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Abstract. To assess the skill of seasonal to inter-annual pre-
dictions of the detrended sea ice extent in the Arctic Ocean
(SIEaQ) and to clarify the underlying physical processes, we
conducted ensemble hindcasts, started on 1 January, 1 April,
1 July and 1 October for each year from 1980 to 2011, for
lead times up to three years, using the Model for Interdisci-
plinary Research on Climate (MIROC) version 5 initialised
with the observed atmosphere and ocean anomalies and sea
ice concentration. Significant skill is found for the winter
months: the December SIEpo can be predicted up to 11
months ahead (anomaly correlation coefficient is 0.42). This
skill might be attributed to the subsurface ocean heat content
originating in the North Atlantic. A plausible mechanism is
as follows: the subsurface water flows into the Barents Sea
from spring to fall and emerges at the surface in winter by
vertical mixing, and eventually affects the sea ice variabil-
ity there. Meanwhile, the September SIEpp predictions are
skillful for lead times of up to two months, due to the persis-
tence of sea ice in the Beaufort, Chukchi, and East Siberian
seas initialised in July, as suggested by previous studies.

1 Introduction

The Arctic has warmed more than twice as much as the
global average (e.g., Bekryaev et al., 2010; Cohen et al.,
2014), this is referred to as Arctic amplification. Sea ice re-
duction resulting from climate change is one of the main pro-
cesses contributing to Arctic amplification (e.g., Pithan and
Mauritsen, 2014). Arctic summer sea ice extent has declined
at about 14 % per decade (National Snow and Ice Data Cen-

ter, 2016, http://nsidc.org/arcticseaicenews/). In September
2012, sea ice extent reached its minimum since satellite ob-
servations began in the late 1970s. Moreover, Arctic sea ice
thickness has decreased by around 65 % from 1975 to 2012
(Kwok et al., 2009; Lindsay and Schweiger, 2015).

In contrast to the rapid warming in the Arctic, severely
cold winters have occurred more frequently at midlatitudes.
Although the exact cause is still being debated (e.g., Barnes
and Screen, 2015), Mori et al. (2014) have shown, using en-
semble experiments with an atmospheric general circulation
model, that the more frequent cold winters at midlatitudes
can be partly explained by the sea ice decrease in the Barents
and Kara Seas. Therefore, further investigation of the mecha-
nisms driving Arctic sea ice variability is of great importance
for more accurate projections of climate change, not only in
the Arctic but also for the midlatitudes.

A previous study based on two and five year perfect-model
experiments from 1 January and 1 September has shown that
the potential predictability for sea ice extent remains statisti-
cally significant at lead times up to 1-2 years. This is primar-
ily because of the persistence of ice thickness anomalies from
summer to summer and the persistence of sea surface temper-
ature anomalies from the melt to growth seasons (Blanchard-
Wrigglesworth et al., 2011a; Guemas et al., 2014). These fea-
tures are also found in the results of experiments comparing
multiple climate models (Day et al., 2014b; Tietsche et al.,
2014). The observed detrended Arctic sea ice extent, based
on ensemble hindcasts can be predicted up to 2—7 and 5-
11 months ahead for summer and winter, respectively (e.g.,
Chevallier et al., 2013; Sigmond et al., 2013; Wang et al.,
2013; Msadek et al., 2014; Peterson et al., 2015; Guemas
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et al., 2016; Sigmond et al., 2016). In these ensemble hind-
casts, it is found that ice thickness and surface or subsurface
water temperatures are closely related to the prediction skill,
as suggested by idealised or perfect-model experiments with
climate models (e.g., Blanchard-Wrigglesworth et al., 2011b;
Chevallier and Salas y Mélia, 2012; Day et al., 2014a).

Until very recently, the mechanisms by which the above
variables contribute to the prediction skill had not been quan-
tified. Bushuk et al. (2017) examined the physical mech-
anisms underlying the prediction skill of regional sea ice
extent and showed for the first time the importance of the
initialisations of ocean subsurface temperatures and sea ice
thickness in their dynamical prediction system.

