of meteoro-
logical variables under conserved long-term averages lead to
an increasing difference in topsoil temperature (Figs. 10c and
11c); i.e. the overall increasing topsoil temperature due to in-
creasing air temperature is a bit higher in the case of reduced
climate variability. This effect is also visible in 38 m depth
(Figs. 10d and 11d) even though short-term atmospheric data
fluctuations in general should be most filtered at this soil
depth.

4 Discussion

Climate model projections show increasing variability of
meteorological variables and hence increasing frequency of
extreme meteorological events (Seneviratne et al., 2012)
along with a gradually changing climate (change of long-
term mean values) (Ciais et al., 2013). Because of the non-
linearity of ecosystem response functions, changing extreme-
event frequency and changing variability of meteorological
variables can have a higher impact on ecosystem state and
function than a gradual change of mean meteorological vari-
ables (Reichstein et al., 2013; Beer et al., 2014). This study
contributes to this overall question from a theoretical point
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of view with LSM experiments for which artificially manip-
ulated climate forcing datasets have been employed. These
climate datasets practically do not differ in their decadal av-
erages (Sect. 3.2), whereas they do show a substantial differ-
ence in the short-term (daily) variability (Sect. 3.2). There-
fore, differences in simulated state variables and fluxes over
30-year periods (soil temperature in this case) will be only
due to differences in temporal variability of meteorolog-
ical variables. This study addresses particularly the ques-
tion about the effect of climate variability on soil temper-
ature in northern high-latitude regions. The CNTL experi-
ment shows higher climate variability than the artificial ex-
perimental REDVAR dataset (Sects. 2.3 and 3.2), and re-
spective model result differences between experiments using
the manipulated climate REDVAR and the CNTL dataset are
shown in Sect. 3. Methodologically, it is important to artifi-
cially design a climate dataset with reduced temporal vari-
ability because otherwise there is a high risk for producing
a physically unrealistic climate conditions. However, for in-
terpreting the results in terms of future ecosystem responses
to increasing climate variability (Seneviratne et al., 2012),
the results of the CNTL model run are compared against the
results of the REDVAR model run in this discussion section
(CNTL-REDVAR).

In contrast to the climate forcing data, the long-term aver-
age of both topsoil and subsoil temperature differs between
REDVAR and CNTL experiments (Fig. 9a and b). The same
is true for respective future projections (Figs. 10 and 11). In
fact, under conditions of higher variability of meteorological
variables and higher frequency of extreme events (CNTL vs.
REDVAR experiments), soil will be cooler (Figs. 9c, d; 10;
and 11) if all other environmental factors are similar. That
means that the projected increase in future variability of me-
teorological variables (Seneviratne et al., 2012) has the po-
tential to dampen soil warming occurring as a function of
increasing mean air temperature. To further understand the
underlying processes, individual effects of climate variability
on snow and near-surface vegetation properties are discussed
in the following paragraphs.

For land—atmosphere heat conduction the thermal prop-
erties of snow, near-surface vegetation (e.g. bryophytes and
lichens), the soil organic layer, and their spatial extent and
heights are of major importance (Yershov, 1998; Gouttevin
et al., 2012; Jafarov and Schaefer, 2016; Wang et al., 2016).
Snow generally insulates the soil from changing atmospheric
temperature. However, effects are smaller during the melting
period in spring because the snow is wet and conductivity
therefore higher, and more importantly, the soil-to-air gra-
dient in temperature is small. The insulation effect of near-
surface vegetation also differs among the seasons because
of the high dependence of thermal properties on water and
ice contents of lichens and bryophytes. Usually, dry lichens
and bryophytes during a continental summer should insulate
much more than during wet spring or autumn, or during the
ice-rich wintertime.
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(a) Winter (DJF) lichen and bryophyte ther-

mal diffusivity relative difference.

0.1

-0.05

-0.15

(b) Summer (JJA) lichen and bryophyte ther-

mal diffusivity relative difference.

Figure 8. Comparison of lichen and bryophyte 1980-2009 average properties. Relative difference (REDVAR—CNTL)/CNTL expressed as

a fraction (-).

