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Abstract. This paper presents the analysis of floe-size dis-
tribution (FSD) data obtained in laboratory experiments of
ice breaking by waves. The experiments, performed at the
Large Ice Model Basin (LIMB) of the Hamburg Ship Model
Basin (Hamburgische Schiffbau-Versuchsanstalt, HSVA),
consisted of a number of tests in which an initially contin-
uous, uniform ice sheet was broken by regular waves with
prescribed characteristics. The floes’ characteristics (surface
area; minor and major axis, and orientation of equivalent el-
lipse) were obtained from digital images of the ice sheets af-
ter five tests. The analysis shows that although the floe sizes
cover a wide range of values (up to 5 orders of magnitude in
the case of floe surface area), their probability density func-
tions (PDFs) do not have heavy tails, but exhibit a clear cut-
off at large floe sizes. Moreover, the PDFs have a maximum
that can be attributed to wave-induced flexural strain, produc-
ing preferred floe sizes. It is demonstrated that the observed
FSD data can be described by theoretical PDFs expressed
as a weighted sum of two components, a tapered power law
and a Gaussian, reflecting multiple fracture mechanisms con-
tributing to the FSD as it evolves in time. The results are dis-
cussed in the context of theoretical and numerical research
on fragmentation of sea ice and other brittle materials.

1 Introduction

Recent years have witnessed increasing interest of the sea ice
research community in topics related to the floe-size distribu-
tion (FSD). A number of new studies are devoted to obser-
vational FSD data obtained from airborne and satellite im-
agery of sea ice (e.g., Perovich and Jones, 2014; Gherardi
and Lagomarsino, 2015; Geise et al., 2017; Toyota et al.,
2016; Wang et al., 2016), enhancing earlier observations (In-

oue et al., 2004; Toyota et al., 2006, 2011; Lu et al., 2008;
Steer et al., 2008, among others). Statistical fracture mod-
els have been proposed attempting to explain the properties
of probability density functions (PDFs) obtained from those
data (e.g., Herman, 2010; Toyota et al., 2011; Gherardi and
Lagomarsino, 2015). Substantial effort has been made to de-
velop parameterizations of FSD-related processes for numer-
ical sea ice models (Dumont et al., 2011; Williams et al.,
2013, 2017; Bennetts et al., 2017). Equations for the evo-
lution of FSD in time, suitable for continuum sea ice mod-
els, have been developed by Zhang et al. (2015); Horvat
and Tziperman (2015) derived more general equations for
joint floe-size and floe-thickness distribution (see also Hor-
vat and Tziperman, 2017). This increasing interest results
from growing evidence that the FSD is a signature of dy-
namic and thermodynamic processes acting on the ice cover
(e.g., Perovich and Jones, 2014; Gherardi and Lagomarsino,
2015; Horvat and Tziperman, 2017) and, presumably even
more importantly, that these processes themselves are signif-
icantly affected by the floe-size distribution. In short, mutual
interactions between FSD and physics and dynamics of the
upper ocean, lower atmosphere, and sea ice itself have to be
taken into account in order to understand and predict short-
term, synoptic, and long-term evolution of this complex sys-
tem.

In spite of substantial progress, many controversies regard-
ing the interpretation of the available FSD data – including
the shape of these PDFs – remain unsolved due to the lack of
understanding of mechanisms that contribute to the forma-
tion of FSD under different conditions. In a great majority
of studies, scale invariance of floe sizes is assumed a priori
and, accordingly, different versions of power-law PDFs are
fitted to observational data (tapered or truncated power laws,
two power-law regimes separated by a sudden change of
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slope, etc.). Deviations from power laws are often explained
with finite-size effects, i.e., limited spatial resolution and/or
extent of images used to determine the FSD, but they can
also be produced by physical processes affecting the FSD,
e.g., lateral melting/freezing (Perovich and Jones, 2014). In
many cases, no convincing arguments for assuming power-
law FSDs exist, except the fact that the floe sizes cover a
wide range of values. Typically, no alternative PDFs are con-
sidered, no measures of the fit errors are provided, and no
methods different than least-squares fitting of a straight line
to a log–log plot of a cumulative floe-size distribution (CDF)
is considered – in spite of the fact that this method has a
number of well-known shortcomings (see, e.g., Clauset et al.,
2009, and Virkar and Clauset, 2014, for a discussion of typ-
ical problems with this approach, including the tendency to
produce large systematic errors in the estimated exponents,
strong influence of binning on the results, and difficulties
with obtaining reliable error estimates).

An example of the process leading to narrow FSDs, with
preferred floe sizes, is ice breaking by waves, which is
one of the dominating ice fragmentation mechanisms in the
marginal ice zone (MIZ). It is still disputed whether the size
of ice floes formed in this process depends on wavelength
(as assumed by many parameterizations, see Williams et al.,
2013, 2017) or rather on material properties and thickness
of the ice (as proposed by Squire et al., 1995), but wave-
induced fracturing unquestionably imposes an upper limit on
the floe sizes: floes larger than this limit are broken by tensile
stresses related to flexural strain. In their recent numerical
model of ice breaking by waves, Montiel and Squire (2017)
obtained narrow, unimodal PDFs of floe sizes that they de-
scribe as “nearly normal”. Similar FSDs were obtained with
the coupled discrete-element–hydrodynamic model of Her-
man (2017) when it was run with random variations of ice
thickness or strength (unpublished results). In combination
with other breaking mechanisms, melting, etc., FSDs ob-
served in MIZ may still be (and often are) very wide, but one
cannot expect to find scale invariance in the range of large
floe sizes. Accordingly, attempts to fit a power law to the tail
of the FSD from MIZ are unjustified, even if a straight line
seems to provide a nice fit to a graphic representation of that
FSD. The data presented in this paper provide a good illus-
tration of this fact. The results show also the (quite obvious,
but often disregarded) fact that limiting the FSD analysis to
log–log plots of the respective CDFs provides a distorted and
misleading picture of the properties of the respective FSD.

