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Abstract. A multi-category numerical sea ice model CICE
was used along with data assimilation to derive sea ice pa-
rameters in the region of Baffin Bay and Labrador Sea. The
assimilation of ice concentration was performed using the
data derived from the Advanced Microwave Scanning Ra-
diometer (AMSR-E and AMSR2). The model uses a mixed-
layer slab ocean parameterization to compute the sea sur-
face temperature (SST) and thereby to compute the freezing
and melting potential of ice. The data from Advanced Very
High Resolution Radiometer (AVHRR-only optimum inter-
polation analysis) were used to assimilate SST. The modelled
ice parameters including concentration, ice thickness, free-
board and keel depth were compared with parameters esti-
mated from remote-sensing data. The ice thickness estimated
from the model was compared with the measurements de-
rived from Soil Moisture Ocean Salinity – Microwave Imag-
ing Radiometer using Aperture Synthesis (SMOS–MIRAS).
The model freeboard estimates were compared with the free-
board measurements derived from CryoSat2. The ice con-
centration, thickness and freeboard estimates from the model
assimilated with both ice concentration and SST were found
to be within the uncertainty in the observation except dur-
ing March. The model-estimated draft was compared with
the measurements from an upward-looking sonar (ULS) de-
ployed in the Labrador Sea (near Makkovik Bank). The dif-
ference between modelled draft and ULS measurements es-
timated from the model was found to be within 10 cm. The
keel depth measurements from the ULS instruments were
compared to the estimates from the model to retrieve a re-
lationship between the ridge height and keel depth.

1 Introduction

Regional sea ice forecasting is important for climate stud-
ies, operational activities including navigation, exploration of
offshore mineral resources and ecological applications; e.g.
the North Water Polynya in Baffin Bay provides a warm en-
vironment for marine animals (Stirling, 1980).

Sea ice is a heterogeneous media, making it practically
difficult for remote sensing instruments to measure the ice
thickness, freeboard and ridge parameters (Carsey, 1992).
The climate forecast researchers and operational ice mod-
elling communities depend on numerical modelling tech-
niques implementing the physical process of atmosphere and
ocean on large-scale computational platforms along with
data assimilation methods to retrieve the information on sea
ice parameters. Data assimilation methods can provide more
accurate initial conditions for forecasting systems (Caya
et al., 2006, 2010). The estimation of sea ice parameters is
a challenging problem in the region of Baffin Bay and the
Labrador Sea due to the high interannual variability of sea
ice in this area (Fenty and Heimbach, 2013).

Previous sea ice modelling and assimilation studies at the
Canadian Ice Service (CIS) (Sayed and Carrieres, 1999) pro-
vided an overview of an operational ice model coupled with
atmospheric and ocean modules. The research (Sayed et al.,
2001) compared the evolution of ice thickness distributions
followed by the development of an operational ice dynam-
ics model for CIS (Sayed et al., 2002). The CIS used the
model developed by Sayed and Carrieres (1999); Sayed et al.
(2002) to study the ice thickness distribution in the Gulf of St
Lawrence (Kubat et al., 2010) These modelling studies were
also improved by the data assimilation methods (Caya et al.,
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2006, 2010). The Community Ice Ocean Model (CIOM)
by Caya et al. (2006) used the Princeton Ocean Model for
the simulation of ocean parameters and a multi-category ice
model. The total ice fraction retrieved from the Special Sen-
sor Microwave/Imager (SSM/I) was assimilated into CDOM
using a 3-D variational (3DVAR) technique (Caya et al.,
2006) to estimate the ice concentration. The ice concentra-
tion estimates were further improved by assimilating infor-
mation from both daily ice charts and RADARSAT (Caya
et al., 2010). Assimilation studies by Lindsay and Zhang
(2006) showed significant improvement in assimilated ice
concentration but with a large bias in the ice thickness pat-
tern.

Karvonen et al. (2012) presented a method for ice concen-
tration and thickness analysis by combining the modelling
of sea ice thermodynamics and the detection of ice motion
by space-borne synthetic aperture radar (SAR) data from
RADARSAT-1 and RADARSAT-2. The method showed
promising results for sea ice concentration and ice thickness
estimates. In another study, Ocean and Sea Ice Satellite Ap-
plication Facility (OSI SAF) data were assimilated into the
Regional Ocean Modelling System (ROMS) for simulating
sea ice concentration and produced better results than the
simulation without assimilation (Wang et al., 2013). Ice con-
centration and extent were overestimated in the assimilated
model, probably due to the bias in atmospheric forcing, un-
derestimation of heat flux and over- and underestimation of
sea ice growth and melt processes.

