Supplement of The Cryosphere, 12, 453–476, 2018 https://doi.org/10.5194/tc-12-453-2018-supplement © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Tidal influences on a future evolution of the Filchner–Ronne Ice Shelf cavity in the Weddell Sea, Antarctica

Rachael D. Mueller et al.

Correspondence to: Rachael D. Mueller (mueller@esr.org)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplement:

ROMS Model Paramter selection Physical Parameters, Grid: 01

ROMS Model Paramter selection Physical Parameters, Grid: 01				
ntimes	Number of timesteps for 3-D equations.			
	Timestep size (s) for 3-D equations.			
	Number of timesteps for 2-D equations between each 3D timestep.			
	Starting ensemble/perturbation run number.			
	Ending ensemble/perturbation run number.			
	Number of restart records to read from disk.			
	Switch to recycle time-records in restart file.			
•	Number of timesteps between the writing of data into restart fields.			
	Number of timesteps between print of information to standard output.			
	Switch to create a new output NetCDF file(s).			
	Number of timesteps between the writing fields into history file.			
ntsAVG	Starting timestep for the accumulation of output time-averaged data.			
nAVG	Number of timesteps between the writing of time-averaged data into averages file.			
ndefAVG	Number of timesteps between creation of new time-averaged file.			
ntsDIA	Starting timestep for the accumulation of output time-averaged diagnostics data.			
nDIA	Number of timesteps between the writing of time-averaged data into diagnostics file.			
nl_tnu2(01)	NLM Horizontal, harmonic mixing coefficient (m2/s) for tracer 01: temp			
nl_tnu2(02)	NLM Horizontal, harmonic mixing coefficient (m2/s) for tracer 02: salt			
nl_visc2	NLM Horizontal, harmonic mixing coefficient (m2/s) for momentum.			
Akt_bak(01)	Background vertical mixing coefficient (m2/s) for tracer 01: temp			
Akt_bak(02)	Background vertical mixing coefficient (m2/s) for tracer 02: salt			
Akv_bak	Background vertical mixing coefficient (m2/s) for momentum.			
rdrg	Linear bottom drag coefficient (m/s).			
rdrg2	Quadratic bottom drag coefficient.			
	ntimes dt ndtfast ERstr ERend nrrec LcycleRST nRST ninfo ldefout nHIS ntsAVG nAVG ndefAVG ntsDIA nDIA nl_tnu2(01) nl_tnu2(02) nl_visc2 Akt_bak(01) Akt_bak(02) Akv_bak rdrg			

2.00E-02	Zob	Bottom roughness (m).
1	lmd_Jwt	Jerlov water type.
2	Vtransform	S-coordinate transformation equation.
4	Vstretching	S-coordinate stretching function.
1.00E-01	theta_s	S-coordinate surface control parameter.
1.00E+00	theta_b	S-coordinate bottom control parameter.
1000	Tcline	S-coordinate surface/bottom layer width (m) used in vertical coordinate stretching.
1025	rho0	Mean density (kg/m3) for Boussinesq approximation.
0	dstart	Time-stamp assigned to model initialization (days).
0	tide_start	Reference time origin for tidal forcing (days).
19900101	time_ref	Reference time for units attribute (yyyymmdd.dd)
2.00E+01	Tnudg(01)	Nudging/relaxation time scale (days) for tracer 01: temp
2.00E+01	Tnudg(02)	Nudging/relaxation time scale (days) for tracer 02: salt
0.00E+00	Znudg	Nudging/relaxation time scale (days) for free-surface.
0.00E+00	M2nudg	Nudging/relaxation time scale (days) for 2D momentum.
1.00E+02	M3nudg	Nudging/relaxation time scale (days) for 3D momentum.
1.00E+01	obcfac	Factor between passive and active open boundary conditions.
F	VolCons(1)	NLM western edge boundary volume conservation.
F	VolCons(2)	NLM southern edge boundary volume conservation.
F	VolCons(3)	NLM eastern edge boundary volume conservation.
F	VolCons(4)	NLM northern edge boundary volume conservation.
-1.9	T0	Background potential temperature (C) constant.
34.65	S0	Background salinity (PSU) constant.
1	gamma2	Slipperiness variable: free-slip (1.0) or no-slip (-1.0).