This theoretical study shows that one major effect of
higher climate variability on cold-region environments is
a lower snow water equivalent (Sect. 3.3), which directly
translates into lower snow depth values. The potential alter-
native explanation for a lower snow depth would be a higher
snow density. However, the results show exactly the opposite
(Fig. 6¢). In addition to snow depth, snow thermal properties
are also an important factor for heat conduction. However,
winter snow thermal diffusivity is some percent lower under
conditions of higher climate variability (CNTL-REDVAR).
Therefore, the net snow-related effect of higher climate vari-
ability on soil temperature — that is, a cooler soil (Sect. 3.5)
— is explained by snow depth differences alone, i.e. a lower
snow depth under conditions of higher climate variability.

The reason for these snow water equivalent differences are
more often circumstances of melting snow during the begin-
ning of the snow season when day-to-day variability of air
temperature is higher (Sect. 3.3). These results also point
to an interesting combination of impacts of both changing
variability and gradually changing mean values on ecosys-
tem states because both changes can lead to a threshold value
(melting point in this case) being passed. These impacts can
be seen in Sect. 3.3 when combining temporal climate vari-
ability effects on snow water equivalent results (Fig. 6) and
snowmelt flux results (Fig. 7) with longitudinal pattern of
these results towards a continental climate, which can be in-
terpreted in terms of gradual climate change when substi-
tuting space for time. Overall, these findings show that pro-
jected higher climate variability in future can lead to lower
snow depth, which will reduce a soil warming in response to
air warming. Future studies should clarify if these temporal
variability effects of meteorological variables on snow depth
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are lower or higher when taking into account lateral hetero-
geneity of soil properties (Beer, 2016) or snow, for instance
due to snow intercept by topography or vegetation.

In addition to the insulating effect of snow, lichens and
bryophytes growing on the ground influence heat conduc-
tion (Porada et al., 2016a). It is interesting to note that, when
climate variability is higher (CNTL conditions), bryophyte
and lichen thermal diffusivity can be substantially higher in
winter and lower in summer in the same region (Sect. 3.4).
This fact points to an important role of near-surface vegeta-
tion: it will insulate less from air temperature during win-
ter and insulate more during summer with increasing cli-
mate variability in future. These effects of climate variability
on thermal diffusivity of lichens and bryophytes and hence
soil temperature are in the same direction as snow effects
(Sect. 3.3), again reducing the soil warming effect of future
climate change.

Effects of climate variability on both snow and bryophyte
and lichen properties are in the same direction (Sects. 3.3
and 3.4). As a result, soil will be cooler under conditions
of higher climate variability (Sect. 3.5). Recent modelling
studies suggest a soil temperature increase of 0.02°C per
year since 1960 (McGuire et al., 2016), which translates into
2°C in 100 years. Such soil temperature increase has also
been projected using the JSBACH model under the RCP4.5
scenario (Ekici, 2015), while under the strong-warming sce-
nario RCP8.5, the soil temperature increase might be up
to 6 to 8°C (Ekici, 2015). Lower soil temperature under
conditions of higher climate variability in the range 0.1 to
0.8 °C (Sect. 3.5) demonstrates that, under increasing vari-
ability of meteorological variables and increasing extreme
events in the Arctic (Seneviratne et al., 2012), the effect
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(c) Winter (DJF) topsoil temperature.

(d) Summer (JJA) topsoil temperature.

Figure 9. Comparison of 1980-2009 average soil temperature (REDVAR minus CNTL). Shown are absolute differences (°C). Topsoil and

subsoil refer to depths of 3 cm and 38 m, respectively.

of gradual air temperature increase on soil temperature and
hence active-layer thickness will be dampened. Such damp-
ening of future soil warming will also reduce the otherwise
positive biogeochemical feedback to climate (Zimov et al.,
2006; Beer, 2008; Heimann and Reichstein, 2008). Our re-
sults are conservative here because the 99 percentiles of
air temperature and precipitation from the artificial dataset
(REDVAR) differ by only 1-4 °C (temperature) and 1-10 %
(precipitation). These values are at the lower end of the range
of climate model projections for the Arctic region until 2100
(Seneviratne et al., 2012).