Motivated by the above studies, we first conduct initialised
ensemble hindcasts, using a climate model to assess the sea-
sonal to inter-annual predictability of sea ice extent in the
Arctic Ocean, and further investigate sources for prediction
skill and clarify the physical processes linking the predic-
tion skill to its sources. In particular, the present study re-
veals that subsurface ocean heat content originating from the
North Atlantic contributes to the predictability of winter sea
ice through advection and vertical mixing processes, which
is somewhat different from the re-emergence process of the
local subsurface ocean temperature suggested by Bushuk et
al. (2017).

2 Experimental design

The climate model used here is a low-resolution version
of the Model for Interdisciplinary Research on Climate,
version 5 (MIROCS) (Watanabe et al., 2010), which con-
tributed to the fifth phase of the Coupled Model Intercom-
parison Project and the Intergovernmental Panel on Climate
Change Fifth Assessment Report (IPCC, 2013). The atmo-
spheric component has a horizontal resolution of T42 spec-
tral truncation (approximately 2.8°) and comprises 40 verti-
cal layers up to 3 hPa. The oceanic component has horizon-
tal resolutions of 1.4° in longitude and 0.5-1.4° in latitude,
and comprises 50 vertical layers. The sea ice component of
MIROCS contains one-layer thermodynamics (Bitz and Lip-
scomb, 1999), elastic—viscous—plastic rheology (Hunke and
Dukowicz, 1997), and the subgrid ice thickness distribution
(Bitz et al., 2001) with five categories; the detailed structure
has been described in Komuro et al. (2012).

To initialise MIROCS, we adopted anomaly assimilation
for the atmosphere and ocean and full-field assimilation for
sea ice. Anomalies were calculated as the deviations from the
climatology defined in the 1961-2000 period. The observed
6-hourly air temperature and wind vectors from the 55-
year Japanese Reanalysis (JRA-55) dataset (Kobayashi et al.,
2015) were linearly interpolated to the atmospheric model’s
grid. The observed monthly ocean temperature, salinity, and
sea ice concentration (SIC) from the gridded monthly ob-
jective analysis produced by Ishii et al. (2006) and Ishii
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and Kimoto (2009) were linearly interpolated to obtain the
daily values, and the same grid as the ocean model. The
ocean data are based on the latest observational databases:
the World Ocean Database (WODO5), the World Ocean At-
las (WOAUO05), and the Global Temperature Salinity Profile
Program (GTSPP) provided by the U.S. National Oceano-
graphic Data Center (NODC); and a sea surface temperature
(SST) analysis, in particular centennial in situ observation
based estimates of variability of SST and marine meteorolog-
ical variables (COBE SST; Ishii et al., 2005; Hirahara et al.,
2014). The SIC data are based on satellite observations from
the Nimbus-5 Scanning Multichannel Microwave Radiome-
ter (SMMR), the Special Sensor Microwave Imager (SSM/I),
and the Special Sensor Microwave Imager/Sounder (SSMIS;
Armstrong et al., 2012).

In the assimilation runs, the atmospheric anomalies were
assimilated into MIROCS below 100 hPa at 6-hourly inter-
vals and the oceanic anomalies above 3000 m depth at one-
day intervals except in sea ice regions, using a modified
incremental analysis update scheme (Tatebe et al., 2012).
Meanwhile, SIC was assimilated at 1-day intervals following
Lindsay and Zhang (2006) and Stark et al. (2008). These as-
similations were conducted over the period 1975-2011 with
eight ensemble members produced by perturbing the sea sur-
face temperature based on observational errors. The atmo-
spheric and oceanic initial states were obtained from a non-
initialised twentieth-century run with historical natural and
anthropogenic forcings.

On the basis of the assimilation runs, the hindcast exper-
iments were integrated for 3 years from 1 January, 2 years
and 9 months from 1 April, 2 years and 6 months from 1 July
and 2 years and 3 months from 1 October for each year from
1980 to 2011. The initial state of the atmosphere and ocean
was obtained from the corresponding assimilation runs. In
addition, a control run with MIROC version 5.2, a minor up-
date of MIROCS, was used to interpret the physical processes
contributing to the prediction skill in the hindcasts. This sim-
ulation was run with external forcings fixed at the levels of
the year 2000 under a multi-model inter-comparison project
(Day et al., 2016).