Sea ice models can be coupled to ocean and atmosphere
models, but they can also be run in a stand-alone mode by
prescribing the atmospheric and ocean conditions. The lit-
erature does not provide details and discussion on regional
implementation and results for stand-alone models. The 3D-
CEMBS is an eco-hydrodynamic model that includes a cou-
pled POP-CICE model for operational forecasting imple-
mentation of the CICE model on a regional scale. The im-
plementation on the regional scale of the ice component and
the validation work is still ongoing (Dzierzbicka-Głowacka
et al., 2013). The advantage of the sea ice model, CICE ver-
sion 5.1.2 (Hunke et al., 2015), is the stand-alone capability.
Here we use a combination of modelling using the stand-
alone sea ice model, CICE, and the combination of opti-
mal interpolation and nudging methods (Lindsay and Zhang,
2006; Wang et al., 2013) to assimilate ice concentration. The
optimal interpolation and nudging method is also used to
assimilate SST estimated by a slab ocean parameterization
in the sea ice model. The optimal interpolation method is
computationally inexpensive and was shown to provide bet-
ter estimates than the non-assimilated model (Wang et al.,
2013). The simulated sea ice parameters are then validated
with the observations in the region of the Baffin Bay and
the Labrador Sea. This work uses a high-resolution model
configuration which was previously described in the work of
Prasad et al. (2015). The changes in ice concentration were
taken into account to estimate the changes in the ice volume

and thereby the thickness estimates. The ice prediction mod-
els such as Regional Ice Prediction System (RIPS) (Lemieux
et al., 2016) limits the discussion on ice concentration esti-
mates from the model. In this work, in addition to validation
of the ice concentration we also discuss the effect of the as-
similation on ice thickness, freeboard, draft and keel depth.
Since freeboard, draft and keel are functions of ice concen-
tration and ice volume it is reasonable to compare the model
values with corresponded observations. The work suggests a
methodology to extract the level ice draft and keel depth in-
formation from upward-looking sonar (ULS) measurements,
which was then used to describe the relationship between
ridge and keel.

2 Model domain and forcing data

The sea ice model was implemented on a regional scale of
about 10 km orthogonal curvilinear grids with a slab ocean
mixed-layer parameterization. Density-based criteria were
used as in Prasad et al. (2015) to compute the mixed-layer
depth and thereby compute the SST and the potential to grow
or melt sea ice. The assessment of the non-assimilated model
of the sea ice concentration and its seasonal means showed
that the error associated with the model is mostly spread
across the area of the North Water Polynya and the Davis
Strait where the interaction of cold and warm water is fre-
quent. In the present study, a data assimilation module is also
introduced.

The surface atmospheric forcing is from high-resolution
North American Regional Reanalysis (NARR) data
(Mesinger et al., 2006). The ocean forcing is from various
sources: currents from Climate Forecast System Reanalysis
(CFSR), salinity from World Ocean Atlas, WOA-2013
(Levitus and Mishonov, 2013), and mixed-layer depth
(MLD) computed from WOA-2013 (Prasad et al., 2015).
Prasad et al. (2015) used a density criteria of 0.2 kg m−3

at 10 m depth; the other models such as RIPS by CIS
(Lemieux et al., 2016) use a density criteria of 0.01 m−3

from the ocean surface. Atmospheric and ocean forcing were
used as inputs to the model. For sea surface temperature
(SST), monthly climatology data derived from NOAA
High-resolution Blended Analysis were used as input for
the initial and boundary conditions. The net heat flux from
the atmosphere is the upper boundary condition for ice
thermodynamics. The heat flux from the ocean to the ice is
the lower boundary condition. Based on temperature profile
and boundary conditions, the melt and growth of ice are
computed. The open boundaries are configured in the same
way as in Hunke et al. (2015) and Prasad et al. (2015). For
the ice concentration and thickness, the initial condition is
assumed as a no-ice state at the beginning of September
2004. The data assimilation starts from January 2005 and is
continually assimilated whenever data are available.
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Table 1. Specifications of microwave radiometers used to estimate ice concentration.