The presented effects of short-term variability of meteoro-
logical variables on ecosystem states and functions, such as
soil temperature, are also important from a methodological
point of view. To study the effects of environmental change
on ecosystems, LSMs are usually forced by historical and re-

www.the-cryosphere.net/12/741/2018/

analysis climate data for the past and present periods, and by
future climate results from Earth system models. Since ESM
results usually show biases, the ESM outputs cannot be used
directly to drive the LSM offline model runs but first need
to be bias-corrected (Hempel et al., 2013). The results of the
presented REDVAR and REDVARfut experiments demon-
strate that such bias-correction methods should account for
the projected change in short-term (daily) variability in addi-
tion to general trends.

Soil temperature is projected to arrive at values around the
freezing point in 38 cm depth over the major part of the cur-
rent permafrost area (Schaphoff et al., 2013). Therefore, dif-
ferences of soil temperature of 0.1 to 0.8 °C due to chang-
ing climate variability would have an effect on active-layer
thickness and permafrost extent, too. It would be interest-
ing to generate an additional artificial REDVARfut dataset
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Figure 10. REDVARfut experiment results at a Canadian site (62.2° N, 75.6° E) during 2011-2100 showing the effects of changing climate
variability on future soil temperature. Ten-year moving means are shown.

with pan-Arctic cover and investigate in detail the impacts of

climate variability on active-layer thickness and permafrost
extent at the end of the century in a future project
Our findings have three major implications for future per-

mafrost science:

1. New, highly controlled laboratory and field experiments
are required in order to confirm modelling results about
climate variability effects on permafrost soil tempera-

ture.
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2. Future developments of land surface models should

include dynamic models of snow, and lichens and
bryophytes.

. Statistical methods need to be developed such that fu-

ture forcing data for climate change impact studies can
be prepared in a way that a potential change in short-
term variability and frequency of extreme events is pre-
served.
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Figure 11. REDVARfut experiment results at a Siberian site (72.2° N, 147° E) during 2011-2100 showing the effects of changing climate
variability on future soil temperature. Ten-year moving means are shown.

5 Conclusions

Artificial model experiments have been used in order to
quantify the impact of the variability of meteorological vari-
ables on the long-term mean of mean annual ground temper-
ature in permafrost-affected terrestrial ecosystems. In future,
the soil temperature response to increasing climate variabil-
ity and extreme-event frequency (soil cooling) will be op-
posite to the response of soil temperature to gradually in-
creasing air temperature (soil warming). Is has been shown
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that snow and near-surface vegetation dynamics are the un-
derlying mechanisms for this. Therefore, dynamics of snow
and lichen and bryophyte functions need to be represented in
Earth system models for validly projecting future permafrost
soil states and land—atmosphere interactions, and hence fu-
ture climate. Our findings also point to the need to represent
changes in short-term variability of meteorological variables
in bias-corrected climate data of future periods.
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Data availability. The land surface model JSBACH used in this
study is intellectual property of the Max Planck Society for the Ad-
vancement of Science, Germany. The JSBACH source code is dis-
tributed under the Software License Agreement of the Max Planck
Institute for Meteorology, and it can be accessed on personal re-
quest. The steps to gain access are explained under the following
link: http://www.mpimet.mpg.de/en/science/models/license/ (MPI,
2018a).

The CNTL climatic fields used in this study as forcing data
for the JSBACH model are available upon registration under the
following link (the tag “Geocarbon” has to be selected): https:
/Iwww.bgc-jena.mpg.de/geodb/projects/Home.php (MPI, 2018b).

The new REDVAR climatic fields used in this study as forcing
data of the JSBACH model are available as netCDF files from the
authors upon request.

The map of soil temperature and active-layer thickness
for the region of Yakutia which is used as a part of
our model evaluation is available under the following link:
https://doi.org/10.1594/PANGAEA.808240 (Beer at al., 2013).

GTN-P Thermal State of Permafrost (TSP) snapshot data
used in this study for model evaluation are available from
the National Snow and Ice Data Center (NSIDC, 2018) at
https://doi.org/10.7265/N57D2S25.

GIPL model results at 2km x2km grid cell size for
Alaska used in this study for model evaluation are avail-
able from http://arcticlcc.org/products/spatial-data/show/
simulated-mean-annual-ground-temperature (ALCC, 2018).

JSBACH output data which are presented as maps in this study
are available as netCDF files from the authors on request.
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