In Sects. 3 and 4, we analyse the detrended monthly
anomalies to extract internal variations in seasonal to inter-
annual timescales. Here, the detrended components were cal-
culated by subtracting monthly linear trends during 1980-
2009 from the original monthly data, and anomalies are de-
fined as deviations from the climatology from 1980-2009.
Moreover, climate drifts in the hindcasts are removed ac-
cording to the International Clivar Project Office (ICPO,
2011). Here, the climate drift T4 is estimated as follows:

N
Tt (D) =% > (T (v) = T (1)), where k = 1,---, N is the
k=1

initial time; t is the forecast lead time; T is the monthly
quantity of interest, for example the temperature and sea

[T L] [73%1]

ice concentration; and the subscripts “p” and “a” represent
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Figure 1. Lagged auto-correlation coefficients of the detrended SIEpp anomaly derived from (a) observations (Ishii et al., 2006; Ishii and
Kimoto, 2009) and (b) a model control simulation, for each start month, against lead time, following Day et al. (2014b). Solid and dashed
lines denote values for the September and March target months, respectively. Black dots indicate statistical significance at a 95 % confidence
level based on a two-sided Student’s ¢ test with 30 and 200 degrees of freedom in the observations and model, respectively.

the ensemble averaged prediction and the corresponding as-
similation, respectively. As mentioned in Sect. 1, sea ice re-
duction in the Arctic Ocean, especially in the Barents and
Kara Seas, could lead to extreme weather at midlatitudes,
which may be related to the warming of the Arctic Ocean
interior (e.g., Polyakov et al., 2012). To clearly interpret the
physical mechanisms influencing sea ice extent in the Arctic
Ocean (hereafter SIEpp), SIEsQ is defined from the cumu-
lative area for all grid cells north of 65° N with SIC greater
than 15 %. From this definition, Baffin Bay and Hudson Bay
are partially included in the domain, but the directions of the
main currents are from the Arctic Ocean interior (shelves and
basins) to Baffin Bay through the straits of the Canadian Arc-
tic Archipelago (e.g., Aksenov et al., 2011). Thus, the direct
impacts of Baffin Bay and Hudson Bay on the Arctic Ocean
interior are considered to be small. Note that the results of
this study are not directly comparable with other hindcast
studies that focus on pan-Arctic SIE (e.g., Chevallier et al.,
2013; Sigmond et al., 2013; Wang et al., 2013; Msadek et
al., 2014; Peterson et al., 2015; Guemas et al., 2016; Sig-
mond et al., 2016), due to the choice of Arctic Ocean do-
main. For comparison, the results for the detrended sea ice
extent anomaly in the Northern Hemisphere are shown in the
supporting information.

3 Predictability of Arctic sea ice extent

We first examine the potential predictability of SIEao
(Fig. 1), based on the lagged auto-correlation coefficients,
which is the skill of the persistence forecast. The lagged
correlations with the observations (Ishii et al., 2006; Ishii
and Kimoto, 2009) decrease within the first few months for
all of the start months, and those originating between Jan-
uary and June subsequently rise again in the winter (Novem-
ber through March). Significant skill in the control run is
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obtained for greater lead times than in the observations,
which is consistent with previous studies (e.g., Blanchard-
Wrigglesworth et al., 2011b; Day et al., 2014b). For the
SIE in the Northern Hemisphere (Fig. Sla in the Supple-
ment), the correlation patterns are similar to those in Day
et al. (2014b), except for a lead time of one month for
May which may be due to differences in the observational
time period (Fig. S1d). However, the reemergence in win-
ter is weaker than that for SIEpp. This is because the win-
ter SIEpop variability is dominated by changes in the Bar-
ents and Greenland—Icelandic—Norwegian (GIN) seas, which
have long persistence timescales relative to other regions of
winter sea ice variability.