Specifications AMSR-E AMSR2 SSMIS

Center frequency (GHz) 89 89 19 37
Mean spatial resolution (km) 6× 4 5× 3 69× 43 37× 28
Polarization HV HV V HV
Incidence angle (deg) 55 55 50
Swath (km) 1445 1450 1700
Data availability (mm/yyyy) 08/2002–10/2011 08/2012–present 03/2005–present

3 Remote sensing data for assimilation and validation

Ice concentrations derived from Advanced Microwave Scan-
ning Radiometer (AMSR-E) of resolution 6km × 4km
(Spreen et al., 2008) were used for the assimilation of ice
concentration. AMSR-E was developed by JAXA, and it is
deployed on the Aqua satellite. AMSR-E and AMSR2 are
passive sensors that look at the emitted or reflected radiation
from the Earth’s surface with multiple frequency bands. The
vertical (V) and horizontal (H) polarization channels near
89 GHz were used to compute the ice concentration from
AMSR-E (Spreen et al., 2008). The Arctic Radiation and
Turbulence Interaction Study (ARTIST) sea ice algorithm
used to determine ice concentration from AMSR-E shows
excellent results above 65 % ice concentration where the er-
ror does not exceed 10 %. With low ice concentrations, sub-
stantial deviations can occur depending on atmospheric con-
ditions. The parameters of the sensor are provided in Ta-
ble 1. AMSR-E ice concentrations were available from Jan-
uary 2005 to September 2011, after which the instrument
stopped functioning. From August 2012 AMSR2 had been
used for data collection. The same frequency (89 GHz) as
that of the AMSR-E instrument was used to derive informa-
tion from AMSR2. The spatial resolutions also remained the
same for both AMSR-E and AMSR2. The same algorithm
was applied to derive ice concentrations from both AMSR-
E and AMSR2. The original AMSR-E/AMSR2 data with
6km× 4km resolution scale were interpolated to the model
grid before assimilation.

The assimilated model results of ice concentration were
compared with the OSI SAF data. The details of the sen-
sors are given in Table 1. The OSI SAF product is derived
from Special Sensor Microwave Imager Sounder (SSMIS)
(Tonboe et al., 2016; Bell, 2006). The data are available on a
10 km polar stereographic grid and are derived from 19 V, 37
VH channels. The erroneous data for which the ice concen-
tration error was 100 % or the retrieval algorithm failed were
filtered out before comparison. Measurements derived from
AVHRR-only OISST analysis (Advanced Very High Resolu-
tion Radiometer) (Reynolds et al., 2007; Banzon et al., 2016)
were used for SST assimilation. SST data products are gen-
erated using a combination of satellite and in situ observa-
tions from buoy and ship observations and are available on a

0.25◦×0.25◦ resolution. The analysis product estimates SST
from ice concentration only in regions where ice concentra-
tion is greater than 50 %; otherwise it uses satellite data to
retrieve SST values.

Freeboard measurements from the CryoSat-2 altimeter
were used to compare the freeboard estimates by the model.
The CryoSat-2 altimeter operating in the SAR mode, SIRAL,
has an accuracy of about 1 cm with a spatial sampling of
about 45 cm (Bouzinac, 2014). The pulse-limited footprint
width in the across-track direction is about 1.65 km and the
beam-limited footprint width in the along-track direction
is about 305 m (Scagliola, 2013), which corresponds to an
along-track resolution about 401 m (assuming flat-Earth ap-
proximation). Therefore, the pulse-Doppler-limited footprint
for SAR mode is about 0.6 km2. The CryoSat-2 freeboard
and the ice-concentration products were generated at the Al-
fred Wegener Institute (AWI) (Ricker et al., 2014). The prod-
ucts are available in a spherical Lambert azimuthal equal-
area projection of a 25 km resolution cell. The uncertainty in
freeboard measurements can arise from speckle noise, lack
of leads (which makes the estimation of sea surface height
unreliable) and snow cover. The uncertainty up to 40 cm can
be observed in the region of Baffin Bay and Labrador Sea
(Ricker et al., 2014).