In this work, we present the results of two groups of ice
breakup tests performed in 2015 and 2016 in the Large Ice
Model Basin (LIMB) of the Hamburg Ship Model Basin
(Hamburgische Schiffbau-Versuchsanstalt, HSVA). The tests
belong to the first experiments specifically devoted to ob-
serving ice breaking by waves under controlled, laboratory
conditions. The data collected are used to analyze the FSDs
resulting from breaking of initially continuous ice sheets by
regular waves with prescribed characteristics. We present

floe-size data obtained from digital images of the broken ice
sheets, from five test runs. The PDFs of floe sizes are wide
(up to 5 orders of magnitude of floe surface area) and have
nontrivial shapes, excellently illustrating typical problems
with interpretation of FSD data. We show that the method of
presenting the data – in terms of PDFs of binned data, CDFs
of unbinned data, and so on – may influence data interpreta-
tion by accentuating certain aspects and eliminating others.
We fit the observed PDFs with a function that is a weighted
sum of two probability distributions, a tapered power law and
a Gaussian; we discuss theoretical arguments underlying this
choice of PDF and interpret the obtained values of the fitted
parameters.

The paper is structured as follows: Sect. 2 provides a de-
scription of the research facility and of the two groups of ex-
periments (Sect. 2.1), as well as image processing methods
used and the collected floe-size data (Sect. 2.2). In Sect. 3,
after a short analysis of floe shapes and orientation, a theoret-
ical probability distribution function that combines a tapered
power law with a normal distribution is proposed and fitted
to the experimental data. Section 4 provides a discussion of
the results in view of theoretical research on fragmentation
of brittle materials and finishes with conclusions.

2 Experiment setup and data

As already mentioned, the measurements described in this
paper have been collected during two groups of tests per-
formed at HSVA within two different projects. The first tests
– denoted test group A further on – were performed by the
HSVA researchers as a proof of concept; i.e., they were car-
ried out in a very simple setting, with only a few of the
most crucial instruments installed. The second set of exper-
iments (test group B) was part of the Hydralab+ Transna-
tional Access project “Loads on Structure and Waves in
Ice” (LS-WICE; Hydralab+ project under the Horizon 2020
EU Framework Programme For Research And Innovation,
H2020-INFAIA-2014-2015), performed by an international
group of scientists from Norway, the USA, Poland, and Ger-
many (for preliminary results see Cheng et al., 2017; Herman
et al., 2017; Tsarau et al., 2017). In LS-WICE, a large set of
instruments was used, measuring the wave characteristics at
several locations along the ice tank, as well the motion of the
ice itself. In both test groups, the progress of breaking was
continuously recorded on video, and digital images of the ice
sheet were taken at selected time points, as described further
in this section.

Crucially for the interpretation of the results, only one ice
sheet per test group was used; i.e., in both cases the experi-
ment started with a continuous ice sheet, and the successive
tests were initialized with the broken ice from the previous
tests. In other words, in each of the two test groups, only the
first breaking event took place in a previously intact ice sheet.
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Figure 1. Instrument setup during test group A (a) and B (b): single pressure sensors are marked in red, a double pressure sensor in violet,
ultrasound sensors in blue, and Qualisys markers in green; dashed black lines show fields of view of sideward-looking GoPro cameras
(GoProS and GoProB for Silver and Black models, respectively), and dashed blue lines show fields of view of the cameras mounted on the
ceiling.

2.1 Description of the facility and experiments

2.1.1 The Large Ice Model Basin

The ice tank at LIMB is 72 m long and 10 m wide, and is
2.5 m deep over most of its length, with a deep water (5 m)
section for x ≥ 60 m (in the remaining part of the paper, all
positions are given in a Cartesian coordinate system with ori-
gin at the lower left corner of the tank when viewed as in
Fig. 1, with the x axis directed along the length of the tank
and the y axis directed across the width of the tank). In both
groups of experiments, the waves were generated with four
flap-type mobile wave generator modules that covered the
total 10 m width of the ice tank and were located at x = 2 m
(Evers, 2017). In test group B, a parabolic-shaped beach was
mounted at x = 70 m, designed specifically for this project
in order to minimize wave reflection (Cheng et al., 2017). No
similar device was mounted in the tank in test group A, but
due to shorter waves and stronger attenuation in those tests
(see further), the amount of wave energy reaching the down-
wave end of the tank was insignificant.

According to the standard procedure at HSVA, ice sheets
were produced by seeding under air temperature of approx-
imately −22 ◦C (Evers, 2017). The water salinity equaled
6.8 PSU, and the salinity of the ice 3.5–3.8 PSU. The average
rate of ice thickness growth was 2 mm h−1. During the ex-
periments, the air temperature was increased towards 0 ◦C to
avoid undesired freezing of open-water areas, ice formation
on instruments, etc. In normal operating conditions at LIMB,
ice formation in front of the wavemaker (trim tank area) is
prevented by an insulating sliding wall located at x = 11.5 m
(Fig. 1). During LS-WICE (test group B), due to failure of
this wall, ice formed over the entire surface area of the tank
and was manually removed from the trim tank region before
the tests, and the ice edge was located at x = 20 m. In both
test groups, narrow strips of ice (∼ 10 cm) were removed

from both sides of the ice sheet to reduce the influence of
the side walls on wave propagation and ice breaking.

The facility is equipped with a downward-looking cam-
era mounted on a crane that can move over the entire tank.
Photographs of the ice sheet taken with this camera several
times during the test groups A and B were used in this work
to obtain the floe-size distributions. Table 1 provides a sum-
mary of all test runs, with wave parameters used and brief
information on ice behavior. Note that the wavelengths in Ta-
ble 1 are open-water wavelengths. The analysis of the sensor
data from the LS-WICE experiments shows that the wave-
lengths within the ice were in the range (0.95, 1.05) of those
in open water, depending on floe size (Hayley Shen, personal
communication, 2018). Measurements of the ice properties
in each test group were taken after the ambient temperature
was increased towards 0 ◦C, in order to obtain values rep-
resentative for the conditions during the tests. For details of
the procedures used at HSVA to measure ice density, salinity,
bending strength, and elastic modulus, see Evers (2017).

2.1.2 Test group A

In these tests, no wave measuring equipment was used ex-
cept a series of 35 markers of the Qualisys Motion Capture
System, placed on the ice along the middle line of the tank
(y = 5 m), from the ice edge (initially at x = 11.5 m) up to
x = 23 m (Fig. 1a). The markers were removed after initial
breaking of the ice (i.e., after test 2020) in order to pre-
vent them from getting wet or falling into the water. Thus,
no wave data were collected afterwards, and the only infor-
mation recorded (apart from the photographs from the crane
camera, mentioned above) was videos showing the progress
of breaking. The ice thickness hice equaled 30 mm, its elastic
modulus E = 9 MPa, and bending strength σcrit = 47.8 kPa.