We next evaluate the SIEpp prediction skill (Fig. 2a and
b), with the anomaly correlation coefficient (ACC) and the
root-mean-square error (RMSE) between the detrended ob-
servations and the hindcasts (e.g., Wang et al., 2013). Here,
the RMSE values are normalised by the standard deviation of
each month. In the hindcasts started from 1 July, the ACC for
September is statistically significant and exceeds that of the
persistence forecast, suggesting that September SIE 50 can be
dynamically predicted from the previous July (ACC =0.79).
Although the significance of the ACC is borderline, the re-
sults suggest that September SIEq is potentially predictable
from 1 April (ACC=0.37), which is consistent with the
results of Peterson et al. (2015). The ACC is also signifi-
cant for the winter SIEs0, in particular for December, ex-
cept for the hindcasts started from 1 April, indicating the
potential use of dynamical forecasts up to 11 months ahead
(ACC=0.42). The RMSE values for the first several lead
months are smaller than the standard deviation for all hind-
casts. The time series of September SIExo shows that both
the assimilation and hindcasts capture the observed inter-
annual variability, although the model underestimates the
variability in the mid-1980s and mid-1990s (Fig. 2c). The
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Figure 2. Lead time dependence of (a) SIEpg ACC and (b) SIEpo
RMSE (x10° km?2) for J anuary, April, July, and October start hind-
casts. The SIEpo ACC scores of hindcasts, which are higher than
those of the persistence forecast and statistically significant at the
95 % confidence level based on a two-sided Student’s ¢ test, are
denoted by black dots. The SIEpog RMSE scores, which are nor-
malised by the standard deviation, are denoted by black dots if the
values are less than 1.0. Boxes in (a) indicate the lead time of the
time series shown in (c¢) and (d). Time series of the detrended SIEpo
anomaly for (c¢) September and (d) December, from the observa-
tions (OBSE; black line), assimilation (ASSI; red line), and hind-
casts started from 1 July and 1 January (HIND.JUL and HIND.JAN;
blue line). HIND.JUL is the September SIE (o at 2 months lead time
and HIND.JAL is the December SIEpp at 11 months lead time.
Blue shading indicates the ensemble spread. In (c), the September
SIEpQ at 5 months lead time, started from 1 April (HIND.APR), is
superimposed by an aqua line and shading.

observed SIEaQ in December is contained within the ensem-
ble spread, excluding the mid-1980s (Fig. 2d). We also show
the same figure as Fig. 2 in Fig. S2, except that the detrended
sea ice extent anomaly is calculated for the Northern Hemi-
sphere. The lower ACC at short lead times for the hindcasts
started from January and April (Fig. S2a) may be due to the
lower ACC and higher RMSE for sea ice concentration in
the Sea of Okhotsk, the Bering Sea, and the Labrador Sea
(not shown). The RMSE values in winter are large (Fig. S2b)
compared to Fig. 2b because SIEso does not include the area
where sea ice variability is large. The differences between
Fig. 2d and Fig. S2d are also due to the effect of the domain
choice.
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4 Possible mechanisms for prediction skill

Focusing on both the hindcasts started from 1 January, in
which the December SIEpp has high skill even at long lead
times, and those started from 1 July, in which the September
SIEao is significant, we examine mechanisms for the pre-
diction skill. Figure 3 shows the lagged cross-correlation be-
tween the SIEAp and the sea ice volume in the Arctic Ocean
(SIV a0), and those between SIEsg and ocean heat content in
the Arctic Ocean (OHCx0) for the control run as well as the
hindcasts started from January and July. Here, the SIV 50 is
defined as the sum of the grid cell volumes obtained by mul-
tiplying the sea ice thickness (SIT) by the SIC and the area
for grid cells with SIC greater than 15 % and the OHCyxg is
the vertically integrated temperature multiplied by the den-
sity and specific heat capacity of seawater from the surface
to a depth of 200 m, in the same area as the SIE0.

The SIVao has stronger positive correlations with the
SIEso in summer than in winter (Fig. 3a—c), which is con-
sistent with Chevallier and Salas y Mélia (2012). Conversely,
the OHCpp has more persistent negative correlations with
the SIEo in winter than in summer (Fig. 3d—f). In the hind-
casts started from 1 January, the December SIExg is signif-
icantly correlated with the OHC o from January to Decem-
ber. Similar features can be seen in the hindcasts started from
1 July. The SIExp in September is significantly correlated
with the SIVao in July for both of the hindcasts, but only
weakly correlated with the OHCpp. Thus, sources for the
prediction skill of the December and September SIEsQ are
suggested to be the ocean heat content from the surface to a
depth of 200 m after January, and the sea ice states in July.
For the sea ice extent anomaly calculated in the Northern
Hemisphere (Fig. S3), the patterns of the lagged correlation
coefficients are broadly similar to those in Fig. 3. However,
the correlations between the SIE and SIV are higher than
those in the Arctic domain north of 65° N. One reason might
be the contribution of sea ice variability south of 65°N. In
addition, the correlations between SIE and OHC show weak
positive values from June to October in the hindcasts. This is
partly because the OHC includes the regions where sea ice
does not exist throughout the year.