For ice thickness, the data product derived from the Soil
Moisture Ocean Salinity – Microwave Imaging Radiome-
ter using Aperture Synthesis (SMOS–MIRAS) instrument
(1.4 GHz channel) (Kaleschke et al., 2012) on a grid reso-
lution of 12.5km× 12.5km. The ice thickness is retrieved
from observation of the L-band microwave sensor of SMOS.
Horizontal and vertical polarized brightness temperatures in
the incidence range of < 40◦ are averaged. The ice thickness
is then inferred from a three-layer (ocean–ice–atmosphere)
dielectric slab model. SMOS data are available from 15 Oc-
tober 2010. The presence of snow accumulated over months
can also increase the uncertainty. The uncertainty in the
SMOS ice thickness (observations) shown in Table 2 (Tian-
Kunze et al., 2014; Ricker et al., 2016; Tietsche et al., 2017,
2018) includes the error contributions, which are caused by
the brightness temperature, ice temperature and ice salinity.
The insufficient knowledge of the snow cover also introduces
a large uncertainty in ice thickness estimates. Snow depth un-
certainty can be 50 %–70 % of the mean value (Zhou et al.,
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Table 2. SMOS uncertainty.

Ice Uncertainty caused by a standard
thickness deviation

0.5 K 1 K ice 1 g kg−1

temperature temperature ice
brightness salinity

0–10 cm < 1 cm < 1 cm < 1 cm
10–30 cm < 1 cm 1–5 cm 1–13 cm
30–50 cm 1–4 cm 2–10 cm 2–22 cm
> 50 cm > 4 cm > 7 cm ≤ 40 cm

Table 3. SMOS sensor specifications.

Polarization HV
Incidence angle 0–55◦

Swath (km) 900
Center frequency (GHz) 1.4 (L band)
Mean spatial resolution (km) 35–50
Radiometric sensitivity over ocean (K) 2.5 and 4.1

2018). In general, the uncertainty in the thickness observa-
tion increases with increasing ice thickness, increasing snow
cover and the onset of melt (Kaleschke et al., 2013). The
SMOS ice thickness retrieval produces a large amount of un-
certainty during the melt season and hence retrieval is not
conducted during the melt season. Table 3 shows the details
on the SMOS sensor (Kerr et al., 2001; Barré et al., 2008).

Ice draft measurements from an ULS instrument (Ross
et al., 2014) located on the Makkovik Bank (see Fig. 1) at
58.0652◦W and 55.412◦ N, were used to analyze the ridge
keel and the level ice draft in the region.

The ULS data measured at an interval of approximately
5.5 s are available from the beginning of January to the end
of May during 2005, 2007 and 2009. The frequency his-
togram of the data yields a unimodal, bimodal or multi-modal
distribution. A sample histogram is provided in Fig. 2 for
10 February 2007. We assume that the first mode in the
histogram corresponds to the level draft ice and the second
mode corresponds to the ridge keel measurement. The first
mode of the distribution is selected by finding a minimum
between two peaks. The histogram was analyzed to derive
daily averages of ice draft and keel measurements (Prasad
et al., 2016).

4 Data assimilation

The assimilation module uses a combined optimal interpo-
lation and nudging technique for ice concentration (Lindsay
and Zhang, 2006; Wang et al., 2013). The method can be
represented generally as Eq. (1) (Deutch, 1965; Lindsay and

Figure 1. The location of ULS instrument.

Figure 2. The histogram of the ULS measurement, 10 February
2007, for the estimation of draft and keel (metres).

Zhang, 2006).

Xa =Xb+ dt
K

τ

(
Xo−Xb

)
, (1)

where Xa is the final analysis of the variable, Xo is the
observed quantity (for ice concentration this is AMSR-
E/AMSR2, for SST this is AVHRR-only OISST), Xb is the
background estimate of the variable (for ice concentration
and SST this is model estimate), dt is the model time step, τ
is the basic nudging timescale as in Wang et al. (2013), and
K is the nudging weight with the optimal interpolation value.
K is computed as

K =
σαb

σαb + σ
2
o
, (2)

where σb and σo are the error standard deviation of the model
estimate (Deutch, 1965) and the observations (Deutch, 1965)
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respectively. The parameters in the weighing factor given in
Eq. (2) are defined according to Lindsay and Zhang (2006) as
σb = |Xo−Xb|; σo = 0.08 (parameter may vary spatially),
α = 6.