Four out of five tests in this group were conducted with
short waves (L∼ 2.5 m; Table 1). The ice began to break at
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Table 1. Summary of test runs discussed in this paper.

Run no. Wave height Wave period Wave length khice Test duration Remarks
H (cm) T (s) L (m) (–) tw (min)

Test group A

2010 2.0 1.27 2.52 0.075 10 no breaking observed
2020 5.0 1.27 2.52 0.075 10 breakup up to x ∼ 34 m
2030 7.0 1.27 2.52 0.075 10 breakup only in already broken zone
2050 10.0 1.27 2.52 0.075 10 a few new cracks for x > 34 m
2060 10.0 1.50 3.51 0.054 11 breakup of the whole ice sheet

Test group B

1100 1.0 2.0 6.17 0.035 1.5 no breaking observed
1200 1.0 1.6 3.99 0.055 1.5 no breaking observed
1300 1.0 1.2 2.25 0.097 1.5 no breaking observed
1400 2.0 2.0 6.17 0.035 1.5 no breaking observed
1410 3.0 2.0 6.17 0.035 1.5 no breaking observed
1420 4.0 2.0 6.17 0.035 1.5 no breaking observed
1430 5.0 2.0 6.17 0.035 1.5 no breaking observed
1440 7.0 2.0 6.17 0.035 2.0 first major crack at x ∼ 44 m
1450 9.0 2.0 6.17 0.035 3.5 major breakup, esp. down-wave of x ∼ 44 m
1500 5.0 1.6 3.99 0.055 1.8 only a few new cracks
1510 7.0 1.6 3.99 0.055 6.2 major breakup of the whole ice sheet

Tests after which photos of the ice were taken are shown in bold. Tests 1450 and 1510 were continued until no breaking occurred.

wave height H = 5 cm (test 2020). Breaking started close
to the ice edge and gradually progressed up to x ∼ 34 m.
In spite of increasing wave height, the width of the zone of
broken ice remained approximately constant throughout tests
2030 and 2050 (only towards the end of 2050 did a few new
cracks developed down-wave of x ∼ 34 m). This fact was re-
lated to strong attenuation of wave energy. The attenuation
rate estimated from Qualisys data equaled 3.7× 10−2 m−1

in test 2010 and 3.3× 10−2 m−1 in test 2020 (see Supple-
ment Fig. S1). Assuming that these values did not change
significantly down-wave from the region where the Qualisys
markers were installed, the wave height at x ∼ 34 m was less
than 50 % of that at the ice edge. It is reasonable to assume
that after the onset of breaking, i.e., in tests 2030 and 2050,
the attenuation was even stronger, especially within the zone
close to the ice edge, where the relatively small ice floes were
undergoing frequent collisions, intense over-wash, and even
rafting (for the effects of these processes on wave attenua-
tion, see, e.g., Bennetts and Williams, 2015). After the end
of test 2050, many areas of the ice sheet were very “worn
out”, with a layer of slush filling spaces between floes. In the
last test, 2060, attenuation was weaker due to larger wave-
length, so that in spite of the same wave height as in the pre-
vious run, breaking took place over the whole tank length.
The photograph of the ice after test 2060 is shown in Supple-
ment Fig. S3.

2.1.3 Test group B

The ice thickness hice in the experiments in test group B,
measured at a number of locations in the tank, varied between
32.5 and 38.5 mm, with an average of 34.8 mm; the ice elastic
modulus E equaled 16 MPa; the bending strength σcrit varied
from 41.5 kPa close to the ice edge to 67.1 kPa in the area
close to the beach. The locations of the pressure and ultra-
sound sensors used in this group of tests is shown in Fig. 1b,
together with the locations of five Qualisys markers that were
placed on the ice along the central axis of the tank, ∼ 1.5 m
apart from each other. Large parts of the ice sheet were con-
tinuously monitored with an AXIS camera mounted at the
ceiling and two sideward-looking GoPro cameras mounted
at the walls.

Contrary to the expectations, in this test group we did
not observe progressive breaking starting from the ice edge.
Instead, during test 1440, the ice sheet first broke approxi-
mately in the middle of its length, most likely due to effects
related to wave reflection. Due to much longer waves than
in test group A, attenuation within the ice sheet was much
weaker (as data from the pressure sensors clearly show; see
Supplement Fig. S2), and in spite of the beach significant
wave reflection was present. As discussed in Herman et al.
(2017), the first major crack formed shortly after the reflected
wave arrived at its location. Even though it cannot be ruled
out that some initial, unnoticed flaws in the ice sheet were
responsible for the formation of this crack, it seems clear
that once it formed, it had a profound influence on the subse-
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quent development of fractures during tests 1450, 1500, and
1510. For example, during 1450, breaking was much more
intense down-wave from this crack than up-wave, acting as
if it were a secondary ice edge (Herman et al., 2017). Sup-
plement Fig. S3 shows the photograph of the entire tank after
test 1510.

2.1.4 Note on scaling and test parameters

Before analyzing the results, it is useful to relate the range
of wave and ice parameters used in the laboratory to the cor-
responding “real-world”, unscaled conditions. For the wave-
lengths L used in the tests, khice varied between 0.054 and
0.075 in test group A and between 0.035 and 0.097 in test
group B (Table 1; k = 2π/L is the wavenumber). For an un-
scaled ice thickness of, say, 1.5 m, typical for example for
first-year sea ice in the Southern Ocean, those values of khice
correspond to waves with deep-water lengths of 126–175 m
and periods of 9.0–10.6 s in test group A. In test group B
the range is wider, of 97–266 m and 7.9–13.1 s, respectively.
In both cases these are realistic wind–wave conditions in the
marginal ice zone. The observed attenuation rates αa (Sup-
plement Figs. S1 and S2) are within the range of observed
ones as well. For example, in test 2010 αa = 3.7×10−2 m−1,
L= 2.5 m, and the corresponding attenuation rate for the un-
scaled wavelength of 126 m is 7.3×10−4 m−1. An analogous
value from test 2020 is 6.5× 10−4 m−1, and for the longer
waves in tests from test group B: 9.3× 10−5 m−1. These
values are within the range of those reported in the litera-
ture; see, e.g., Kohout and Meylan (2008) or Williams et al.
(2013).