We next clarify the physical processes linking the predic-
tion skill to the sources of that skill. Figure 4 shows the
SIC, SIT, and OHC north of 60° N regressed on the model-
predicted December SIEap. The most significant signals for
both SIC and SIT are found in the Barents Sea (BS) of the
Arctic Ocean (Fig. 4a and b). It is well known that winter sea
ice variability in the BS dominates that in the Arctic Ocean
(e.g., Smedsrud et al., 2013), which is consistent with our
results. At a lag of 9 months (Fig. 4c), negative correlation
and regression coefficients for the OHC are found in regions
from the northern part of the GIN seas to the western part of
the BS. The signals become strong in the western part of the
BS at a lag of 6 months (Fig. 4d), further extend across the
entire BS at a lag of 3 months (Fig. 4e) and still appear in the
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Figure 3. Lagged correlation coefficients between the detrended SIEpp anomaly, (a—c) the detrended SIV oo anomaly and (d—f) the de-
trended OHCpo anomaly. Left, middle, and right panels indicate values obtained from the control run (CTRL), the hindcasts started from
1 January (HIND.JAN), and the hindcasts started from 1 July (HIND.JUL), respectively. Black dots indicate statistical significance at the
95 % confidence level based on a two-sided Student’s ¢ test with 30 and 200 degrees of freedom in the observations and model. Note that the
horizontal and vertical axes in the hindcasts started from 1 July are different from those in the control run and the hindcasts started from 1

January.

BS at a lag of zero (Fig. 4f). These features are also found
in the control run (Fig. S4), suggesting that the physical pro-
cesses in the hindcasts are not due to processes distorted by
the influence of initialisation or climate drift in MIROCS. In
contrast, the December SIEpo cannot be predicted from 1
April (Fig. 2a), although significant regression and correla-
tion coefficients appear in the results for the April hindcasts
(Fig. S5). This may be because the RMSE for April SIC in
the BS is larger in the April hindcasts than the January hind-
casts (not shown). In this study, since we do not assimilate
ocean data beneath the sea ice, initialised ocean states under-
neath the sea ice are considered to be different from the real
ocean. Particularly, in the BS where sea ice variability is re-
lated to the skillful prediction of December SIEaq, standard
deviation of sea ice is larger in April than in January, and thus
the initial shock might be large in April.

Considering that the Norwegian Atlantic Current tends to
flow into the BS (e.g., Polyakov et al., 2005), the North At-
lantic might be the source the OHC anomaly, contributing
to the significant skill of the December SIExp. A plausible
mechanism is as follows: the OHC anomalies initialised in
the North Atlantic that flow into the BS through advection,
subsequently emerge at the surface due to vertical mixing in
winter, and affect the December sea ice distribution in the BS
and eventually in the Arctic Ocean. This hypothesis is partly
supported by Nakanowatari et al. (2014). As originally pro-
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posed by Bushunk et al. (2017), our results suggest that the
initialisation of subsurface ocean temperature contributes to
the skillful prediction of the winter sea ice extent in the BS.
For September, the sea ice states initialised in July persist
until September in the Beaufort, Chukchi, and East Siberian
Seas (Fig. 5), which is consistent with Bushuk et al. (2017).
Consequently, this persistence contributes to the prediction
skill of the September SIExp. In the hindcasts started from
1 April, the September SIEpp shows similar lagged correla-
tion patterns to the July hindcasts for SIVap (Fig. S6a) and
OHC o (Fig. S6b). Thus, the same physical processes as the
July hindcasts are expected to be present in the April hind-
casts. However, the positive regression and correlation pat-
terns for SIC and SIT are lower than those for the July hind-
casts, particularly in the Pacific Sector of the Arctic Ocean
(Fig. S6c and d). In contrast, similar patterns to Fig. 5 clearly
appear in the Pacific sector of the Arctic Ocean for the control
experiment (Fig. S7). These results suggest that the persis-
tence of sea ice contributes to the skill of September SIExo
started from 1 April, but errors in the initial conditions for
SIT and model drift may lead to unclear signals in Fig. S6.