The assimilation of the ice concentration, σo = 0.08, is
calculated from a long-term standard deviation of 0.08, since
the AMSR-E/AMSR2 ice concentration error is dependent
on various atmospheric conditions for values less than 65 %.
The parameter α = 6 is used in the present study to ensure
that the coefficients for assimilation are heavily weighted
only when there is large variation between the model and the
observation (Lindsay and Zhang, 2006).

SST is also assimilated using the nudging and optimal in-
terpolation scheme. For SST assimilation, σo is fixed at 0.05
to compensate for the assumption of zero mixed-layer heat
flux. A value α equal to 6 (Lindsay and Zhang, 2006) was
also used for the assimilation of SST to ensure that only large
differences between the model and observation are weighted
heavily.

The assimilation of ice concentration is then followed by
a recomputation of the estimated sea ice volume. The ice
volume is subtracted or added by including the increments
or decrements with specified ice thickness. Since a variable
drag coefficient was used for the friction associated with an
effective sea ice surface roughness at the ice–atmosphere and
ice–ocean interfaces and to compute the ice to ocean heat
transfer, the level ice area is updated by assuming that the
model deformed ice area and volume represent the realistic
values.

5 Results and validation

Three model results are discussed here: M0, the non-
assimilated model; M1, the model assimilated with ice con-
centration from AMSR-E/AMSR2; and M2, the model as-
similated with ice concentration from AMSR-E/AMSR2 and
SST from AVHRR-only OISST. M2 only assimilates SST
whenever there is a data gap in ice concentration from
AMSR-E (e.g. from 24 March to 31 March 2005), AMSR-
E data are not available and, in that case, M2 assimilates
SST instead of ice in data gaps. The AMSR-E instrument
stopped producing data from October 2011, and AMSR-E2
data have been used for assimilation since August 2012. The
model was in spin-up for 3 months before assimilation, since
it was not coupled with the ocean model. The spin-up time
of 3 months is enough to estimate the ice conditions.

5.1 Ice concentration

Figure 3 column 1 shows the absolute mean difference in
ice concentration between the non-assimilated model and the
OSI SAF data, column 2 shows the absolute mean difference
in ice concentration of the model assimilated only with ice
concentration and OSI SAF data, and column 3 shows the ab-

solute mean difference in ice concentration of the model as-
similated with both ice concentration and SST and OSI SAF
data. Model M2 shows improvement in the ice concentration
for January and March, but little improvement between M1
and M2 for May 2010.

Figure 4 shows the absolute mean difference in ice con-
centration of the model assimilated with AMSR-E/AMSR2
and OSI SAF (SSMIS) data from January 2010 to Septem-
ber 2011 and the absolute mean difference in ice concentra-
tion from August 2012 to December 2015. The assimilation
of SST and ice concentration decreases the error between the
model and the OSI SAF ice concentration. In 2010, the non-
assimilated model error of 4.624 % was reduced to 1.939 %
by assimilating ice concentration. The assimilation of SST
and ice concentration decreased the error to about 1.118 % in
2010.

From October 2011 to July 2012, AMSR-E data are not
available for a more extended period, and model M2 was as-
similated only with SST; see Fig. 5. During this period, the
SST assimilation decreases the error between the model and
the observation by almost 3 %.

5.2 Ice thickness

In this section, we compare the ice thickness from the model
with that from the observation. The large unacceptable un-
certainties in observation data derived from SMOS create
difficulties for the analysis. Also, it is strictly recommended
to not use the SMOS data with an uncertainty greater than
1 m (Tian-Kunze and Kaleschke, 2016) for practical applica-
tions. For comparison and validation, ice thickness data are
selected from both the model and observation where the ob-
served ice thickness has an uncertainty less than or equal to
100 cm. The SMOS thickness has less uncertainty for thin-
ner ice and higher uncertainty for thicker ice; see Table 2
for the uncertainty in the SMOS ice thickness. In the case
of SMOS-derived thickness, the uncertainties would increase
with snow accumulation and melt onset.