Another important aspect of the test setup is related to the
mechanical properties of the ice. The values of E and σcrit
give a rough estimate of the fracture flexural strain εcrit. For
test group A εcrit = 5.3× 10−3, for test group B εcrit var-
ied from 2.6× 10−3 at the ice edge to 4.2× 10−3 close to
the beach. These values are much higher than those typi-
cally observed in the field (5× 10−5–1× 10−4), mainly due
to very low elastic modulus of the laboratory ice. Conse-
quently, as the maximum strain in sine waves is given by
εmax = hiceak

2/2 (where a =H/2 denotes the wave ampli-
tude), relatively steep waves were necessary to break the ice.
Nevertheless, it is important to note that in all tests was the
wave steepness ka < 0.05, i.e., within the limit of the linear
wave theory, so any nonlinear effects were unlikely.

2.2 Floe-size data

2.2.1 Image processing

After five tests marked in bold in Table 1 (three in test
group A and two in test group B), digital images of the ice
were taken with a downward-looking crane camera. In each
case, neighboring (overlapping) photographs were stitched
together to obtain a single image of the broken ice sheet (see

Table 2. Summary of FSD data obtained from the analyzed images.

Run no. No. of floes Mean area Median area

Nf,all Nf smean (m2) smed (m2)

A 2020 1683 705 0.25 0.01
A 2030 1605 1036 0.16 0.05
A 2060* 1017 777 0.19 0.08
B 1450* 1508 814 0.66 0.01
B 1510 1779 848 0.53 0.01

In tests marked with a asterisk, a subregion of the whole ice sheet was
analyzed, in which FSD could be treated as spatially uniform. The numbers
in the table correspond to these subregions. Nf,all – no. of all floes
identified; Nf – no. of floes used in the analysis (see Sect. 2.2.1).

Supplement Fig. S3 for example images). Each stitched im-
age was subsequently processed with ImageJ and MATLAB
Image Processing Toolbox in order to produce a binary im-
age of ice and water. All parameters of the algorithms were
adjusted to individual images, and very bright regions present
due to reflections from the lamps on the ceiling (see Supple-
ment Fig. S3) were corrected manually. Finally, floe bound-
aries were identified and each ice pixel was assigned a value
corresponding to the ice floe to which it belonged. Although
specialized functions of the above-mentioned software were
used, several manual corrections were made at each stage,
based on visual comparisons of the final results with the
initial photographs (in each image, every single floe larger
than ∼ 5 cm2 was inspected under strong magnification and
its boundaries corrected if necessary; we estimate that for
those floes, the uncertainty of the estimation of their bound-
aries does not exceed one pixel, i.e., it is negligible, and the
relative error decreases with increasing floe size). Figure 2
shows an example image with identified ice floes marked
with different (randomly assigned) colors. Other images can
be found in Supplement Figs. S4 and S5. Table 2 provides
a summary of the resulting FSD data. In each case, a total
of Nf,all floes were identified. Out of this number, several
very small floes, with surface area s < smin = 5 cm2, were
removed before further analysis, as they represent very small
pieces of ice broken off the edges of larger floes. These pieces
are “small” in two ways. First, they have dimensions of just a
few pixels of the original images and thus cannot be resolved
properly. Second, their horizontal dimensions are compara-
ble with the ice thickness, so that their formation is beyond
the two-dimensional fracture regime analyzed here.

After tests 2060 (test group A) and 1450 (test group B),
the ice sheet consisted of two regions, one much less frag-
mented than the other (see Supplement Figs. S4 and S5), and
therefore only those subregions in which the crack pattern
could be treated as spatially uniform were taken for further
analysis. All in all, the number of floes retained for further
analysis in each case equaled Nf (third column in Table 2).
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Figure 2. Example of a final result of the image analysis (test B, 1510), with identified ice floes marked by black contours and randomly
selected colors. The ice edge is to the left, the beach to the right; the height of the image corresponds to the distance of 10 m (tank width),
gray areas are open water or ice that could not be identified (e.g., very small pieces). See Supplement Figs. S2 and S3 for all analyzed images.

2.2.2 Definitions of floe-size related variables

Let us denote l as a measure characterizing the linear size
of the analyzed ice floes. In many studies, equivalent ra-
dius is used for l (i.e., radius of a circle with surface area
equal to that of the floe in question), although, obviously,
the optimal choice of this measure depends on the shape
of ice floes. For the discussion in this section, it is suffi-
cient to assume that l is related to the floe’s basal surface
area s through a simple relationship s = cs l2, where cs is
a constant. Further, let us denote nl(l)dl as the number of
floes (within the analyzed domain) with sizes between l and
l+ dl. The number-weighted floe-size distribution pl(l) can
be then expressed as pl(l)= nl(l)/N , whereN =

∫
∞

0 nl(l)dl
is the total number of floes within that domain. Analogously,
let us denote ns(s)ds as the number of floes with areas be-
tween s and s+ ds. The number-weighted floe-area distribu-
tion ps(s) then is ps(s)= ns(s)/N , and we have ps(s)ds =
pl(l)dl. Although area-weighted floe-size and floe-area dis-
tributions will not be analyzed in this paper, they can be ob-
tained easily from pl(l) and ps(s) as l2pl(l)/

∫
∞

o
l2pl(l)dl

and sps(s)/
∫
∞

o
sps(s)ds, respectively.

The complementary cumulative number-weighted floe-
size and floe-area distributions, describing the exceedance
probability for floe sizes and areas, respectively, can be de-
fined as Pl(l)= 1−

∫ l
0pl(l

′)dl′ and Ps(s)= 1−
∫ s

0 ps(s
′)ds′.

It will be shown in Sect. 3 that it is useful to take into
account a whole set of these characteristics simultaneously,
as they highlight different aspects of the analyzed data. It
should be also remembered that whereas the surface areas s
of ice floes can be obtained directly from the digital images,
other quantities characterizing the floes require certain as-
sumptions regarding floe shapes. In this work, each polygon
representing an ice floe in the analyzed image is assigned an
ellipse that has the same second central moments as the poly-
gon. Then, for each ellipse, we determine its major axis af,
minor axis bf, eccentricity ef, and orientation θf. Eccentricity
is defined as the ratio of the distance between the foci of the
ellipse and its major axis length, so that ef = 0 for a circle
and ef = 1 for a degenerate ellipse with b = 0. Orientation is
defined as an angle between the tank main axis (i.e., the wave
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Figure 3. Histograms of the absolute value of floe orientation |θf|
(a) and eccentricity ef (b) in the five analyzed tests, for floes with
s > 5× 10−3 m2. Bin widths equal 5◦ and 0.04, respectively; bar
heights are normalized so that their total area in each panel equals
one.

propagation direction) and the major axis of the ellipse; i.e.,
its absolute value varies between 0 and 90◦.