5 Concluding remarks

We investigated the predictability of the detrended SIEao
anomaly and its sources based on an ensemble of hind-
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(a) SIC DEC

Figure 4. Lagged correlation (colours) and regression (contours) coefficients between the SIE o anomaly (x 100 kmz) in December and (a)
SIC anomaly (%) at a lag of 0 months, (b) SIT anomaly (cm) at a lag of 0 months, and OHC anomalies (x 1018 J) at lags of (¢) —9, (d) —6,
(e) —3, and (f) 0 months, in regions from 60 to 90° N on the basis of the hindcasts started from 1 January. Contours are drawn at intervals
of 5 (%) from 5 to 25 for SIC and 10 (cm) from 10 to 40 for SIT. In (c—f), the contours are drawn from —1.0 to —0.1 (x 1018 J) at intervals
of 0.1 (x 1018 ). Stippling indicates regions with statistically significant correlation coefficients at the 95 % confidence level. White shading
indicates areas where sea ice does not exist. A latitude circle of 65° N is also indicated by a thin solid line.

SIC

SIT

Figure 5. Lagged correlation (colours) and regression (contours) coefficients between the September SIEpp anomaly (x 10° kmz) and (a)
SIC anomaly (%) and (b) SIT anomaly (cm), based on the hindcasts started from 1 July. Contours are drawn at intervals of 5 (%) from 5 to 20
and at intervals of 10 (cm) from 10 to 40 for the SIC and SIT anomalies, respectively. Stippling indicates regions with statistically significant
correlation coefficients at the 95 % confidence level. White shading indicates areas where sea ice does not exist. A latitude circle of 65° N is
also indicated by a thin solid line.
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casts using an initialised climate model, MIROCS, and fur-
ther identified physical processes related to the prediction
skill. Prediction skill for Arctic winter SIE0 is significantly
higher than the persistence forecast, especially for Decem-
ber, indicating the possibility for dynamical forecasting 11
months ahead. The December SIEpp is significantly cor-
related with the December SIC and SIT in the BS where
the subsurface OHC anomalies might be advected from the
North Atlantic, and subsequently emerge at the surface in
winter, and contribute to the sea ice variability there. Our re-
sults suggest that the sources of the December SIE 50 predic-
tion skill exist in the North Atlantic and thus initialisation
of the subsurface water there leads to better prediction of
the SIEpp in December. Numerical experiments to confirm
whether the subsurface OHC anomalies originating from the
North Atlantic control the December sea ice extent in the BS
and eventually in the Arctic Ocean will be explored in future
work.

Significant skill for the September SIE5( is seen only up
to two months ahead. Improvement in the prediction skill for
summer SIE5Q is dependent upon refinement of the initial
state of the SIT. In fact, higher lagged correlations between
the summer SIEpo and the SIV 5o suggest that the initialisa-
tion of the SIT is important, which is consistent with previous
results by Day et al. (2014a) and Bushuk et al. (2017).

In recent years, the rapid reduction in Arctic sea ice has
enabled ships to navigate the Northern Sea Route (e.g.,
Stephenson et al., 2014). Under such maritime activities in
the Arctic Ocean, forecasts of the local sea ice distribution
rather than the total sea ice extent become of greater interest
for marine users. Recent studies have reported the forecast
skills of the retreat and advance dates of the sea ice dis-
tribution based on statistical methods (e.g., Stroeve et al.,
2016; Wang et al., 2016) as well as a dynamical forecast
system (Sigmond et al., 2016; Bushuk et al., 2017). In the
present study, our hindcasts could not reproduce precise sea-
ice edges from summer to fall. For example, the predicted
sea ice distributions in September 2007 are overestimated
in the Russian region of the Arctic Ocean. This is because
the surface winds, which are thought to be the major driv-
ing force of sea ice motion in September 2007, are not ad-
equately predicted. Other reasons might be the lower reso-
lution of the ocean model or bias in the climatology. Further
improvements in the skill to predict sea ice, including its spa-
tial pattern, will be provided by climate models with higher
resolution, reduced model drift and bias, and improved ini-
tialisation techniques.
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