Figures 6, 7 and 8 show the mean values of the thickness
estimated from models M0, M1, M2 and SMOS with the un-
certainty limits of the SMOS ice thickness (shaded grey). As
ice thickness increases through the season, so do the uncer-
tainty limits. The values of model M2 are within the uncer-
tainty limits of SMOS ice thickness from October until the
end of February (except for 2014). From the comparison,
during March, the model results exceed the uncertainty lim-
its. Figure 8 shows the results for the period October 2011
to April 2012 in which AMSR-E data were missing and dur-
ing which M1 was not assimilated with ice concentration but
used the initial conditions from the assimilated result. Model
M2 used the initial conditions assimilated with both ice con-
centration and SST but only assimilates SST during the pe-
riod. Both models, M1 and M2, show better forecasts with
the improved initial conditions in the long-term analysis. One
of the reasons why the model values exceed the uncertainty
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Figure 3. The absolute mean difference in ice concentration from non-assimilated, assimilated models and OSI SAF data for January, March
and May 2010.

limits during March is the choice of α = 6, which consid-
ers only large differences while weighing the coefficient K .
Since the assimilation shows improvement in ice thickness,
using a value of α = 2, it is expected to impose the model
values within the uncertainty limits.

The model M2 thickness, SMOS-derived ice thickness
and the uncertainty in the SMOS-derived measurement for
15 December 2010, 15 January 2011 and 15 March 2011 are
shown in Fig. 9, which includes regions where observed un-
certainties are larger than 1 m.

The thickness results for thin ice categories (< 30 cm)
from the model with SMOS are shown in Figs. 10, 11 and 12.
The shaded region shows the uncertainty in the thin ice from
SMOS data. The thin ice category thicknesses are overesti-
mated from October to the end of November but the values

are within the uncertainty limits of SMOS from December to
March.

Figure 13 shows the SST from AVHRR-only OISST anal-
ysis with the shaded regions representing the observation un-
certainty and SST from models M0, M1 and M2. In general,
the SST from AVHRR-only OISST assimilation improves
the ice concentration and ice thickness results for the model
M2. The assimilated model M2 still has a systematic bias
during the summer and winter, which may be improved by
decreasing α (= 6, presently) and by decreasing the nudging
timescale (presently for SST, the nudging scale is 30 days).
Decreasing the nudging timescale can result in the late for-
mation and early melt of ice (not shown here). The results
can be improved by making the nudging timescale less fre-
quent during the formation and more frequent during the
winter, until the beginning or middle of March. Frequent
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Figure 4. The absolute mean difference in ice concentration for models M0, M1 and M2 is shown for January 2010 to September 2011 in
row 1 and for August 2012 to December 2015 in row 2.

Figure 5. The absolute mean difference in ice concentration from October 2011 to July 2012. Ice concentration was not available for
assimilation and hence model M2 will only be assimilated with SST during this period.

nudging is also found to produce blow-up for the thermo-
dynamic model. The parameters in the assimilation have to
be selected to maintain balance, not cause late formation and
earlier melt and maintain the stability of the model thermo-
dynamics and dynamics. For M0, the non-assimilated model,
the results may be improved by including the mixed-layer
heat flux in a parameterization similar to Petty et al. (2014).
Also, note that the model still assumes a fixed salinity profile
and mixed-layer profile.

5.3 Draft and keel depth

The ULS measurements were separated into level ice draft
and keel depth measurement as described in Prasad et al.
(2016) and also in Sect. 3. The level ice draft, D, is com-
puted using Eq. (3) (Tsamados et al., 2014). The results are
shown in Fig. 14.

D =
(
ρivice+ ρsvsno

)/(
Aρw

)
, (3)

where ρi = 917 kg m−3 is the density of ice, vice is the vol-
ume of ice, ρs = 330.0 kg m−3 is the density of snow, vsno

is the volume of snow, A is ice concentration, and ρw =

1026 kg m−3 is the density of seawater.
Some deviations are noticed in the comparison of level ice

draft. The estimated absolute error is about 10 cm for 2005,
2007 and 2009. The error of 10 cm on a draft of 20 cm can
be accepted considering large differences in spatial resolu-
tion between the ULS and model. Also, the analysis was
done only for 2005, 2007 and 2009 as this was when data
were available. The discrepancy occurs due to the fact that
ULS gives values at a particular location with high resolu-
tion (within the footprint of several metres), while the model
of 10 km resolution gives an averaged result close to the lo-
cation of the ULS. Moreover, the analysis of the histogram
from ULS shows a multi-modal distribution at certain time
points which indicates the presence of rafted ice. In the
present study, the rafted ice is also included and considered
as the ridges which contribute towards the results achieved in
this section.