3 Results

3.1 Floe shapes and orientation

Visual inspection of Fig. 2 and Supplement Figs. S3–S5
shows that the floe shapes are far from regular. Most floes
are polygonal and elongated, and they tend to be longer in the
across-tank direction than in the along-tank direction. As can
be seen from Fig. 3, the histograms of floes’ orientation and
eccentricity are similar in all five cases analyzed, with only
a small fraction of floes oriented at |θf|< 45◦, i.e., with their
longer axis closer to the x axis than to the y axis, and there
are almost no floes with eccentricity ef < 0.5. Moreover, im-
portantly for the further analysis, over the whole range of
values of s and bf (6 and 3 orders of magnitude, respectively)
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Figure 4. Scatter plot of the floe minor axis bf (m) vs. floe surface
area s (m2). Data from all five tests. The slope of the black line
equals 2.

there is a strong linear relationship between b2
f and s (Fig. 4).

Thus, bf can be regarded as a meaningful measure of the lin-
ear floe size l in the wave propagation direction, and due to
the fact that b2

f ∝ s, we may expect ps(s) and pl(bf) to be re-
lated through relationships described in the previous section.

3.2 Floe-size distributions

As already mentioned, the floe surface areas cover roughly 5
orders of magnitude, from∼ 5×10−4 m2 to over 10 m2. Fig-
ures 5 and 6 show the number-weighted floe-size and floe-
area data from the five test runs analyzed. In Fig. 5, his-
tograms of binned bf and s values are shown in linear coor-
dinates (with constant bin spacing); Fig. 6 shows exceedance
probabilities for unbinned bf and s values in logarithmic co-
ordinates. Obviously, the histograms correspond to probabil-
ity density functions pl and ps , and the plots in Fig. 6 to
Pl and Ps . However, although they are just different ways of
presenting the same data, it is clear that they underline certain
aspects of those data and tend to obscure others. In most stud-
ies in which FSD is discussed, only log–log plots of CDFs are
used, similar to those in Fig. 6 (e.g., Toyota et al., 2011, 2016;
Wang et al., 2016). The shape of the curves in Fig. 6 suggests
– again similarly to data from many studies, including those
cited above – the existence of two “regions”, for small and
large floes, with a sudden change of slope between them.
Qualitatively similar shapes of Pl(l) obtained from satel-
lite and airborne floe-size data have been interpreted by the
above authors as two power-law regimes. Obviously, all cu-
mulative distributions from our tests could be fitted with two
straight lines just as well. However, there are at least three
important arguments against this choice. First, the regime of
large floes covers no more than 1 order of magnitude in the
case of bf (and, consequently, less than 2 orders of magnitude
of s), which is not sufficient to speak about power-law depen-
dence. Secondly, the histograms in Fig. 5 clearly show that

in the range of medium-sized floes, roughly between 0.2 and
1.0 m in size, power law is not a good candidate distribution.
In tests A 2030 and 2060, the histograms have an especially
clear maximum at bf ∼ 0.4 m; in the remaining three tests,
no pronounced maximum exists, but nevertheless a kind of
“plateau” can be observed, with values higher than a power
law would imply. Thirdly, there are well-established theoret-
ical arguments against the concept of two power laws that are
relevant to the present setting: some have been mentioned in
the introduction, others will be discussed in Sect. 4 at the end
of this paper.

Based on the data from our experiments, as well as insights
from available research on fragmentation of brittle materials
(see further Sect. 4), we consider the following function as
a candidate for probability distribution that approximates the
empirical floe-size distributions shown in Figs. 5 and 6:

pl(l)= εpPL(l)+ (1− ε)pG(l), (1)

where

pPL(l)=
1

β1−α0(1−α, lm/β)
l−αe−l/β , (2)

pG(l)=
1

√
2πσ 2

1

1− erf
(
lm−µ

σ
√

2

)e−(l−µ)2/2σ 2
, (3)

where α, β, µ, σ , and ε are adjustable parameters, 0(u,x)=∫
∞

x
tu−1e−tdt is the upper incomplete gamma function,

erf(x)= 2
√
π

∫ x
0 e
−t2dt is the error function, and lm denotes

the lowest value of l for which the distributions are valid. The
scaling factors in Eqs. (2) and (3) ensure that

∫
∞

lm
pPL(l)dl =

1 and
∫
∞

lm
pG(l)dl = 1.

As can be seen from Eqs. (1)–(3), pl is a weighted sum of
two functions: a tapered power law and a normal distribution,
the relative contribution of each component dependent on the
value of ε ∈ [0,1]. The power-law component has a slope α,
and the value of β determines the onset of the exponential
tail at large floe sizes. The second, Gaussian component of
pl is significant within a limited region around l = µ, with σ
describing the width of that region. The exceedance proba-
bilities PPL(l) and PG(l), corresponding to pPL(l) and pG(l),
are

PPL(l)= 0(1−α, l/β)/0(1−α, lm/β), (4)

PG(l)=

[
1− erf

(
l−µ
√

2σ

)]
/

[
1− erf

(
lm−µ
√

2σ

)]
, (5)

and the total exceedance probability Pl(l) is given by Pl(l)=
εPPL(l)+ (1− ε)PG(l). A detailed discussion of the proper-
ties of equations (1)–(2) and justification for their choice to
represent the observed FSDs are provided in Sect. 4.