Tile partition information for Grid 01: 0205x0211x0024 tiling: 008x004

Lateral Boundary Conditions: NLM

Variable	Gr	id West Edge	South Ed	ge East Edg	e North Edge
zeta	1	Chapman	Closed	Chapman	Chapman
ubar	1	Flather	Closed	Flather	Flather
vbar	1	Flather	Closed	Flather	Flather
u	1	Radiation	Closed	Radiation	Radiation
V	1	Radiation	Closed	Radiation	Radiation
temp	1	Rad + Nud	Closed	Rad + Nud	Rad + Nud
salt	1	Rad + Nud	Closed	Rad + Nud	Rad + Nud

Activated C-preprocessing Options:

WS	ROMS/TOMS 3.6 - WS sub
ADD_FSOBC	Adding tidal elevation to processed OBC data.
ADD_M2OBC	Adding tidal currents to processed OBC data.
ANA_BSFLUX	Analytical kinematic bottom salinity flux.
ANA_BTFLUX	Analytical kinematic bottom temperature flux.
ANA_FSOBC	Analytical free-surface boundary conditions.
ANA_INITIAL	Analytical initial conditions.
ANA_M2OBC	Analytical 2D momentum boundary conditions.
ANA_M3OBC	Analytical 3D momentum boundary conditions.
ANA_SMFLUX	Analytical kinematic surface momentum flux.
ANA_SRFLUX	Analytical kinematic shortwave radiation flux.
ANA_SSFLUX	Analytical kinematic surface salinity flux.
ANA_STFLUX	Analytical kinematic surface temperature flux.
ASSUMED_SHAPE	Using assumed-shape arrays.
AVERAGES	Writing out time-averaged nonlinear model fields.
CURVGRID	Orthogonal curvilinear grid.

DIAGNOSTICS_TS Computing and writing tracer diagnostic terms.

DJ_GRADPS Parabolic Splines density Jacobian (Shchepetkin, 2002).

DOUBLE_PRECISION Double precision arithmetic. ICESHELF Include Ice Shelf Cavities.

ICESHELF_3EQ Include 3eq Ice Shelf Thermodynamics.

LMD_CONVEC LMD convective mixing due to shear instability.

LMD_MIXING Large/McWilliams/Doney interior mixing.

LMD_NONLOCAL LMD convective nonlocal transport.

LMD_RIMIX LMD diffusivity due to shear instability.

LMD SKPP KPP surface boundary layer mixing.

MASKING Land/Sea masking.

MIX_GEO_TS Mixing of tracers along geopotential surfaces.
MIX_S_UV Mixing of momentum along constant S-surfaces.

MPI MPI distributed-memory configuration.

NONLINEAR Nonlinear Model.

NONLIN_EOS Nonlinear Equation of State for seawater. PERFECT RESTART Processing perfect restart variables.

POWER_LAW Power-law shape time-averaging barotropic filter.

PROFILE Time profiling activated .

RAMP_TIDES Ramping tidal forcing for one day.

!RST_SINGLE Double precision fields in restart NetCDF file.

SALINITY Using salinity.

SOLVE3D Solving 3D Primitive Equations.

SPLINES Conservative parabolic spline reconstruction.
SSH TIDES Add tidal elevation to SSH climatology.

TS_U3HADVECTION Third-order upstream horizontal advection of tracers.
TS_C4VADVECTION Fourth-order centered vertical advection of tracers.

TS_DIF2 Harmonic mixing of tracers. UV_ADV Advection of momentum.

UV_COR Coriolis term.

UV_U3HADVECTION Third-order upstream horizontal advection of 3D momentum.

UV_C4VADVECTION Fourth-order centered vertical advection of momentum.

UV_QDRAG Quadratic bottom stress.

UV_TIDES Add tidal currents to 2D momentum climatologies.

UV_VIS2 Harmonic mixing of momentum.
VAR_RHO_2D Variable density barotropic mode.