The keel is computed using idealized sea ice floe compris-
ing a system of two triangular sails and keels and a single
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Figure 6. The ice thickness from the models M0, M1, M2 and observation (SMOS ice thickness) from October 2010 to April 2011 and
October 2012 to April 2013. The uncertainty in the observation (SMOS ice thickness) is shaded in grey.

Figure 7. The ice thickness from the models M0, M1, M2 and observation (SMOS ice thickness) from October 2013 to April 2014 and
October 2014 to April 2015. The uncertainty in the observation (SMOS ice thickness) is shaded in grey.
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Figure 8. The ice thickness from models M0, M1 (ice concentration was not assimilated as there were no AMSR-E data available, but
the initial conditions from the model assimilated with ice concentration were used), M2 (assimilated only with SST and used model initial
conditions derived from assimilating both ice concentration and SST) and observations (SMOS ice thickness) from October 2011 to April
2012. The uncertainty in the observation (SMOS ice thickness) is shaded in grey.

Figure 9. The M2-estimated ice thickness, SMOS–MIRAS-derived ice thickness and the observation uncertainty for 15 December 2010,
15 January and 15 March 2011.

www.the-cryosphere.net/12/3949/2018/ The Cryosphere, 12, 3949–3965, 2018
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Figure 10. The ice thickness from the models M0, M1, M2 and observation (SMOS ice thickness) and the observation uncertainty (shaded
grey) for SMOS ice thickness less than 30 cm (2010–2012).

Figure 11. The ice thickness from the models M0, M1, M2 and observation (SMOS ice thickness) and the observation uncertainty (shaded
grey) for SMOS ice thickness less than 30 cm (2012–2014).

The Cryosphere, 12, 3949–3965, 2018 www.the-cryosphere.net/12/3949/2018/
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Figure 12. The ice thickness from the models M0, M1, M2 and observation (SMOS ice thickness) and the observation uncertainty (shaded
grey) for SMOS ice thickness less than 30 cm (2014–2015).

Figure 13. The SST from AVHRR-only OISST analysis with the shaded region represents the uncertainty in AVHRR-only OISST analysis
and SST from models M0, M1 and M2.

melt pond (Tsamados et al., 2014). The ridge height is given
by Eq. (4) and the correlation between the ridge height and
keel depth is given by Eq. (5):

Hr = 2
Vrdg

Ardg

(
αDkmk+βCmr

)(
φrmkDk+φkmrC2

) , (4)

where Hr is the ridge height, mr = tan(αr)= 0.4; αr = 21.8◦

is the slope of the sail and mk = tan(αk)= 0.5; αk = 26.5◦

is the slope of the keel; φr is the porosity of the ridges; φk =
0.14+ 0.73φr (Shokr and Sinha, 2015) is the porosity of the
keels.Dk = 5 is the ratio distance between ridge and distance
between the keels. Vrdg is the volume of the ridged ice,Ardg is
the ridged ice area fraction, α and β are the weight functions
for area of ridged ice, C is the coefficient that relates ridge to
keel, and

Hk = CHr (5)

gives the keel depth Hk. The Makkovik Bank where the keel
measurements are estimated from ULS has high variability
of ice thickness, and frequency of the formation of keels is
high due to the combined effect of the Labrador currents and
winds. Rafted ice is common in this region (Peterson et al.,

2013). Here the model and the observation of keel depth are
used to estimate the parameter C.

The coefficient C, estimated for 2005, 2007 and 2009,
shows that a value between 3.00 and 4.50 gives a good es-
timate of keel measurement for January and February, while
a value between 7.00 and 8.00 gives a good estimate of keel
during March, April and May. In Fig. 15 the values of the
coefficient C that relates ridge to keel for January and Febru-
ary is 3 and C = 7.00 for March, April and May; see Eq. (5).
These values are derived under the assumptions in Eq. (4).
The sensitivity of parameters has to be further explored to
determine the characteristics of each parameter and its effect
on the ridge–keel relationship, which may result in a differ-
ent conclusion. Since the interest lies in deriving this rela-
tionship from the assimilated model, only results from M2 is
presented. For non-assimilated models, the choice of param-
eters vary.