The distribution given by Eqs. (1)–(5) has five adjustable
parameters, which makes fitting it to the data a nontrivial
task, mainly due to problems with multiple local minima in
the parameter space. Moreover, specific features of the PDFs
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Figure 5. Histograms of bf (a–e) and s (f–j) from all five tests analyzed. Bin width equals 0.05 m and 0.05 m2, respectively.

analyzed here, described briefly above, make it difficult to
choose a suitable approach. Methods that perform satisfac-
torily in terms of fitting the tails of the PDFs tend to fail
in the region in the middle, and methods that successfully
fit the middle parts of the PDFs fail to reproduce the tails.
Nonlinear least-squares fitting of Pl(l) to the observed ex-
ceedance probabilities (those shown in Fig. 6) belongs to the
first category. This is not surprising as even in tests 2030
and 2060, in which the maxima at floe sizes of ∼ 0.4 m are
most pronounced, can hardly any signature of these max-
ima be seen in cumulative distributions. Another widely used
fitting method, the maximum-likelihood estimation (MLE),
captures the middle regions of the PDFs, but produces tails
that very strongly deviate from the observed ones. Moreover,
our tests showed that both these methods are very sensitive
to the value of lm (MLE is known to encounter problems
with truncated distributions), as well as to the initial guess of
the parameters. When run many times with different initial
conditions, both algorithms converged to very different local
minima, characterized with almost identical goodness-of-fit
measures, which made the choice of the “best” fit a matter of
subjective preference.

Due to these problems, we tested a third approach, in
which predicted cumulative probabilities are linear-least-
squares-fitted to the empirical ones – an idea based on the
fact that for a perfect fit, the CDFs should lie on a straight
1 : 1 line on a P –P plot (see insets in Figs. 7b, d, f and
8b, d). More precisely, the goal is to find the values of the
coefficients ε, α, β, µ and σ that minimize a metric D de-
fined as a weighted sum of the squared distances to the 1 : 1
line. The weights w are expressed in terms of the empiri-
cal probabilities as w = 1/

√
Pl(1−Pl); i.e., they are lowest

in the center and highest at the extremes in order to com-
pensate for the variance of the fitted probabilities, which is
lowest in the tails and highest near the median. For our data,
this procedure produced stable results and meaningful values
of the coefficients, even though their ranges of validity had
not been specified beforehand. By “meaningful values” we
mean values fulfilling a few basic criteria, for example that
ε > 0 (i.e., the contribution of both components is nonneg-
ative) and µ > 0; the two other methods often converged to
ε < 0, µ≈ 0 or α < 0. Moreover, when tested on artificially
generated data from purely Gaussian and purely power-law
distributions, this method consistently produced values of ε

The Cryosphere, 12, 685–699, 2018 www.the-cryosphere.net/12/685/2018/



A. Herman et al.: Floe-size distributions in ice broken by waves 693

(a) (b)

10-2 10-1 100

Floe minor axis b
f
 (m)

10-3

10-2

10-1

100
E

xc
ee

da
nc

e 
pr

ob
ab

ili
ty

 P
l(l)

Test A, 2020
Test A, 2030
Test A, 2060
Test B, 1450
Test B, 1510

10-3 10-2 10-1 100 101

Floe surface area s (m2)

10-3

10-2

10-1

100

E
xc

ee
da

nc
e 

pr
ob

ab
ili

ty
 P

s(s
)

Test A, 2020
Test A, 2030
Test A, 2060
Test B, 1450
Test B, 1510

Figure 6. Log–log plots of the exceedance probability Pl(l) (a) and Ps(s) (b) for unbinned data from all five tests, for floes larger than
5× 10−4 m2.

below 0.03 and above 0.97, respectively; the two methods
mentioned earlier failed this test.

The values of the parameters obtained with this method
are provided in Table 3. Figures 7 and 8 show the results in
terms of both PDFs and CDFs for tests from test group A
and B, respectively.

In order to obtain a measure of standard errors of the es-
timates, Monte Carlo simulations were used. For each fit-
ted model, N = 100 data sets with random numbers drawn
from that model were generated, the parameters were esti-
mated by applying the procedure described above, and the
standard deviation of these parameter values was used as a
standard error, given in Table 3. Two-sample Kolmogorov–
Smirnov tests were performed pairwise between the observed
data and those generated with the fitted models. The percent-
age of cases in which the test rejected the null hypothesis that
the two samples were from the same distribution (at the 5 %
significance level) varied between 2 and 3 % for tests 2020
and 2060, 22 and 25 % for tests 1450 and 1510, and 35 %
for test 2030. Additionally, the metric D was calculated for
each generated model, and a p value was computed defined
as the percentage of cases in which D was smaller than that
obtained for the original data (Clauset et al., 2009; Virkar
and Clauset, 2014). The lowest p value was obtained for test
1450 (p = 0.07); the highest one for test 1510 (p = 0.9); all
other p values were close to 0.3–0.35. Thus, with the excep-
tion of test 1450 (see further), all other data can be regarded
as drawn from distribution (1).

The results show that in both test groups A and B, as
fragmentation progresses, the power-law parts of the FSDs
evolve towards lower values of α and lower values of β: the
slope of the PDFs in the range of small values of l decreases,
and the cut-off shifts towards smaller floe sizes, which is rea-
sonable as fewer and fewer large floes survive without break-

ing. The two trends together produce larger and larger differ-
ences between the slopes of the large and small floe regions
in CDF plots, giving the impression of a “regime shift”. The
Gaussian part of the PDFs is relatively stable, with a slight
tendency for the value of µ to shift to the left, again as a
result of breaking. The values of ε in both tests decrease in
time, indicating decreasing (increasing) contribution of pPL
(pG). Notably, in test B 1450 the predicted contribution of pG
equals ∼ 3 %, and Monte Carlo simulations produced very
scattered results – note large error estimates in Table 3, es-
pecially for µ and σ . The tapered power law alone seems to
be a more appropriate model to explain the data (last row in
Table 3). Generally, the tests in test group A were conducted
for much longer than those of test group B (see Table 1). Test
group B represents early stages of fragmentation caused by
relatively long waves; accordingly, the pl(l) in these tests are
wider than those from test group A, and the change of slope
between the region of small and large floe sizes is less pro-
nounced. In contrast, tests 2030 and 2060 from test group B
represent ice at advanced stages of breaking by short waves,
in which a dominating floe size can be clearly seen in pl(l)
data. Note that the Gaussian component of these PDFs con-
tributes to the sudden change of slope in log–log CDF plots.