During January to February the formation of ice and ridges
occurs, and during March the thick ice may be contributing
towards the ridging, thus increasing the value of C.
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Figure 14. The level ice draft computed from the ULS measurement and the M2 model-estimated values at Makkovik Bank for 2005, 2007
and 2009.

Figure 15. The keel depth computed from the ULS measurement and the M2-estimated values in centimetres for 2005, 2007 and 2009.
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Figure 16. The absolute mean difference between the model freeboard for M0, M1 and M2 and CryoSat-2 for January, February and March
2011.

Figure 17. The RMSE of freeboard measure for the regions where the lead fraction is above 0 %.
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Figure 18. The freeboard from model M2, CryoSat-2 and the uncertainty in the observations for January, February and March 2011.

5.4 Freeboard

The uncertainty in freeboard measurements can arise due
to the lack of leads. The presence of leads was ensured by
selecting the regions where the lead fraction derived from
CryoSat-2 (Ricker et al., 2014) was greater than zero. In the
model, freeboard is computed using Eq. (6) (Tsamados et al.,
2014). For the region, the uncertainty in the freeboard mea-
surements is below 40 cm (Ricker et al., 2014).

Df =
(
vice+ vsno

)/
A−D , (6)

where vice is the volume of ice, vsno is the volume of snow,
A is the ice concentration and D is the draft; see Eq. (3).

The absolute mean difference between the model and the
observations for January, February and March 2011 is shown
in Fig. 16. M2 freeboard measurements are close to the ob-
served freeboard. Figure 17 shows the RMSE of the free-

board from model M2 and CryoSat-2 in the areas where the
lead fraction was greater than zero. The RMSE is below the
maximum uncertainty in 40 cm for the region of interest and
was found to range between 4.5 and 11 cm.

Figure 18 shows the observed freeboard from CryoSat-2,
the uncertainty in the observation and the model M2. Only
the model results from M2 are given, since there are only
slight deviations for M0 and M1 from the observation. More-
over, we are interested in the results of the assimilated model
and how well it performs in the estimation of freeboard. The
model values are within the uncertainty limits of the observa-
tion. Also, note that the model results are monthly averaged,
while CryoSat-2 is a mosaic of daily measurements within a
month. The spatial average of freeboard for the region, the
observed value and the uncertainty are shown in Fig. 19. The
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Figure 19. The freeboard from CryoSat-2, uncertainty in the observation and the model M2.

average freeboard from the model lies within the uncertainty
limits of the observation.

6 Conclusions

The assimilated models in the literature and those imple-
mented in forecasting centres use a constant drag formulation
and lack details on deriving parameters other than ice con-
centration and ice thickness (Lemieux et al., 2016; Rae et al.,
2015). In this work a variable drag formulation is used for the
friction associated with an effective sea ice surface rough-
ness at the ice–atmosphere and ice–ocean interfaces and to
compute the ice-to-ocean heat transfer. The results from the
updated model were compared with satellite-derived mea-
surements to validate the model estimates of ice concentra-
tion, ice thickness and freeboard. Moreover, the model re-
sults were used to estimate the relationship between sail and
keel depth.

The modelled ice thickness demonstrated a good corre-
spondence with the estimates from SMOS–MIRAS, except
during the period of maximum ice extent. The deviation in
the results of ice thickness during March have to be further
explored by tuning the parameters that contribute to the ice
thickness in the non-assimilated model as well as the as-
similation parameters. The thin ice category thicknesses are
overestimated from October to the end of November but the
values are within the uncertainty limits of SMOS from De-
cember to March. The SMOS estimates are influenced by the
presence of snow, and also, during the melt seasons the un-
certainties of SMOS-estimated ice thickness might increase,
in which case comparison with more reliable data would be
required. The model freeboard are compared with estimates
from CryoSat-2, and the RMSE was found to range between
4.5 and 11 cm. The estimates of freeboard from the model
are within the uncertainty values of the CryoSat-2 (below
40 cm).

The level ice draft and keel values derived from ULS were
compared with the modelled values. The coefficient that re-

lated the sail height and keel depth for the Makkovick region
lies in the range 3–8 depending on the period of the year.
Since the variable drag formulation depends on the assimila-
tion methodology, further sensitivity studies have to be con-
ducted for the optimization of the model. The model will be
made operational after further sensitivity studies.
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