Note also that in the tests from test group A, the floes de-
scribed by the Gaussian component of FSDs represent the
“dominant” or “significant” floes in the sense that they cover
the largest fraction of the total surface area, i.e., the area-
weighted floe-size distributions have very peaked maxima at
bf ∼ 0.5 m (see Supplement Fig. S6a–c). In fact, this is also
the range of values estimated by a human looking at an image
of the ice like that in Fig. 2 and Supplement Figs. S3 and S4.
These maps definitely do not look “fractal”. Analogous area-
weighted PDFs from test group B, in which the power-law
component is dominant, have a very different shape, with
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Figure 7. Results of the linear least-squares fit of predicted and observed CDFs for bf data from test group A: histograms of bf with fitted
pPL, pG, and pl (a, c, e) and observed exceedance probabilities with fitted Pl (b, d, f). The insets show P–P plots of the fitted vs. observed
CDFs.
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Figure 8. As in Fig. 7, but for test group B.

larger floes occupying a larger fraction of the total surface
(Supplement Fig. S6d, e).

4 Discussion and conclusions

One of the conclusions of this study is that even in a sim-
ple laboratory configuration, under controlled conditions, the
interpretation of the obtained floe-size distributions is far
from trivial. With uniform ice, regular waves, and an approx-
imately one-dimensional setting, one could expect a straight-
forward relationship between the wave forcing and ice me-
chanical properties on the one hand, and the resulting floe
sizes on the other hand. However, this is not the case, and
one of the main reasons for this is that laboratory-grown
ice is softer, weaker, and thinner than real-world sea ice.

Consequently, a number of processes contribute to break-
ing and overall wear out of the ice, wave-induced flexural
stress being only one of them. Our video material clearly
shows strong over-wash of the upper ice surface, floe–floe
collisions, grinding of small ice fragments between larger ice
floes, and “erosion” of the ice, producing significant amounts
of slush filled spaces between ice floes at later stages of the
experiments, especially those from test group A, in which
individual runs were much longer than in test group B (Ta-
ble 1). In runs with steeper waves (e.g., 2030 and 2050 in test
group A), several cases of floe rafting were observed as well.
Importantly, the effects of these processes are visible already
shortly after the formation of the first cracks; i.e., it is not
possible to identify a phase of ice breaking due to flexural
stresses, followed by a later phase of breaking induced by
the remaining processes: they all contribute to ice fragmen-
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Table 3. Results of least-squares fit of Eq. (1) to observed FSD data.

Run no. ε α β µ σ

A 2020 0.821± 0.119 1.039± 0.250 0.736± 0.271 0.574± 0.039 0.160± 0.060
A 2030 0.685± 0.039 0.590± 0.084 0.298± 0.039 0.431± 0.012 0.111± 0.014
A 2060 0.610± 0.068 0.245± 0.115 0.204± 0.037 0.463± 0.022 0.154± 0.021
B 1450 0.968± 0.042 1.136± 0.115 2.408± 0.676 1.117± 3.280 0.055± 1.265
B 1510 0.695± 0.030 0.513± 0.169 0.155± 0.035 0.924± 0.053 0.391± 0.037

B 1450 ε = 1 1.123± 0.065 2.743± 1.776 — —

The error estimates are standard deviations obtained with Monte Carlo simulations (see text). The last row shows
least-squares fit of data from test 1450 to a tapered power law (ε = 1).

tation simultaneously. Consequently, although it may seem
to be a paradox, we do not observe any regular breaking pat-
terns similar to that repeatedly reported from the field.

Let us take a closer look at the components of equation (1)
in the context of what is known about fragmentation of sea
ice and other brittle materials. The equation postulates that
the observed floe-size distributions are a result of two (groups
of) processes, one leading to scale invariance of floe sizes,
with some tapering effects present at large floe sizes, and
the other producing a preferred floe size, with some random
scatter around the mean value. A similar general approach,
in which the probability distribution of fragment sizes is ex-
pressed as a sum of two (or more) terms, is well known in
studies on fracture of brittle materials. Multimodal distribu-
tions observed in some fragmentation experiments are of-
ten fitted with bilinear Poisson distributions, with individual
components attributed to distinct fracture mechanisms signif-
icant at distinct spatial scales (see, e.g., Grady, 2006). One
interesting example, relevant in the present context, is the
breaking of slender, elongated rods made of a brittle mate-
rial, such as in the experiments of Gladden et al. (2005), in
which rods made of dry pasta, glass, steel, and so on, im-
pacted axially, undergo a dynamic buckling instability and
break. The resulting fragment-length distributions are non-
monotonic; i.e., they exhibit maxima corresponding to the
dominating wavelengths of the perturbation developing in
the material shortly before the onset of breaking (see Fig. 5
in Gladden et al., 2005). As the authors note, the effects of
fragmentation in this case are not purely random, but “in-
clude the imprint of the deterministic buckling process lead-
ing to breakup”. Higley and Belmonte (2008) referred to this
mode of fragmentation as “patterned breaking” and proposed
a one-dimensional mathematical model of this fragmentation
mechanism in which the probability density of breaking is a
prescribed function of location. The model successfully pre-
dicted the observed distributions of fragment sizes. Crucially,
although stress maxima corresponding to the locations of
maximum curvature of the rod are regularly distributed along
its length, the observed fragment-size distributions are very
wide, due to a number of competing effects acting in parallel,
including flexural waves associated with stress release after

individual breaking events, pre-existing flaws in the mate-
rial, or the so-called delayed-fracture phenomenon (Vanden-
berghe and Villermaux, 2013). In a different context, Åström
et al. (2014) analyzed calving rates of observed and simu-
lated grounded tidewater glaciers and floating ice shelves.
They showed that fragment-size distributions obtained from
their data can be described as a sum of two components,
one representing the largest fragments and dependent on the
large-scale pattern of parent cracks, and the other resulting
from crack propagation and grinding within individual frac-
ture zones. Riikilä et al. (2015) used the same approach in
their discrete-element model of glacier ice and analyzed how
model parameters influenced the relative contribution of the
two components to the resulting fragment-size distributions.

Analogously to the studies mentioned above, it seems rea-
sonable to represent the floe-size data with a function given
by Eq. (1), with one component describing the “patterned
breaking” due to wave-induced flexural stress, acting at a
clearly defined spatial scale, and the other component repre-
senting the remaining fracture mechanisms, producing floes
with sizes spanning a few orders of magnitude. As has been
mentioned in the introduction, the recent numerical studies
on ice breaking by waves suggest that the Gaussian distribu-
tion pG(l) is a suitable candidate for the first component. For
an ice sheet floating on the water “foundation” and subject to
flexural deformation, the location of the maximum bending
stress relative to the ice edge – and thus the most probable
breaking location – can be estimated from

xm =
π

2

(
Eh3

ice
3kw(1− ν2)

)1/4

, (6)

where kw is the foundation (in this case water) modulus
and ν is the Poisson’s ratio (see, e.g., Mellor, 1986). For
kw = 104 N m−3, ν = 0.3 and the values of E and hice mea-
sured in our experiments (see Sect. 2.1.2 and 2.1.3), we ob-
tain xm = 0.48 m for test group A and xm = 0.62 m (based
on the average ice thickness) for test group B. Remarkably,
this is very close to the values of µ obtained during the fit-
ting process (Table 3), especially for the first group of tests
in which, as we describe in Sect. 2.1.2, breaking progressed
gradually from the ice edge, so that the assumptions under-
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lying (6) should be valid. This is in agreement with Squire
et al. (1995) and with the recent results by Herman (2017)
showing that the floe size resulting from breaking by waves
depends not on the incoming wavelength, but rather on the
mechanical properties of the ice itself.

The second component of Eq. (1) is more problematic, as
its suitable form depends on the character of the fragmen-
tation process. Fragment-size distributions in the form of a
power law with an exponential cut-off, as given by pPL(l),
have been reported in numerous studies of fragmentation in
both two and three dimensions (including those by Åström
et al., 2014; Riikilä et al., 2015, cited above), and models
explaining the emergence of power-law fragment size distri-
butions have a sound theoretical basis (see, e.g., Kekäläinen
et al., 2007; Åström et al., 2000, 2004). In these models, the
power-law regime of fragment sizes results from branching
and merging of cracks produced around major parent cracks,
and as the energy available for new crack production is lim-
ited, the width of the fracture zone and thus the fragment
size is limited as well, producing the exponential cut-off in
the observed probability distributions. Thus, the cut-off re-
sults from the nature of the process itself. Another source
of cut-off is the finite-size effects that obviously are signif-
icant or even dominating in many configurations. Undoubt-
edly, in a laboratory experiment the floe sizes are subject to a
global constraint

∑
isi = Stot, where Stot denotes the surface

area of the ice sheet. The influence of global constraints of
this kind on the tails of power-law PDFs is discussed in Sor-
nette (2006). Together with waves acting as a floe-size lim-
iting factor, this eliminates the possibility of obtaining FSDs
with heavy, power-law tails. As it is well documented that
the gamma distribution is found in critical phenomena in the
presence of finite-size effects, this function seems suitable for
representing FSD data. Notably, Gherardi and Lagomarsino
(2015) use a very similar functional form – a power law
with an exponential cut-off – to describe the observed FSD
data from four different regions. More importantly, they an-
alyze two different statistical models of fragmentation, both
of which are shown to produce power laws with exponential
cut-offs. Notably as well, Lu et al. (2008) used the Weibull
distribution (i.e., a PDF in the form of a product of a power-
law term and an exponential term) to fit their observational
FSD data.

Importantly, branching models of fragmentation predict
that the exponent of the power law is universal and depends
only on the dimension D in which the process takes place:
αD = (2D− 1)/D (Åström et al., 2004; Kekäläinen et al.,
2007). In two dimensions, relevant for sea ice breaking at
scales larger than ice thickness, this value relates to PDF of
surface areas, ps(s): αs = α/2= 3/2. Values of αs > 3/2 are
expected in situations when fragmentation due to crack prop-
agation is accompanied by further grinding of the material
under combined compressive and shear deformation (e.g.,
Oron and Herrmann, 2000). Scale invariance in these mod-
els and observations suggests that fragmentation takes place

as a self-organized process, as opposed to random breaking
that results in exponential fragment-size distributions (e.g.,
Grady, 2006), i.e., αs = 0.

In the experiments described here, α was close to 1 dur-
ing initial tests (2020 in test group A and 1450 in test
group B) and decreased to values as low as 0.24 in test 2060.
This suggests, reasonably, that the random breaking model is
more appropriate in this case. The video material collected
during the experiments shows that individual cracks seem
to form independently of each other, with a simple linear
form, i.e., without secondary, rapidly forming side branches.
To the contrary, formation of individual cracks is relatively
stretched in time – it begins at the lower side of the ice
sheet and may take a few wave periods until the two new ice
floes detach from each other. This behavior is very different
from processes that are described by the branching models,
in which crack formation is rapid and their dynamic insta-
bility is the source of branching and the resulting scale in-
variance of fragment sizes. It must be also remembered that
the ice floes in our experiments were allowed to drift towards
the open water area in front of the wavemaker, so that the
conditions were very far from those favorable for grinding.
High values of α are rather expected under confined condi-
tions dominated by compressive, not tensile, deformation.

Finally, it is worth noting that the processes that lead to
breaking of the ice influence not only the sizes, but also the
shape of the ice floes. As has been noted in Sect. 3.1 (see
also Fig. 2 and Supplement Figs. S3–S5), the floes obtained
in the experiments described here were polygonal, with rela-
tively straight edges and sharp angles. Similar (or even more
regular, rectangular) floe shapes have been observed in sea
ice broken by waves (e.g., Squire, 1984; Langhorne et al.,
1998; Squire and Montiel, 2015). They are very different
from approximately circular floes often observed in satellite
images. In the literature, floe shapes have attracted much less
attention than the floe-size distribution (but see Gherardi and
Lagomarsino, 2015) and little is known about factors influ-
encing their evolution, but it is tempting to speculate that in
an initially intact ice sheet broken by waves, angular floes
are formed that subsequently gradually evolve towards more
rounded shapes (and wider size distributions) in a process of
grinding, known to produce rounded grains in other granular
materials.

In general, the results presented here, obtained under con-
trolled laboratory conditions, illustrate how difficult the in-
terpretation of real-world floe-size data is when the ice floes
are a product of many cycles of breaking, freezing, melting,
and so on. In most cases, only snapshots of the ice cover
are available, without information on its history and the forc-
ing acting on it. Nevertheless, we believe that more insight
could be gained from the existing FSD data sets. It would be
worthwhile to reexamine the published floe-size data without
commonly made a priori assumptions regarding the form of
the PDFs and to test alternative floe-size distribution models.
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